
JADE Administrator’s GUIDE

1

J A D E A D M I N I S T R ATO R ’ S G U I D E

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

Last update: 28-Ferbruary-2006. JADE 3.4

Authors: Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (TILAB S.p.A., formerly CSELT)
 Giovanni Rimassa (FRAMeTech s.r.l.), Roland Mungenast (PROFACTOR GmbH)

Copyright (C) 2000 CSELT S.p.A.
Copyright (C) 2001 TILAB S.p.A.
Copyright (C) 2002 TILAB S.p.A.
Copyright (C) 2003 TILAB S.p.A.
Copyright (C) 2005 JADE Board

JADE - JavaTM Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with the
FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA
interoperability test in London (Apr. 01).
Copyright (C) 2000 CSELT S.p.A., 2001 TILab S.p.A., 2002 TILab S.p.A.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, version 2.1 of the License.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Java and HotJava are trademarks of Sun Microsystems, Inc., and refer to Sun's Java programming language and
HotJava browser technologies. The Java Agent DEvelopment Framework is not sponsored by or affiliated with SUN
Microsystems, Inc."

JADE Administrator’s GUIDE

2

TABLE OF CONTENTS

1 INTRODUCTION 4

2 RUNNING THE AGENT PLATFORM 4

2.1 Software requirements 4

2.2 Getting the software 4

2.3 Running JADE from the binary distribution 4
2.3.1 Command line syntax 5
2.3.2 Options available from the command line 6
2.3.3 Launching agents from the command line 9
2.3.4 Example 9
2.3.5 Starting Jar-packaged agents 10
2.3.6 Configuring the Yellow Pages service provided by the DF agent 11
2.3.7 Configuring the Node Failure Monitoring system 13

2.4 Building JADE from the source distribution 14
2.4.1 Building the JADE framework 14
2.4.2 Building JADE libraries 14
2.4.3 Building JADE HTML documentation 15
2.4.4 Building JADE examples and demo application 15
2.4.5 Cleaning up the source tree 15

2.5 Support for inter-platform messaging with plug-in Message Transport Protocols
 15

2.5.1 Command line options for MTP management 16
2.5.2 Configuring MTPs from the graphical management console. 16
2.5.3 Agent address management 17
2.5.4 Writing new MTPs for JADE 17

2.5.4.1 The Basic IIOP MTP 17
2.5.4.2 The ORBacus MTP 18
2.5.4.3 The HTTP MTP 18

2.6 Support for ACL Codec 18
2.6.1 XML Codec 19
2.6.2 Bit Efficient ACL Codec 19

3 AGENT IDENTIFIERS AND SENDING MESSAGES TO REMOTE
AGENTS 19

4 FAULT-TOLERANCE WITH REPLICATED MAIN CONTAINERS
 19

4.1 Starting a Fault Tolerant Platform from the Command Line 21
4.1.1 Step 1: Two Main Container nodes on two host machines. 21
4.1.2 Step 2: Adding peripheral containers 22

JADE Administrator’s GUIDE

3

4.1.3 Step 3: Completing the platform. 23

4.2 Surviving Main Container failures. 23

5 PERSISTENT DELIVERY OF ACL MESSAGES 24

5.1 Defining a filter for ACL messages 24

5.2 Installing and configuring the Persistent-Delivery service 25

5.3 Command-line examples 26

6 GRAPHICAL USER INTERFACE TO MANAGE AND MONITOR THE
AP ACTIVITY 26

6.1 Remote Monitoring Agent 26

6.2 DummyAgent 31

6.3 DF GUI 32

6.4 Sniffer Agent 33

6.5 Introspector Agent 35

7 LIST OF ACRONYMS AND ABBREVIATED TERMS 36

JADE Administrator’s GUIDE

4

1 INTRODUCTION

This administrator's guide describes how to install and launch JADE. It is complemented by
the HTML documentation available in the directory jade/doc and the JADE Programmer's Guide.
If and where conflict arises between what is reported in the HTML documentation and this guide,
preference should be given to the HTML documentation that is updated more frequently.

2 RUNNING THE AGENT PLATFORM

2.1 Software requirements

The only software requirement to execute the system is the Java Run Time Environment
version 1.4.

In order to build the system the JDK1.4 is sufficient because pre-built IDL stubs and Java
parser classes are included with the JADE source distribution. Those users, who wish to
regenerate IDL stubs and Java parser classes, should also have the JavaCC parser generator
(version 0.8pre or version 1.1; available from http://www.metamata.com), and the IDL to Java
compiler (available from the Sun Developer Connection). Notice that the old idltojava compiler
available with JDK1.2 generates wrong code and it should never be used, instead the new idlj
compiler, that is distributed with JDK1.3, should be used.

