University of

BRISTOL

Tutorial on GPU computing

With an introduction to CUDA

Felipe A. Cruz

University of Bristol, Bristol, United Kingdom.

% University of

Y BRISTOL

The GPU evolution

e The Graphic Processing Unit (GPU) is a processor that was specialized for
processing graphics.

e The GPU has recently evolved towards a more flexible architecture.
e Opportunity: We can implement *any algorithm*, not only graphics.

eChallenge: obtain efficiency and high performance.

Felipe A. Cruz

% University of

Y BRISTOL

Overview of the presentation

e \otivation
eThe Buzz: GPU, Teraflops, and more!

e The reality (my point of view)

Felipe A. Cruz

% University of

Y BRISTOL

The motivation

GPU computing - key ideas:

e Massively parallel.

1000 ..
e Hundreds of cores. o Nvidia GPU
® Intel CPU

® Thousands of threads. 750

A
eCheap.

> = 500

3

eHighly available.

250
eProgramable: CUDA

2003 2004 2005 - 20006 2007 2008 2009

Felipe A. Cruz

% University of

Y BRISTOL

CUDA: Compute Unified Device Architecture

®|ntroduced by Nvidia in late 2006.
e CUDA is a compiler and toolkit for programming NVIDIA GPUs.
e CUDA API extends the C programming language.
eRuns on thousands of threads.
e|t is an scalable model.
e(Objectives:
eExpress parallelism.

eGive a high level abstraction from hardware.

Felipe A. Cruz

% University of

Y BRISTOL

NVIDIA: GPU vendor

¢ GPU market: multi-billion dollars! (Nvidia +30% market) N
" NIWVIIDUA
eSold hundreds of millions of CUDA-capable GPUs. &
eHPC market is tiny in comparison.
eNew GPU generation every ~18 months.
eStrong support to GPU computing:
eHardware side: developing flexible GPUs.
e Software side: releasing and improving development tools.

e Community side: support to academics.

el inks: www.nvidia.com, http://www.nvidia.com/object/cuda home.html

Felipe A. Cruz

http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html

% University of

Y BRISTOL

How a GPU Iooks Ilke’?

e Most computers have one.

Processor
Cores

eBillions of transistors.
e Computing:
o1 Teraflop (Single precision)
100 Gflops (Double precision (i
e Also:

o A heater for winter time!

e Supercomputer for the masses?

Tesla card

IIl

ﬂliu :

BT o
u‘*“ Ll p i

Texture h 'h O ‘; e Texture

Processor
Cores

B 0 | | LA || A

Felipe A. Cruz

% University of

Felipe A. Cruz

& BRISTOL

Level-3 BLAS on a GPU:
Picking the Low Hanging
Fruit

Clustering Billions of
Data Points Using GPUs

Clustering Billions of Data
Points Using GPUs

ffA Software: Performance
Acceleration

Applications

Density field viewer Accelerating Leukocyte

Tracking using CUDA

S
m/

Parallelized Turing bombe & Fast BVH Construction on
Enigma simulations BGPUs

CUDA Accelerated Expectation
Maximization of Gaussian
Mixture Models 170 x

e Many can be found at the NVIDIA site!

ehttp://www.nvidia.com/object/cuda home.html

BGPUTop - Topology
Optimization on CUDA
Braphics Cards in 3D

IFParallael

IRaclix Sosre

Designing Efficient Sorting
Algorithms for Manycore
GPUs

BPU accelerated Monte Carlo
simulation of the Ising model

60 x

http://www.nvidia.com/object/cuda_home.html#
http://www.nvidia.com/object/cuda_home.html#

% University of

Y BRISTOL

Ok... after the buzz

eQuestion 1: Why accelerator technology today? If it has been around since the 70’s!
eQuestion 2: Can | really get 100x in my application?
eQuestion 3: CUDA? vendor dependent?

eQuestion 4: GPU computing = General-purpose on GPU?

Felipe A. Cruz

% University of

Y BRISTOL

Why accelerator technology today?

