Introdução à Criptografia

- Segurança de Informação relaciona-se com vários e diferentes aspectos referentes à:
 - confidencialidade / privacidade,
 - autenticidade,
 - o integridade,
 - o não-repúdio
 - disponibilidade

... ... mas também, a que não estão restritos:

- à sistemas computacionais,
- nem a informações eletrônicas,
- ou qualquer outra forma mecânica de armazenamento.

 Ela se aplica à todos os aspectos de proteção e armazenamento de informações e dados, em qualquer forma.

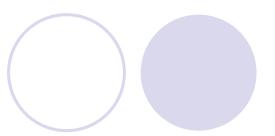
Aspectos não computacionais da Segurança da Informação

- Normativos
 - Conceitos, Diretrizes, Regulamentos, Padrões
- Planos de Contingência
- Estatísticas
- Legislação
- Fórums de Discussão

Recursos da Informação

Arquivos.

Objetos.


Banco de dados.

Valor da Informação

• Muitos recursos de informação que são disponíveis e mantidos em sistemas de informação distribuídos através de redes, têm um alto valor intrínseco para seus usuários.

 Toda informação tem valor e precisa ser protegida contra acidentes ou ataques.

Proteção da Informação

Códigos

Cifras

Para cifrar ... Criptografia

 Uma das ferramentas mais importantes para a <u>segurança da informação</u> é a criptografia.

 Qualquer método que transforme informação legível em informação legível ilegível.

Por que Criptografia?

- O fato é que todos nós temos informações que queremos manter em sigilo:
 - ODesejo de Privacidade.
 - Autoproteção.
 - Empresas também têm segredos.
 - Informações estratégicas.
 - Previsões de vendas.
 - Detalhes técnicos como produtos.
 - Resultados de pesquisa de mercado.
 - Arquivos pessoais.

Mundo real

OSe as **fechaduras nas portas e janelas** da sua casa são relativamente fortes, a ponto de que um ladrão não pode invadir e furtar seus pertences ...

o... a sua casa está segura.

Mundo real

- Para maior proteção contra invasores, talvez você tenha de ter um sistema de alarme de segurança.
- A sua casa estará mais segura.

Mundo real

OSe alguém tentar fraudulentamente retirar dinheiro de sua conta bancária, mas se o banco não confiar na história do ladrão ...

... seu dinheiro estará seguro.

Mundo real

Quando você assina um contrato, as assinaturas são imposições legais que orientam e impelem ambas as partes a honrar suas palavras.

- Mundo Digital
 - Confidencialidade ou Privacidade
 - Ninguém pode invadir seus arquivos e ler os seus dados pessoais sigilosos (Privacidade).
 - Ninguém pode invadir um meio de comunicação e obter a informação trafegada, no sentido de usufruir vantagem no uso de recursos de uma rede (confidencialidade).

- Mundo Digital
 - OA **privacidade** é a <u>fechadura</u> da porta.
 - Integridade refere-se ao mecanismo que informa quando algo foi alterado. Integridade é <u>alarme</u> da casa.

- Mundo Digital
 - Aplicando a prática da autenticação, pode-se verificar as identidades.
 - OA irretratabilidade (<u>não-repúdio</u>) é a imposição legal que impele as pessoas a honrar suas palavras.

- De algum modo a criptografia contribui para resolver os problemas de:
 - onfidencialidade,
 - oprivacidade,
 - integridade,
 - autenticação,
 - irretratabilidade,
 - disponibilidade.

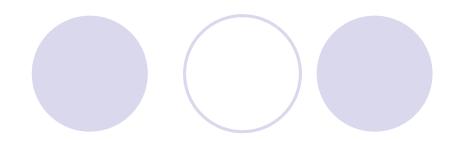
 Assim, <u>uma das ferramentas</u> mais importantes para a segurança da informação é a <u>criptografia</u>.

• Qualquer um dos vários métodos que são utilizados para transformar informação legível para algo ilegível, pode contribuir para resolver os conceitos anteriores.

Mas, de modo algum a criptografia é a única ferramenta para assegurar a segurança da informação.

 Nem resolverá todos os problemas de segurança.

Criptografia não é a prova de falhas.


 Toda criptografia pode ser quebrada e, sobretudo, se for implementada incorretamente, não agrega nenhuma segurança real.