2.2 Getting the software

All the software is distributed under the LGPL license limitations and it can be downloaded
from the JADE web site http://jade.tilab.com/. Five compressed files are available:

1. The source code of JADE
2. The source code of the examples
3. The documentation, including the javadoc of the JADE API and this programmer's guide
4. The binary of JADE, i.e. the jar files with all the Java classes
5. A full distribution with all the previous files

2.3 Running JADE from the binary distribution

Having uncompressed the archive file, a directory tree is generated whose root is jade and
with a lib subdirectory. This subdirectory contains some JAR files that have to be added to the
CLASSPATH environment variable.

Having set the classpath, the following command can be used to launch the main container
of the platform. The main container is composed of the DF agent, the AMS agent, and the RMI
registry (that is used by JADE for intra-platform communication).

 java jade.Boot [options] [AgentSpecifier list]

Additional agent containers can be then launched on the same host, or on remote hosts, that
connect themselves with the main container of the Agent Platform, resulting in a distributed
system that seems a single Agent Platform from the outside.

An Agent Container can be started using the command:
 java jade.Boot –container [options] [AgentSpecifier list]

JADE Administrator’s GUIDE

5

An alternative way of launching JADE is to use the following command, that does not need
to set the CLASSPATH:

 java –jar lib\jade.jar –nomtp [options] [AgentSpecifier list]

Remind to use the “–nomtp” option, otherwise an exception will be thrown because the
library http.jar is not found.

2.3.1 Command line syntax

The full EBNF syntax of the command line is the following, where common rules apply for
the token definitions:

java jade.Boot Option* AgentSpecifier*

Option = "-container"
 | "-backupmain"
 | "-gui"
 | "-nomtp"
 | "-services" ClassName (";" ClassName)*
 | "-host" HostName
 | "-port" PortNumber
 | "-local-host" HostName
 | "-local-port" PortNumber
 | "-name" PlatformName
 | "-container-name" ContainerName
 | "-smaddrs" HostName (":" PortNumber)? (";" HostName
(":" PortNumber)?)*
 | "-mtp" ClassName "(" Argument* ")"
 (";" ClassName "(" Argument* ")")*
 | "-aclcodec" ClassName (";" ClassName)*
 | "-nomobility"
 | "-version"
 | "-help"
 | "-conf" FileName?
 | "-" Keyword Value

ClassName = PackageName? Word

PackageName = (Word ".")+

Argument = Word | Number | String

HostName = Word ("." Word)*

PortNumber = Number

AgentSpecifier = AgentName ":" ClassName ("(" Argument* ")")?

AgentName = Word

PlatformName = Word

JADE Administrator’s GUIDE

6

Keyword = Word

Value = Word

2.3.2 Options available from the command line

 -container specifies that this instance of JADE is a container and, as such, that it must join
with a main-container (by default this option is unselected)

-host specifies the host name where the main container to register with is running; its
value is defaulted to localhost. This option can also be used when launching the
main-container in order to override the value of localhost; a typical example of
this kind of usage is to include the full domain of the host (e.g. –host
kim.cselt.it when the localhost would have returned just ‘kim’) such that the
main-container can be contacted even from outside the local domain.

-port this option allows to specify the port number where the main container to register
with is running. By default the port number 1099 is used.

-gui specifies that the RMA (Remote Monitoring Agent) GUI of JADE should be
launched (by default this option is unselected)

-local-host specifies the host name where this container is going to run; its value is defaulted
to localhost. A typical example of this kind of usage is to include the full
domain of the host (e.g. –host kim.cselt.it when the localhost would have
returned just ‘kim’) such that the main-container can be contacted even from
outside the local domain.

-local-port this option allows to specify the port number where this container can be
contacted. By default the port number 1099 is used.

-name this option specifies the symbolic name to be used as the platform name; this
option will be considered only in the case of a main container; the default is to
generate a unique name from the values of the main container's host name and
port number. Please note that this option is strongly discouraged since uniqueness
of the HAP is not enforced. This might result in non-unique agent names.

-container-name this option specifies the symbolic name to be used as the name of this
container.

-services specifies a list of classes, implementing JADE kernel-level services, that must be
loaded and activated during startup. Class names are to be separated by semicolon,
and must be fully qualified. The special messaging and management services are
always activated and need not be specified with this option. If this option is not
given, by default the mobility and event notification services are started. The
following table lists the services available with the standard distribution of JADE.
More services (e.g. supporting security and agent persistence are available as add-
ons)

JADE Administrator’s GUIDE

7

Name Service Class Features

Messaging jade.core.messaging.MessagingService

ACL message exchange and
MTP management.

