
Practical Code Auditing

Copyright Fall 2002

by

Lurene A. Grenier

lurene@daemonkitty.net

December 13, 2002

Abstract

A quick scan provides multiple papers detailing the exploitation of var-

ious software vulnerabilities, although there are very few comprehensive

writings which cover the detection and repair of security related software

flaws. This paper will attempt to cover the common categories of software

vulnerability, and how to recognize them in either source code, or the ac-

tions of a ”black box” binary. The focus will be on vulnerabilities which

result in the execution of arbitrary code for the most part, touching on

Denial of Service attacks only as they relate to the inproper handling of

input data.

1 Acknowledgements

Much of the work and insight of this paper, as well as the format and presenta-
tion have benefitted from the discussion with and suggestions of several friends.
I’d like to thank Dean McNamee for his understanding and explainations of
memory chunks and free, Joakim Berg for his uncanny ability to dig up 0day
and tutorials, Jose Nazario, Niels Provos, Todd Fries, and Sam Smith, and Julie
Mallet for their eyes and suggestions.

2 Introduction

The first and most important aspect of code auting deals with understanding
the forms of known vulnerabilities, and (obviously) being able to recognize them
”in the wild”. This paper will cover buffer overflow, heap overflow,integer over-
flow, format string vulnerabilities, bad free calls, and race conditions. As you
can see simply from the names of these categories, the majority of vulnerabil-
ities rely on the writing of memory past that which has been allocated for the
purpose. Specifically, buffer overflows write to the stack, heap overflows write to
malloc()’d memory (the heap), and integer overflows are a subset which result

1



in either buffer or heap overflows. Format string vulnerabilities of course work
on a similiar theory, but get the result in a far different way.

3 Preliminary Source Code Auditing and Buffer

Overflows

Our plan of attack will be to start with a wide net, then narrow our passes
as we continue, beginning with the most commonly made errors and the most
commonly exploited type of hole. This means we will sweep first for the non-
error checking string functions which can result in an easily exploitable buffer
overflow. This can be done with a tool such as grep, or perl, but we’ll still need
to go over our results. The functions we are most interested in are those such as
strcpy, strcat, sprintf, or gets. We should also be concearned with functions such
as strncat being used to copy a null byte one place past the end of the array, or
strncpy’d strings being recopied as if they had a ’\0’ at the end. Other common
buffer overflow points are home made ”safe” string functions (ie. my strncpy).
Once we’ve grepped for these, we should output them to a file and immediately
group them into areas of likelyhood. Strcat/ strcpy usage should be checked
first, to be sure that if they are used at all, they are used with static strings that
have had space allocated specifically for them. One should also double check
the math to be sure the space is allocated correctly to allow for ’\0’s and be
sure that they are there. Next, we will want to go over all instances of strncat
and strncpy, making sure ’\0’s have been cat’d to the end, and that these ’\0’s
are contained inside the allocated memory as opposed to one past, ie

buf[sizeof(buf)-1] = ’\0’

as opposed to

buf[sizeof(buf)] = ’\0’

Any usage of sprintf should be replaced with snprintf or similiar and the size
limit should be checked. Any usage of gets should be an immediate clue that
our program is vulnerable, not only at that point, but probably many others.
It should be quickly replaced with a sane buffered and checked input loop, or
exploited, depending on your purpose.

4 Heap Overflows and Free Bugs

While these same precations should be taken to in to acount to avoid heap over-
flows, there are also other interesting ways heap overflows can be accomplished,
one such way being bad calls to free(). This is a very odd bug and bares a bit of
explaination. Memory in C is looked at by free and malloc as something known
as a chunk. Freed chunks are held in a doubly linked list and several things are

2



done with this list in order to minimize memory fragmentaion. Basically, when
you are returned a pointer to malloc, the previous 4 bytes are used for chunk
information, and after being free’d the 4 bytes directly after the memory area
your pointer pointed to hold links to the previous and next chunks of free’d
memory. In this header is a short containing a 1 or a 0 which tells free and
malloc if the previous chunk is in use. None of this is terribly important unless
we try to free a chunk of previous memory that has already been freed. In this
case, free will check thenext chunk’s prev in use variable, see it is not in use,
and try to put this pointer into it’s list of free’d memory to be reused. In the
process of doing this, it will assume the first 4 bytes of your data are valid pre-
vious and next (relative) pointers. This can also be accomplished if an attacker
can manage to overwrite the next block’s prev in use variable. Essentually this
allows the attacker to overwrite 4 bytes anywhere in memory, possibly a stack
pointer. This is really simply a variation of heap overflow attacks. A prime real
world example of this is the traceroute heap overflow.