 O que veremos: uma <u>visão da</u> <u>criptografia.</u>

 Não se trata de uma análise completa de tudo o que se deve conhecer sobre criptografia.

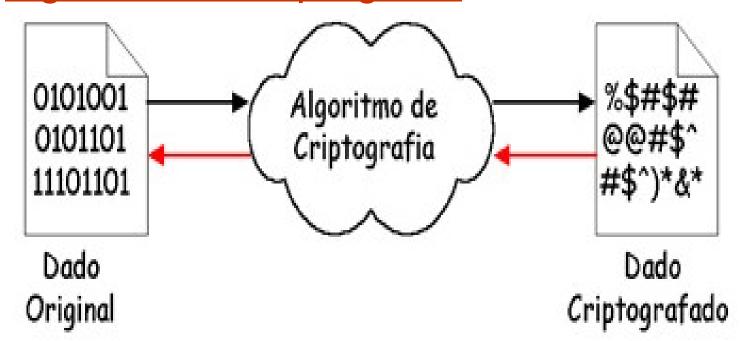
 Veremos as técnicas de criptografia mais amplamente usadas no mundo atual.

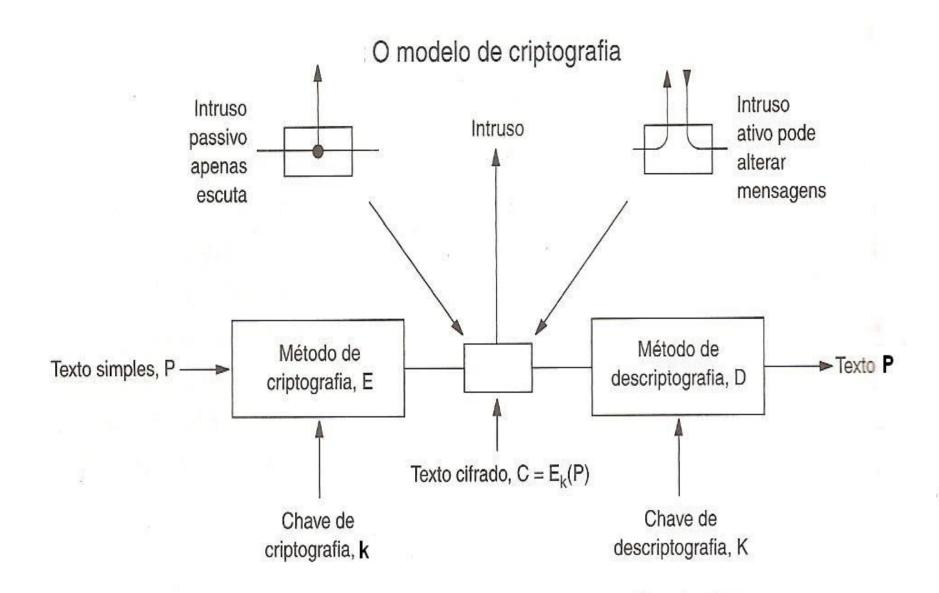
Conceitos

- A palavra "Criptografia"
- Trabalhos sobre o história da criptografia
- Conceito de Código
- Conceito de Cifra

Significado da palavra "Criptografia"

- A palavra criptografia vem das palavras gregas que significam "escrita secreta".
- Kriptos (em grego) = Secreto + Grafia (de escrever)
- Criptografia = Escrita secreta.
- Criar mensagens cifradas.
- História de milhares de anos.

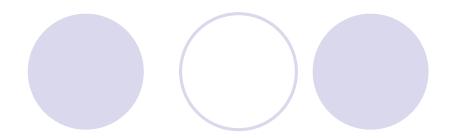

Jargões da Criptografia



 Decripta (decodifica, decriptografa, decifra)

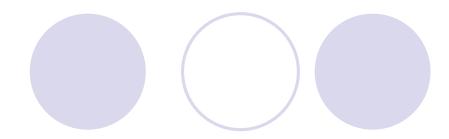
Procedimentos da Criptografia

 Os procedimentos de criptografar e decriptografar são obtidos através de um algoritmo de criptografia.