Activated automatically

Agent-
Management

jade.core.management.AgentManagementService

Basic management of agent life-
cycle. Container and platform
shutdown. RMA support.

Activated automatically

Agent-
Mobility

jade.core.mobility.AgentMobilityService
Agent mobility support.

Active by default

Notification jade.core.event.NotificationService

Support for platform-level event
system notifications. This is
required to support the Sniffer
and Introspector tools (see
6.4and 6.5).

Active by default

Persistent-
Delivery

jade.core.messaging.PersistentDeliveryService

Allows buffering and persistent
storage for undelivered ACL
messages (see 5 for details).

Inactive by default

Main-
Replication jade.core.replication.MainReplicationService

Support for replicating the Main
Container for fault tolerance
purposes. Has to be activated on
each node hosting a Main
Container (see 4 for details).

Inactive by default

Address-
Notification jade.core.replication.AddressNotificationService

Support for being notified
whenever the list of active Main
Container copies changes, i.e. a
new copy is added or an
existing copy terminates (see 4
for details).

Inactive by default

UDPNodeMo
nitoring

Jade.core.nodeMonitoring.UDPNodeMonitoringServ
ice

Support for monitoring of
platform nodes by means of
UDP packets (see 2.3.7 for

JADE Administrator’s GUIDE

8

details)

Inactive by default

-mtp specifies a list of external Message Transport Protocols to be activated on this
container (by default the JDK1.4 IIOP is activated on the main-container and no
MTP is activated on the other containers)

 -nomtp has precedence over -mtp and overrides it. It should be used to override the default
behaviour of the main-container (by default the -nomtp option unselected)

-backupmain specifies that this instance of JADE is a backup main container (see 4) and, as
such, that it must join with a main-container (by default this option is unselected)

-smhost when a Main Container copy is started, this option must be used to select the host
name where the Service Manager is to be exported (typically it is the local host).
This option is only useful on nodes where the Main-Replication service has been
activated.

-smport when a Main Container copy is started, this option must be used to select the TCP
port where the Service Manager is to be exported (typically it is the local host).
This option is only useful on nodes where the Main-Replication service has been
activated.

-smaddrs when multiple Main Container copies are active in the platform, a peripheral
container connects to the one pointed to by the <-host, -port> option pair. With
this option, the addresses of all the other copies can be listed, so that the container
is able to re-connect to another copy should the current one become unavailable.
This option is an alternative to activating the Address-Notification service: instead
of setting up an update protocol, one simply provides a fixed list of well-known
addresses for Main Container copies.

-aclcodec By default all messages are encoded by the String-based ACLCodec. This option
allows to specify a list of additional ACLCodec that will become available to the
agents of the launched container in order to encode/decode messages. JADE will
provide automatically to use these codec when agents set the right value in the
field aclRepresentation of the Envelope of the sent/received ACLMessages. Look
at the FIPA specifications for the standard names of these codecs

-nomobility disable the mobility and cloning support in the launched container. In this way the
container will not accept requests for agent migration or agent cloning, option that
might be useful to enhance the level of security for the host where this container is
running. Notice that the platform can include both containers where mobility is
enabled and containers where it is disabled. In this case an agent that tries to move
from/to the containers where mobility is disabled will die because of a Runtime
Exception.

JADE Administrator’s GUIDE

9

Notice that, even if this option was selected, the container would still be able to
launch new agents (e.g. via the RMA GUI) if their class can be reached via the
local CLASSPATH.
By default this option is unselected.

 -version print on standard output the versioning information of JADE (by default this
option is unselected)

-help print on standard output this help information (by default this option is unselected)

-conf if no filename is specified after this option, then a graphical interface is displayed
that allows to load/save all the JADE configuration parameters from a file. If a
filename is specified, instead, then all the options specified in that file are used to
launch JADE. By default this option is not selected

Other properties can also be set via the command line via the syntax “–keyword value” (see
also the tutorial on How to pass arguments and properties to agents).

2.3.3 Launching agents from the command line

A list of agents can be launched directly from the command line. As described above, the
[AgentSpecifier list] part of the command is a sequence of strings separated by a
space.

Each string is broken into three parts. The first substring (delimited by the colon ‘:’
character) is taken as the agent name; the remaining substring after the colon (ended with a space
or with an open parenthesis) is the name of the Java class implementing the agent. The Agent
Container will dynamically load this class. Finally, a list of string arguments can be passed
delimited between parentheses.

For example, a string Peter:myAgent means "create a new agent named Peter whose
implementation is an object of class myAgent". The name of the class must be fully qualified,
(e.g. Peter:myPackage.myAgent) and will be searched for according to CLASSPATH
definition.