Basically, a special string copying function mallocs a large chunk of memory,
then breaks it up into several pieces of memory, handing out pointers to places
inside the malloc’d memory. While this cuts down on the mallocing over-head, it
becomes a problem when the rest of the code doesn’t take this into consideration.
Later in the code, those pointers are treated each as seperately malloced chunks
of memory and each is free’d. While this cannot be spotted in any one section
of code, it is certainly a reminder of our advice concearning specialized string
manipulation functions, and a good example of a free induced heap overflow.

5 Format String Vulnerabilities

Format string vulnerabilities are the next thing to check for, being the easiest
to spot, but also the easiest to write portable (and devistating, at least for ELF
systems) exploits for. This is due to the GOT (global offset table) portion of
ELF binaries. What this essentially means, is that any format string exploits
will not only be able to bypass stack return address protections, but it will
also not require the standard bufer overflow song and dance to get offsets, as
the GOT always has the same address. (Please see the TESO paper for an
exhaustive study of this). Thankfully, these are easy to find. All we need to do
is grep for all printf functions, including those such as err, verr, warn, syslog,
setproctitle, etc. Then we take that list and check for two things. The first and
most important thing to check for is that our functions use format strings at
all. For example, a vulnerable printf call might look like this

void foo(bar)
char *bar;

{
printf(bar);

}

3



While a clean printf will look thusly

void foo(bar)
char *bar;

{
printf(”%s”, bar);

}

The next check we need to make is for the now depricated use of size limits
within the formatstring. All checks should be done outside of the print state-
ment. Examples of this might take the form of formating such as %44s, which is
supposed to limit the length of the printed string to 44 characters. This should
no longer ever be used unless it’s to align data, and you are assured that the
string is smaller than the alignment size.

A pretty good example of a format string vulnerability as they are generally
found in the wild can be found in the popular POP3 / IMAP daemon, perdition.
(found by GOBBLES security) As usual the issue was with a syslog call rather
than the familiar *printf calls. The line
syslog(priority, vl-¿buffer);

occurs in the function vanessa logger log() in vanessa logger.c. Obviously the
only change needed to fix the issue is the addition of a ”%s” argument in the
middle of our call, as with the above example. However some developers seem
to think that error and syslog calls are somehow a different beast than other
format string calls, and you will almost certainly find more issues with these
calls than with others.

6 Integer Overflows

Our next checks, and our most difficult, are now necessary mostly due to the
recent OpenSSH vulnerability. Nothing can create more of a headache than
hunting for integer overflows, primarily because you simply can’t grep for them.
You must read every line which deals with the copying of memory which is
dynamically sized. For example, lets assume that we get from the network a
number of structs we are to recieve. so
u int num of structs = grab from input();

And so we naturally allocate memory next to hold this array of structs, like
so

mystruct *mem = malloc(num of structs * sizeof(mystruct));

While both num of structs, and sizeof(mystruct) may be less than UINT MAX,
(and we can even check both to be sure they are individually under UINT MAX),
multiplying them together may result in a size which overflows, resulting in a

4



small positive int. We have then created a buffer overflow when we try to copy
into mem, even if we use safe copy functions. Pointer arithmetic with similarly
flawed numbers can also cause an issue, forcing us to copy to memory either
behind or far ahead of our allocated memory.

We must also be aware of issues of sign’dness. Note that many functions
will take size t which is generally cast to an unsigned integer. Mixing up signed
and unsigned is the classic way to incur an integer overflow related buffer or
heap issue. Make sure that function’s which return an int to be used as size t
are checked for sanity. For example lets assume the following:
void make buf(size t);
int input();

void *buf = make buf(input());

If input() errors and returns -1 for example, make buf will interpret this as
simply a very large number. (Specifically 2ˆbits where bits is the bit-width of
the type.)

6.1 OpenSSH bug

As an example, of what a real world integer overflow might look like, let us
examine the OpenSSH 3.3 patch, as this shows both the issue and the fix. The
patch makes only one change, and this change is largely a check of protocol
sanity (patch presented in unified diff format):

--- auth2-pam.c 22 Jan 2002 12:43:13 -0000 1.12
+++ auth2-pam.c 26 Jun 2002 10:12:31 -0000
@@ -140,6 +140,15 @@

nresp = packet_get_int(); /* Number of responses. */
debug("got %d responses", nresp);

+
+ if (nresp != context_pam2.num_expected)

+ fatal("%s: Received incorrect number of responses "
+ "(received %u, expected %u)", __func__, nresp,

+ context_pam2.num_expected);
+

+ if (nresp > 100)
+ fatal("%s: too many replies", __func__);
+

for (i = 0; i < nresp; i++) {
int j = context_pam2.prompts[i];

While it is hardly likely that nresp can or would overflow, one should note
that nresp is used several times without checks, such as in the line:

response = xmalloc(nresp * sizeof(char*));

As long as we take heed of what is a sensable number of responses for the
protocol, the problem is simply avoided. The issue however, is that finding or
even deciding where these overflows can occur is quite difficult, and untilvery
recently was never considered an issue.