10.0
®|nvestment on GPU technology makes
more sense today than in 2004. 7.5
5.0
o CPU uni-processor speed is not doubling ,
every 2 years anymore! =
0
e(Case: investing in an accelerator that 2009 2010 2011 2012 2013 2014
gives a ~10x speedup: O Before O Now

02004 speedup 1.52x per year: 10x today would be 1.3x acceleration in 5 years.
e TODAY speedup 1.15x per year: 10x today would be 4.9x acceleration in 5 years.

e Consider the point that GPU parallel performance is doubling every 18 months!

Felipe A. Cruz

% University of

Y BRISTOL

Can | get 100x speedups?

Amdahl’s law: parallel portion

20—
eYou can get hundred-fold speedup for 18 |
some algorithms. 16
®|t depends on the non-parallel part: 14
Amdahl’s law. g 2
310
eComplex application normally make use of g
many algorithms.]
e| ook for alternative ways to perform the 4
computations that are more parallel. 2
1 10 100 1000 10000
eSignificance: An accelerated program is Number of processors

. . . '
going to be as fast as its serial part! Amdahl’s Law

Maximum speedup

Felipe A. Cruz

% University of

Y BRISTOL

CUDA language is vendor dependent?

eYes, and nobody wants to locked to a single vendor.

eOpenCL is going to become an industry standard. (Some time in the future.)
eOpenCL is a low level specification, more complex to program with than CUDA C.
e CUDA C is more mature and currently makes more sense (to me).

eHowever, OpenCL is not “that” different from CUDA. Porting CUDA to OpenCL
should be easy in the future.

ePersonally, I'll wait until OpenCL standard & tools are more mature.

Felipe A. Cruz

% University of

Y BRISTOL

GPU computing = General-purpose GPU?

e\\Vith CUDA you can program in C but with some restrictions.
eNext CUDA generation will have full support C/C++ (and much more.)
eHowever, GPU are still highly specialized hardware.

ePerformance in the GPU does not come from the flexibility...

Felipe A. Cruz

% University of

Y BRISTOL

GPU computing features

eFast GPU cycle: New hardware every ~18 months.
eRequires special programming but similar to C.

e CUDA code is forward compatible with future hardware.
eCheap and available hardware (£200 to £1000).
eNumber crunching: 1 card ~= 1 teraflop ~= small cluster.
eSmall factor of the GPU.

e |mportant factors to consider: power and cooling!

Felipe A. Cruz

% University of

Y BRISTOL

CUDA introduction

with images from CUDA programming guide

Felipe A. Cruz

% University of

Y BRISTOL

What's better?

Scooter

Felipe A. Cruz

O]

o
O

V/T

% Universit
BRIS

<

What's better?

Many scooters

Sport car

N
-
r
@)
<
)
O
[
LL

% University of

Y BRISTOL

What's better?

Many scooters

Sport car
Deliver many packages Deliver a package as
within a reasonable timescale. soon as possible

Felipe A. Cruz

% University of

Y BRISTOL

What do you need?

High throughput Low latency

and anhd
reasonable latency reasonable throughput
Compute many jobs Compute a job as
within a reasonable timeframe. fast as possible.

Felipe A. Cruz

% University of

Y BRISTOL

NVIDIA GPU Architecture

Transistors 681 million
CUDA Cores 128
Double Precision Floating None
Point Capability

Single Precision Floating 128 MAD
Point Capability ops/clock
Special Function Units 2
(SFUs) / SM

Warp schedulers (per SM) 1
Shared Memory (per SM) 16 KB
L1 Cache (per SM) None
L2 Cache None
ECC Memory Support No
Concurrent Kernels No
Load/Store Address Width 32-bit

1.4 billion 3.0 billion
240 512
30 FMA ops /clock = 256 FMA ops /clock

240 MAD ops / 512 FMA ops /clock

clock
2 4
1 2
16 KB Configurable 48 KB or
16 KB
None Configurable 16 KB or
48 KB
None 768 KB
No Yes
No Up to 16
32-bit 64-bit

Comparison of NVIDIA GPU generations. Current generation: GT200. Table from NVIDIA Fermi whitepaper.

Felipe A. Cruz

% University of

Y BRISTOL

CUDA architecture

eSupport of languages: C, C++, OpenCL.

e\\indows, linux, OS X compatible.