Another example is the string Peter:myAgent(“today is raining” 123) that
means "create a new agent named Peter whose implementation is an object of class myAgent
and pass an array of two arguments to its constructor: the first is the string today is
raining and the second is the string 123". Notice that, according to the Java convention, the
quote symbols have been removed and the number is still a string.

2.3.4 Example

First of all set the CLASSPATH to include the JAR files in the lib subdirectory and the
current directory. For instance, for Windows 9x/NT use the following command:

set CLASSPATH=%CLASSPATH%;.;c:\jade\lib\jade.jar;
c:\jade\lib\jadeTools.jar;c:\jade\lib\Commons-codec\commons-
codec-1.3.jar;c:\jade\lib\iiop.jar

JADE Administrator’s GUIDE

10

Execute the following command to start the main-container of the platform. Let's suppose
that the hostname of this machine is "kim.cselt.it"

prompt> java jade.Boot –gui

Execute the following command to start an agent container on another machine, by telling it
to join the Agent Platform running on the host "kim.cselt.it", and start one agent (you must
download and compile the examples agents to do that):

prompt> java jade.Boot -host kim.cselt.it -container
 sender1:examples.receivers.AgentSender

where "sender1" is the name of the agent, while
examples.receivers.AgentSender is the code that implements the agent.

Execute the following command on a third machine to start another agent container telling it
to join the Agent Platform, called "facts" running on the host "kim.cselt.it", and then start two
agents.

prompt> java jade.Boot –host kim.cselt.it –container
 receiver2:examples.receivers.AgentReceiver
 sender2:examples.receivers.AgentSender

where the agent named sender2 is implemented by the class
examples.receivers.AgentSender, while the agent named receiver2 is implemented
by the class examples.receivers.AgentReceiver.

2.3.5 Starting Jar-packaged agents

Until version 3.3 of JADE, class files belonging to user-created agents and the platform itself
were mixed in the classpath. There was no way to distinguish between agent’s code and
platform’s code. Furthermore, agent and platform classes are loaded using the same ClassLoader.
This implies that all agents and the platform share the same class namespace and two agents
cannot use the same agent class name.

In order to start this differentiation the concept of “JAR agent” has been introduced since
version 3.4 of the JADE platform. Jar Agents are agents whose code, as the name indicates, is
packaged inside a JAR file. Those jar files must not be in the classpath, they must be placed in a
special folder which can be specified as follows:

java jade.Boot -jade_core_management_AgentManagementService_agentspath
c:\tmp\jarsfolder

Once the path is specified, we can put jar files containing agent code inside the folder, that is, one
jar per agent. In order to start correctly this kind of agents, at the moment, we adopt the
convention of naming jar files like agent’s main class. If we use packages we must substitute the
dots by underscore character. As an example, suppose that we have an agent which main class is
coffeeApp.agents.WaiterAgent. If we want to load this agent as a Jar Agent, we must pack all the
agent code in a single jar file named coffeeApp_agents_WaiterAgent.jar and place it in the
previously specified folder. The process of starting this agent is the usual one via gui or command
line. The main difference now is that the agent must not be in the classpath and will be loaded in a
separate namespace.

If the parameter jade_core_management_AgentManagementService_agentspath is not specified,

JADE Administrator’s GUIDE

11

the working directory will be used by this purpose.

2.3.6 Configuring the Yellow Pages service provided by the DF agent

The DF agent, that provides the default Yellow Pages service in accordance to the FIPA
specifications, accepts a number of optional configuration parameters that can be set either as
command line options or within a properties file (to be passed to the DF as an argument).

jade_domain_df_autocleanup When set to true, indicates that the DF will automatically

clean up registrations as soon as agents terminate. (defaults
to false)

jade_domain_df_maxleasetime Indicates the maximum lease time (in millisecond) that the
DF will grant for agent description registrations (defaults to
infinite).

jade_domain_df_maxresult Indicates the maximum number of items found in a search
operation that the DF will return to the requester. This will
only be applied if there are no explicit search constraint
specified (defaults to 100).

jade_domain_df_kb-factory This parameter allows specifying the name of the factory
class which will be used by the DF to create a knowledge
base object for storing its catalogue. (Defaults to:
jade.domain.DFKBFactory)

The specified class has to be a sub class of
jade.domain.DFKBFactory.

By default the DF stores its catalogue in memory. Through the following optional parameters the
DF can also be configured to store its catalogue directly into a database:

jade_domain_df_db-default If set to true, indicates that the DF will store its catalogue
into an HSQLDB database, which is started in the same
JVM as JADE.