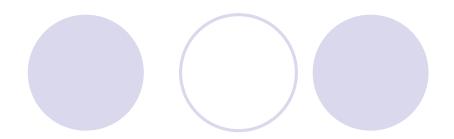


Equações da Criptografia

$$D_{\mathbf{k}} (E_{\mathbf{k}}(P)) = P$$


E e D são funções matemáticas K é uma **chave**

Criptografia


- Possui emprego nas mais diferentes áreas de atuação, mas em todas, tem o mesmo significado:
 - proteger informações consideradas 'especiais' ou de qualidade sensível.

Criptografia

 Atualmente a CRIPTOGRAFIA é definida como a ciência que oculta e/ou protege informações – escrita, eletrônica ou de comunicação.

Criptografia

 É o ato de alterar uma mensagem para esconder o significado desta.

- Mas, como esconder ?
 - O Criando um código ?
 - O Criando cifra ?

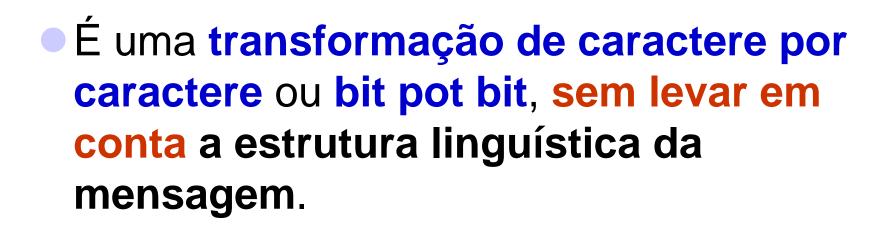
Conceito de Código

- Substitui uma palavra por outra palavra ou uma palavra por um símbolo.
- Códigos, no sentido da criptografia, não são mais utilizados, embora tenham tido uma história ...
 - O código na linguagem navajo dos índios americanos, utilizado pelos mesmos contra os japoneses na Segunda Guerra Mundial.

Conceito de Código

 A linguagem navajo era caracterizada apenas por sons.

 Um código é uma transformação que envolve somente duas partes.


 O que é gerado chama-se uma codificação.

Conceito de Código

 A transformação leva em conta a estrutura linguística da mensagem sendo transformada.

 Lembre da transformação em um compilador.

Conceito de Cifra

- Substituindo um por outro.
- Transpondo a ordem dos símbolos.

Criptografia Tradicional

Historicamente, os métodos tradicionais de criptografia são divididos em duas categorias:

- OCifras de Substituição
- OCifras de Transposição

Cifras de Substituição

- Cada letra ou grupo de letras é substituído por outra letra ou grupo de letras, de modo a criar um "disfarce".
- Exemplo: A Cifra de César (Caeser Cipher). Considerando as 26 letras do alfabeto inglês (a,b,c,d,e,f,g,h,I,j,k,m,n,o,p,q,r,s,t,u,v,x,w,y,z), Neste método, a se torna d, b se torna e, c se torna f, ..., z se torna c.

Generalização da Cifra de César

 Cada letra se desloca k vezes, em vez de três. Neste caso, k passa a ser uma chave para o método genérico dos alfabetos deslocados de forma circular.

 A Cifra de César pode enganado os cartagineses, mas nunca mais enganou a mais ninguém.

Cifra de Substituição

As cifras de substituição preservam a ordem dos símbolos no texto claro, mas disfarçam esses símbolos.

Cifra de Transposição

 Cifras de Transposição reordenam os símbolos, mas não os disfarçam.

Fonte: Redes de Computadores, A. S. Tanenbaum, Cap. 8

- A cifra se baseia numa chave que é uma palavra ou uma frase que não contém letras repetidas.
- Seja a chave: MEGABUCK
- O objetivo da chave é numerar as colunas de modo que a coluna 1 fique abaixo da letra da chave mais próxima do início do alfabeto e assim por diante.

Fonte: Redes de Computadores, A. S. Tanenbaum, Cap. 8

- O texto simples é escrito horizontalmente, em linhas.
- O texto cifrado é lido em colunas, a partir da coluna cuja letra da chave tenha a ordem mais baixa no alfabeto.
- A numeração abaixo da chave, significa a ordem das letras no alfabeto.