Application
Language: C + extensions Host Beadl GPU

CUDA

Architecture CPU and GPU model

Felipe A. Cruz

% University of

Y BRISTOL

Strong points of CUDA

® Abstracting from the hardware
e Abstraction by the CUDA API. You don’t see every little aspect of the machine.
e Gives flexibility to the vendor. Change hardware but keep legacy code.
eForward compatible.
e Automatic Thread management (can handle +100k threads)
e Multithreading: hides latency and helps maximize the GPU utilization.
® [ransparent for the programmer (you don’t worry about this.)
o| imited synchronization between threads is provided.

eDifficult to dead-lock. (No message passing!)

Felipe A. Cruz

% University of

Y BRISTOL

Programmer effort

e Analyze algorithm for exposing parallelism:
eBlock size
eNumber of threads
eTool: pen and paper
e Challenge: Keep machine busy (with limited resources)
e Global data set (Have efficient data transfers)
®| ocal data set (Limited on-chip memory)
e Register space (Limited on-chip memory)

eTool: Occupancy calculator

Felipe A. Cruz

% University of

Y BRISTOL

Outline

e Memory hierarchy.
® Thread hierarchy.
eBasic C extensions.
e GPU execution.

®Resources.

Felipe A. Cruz

% University of

Y BRISTOL

Thread hierarchy

Computation

eKernels are executed by thread.

a thread

o A kernel is a simple C program.

eEach thread has it own ID. a thread block

b

e Thousands of threads execute same kernel.

a set of concurrent
threads

® [hreads are grouped into blocks.

synchronization barrier

® Threads in a block can synchronize execution.

a grid of thread blocks

am
et S,

a set ofindependent
thread blocks

Felipe A. Cruz

% University of

Y BRISTOL

Memory hierarchy

® Three types of memory in the graphic card:

Memory Computation

®Global memory: 4GB

registers & a thread

eShared memory: 16 KB local memory

®Registers: 16 KB

shared memory a thread block

eLatency: Orrmrnnd

a set of concurrent

® Global memory: 400-600 cycles threads

eShared memory: Fast

synchronization barrier

®Register: Fast

global memory a grid of thread blocks

o oo TREERE
> T

®Reqisters: thread space a set of independent

thread blocks

Felipe A. Cruz

% University of

Y BRISTOL

Basic C extensions

Function modifiers
®_global__: to be called by the host but executed by the GPU.
® host__ :to be called and executed by the host.
Kernel launch parameters
eBlock size: (X, VY, z). X*'y*z = Maximum of 768 threads total. (Hw dependent)
oGrid size: (X, y). Maximum of thousands of threads. (Hw dependent)
Variable modifiers
®_ shared__ : variable in shared memory.

e syncthreads() : sync of threads within a block.

Check CUDA programming guide for all the features!

Felipe A. Cruz

% University of

Y BRISTOL

Example:device

eSimple example: add two arrays

eNot strange code: It is C with extensions.

// Device code
__global void VecAdd(float* A, float* B, float* C)

int i threadIdx.x;
if (1 < N)
C[i) A(i) + B[i]:

eExample from CUDA programming guide

Felipe A. Cruz

% University of

Y BRISTOL

Example:device

eSimple example: add two arrays

eNot strange code: It is C with extensions.

// Device code
__global void VecAdd(float* A, float* B, float* C)

Thread id

eExample from CUDA programming guide

Felipe A. Cruz

Felipe A. Cruz

o

/

Example: host

Host code
int main()

// Allocate wvectors in devi

ce memory

size t size N * sizeof(float):;

float* d_A;

cudaMalloc((void**)&d A, si

float* d _B;

cudaMalloc((void**)&d B, si

float* d_C;

cudaMalloc((void**)&d C, si

[/

ze)

.

ze)

.