This is the easiest way to persist the DF catalogue. Apart
from using this parameter only the HSQLDB class files
have to be added to the Java CLASSPATH. Any further
configuration is done automatically by JADE. HSQLDB is
not part of the JADE distribution but can be downloaded
from the HSQL Database Engine project at the web site:
http://sourceforge.net/projects/hsqldb.

jade_domain_df_db-url Defines the JDBC URL of the database the DF will store its
catalogue into. With this parameter the DF can be
configured to use other databases than HSQLDB.

jade_domain_df_db-cleantables If set to true, indicates that the DF will clean the content
of all pre-existing database tables, used by the DF. This
parameter is ignored if the catalogue is not stored in a
database. (defaults to false)

JADE Administrator’s GUIDE

12

Together with the jade_domain_df_db-url the following optional parameters can be used
to configure the database access:

jade_domain_df_db-driver Indicates the JDBC driver to be used to access the DF

database (defaults to the ODBC-JDBC bridge).

jade_domain_df_db-username

Indicate the username and password to be used to access the
DF database (defaults to null).

jade_domain_df_db-password Indicate the username and password to be used to access the
DF database (defaults to null).

Examples

DF with default database

The following command line will launch a JADE main container with a DF that will store its
catalogue into a HSQLDB database. The database will be started automatically together with
JADE, provided that the HSQLDB libraries can be found in the CLASSPATH.

java jade.Boot -jade_domain_df_db-default

Using a database over JDBC-ODBC-Bridge

The following command line will launch a JADE main container with a DF that will store its
catalogue into a database accessible at URL jdbc:odbc:dfdb and that will keep agent registrations
for 1 hour at most.

java jade.Boot -jade_domain_df_db-url jdbc:odbc:dfdb
-jade_domain_df_maxleasetime 3600000

Using a configuration file

The following command line will launch a JADE container with a DF agent called df1 that will
read its configuration from the properties file df1conf.properties (located somewhere in the
classpath)

java jade.Boot –container –host <main-container-host>
df1:jade.domain.df(df1conf.properties)

The content of the df1conf.properties file may look like that shown in Figure 1.

JADE Administrator’s GUIDE

13

#DF configuration file

DF Catalogue stored in a database (URL is jdbc:odbc:dfdb)
jade_domain_df_db-url = jdbc:odbc:dfdb

Maximum granted lease time for agent registrations: 1 hour
jade_domain_df_maxleasetime = 3600000

Figure 1. Sample DF configuration file

2.3.7 Configuring the Node Failure Monitoring system

Within the JADE platform a main container is constantly monitoring the availability of all its
peripheral containers. If a container suddenly crashes the main container recognizes this and
automatically removes the container from the platform.

The default JADE failure monitoring system is based on permanent TCP connections towards the
monitored remote nodes. If the monitored node crashes the connection is dropped and the main
can immediately remove the crashed container from the platform.
The default mechanism is suitable for platforms with a small number of containers and an
environment where the interruption of open connections is unlikely. For platforms with a higher
number of containers it is recommended to use an alternative UDP based failure monitoring
mechanism. This mechanism scales better and in addition to that it allows a container to be
unreachable for a certain time.

The UDP based monitoring mechanism can be activated by launching on both the main container
and peripheral containers the jade.core.nodeMonitoring.UDPNodeMonitoringService
service using the –services option (see 2.3.2).

The following optional parameters can be used on the Main Container (they are automatically
propagated to the peripheral containers) to configure it:

jade_core_nodeMonitoring_UDPNodeM
onitoringService_port

Specifies the port number where the main container will
listen for UDP pings. (Default: 28000).

jade_core_nodeMonitoring_UDPNodeM
onitoringService_pingdelay

Defines the time interval (in milliseconds) between two
UDP pings sent by a peripheral container to the main
container. (Default: 1.000).

jade_core_nodeMonitoring_UDPNodeM
onitoringService_pingdelaylimit

Defines the maximum time (in milliseconds) the main
container will wait for incoming ping messages before
considering a peripheral container “Unreachable”.
(Default: 3000).

jade_core_nodeMonitoring_UDPNodeM
onitoringService_unreachablelimit

Defines the maximum time (in milliseconds) a
peripheral container can be temporarily unreachable
until it gets removed from the platform. (Default:
10.000).