Fonte: Redes de Computadores, A. S. Tanenbaum, Cap. 8

M	<u>E</u>	\underline{G}	<u>A</u>	<u>B</u>	\underline{U}	\underline{C}	\underline{K}
<u>7</u>	<u>4</u>	<u>5</u>	<u>1</u>	2	<u>8</u>	<u>3</u>	<u>6</u>
p	1	е	а	S	е	t	r
a	n	S	f	е	r	0	n
е	m	i	1	I	İ	0	n
d	0			а	r	S	t
d o					r i		
0		у	s	w	i	s	s
0	m a	y n	s k	w	i C	s c	s

Plaintext

pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo

Ciphertext

AFLLSKSOSELAWAIATOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

Fonte: Redes de Computadores, A. S. Tanenbaum, Cap. 8

- Algumas cifras de transposição aceitam um bloco de tamanho fixo como entrada e produzem um bloco de tamanho fixo como saída.
- Essas cifras podem ser completamente descritas fornecendo-se uma lista que informe a ordem na qual os caracteres devem sair.

Fonte: Redes de Computadores, A. S. Tanenbaum, Cap. 8

- No exemplo, a cifra pode ser vista como uma cifra de blocos de 64 bits de entrada.
- Para a saída, a lista para a ordem de saída dos caracteres é 4, 12, 20, 28, 36, 44, 52,60, 5, 13, ... 62.
- Neste exemplo, o quarto caractere de entrada,
 a, é o primeiro a sair, seguido pelo décimo segundo, f, e assim por diante.

Dois princípios fundamentais da criptografia

- Redundância
 Princípio Criptográfico #1
 As mensagens criptografadas devem conter alguma redundância.
- Atualidade
 Princípio Criptográfico #2
 Algum método é necessário para anular ataques de repetição.

Redundância

- Informações não necessárias para compreensão da mensagem clara.
- A moral da história é que todas as mensagens devem conter informações redundantes suficientes para que os intrusos ativos sejam impedidos de transmitir dados inválidos que possam ser interpretados como uma mensagem válida.

Atualidade

 Tomar algumas medidas para assegurar que cada mensagem recebida possa ser confirmada como uma mensagem atual, isto é, enviada muito recentemente.

Atualidade

 Medida necessária para impedir que intrusos ativos reutilizem (repitam) mensagens antigas por intermédio de interceptação de mensagens no meio de comunicação.

Atualidade

 Incluir em cada mensagem um timbre de hora válido apenas por 10 segundos.

 O receptor pode manter as mensagens durante 10 segundos, para poder comparar as mensagens recém-chegadas com mensagens anteriores e assim filtrar duplicatas.

Elementos básicos de Cifras

Caixa P

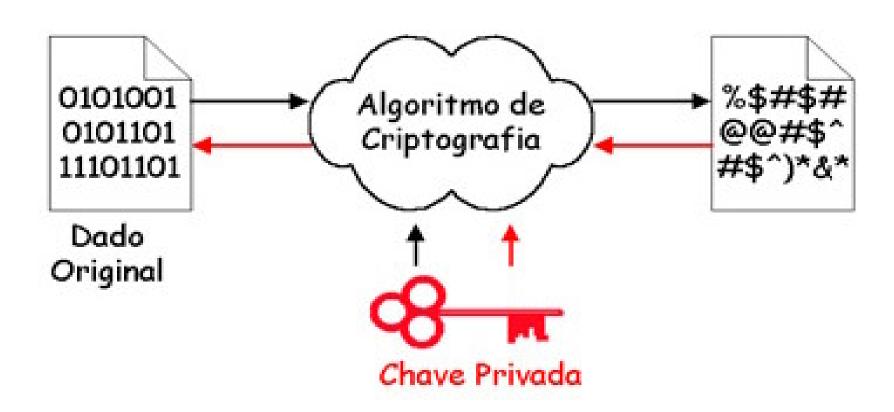
Caixa S

Cifra de Produto

Trabalhos sobre o História da Criptografia

- Histórico completo (Khan, 1995)
- Estado da arte em segurança e protocolos criptográficos (Kaufman et al., 2002)
- Abordagem mais matemática (Stinson, 2002)
- Abordagem menos matemática (Burnett e Paine (2001)