.

ze)

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory

cudaﬁemcpy(d_n, h A, size, cudaMemcpyHostToDevice)

cudaMemcpy(d B, h B, size,
// Invoke kernel

int threadsPerBlock 256;
int threadsPerGrid

cudaMemcpyHostToDevice) ;

(N + threadsPerBlock 1) / threadsPerBlock;

VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

// Copy result from device
// h C contains the result

cudaﬁemcpy(h_c, d C, size,

// Free device memory
cudafFree(d A);
cudafFree(d B);
cudaFree(d C);

memory to host memory
in host memory
cudaMemcpyDeviceToHost) ;

% University of

Y BRISTOL

Example: host

// Host code
int main()

Memory
allocation

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory
cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int threadsPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock;
VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

// Copy result from device memory to host memory

// h_C contains the result in host memory
cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d A);
cudaFree (d B);
cudaFree(d C);

Felipe A. Cruz

% University of

B BRISTOL

Example: host

// Host code
int main()

// Allocate vectors in device memory

size t size = N * sizeof(float);
float* d_A;
cudaMalloc((void**)&d A, size);
float* d _B;
cudaMalloc((void**)&d B, size);
float* d _C;

cudaMalloc((void**)&d C, size);

Memory
copy: Host -> GPU

// Invoke kernel
int threadsPerBlock = 256;
int threadsPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock:;
VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d:B);
cudaFree(d C);

Felipe A. Cruz

% University of

B BRISTOL

Example: host

// Host code
int main()

// Allocate vectors in device memory

size t size = N * sizeof(float);
float* d _A;
cudaMalloc((void**)&d A, size);
float* d _B;
cudaMalloc((void**)&d B, size);
float* d C;

cudaMalloc((void**)&d C, size);

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory
cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d:B, h:B, size, cudaMemcpyHostToDevice);

Kernel call

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d:B);
cudaFree(d C);

Felipe A. Cruz

% University of

BRISTOL

Example: host

// Host code
int main()

// Allocate vectors in device memory
size t size = N * sizeof(float);
float* d A;

cudaMalloc((void**)&d A, size);
float* d _B;

cudaMalloc((void**)&d B, size);
float* d _C;

cudaMalloc((void**)&d C, size);

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory
cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int threadsPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock:;
VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

Memory
copy: GPU -> Host

// Free device memory
cudaFree(d_A);
cudaFree(d B);
cudaFree(d C);

Felipe A. Cruz

% University of

B BRISTOL

Example: host

// Host code
int main()

// Allocate vectors in device memory
size t size = N * sizeof(float);
float* d _A;

cudaMalloc((void**)&d A, size);
float* d _B;

cudaMalloc((void**)&d B, size);
float* d C;

cudaMalloc((void**)&d C, size);

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory
cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d:B, h:B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int threadsPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock:;
VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

Free GPU memory

Felipe A. Cruz

Felipe A. Cruz

o

/

Example: host

Host code
int main()

// Allocate wvectors in devi

ce memory

size t size N * sizeof(float):;

float* d_A;

cudaMalloc((void**)&d A, si

float* d _B;

cudaMalloc((void**)&d B, si

float* d_C;

cudaMalloc((void**)&d C, si

[/

ze)

.

ze)

.

.

ze)

// Copy vectors from host memory to device memory

// h A and h B are input vectors stored in host memory

cudaﬁemcpy(d_n, h A, size, cudaMemcpyHostToDevice)

cudaMemcpy(d B, h B, size,
// Invoke kernel

int threadsPerBlock 256;
int threadsPerGrid

cudaMemcpyHostToDevice) ;

(N + threadsPerBlock 1) / threadsPerBlock;

VecAdd<<<threadsPerGrid, threadsPerBlock>>>(d A, d B, d C);

// Copy result from device
// h C contains the result

cudaﬁemcpy(h_c, d C, size,

// Free device memory
cudafFree(d A);
cudafFree(d B);
cudaFree(d C);

memory to host memory
in host memory
cudaMemcpyDeviceToHost) ;

% University of

R [& BRISTOL

Work flow

Memory
allocation o1 (2|314|5]|6]7]...

Memory
copy: Host -> GPU .~

() o
g .." // Device code
— R __global void VecAdd(float* A, float* B, float* C)
Kernel call '
‘ea, int i threadIdx.x;
4
"~.... if (1 < N)
'~.,... Cl[i] A[i) + B[i];
'... .
Memory
copy: GPU -> Host

Free GPU memory

Felipe A. Cruz