JADE Administrator’s GUIDE

14

Examples

Main container with UDP monitoring

The following command line will launch a JADE main container with UDP based monitoring,
waiting at port 5555 for incoming UDP ping messages. Peripheral containers will send UDP
pings every 2 seconds. If the main container doesn't receive a ping message from a peripheral
container for more than five seconds this container is marked as temporarily unreachable. If the
main container also doesn't receive any ping in the next minute, the peripheral container gets
automatically removed from the platform.

java jade.Boot
–services jade.core.nodeMonitoring.UDPNodeMonitoringService
-jade_core_nodeMonitoring_UDPNodeMonitoringService_port 5555
-jade_core_nodeMonitoring_UDPNodeMonitoringService_pingdelay 2000
–jade_core_nodeMonitoring_UDPNodeMonitoringService_pingdelaylimit 5000

–jade_core_nodeMonitoring_UDPNodeMonitoringService_unreachablelimit

60000

Peripheral Container with UDP monitoring

The following command line will launch a JADE peripheral container with UDP based
monitoring (note that all configuration options are specified on the Main Container).

java jade.Boot -container
–services jade.core.nodeMonitoring.UDPNodeMonitoringService

2.4 Building JADE from the source distribution

If you downloaded the source code of JADE, you can compile it by using the program ‘ant’,
a platform-independent version of make. ‘ant’ uses the file ‘build.xml’, which contains all the
information about the files that have to be compiled, and that is located into the JADE root
directory . The ‘ant’ program version 1.6 must be installed on your computer, it can be
downloaded from the Jakarta Project at the Apache web site: http://jakarta.apache.org/.

2.4.1 Building the JADE framework

In the root directory, just type:
ant jade

Beware in order to parser classes it is necessary to have JavaCC installed and to set
JAVACC_HOME, otherwise the program will produce a comment out.

You will end up with all JADE classes in a classes subdirectory. You can add that
directory to your CLASSPATH and make sure that everything is OK by running JADE, as
described in the previous section.

2.4.2 Building JADE libraries

Just type:

JADE Administrator’s GUIDE

15

ant lib
This will remove the content of the classes directory and will create some JAR files in

the lib directory. These JAR files are just the same you get from the binary distribution. See
section 2.3 for a description on how to run JADE when you have built the JAR files.

2.4.3 Building JADE HTML documentation

Just type:
ant doc
You will end up with Javadoc generated HTML pages, integrated within the overall

documentation. Note that the generated documentation is not the same that is included in the
jadeDoc.zip file that is part of the standard JADE distribution. The latter in fact is a simplified
version that cuts out a number of classes and methods that are normally not used and that
decrease javadoc readability. This simplified documentation requires the LEAP add-on to be
generated. Beware that the Programmer’s Guide is a PDF file that cannot be generated at your
site, but you must download it (it is, of course, in the JADE documentation distribution).

2.4.4 Building JADE examples and demo application

If you downloaded the examples/demo archive and have unpacked it within the same source
tree, you will have to set your CLASSPATH to contain either the classes directory or the JAR
files in the lib directory, depending on your JADE distribution, and then type:

ant examples

In order to compile the Jess-based example, it is necessary to have the JESS system, to set
the CLASSPATH to include it and to set the JESS_HOME environment variable. The
example can be compiled by typing:

ant jessexample

2.4.5 Cleaning up the source tree

If you type:
ant clean
you will remove all generated files (classes, HTML pages, JAR files, etc.) from the source

tree..

2.5 Support for inter-platform messaging with plug-in Message Transport Protocols

The FIPA 2000 specification proposes a number of different Message Transport Protocols
(MTPs for short) over which ACL messages can be delivered in a compliant way.

JADE comprises a framework to write and deploy multiple MTPs in a flexible way. An
implementation of a FIPA compliant MTP can be compiled separately and put in a JAR file of its
own; the code will be dynamically loaded when an endpoint of that MTP is activated. Moreover,
every JADE container can have any number of active MTPs, so that the platform administrator
can choose whatever topology he or she wishes.

JADE performs message routing for both incoming and outgoing messages, using a single-
hop routing table that requires direct visibility among containers.

When a new MTP is activated on a container, the JADE platform gains a new address that is
added to the list in the platform profile (that can be obtained from the AMS using the action

JADE Administrator’s GUIDE

16

get-description). Moreover, the new address is added to all the ams-agent-
description objects contained within the AMS knowledge base.

2.5.1 Command line options for MTP management

When a JADE container is started, it is possible to activate one ore more communication
endpoints on it, using suitable command line options. The –mtp option activates a new
communication endpoint on a container, and must be given the name of the class that provides the
MTP functionality. If the MTP supports activation on specific addresses, then the address URL
can be given right after the class name, enclosed in brackets. If multiple MTPs are to be activated,
they can be listed together using commas as separators.

For example, the following option activates an IIOP endpoint on a default address.
-mtp jade.mtp.iiop.MessageTransportProtocol

The following option activates an IIOP endpoint that uses an ORBacus-based1 IIOP MTP on
a fixed, given address.