Estrutura de Estudo

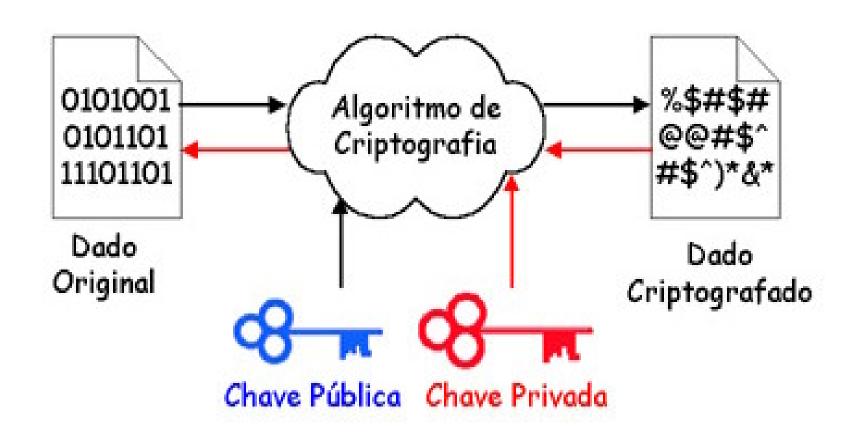

Criptografia e Segurança da Informação

Técnicas envolvendo criptografia

Garantia de Confidencialidade

Garantia de Privacidade

Criptografia Simétrica



Técnicas envolvendo criptografia simétrica

 Algoritmos de Criptografia de Chave Simétrica,

Gerenciamento de Chaves Simétricas,

Criptografia Assimétrica

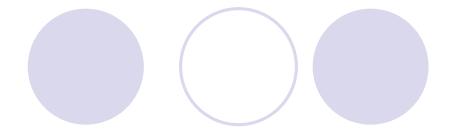
Técnicas envolvendo criptografia de chave pública

Algoritmos de Criptografia de Chaves
 Públicas

O problema de distribuição de chaves

Infra-estrutura de chaves públicas

Técnicas envolvendo criptografia


 Mas, se não houver preocupação com sigilo da informação ...

 Ou o desempenho da criptografia de chave pública é imprescindível.

Resumos de Mensagem

- Uma forma mais rápida de criptografia (simétrica ou assimétrica).
- Um representante dos dados.
- Garantia de Integridade
- Algoritmos Hash

Problema

 Mas, a mensagem e o resumo são preparadas e transmitidas em separado, um intruso pode capturar a mensagem e também pode capturar o resumo correspondente.

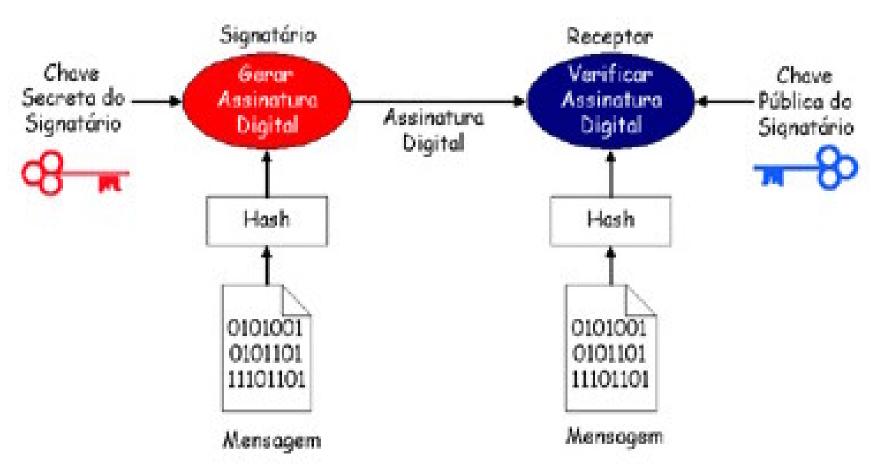
Duas maneiras de resolver o problema

Utilizar uma assinatura digital.

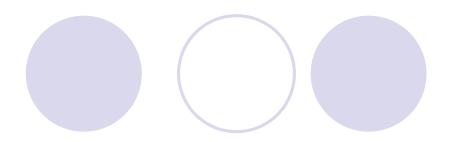
 Uma chave-resumo (HMAC), resume a chave e os dados, nesta ordem.

Códigos de Autenticação de Mensagem

 Resolvem o problema de se transmitir mensagem e resumo, não mais separadamente.


 São utilizadas apenas para verificar se o conteúdo não foi alterado durante o trânsito.

 É uma verificação instantânea e não um registro permanente.