5



One last quick and easy check should be done for integer overflow issues. A
simple grep for atol and atoi should be done. While these functions are some-
times used safely, it is a bad practice to leave them in code you’d like to be sure
is secure. This is because both atoi and atol have no boundry checking, and
handle incorrect characters quite poorly. (for example ”47x”) All instances of
these functions should be replaced by strtol.

7 Race Conditions

If our piece of software happens to be threaded, we should now search for any
possible race conditions. This is another point, such as integer overflows that can
lead to buffer and heap overflow vulnerabilities. This is another difficult category
which must be done by hand, but can still be done systematically. First, find
all variables that will be handled, or can be handled by multiple threads. Then,
it’s useful, but not necessary to flow out the activities and relativing timing of
your various threads, or simply types of threads. Now, you can match these
volatile variables to all possible places they will be changed in your flow chart.
Once we know where everything can be accessed, we can match these points
with source code, and make sure that we’ve placed the proper mutexes around
these variables at the proper times. If you’re particularly interested in being
sure there are no vulnerabilities, you should also go through the lines and logic
around the mutexes to be sure that all sensitive variables and changes are made
within the lock, and nothing is omitted.

7.1 Binding Flaws

It can also lead to a more interesting class of bug, known as binding flaws. A
good example of this invloves two simple calls. Access() is a call that returns an
error if the uid cannot access a certain file in a certain way. The other function
is open().

if (access(tmpfile, W_OK) == 0) {

if ((fd = open(tmpfile, O_WRONLY)) == -1)
/* complain and die */

/* write to file */
}

Lets assume the timeframe goes like this. tmpfile points at /tmp/foo, the
access call goes just fine since our user can write to /tmp/foo. Right after access
returns, but just before the open() call, we delete /tmp/foo and link /tmp/foo
-¿ /bin/sh, and write our own malicious binary over the old /bin/sh.

To prevent this sort of mischief we need to make sure we have locked the file
before the access call, and unlock it only after we’re done writing and the file’s
been closed. To exploit it, we need perfect timing.

6



7.2 Signal Handlers

We should also be on the look out for race conditions resulting from unsafe
signal handling. We will want to check for calls such as syslog(), or any func-
tions which use malloc() inside a signal handler. The reason for this is that
re-entering into malloc() can lead to a corruption of the heap. If the signal
handler has no re-entry protection, it is likely that it is vulnerable to attack,
(although the timing on this is very difficult, if doable at all.) One of the
most glaring things to hunt for is SIGURG handled in remote daemons. If
the signal handler happens to use an unsafe function, it’s likely that it can be
exploited remotely. A full list of functions which are safe to be called from
signal handling functions can be found in the OpenBSD sigaction man page.
(http://www.openbsd.org/cgi-bin/man.cgi?query=sigaction) In general, signal
handlers should be combed through by hand to check for any non-atomic code.
Ideally, we should find code which does nothing more than set a flag.

8 Binary Auditing

Generally, binary auditing is is not often attempted by developers, as they
have the source code avaiable to them, and source code auditing is a much more
complete method. Binary auditing is most useful in a few key situations though.
These situations involve security sensitive pieces of software which have core
dumped, even after a code audit, or pieces of software which are closed source
in part or in full. It can also be useful in detecting hard to find integer overflows
in network software. For the basic security auditing we’re engaging in, we’ll
need a few simple tools, but not nearly as many as we’d use in forensic testing
for the binary’s functionality. Our purposes will require a debugger which can
load core files (We’ll use gdb), a system call tracing tool (We’ll use ktrace on
OpenBSD current, but strace and ptrace are also acceptable), and a packet
injection tool (We’ll use nemesis, because I’ve done some work on it, but I’m
also partial to using the MIT pdos lab’s modular click router for this - nemesis
is a faster and easier tool, but click is more complete). Binary analysis occurs
generally in two distinct steps. Firstly, we try to force the program in question
to fail, where by fail I mean crash in some fashion (optimally leaving us a core
file to work with) or even just act in some way it was not designed to or give
us garbage output. The second stage involves examining the mode of failure,
or the evidence our program leaves behind (usually in the form of a core file,
or error log). From this secondary step we can determine if the problems we
unearthed in the first step are indeed security flaws.