-mtp
orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cselt.it:12
34/jade)

The following option activates two endpoints that correspond to two ORBacus-based IIOP
MTP on two different addresses:

-mtp
orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cselt.it:12
34/jade);orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cs
elt.it:5678/jade)

When a container starts, it prints on the standard output all the active MTP addresses,
separated by a carriage return. Moreover, it writes the same addresses in a file, named:

MTPs-<Container Name>.txt.
If no MTP related option is given, by default a basic IIOP MTP is activated on the Main

Container and no MTP are activated on an ordinary container. To inhibit the creation of the
default IIOP endpoint, use the –nomtp option.

2.5.2 Configuring MTPs from the graphical management console.

Using the –mtp command line option, a transport endpoint lives as long as its container is
up; when a container is shut down, all its MTPs are deactivated and the AMS information is
updated accordingly. The JADE RMA console enables a more flexible management of the MTPs,
allowing activating and deactivating transport protocols during normal platform operations. In the
leftmost panel of the RMA GUI, right-clicking on an agent container tree node brings up the
popup menu with an Install a new MTP and Uninstall an MTP.

Choosing Install a new MTP a dialog is shown where the user can select the container to
install the new MTP on, the fully qualified name of the class implementing the protocol, and (if it
is supported by the chosen protocol) the transport address that will be used to contact the new

1 ORBacus is a CORBA 2.3 ORB for C++ and Java. It is available from Object Oriented Concepts, Inc. at
http://www.ooc.com. An alternate IIOP MTP for JADE, exploiting ORBacus features, is available in the download area
of the JADE web site: http://jade.cselt.it/.

JADE Administrator’s GUIDE

17

MTP. For example, to install a new IIOP endpoint, using the default JDK 1.3 ORB, one would
write jade.mtp.iiop.MessageTransportProtocol as the class name and nothing as
the address. In order to install a new IIOP endpoint, using the ORBacus based implementation,
one would write orbacus.MessageTransportProtocol as the class name and (if the
endpoint is to be deployed at host sharon.cselt.it, on the TCP port 1234, with an object
ID jade) corbaloc:iiop:sharon.cselt.it:1234/jade as the transport address.

Choosing Uninstall an MTP, a dialog is shown where the user can select from a list one of
the currently installed MTPs and remove it from the platform.

2.5.3 Agent address management

As a consequence of the MTP management described above, during its lifetime a platform,
and its agents, can have more than one address and they can be activated and deactivated during
the execution of the system. JADE takes care of maintaining consistence within the platform and
the addresses in the platform profile, the AMS knowledge base, and in the AID value returned by
the method getAID() of the class Agent.

For application-specific purposes, an agent can still decide to choose explicitly a subset of
the available addresses to be contacted by the rest of the world. In some cases, the agent could
even decide to activate some application specific MTP, that would not belong to the whole
platform but only to itself. So, the preferred addresses of an agent are not necessarily the same as
the available addresses for its platform. In order to do that, the agent must take care of managing
its own copy of agent ID and set the sender of its ACLMessages to its own copy of agent ID
rather than the value returned by the method getAID().

2.5.4 Writing new MTPs for JADE

To write a new MTP that can be used by JADE, all that is necessary is to implement a couple
of Java interfaces, defined in the jade.mtp package. The MTP interface models a bi-directional
channel that can both send and receive ACL messages (this interface extends the OutChannel
and InChannel interfaces that represent one-way channels). The TransportAddress
interface is just a simple representation for an URL, allowing separately reading the protocol,
host, port and file part.

2.5.4.1 The Basic IIOP MTP

An implementation of the FIPA 2000 IIOP-based transport protocol is included with JADE.
This implementation relies on the JDK 1.4 ORB (but can also use the JDK 1.3 ORB, requiring
recompilation of the jade.mtp.iiop package). This implementation fully supports IOR
representations such as IOR:000000000000001649444c644f4…, and does not allow to
choose the port number or the object key. These limitations are due to the underlying ORB, and
can be solved with other JADE MTPs exploiting more advanced CORBA ORBs. The MTP
implementation is contained within the jade.mtp.iiop.MessageTransportProtocol
class, so this is the name to be used when starting the protocol. Due to the limitation stated above,
choosing the address explicitly is not supported.

The default IIOP MTP also supports a limited form of corbaloc: addressing: A
corbaloc: address, generated by some other more advanced ORB and pointing to a different
platform, can be used to send ACL messages. Interoperability between a JADE platform using
ORBacus and a JADE platform using the JDK 1.3 ORB has been successfully tested. In a first

JADE Administrator’s GUIDE

18

test, the first platform exported a corbaloc: address generated by ORBacus, and then the
second platform used that address with the JDK 1.3 ORB to contact the first one. In a second test,
the IOR generated by the second platform was converted into a corbaloc: URL via the
getURL() method call in the IIOPAddress inner class (a non-public inner class of the
jade.mtp.iiop.MessageTransportProtocol class); then the first platform used that
address to contact the second one.