Assinaturas Verificáveis

 Por essa razão, necessitamos de uma outra maneira de criar assinaturas verificáveis e essa maneira é encriptar o resumo com a chave privada do assinante (que é o que se chama de assinatura digital).

Assinatura Digital

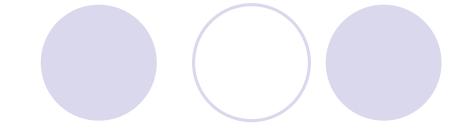
Assinatura Digital

Garantia de Autenticidade

Garantia de Integridade

Garantia de Não-Repúdio

Problema com as assinaturas


 Assinaturas são suficientes num número limitado de pessoas, quando as pessoas, de certa forma, se conhecem.

 Quando alguém tem que verificar uma assinatura, deve obter a chave pública do remetente da mensagem.

Problema com as assinaturas

Como o destinatário da mensagem pode ter certeza de que a chave pública recebida é de fato o dono da chave pública quando enviou a mensagem ?

Uma solução ...

- Servidor on-line de chaves públicas na Internet 24 horas ?
- On-Line ?
- Replicação de servidores ?

Certificados Digitais

Técnicas envolvendo criptografia

Protocolos com Criptografia

Segurança nas Camadas

 Com exceção da segurança na camada física, quase toda segurança se baseia em princípios criptográficos.

Criptografia de Enlace

 Na camada de enlace, os quadros em uma linha ponto-a-ponto podem ser codificados, à medida que saem de uma máquina, e decodificados quando chegam em outra.

Criptografia de Enlace

 Vários detalhes de criptografia poderiam ser tratados na camada de enlace, no entanto, essa solução se mostra ineficiente, quando existem vários roteadores.

Criptografia de Enlace

 Pois é necessário decriptar os pacotes, em cada roteador, o que pode tornar esses, vulneráveis a ataques dentro do roteador.

 Também, algumas sessões de aplicações são protegidas, mas outras, não.

Criptografia na Camada de Rede

 A segurança do Protocolo IP funciona nesta camada.

Estudar o Protocolo IPSec

Criptografia na Camada deTransporte

 É possível criptografar conexões fim-a-fim, ou seja processo-a-processo.

SSL (Security Socket Level)

TLS (transport Level Security)

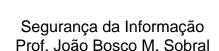
 Stunnel para criptografia com protocolos não SSL (por exemplo, SSH)

Criptografia na Camada da Aplicação

 S/MIME (Secure/Multipupose Internet Mail Extensions)

SET (Secure Electronic Transactions)

HTTPS (HTTP sobre SSL)


Criptografia na Camada da Aplicação

Autenticação de usuários

Não-Repúdio

 Só podem ser tratadas na camada da aplicação.

Uma aplicação da Criptografia Simétrica

Segurança de Bancos de Dados Oracle

 Apenas as pessoas apropriadas podem ter acesso às informações no BD (autenticação de usuários).

 Os dados precisam ser protegidos e uma maneira de proteger os dados é por criptografia.

Segurança de Bancos de Dados Oracle

Geração da Chave:

 Alguns bytes aleatórios ou pseudoaleatórios são gerados e utilizados como uma chave para a criptografia simétrica DES ou TripleDES.

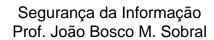
Segurança de Bancos de Dados Oracle

Armazenamento da Chave:

Precisa-se também salvar essa chave gerada em algum lugar (não no mesmo lugar onde foi gerada). O próximo capítulo ensina como armazenar a chave simétrica.

Criptografando em um BD Oracle

A chave é usada para criptografia ...


• dbms obfuscation toolkit.**DES**Encrypt (inputstring => **plaintext**, key => **keydata**, encrypted string => **ciphertex**);

Decriptografando em um BD Oracle

A chave é recuperada e ...

• dbms obfuscation toolkit.**DES**Decrypt (inputstring => ciphertex, key => keydata, encrypted string => plaintext);

Utilidades na Segurança da Informação

Utilidades na Segurança da Informação

- Segurança e Privacidade em um Navegador.
- Segurança de Emails.
- Criptografia de Diretórios, Subdiretórios Arquivos.
- Transferência de Arquivos.

Garantindo os requisitos de segurança

- Confidencialidade
- Privacidade
- Autenticidade
- Integridade
- Não-Repúdio