8.1 Stress Testing

The first and easiest approach to reaching that state of failure is simple stress
testing. The auditor would create a program to generate random strings, and
send them to the program’s input stream, in an effort to reach a state conducive
to step two. More than likely, however (we hope), the original author of the

7



program has done this already and has found and fixed most simple input prob-
lems. This is usually true in the case of closed source software of even dubious
security, but stress testing is always a useful place to start. Often rather than
fixing holes, authors will simply hide the problems with exception handling (in
the case of languages which support this such as C++) and we will not see
errors we have brought about. This also will not catch more complex issues, or
even malloc overwrites, so obviously stress testing is only our first step. There
are several utilities which can automate this, and shell scripts can be written in
a matter of minutes as well, so we wont go into depth on exactly what to do,
but as always, the goal here is to get it to coredump, and to keep in mind what
we did to get it to do so.

8.2 Fault Injection

In this basic vein of auditing, we move on to a more sophisticated type of
stress testing known as fault injection. This is the mose prominant and most
successful method of binary auditing. While no binary auditing technique can
be exhaustive as there is no finite set for input for programs of any complexity,
fault injection allows us to work with inputs that are likely to cause undesireable
results at critical locations, giving us a good idea of what is secure and what is
not. Fault injection throws out the old garbage in, garbage out idea, and says
instead garbage in, useful inofrmation about the flow of data within a program
out. Our basic technique will take place in a series of 3 steps.

Our first step will be to determine likely points of failure in the piece of
software. This can be accomplished in any of several ways, including call graphs,
syscall monitors such as {p,k,s}trace, or, if you’re so inclined, simply looking
at the assembly.You should keep in mind, while hunting, the various software
vulnerabilities we covered above.

Next, we’ll craft a series of inputs for each point likely to produce evidence
of a vulnerability. It is important to note that we are not trying to exploit the
program now as this might be less than conducive to noticing faults if we fail.
Our goal is to make the program output as much inofrmation as possible about
what’s going on at each point we test. An input should be created and tested
for each possible vulnerability at each point, tailered to the method of failure for
each vulnerability type. Quite often, we have missed possible points of failure
and it is always beneficial to be exhaustive, as we may stimulate vulnerabilities
we had not previously anticipated.

Finally we test our inputs at each point and carefully evaluate our output,
keeping in mind which inputs are sane and which are not. Sometimes, a program
which simply runs as normal when recieving an input which is not sane is a good
indication that the programmer did not anticipate such an input. At all times
it is useful to take what you know of the structure of the program (learned
from traces, graphs, and assembly) and use your own programming knowledge
to anticipate how to catch bad input. It can be very clear at times if this crucial
step has been neglected.

8



Any output which is not desirable from the program, as well as any inter-
perate non-sane input as sane should be flagged and tested further. For each
tested point, we now have two sets of information, and we can therfore craft
input with a bit more intellegence than we had previously at our disposal. The
next set of inputs should be again, simply information gathering. If it is possible
to output the stack, do so. If you can get some idea of the limits imposed on
strings, that is also useful. More refined strings now allow us to decide not only
what kind of vulnerability exists, but what it’s limits are, and give us a good
idea of how they can be exploited.

9 Static Analysis and Future Work

One of the most promising new techniques pioneered by David Wagner, and
covered in is doctoral thesis, is static analysis. Building on two interesting as-
sumptions, David and his team have been able to develope a piece of software
that has detected buffer overrun vulnerabilities in security sensitive programs
that were previously audited by hand several times. By treating strings as an
abstract data type, ignoring primitive pointer operations, and modeling buffers
as pairs of integer ranges (the allocated size, and the size currently in use),
they have been able to model their auditing as an integer range analysis prob-
lem. While still in the beginning stages, the technique has show a good deal of
promise, if limited to a very small, yet prevalent form of vulnerability. While
the work also represents a significant leap in integer range analysis as well, the
main issues we are interested in center around the sheer amount of vulnerabili-
ties that occure not with complicated pointer arithmetic, but in simple standard
C string manipulation functions.

10 Summary

Note that we are not deciding if it can be exploited, only how it can be exploited.
It is the expressed oppinion of this author that there is honestly no such thing
as an unexploitable vulnerability. Further, it is simply foolish for whitehats to
assume that any vulnerability is safe to be left unpatched in the wild.

11 End Note

Several people, during the writing of this paper asked me if I was going to cover
the use of automated code auditing software. I, at one point, gave ITS4, a
commonly used software auditing tool, a try. It core dumped. Looking through
the code I found several sections which had been commented with a special flag
so that if anyone happened to audit ITS4 with ITS4 it’d come out clean. We
had the idea that one could do rather humorous things with large company’s
auditing systems that accept code in email and run it through ITS4, then email
back the output, but that is fodder for another paper.

9