So, the corbaloc: support is almost complete. The only limitation is that it’s not possible
to export corbaloc: addresses with the JDK 1.3 ORB. JADE is able to convert IORs to
corbaloc: URLs, but the CORBA object key is an arbitrary octet sequence, so that the
resulting URL contains forbidden characters that are escaped using ‘%’ and their hexadecimal
value. While this conversion complies with CORBA 2.4 and RFC 2396, the resulting URL is just
as unreadable as the plain old IOR. The upcoming JDK 1.4 is stated to feature an ORB that
complies with the POA and INS specifications, so that it has persistent object references, and
natively supports corbaloc: and corbaname: addresses. It is likely that a more complete
IIOP MTP will be provided for the JDK 1.4, when it will be widely available.

2.5.4.2 The ORBacus MTP

A Message Transport Protocol implementation that complies with FIPA and exploits the
ORBacus ORB implementation can be download as an add-on from the JADE web site. A tutorial
is available in the JADE documentation that describes how to download, install, compile and use
this MTP. This MTP fully supports IOR:, corbaloc: and corbaname: addresses.

According to the OMG specifications, three syntaxes are allowed for an IIOP address (all
case-insensitive):

IIOPAddress ::= "ior:" (HexDigit HexDigit+)
 | "corbaname://" NSHost ":" NSPort "/" NSObjectID
 "#" objectName
 | "corbaloc:" HostName ":" portNumber "/" objectID

Notice that, in the third case, BIG_ENDIAN is assumed by default, while in the first and
second case, the endianess information is contained within the IOR definition. In the second form,
HostName and PortNumber refer to the host where the CORBA Naming Service is running.

2.5.4.3 The HTTP MTP

A Message Transport Protocol implementation that complies to FIPA and uses the HTTP
protocol can be download as an add-on from the JADE web site. A tutorial is available in the
JADE documentation that describes how to download, install, compile and use this MTP.

2.6 Support for ACL Codec

By default, all ACLMessages are encoded via the String format defined by FIPA. However,
at configuration time it is possible to add additional ACLCodecs that can be used by agents on

JADE Administrator’s GUIDE

19

that container. The command line option –aclcodec should be used for this purpose. Agents
wishing to send messages with non-default encodings should set the right value in the
aclRepresentation field of the Envelope.

2.6.1 XML Codec

An XML-based implementation of the ACLCodec can be download from the JADE site as
an add-on. A tutorial is available in the JADE documentation that describes how to download,
install, compile and use this codec.

2.6.2 Bit Efficient ACL Codec

A bit-efficient implementation of the ACLCodec can be download from the JADE site as an
add-on. A tutorial is available in the JADE documentation that describes how to download,
install, compile and use this codec. Take care that this codec is available under a different license,
not LGPL.

3 AGENT IDENTIFIERS AND SENDING MESSAGES TO REMOTE AGENTS

According to the FIPA specifications, each agent is identified by an Agent Identifier (AID).
An Agent Identifier (AID) labels an agent so that it may be distinguished unambiguously within
the Agent Universe.

The AID is a structure composed of a number of slots, the most important of which are name
and addresses.

The name parameter of an AID is a globally unique identifier that can be used as a unique
referring expression of the agent. JADE uses a very simple mechanism to construct this globally
unique name by concatenating a user-defined nickname to its home agent platform name (HAP),
separated by the '@' character. Therefore, a full valid name in the agent universe, a so-called
GUID (Globally Unique Identifier), is peter@kim:1099/JADE where ‘peter’ is the agent
nickname that was specified at the agent creation time, while ‘kim:1099/JADE’ is the platform
name. Only full valid names should be used within ACLMessages.

The addresses slot, instead, should contain a number of transport addresses at which the can
be contacted. The syntax of these addresses is just a sequence of URI. When using the default
IIOP MTP, the URI for all the local addresses is the IOR printed on stdout. The address slot is
defaulted to the addresses of the local agent platform.

4 FAULT-TOLERANCE WITH REPLICATED MAIN CONTAINERS

JADE distributed architecture relies on a special node, named Main Container, to coordinate
all other nodes and keep together the whole platform. Though most JADE operations are

JADE Administrator’s GUIDE

20

decentralized, there are some essential features that are supported only by the Main Container.
These features are:
• Managing the Container Table (i.e. the set of all the nodes that compose the distributed

platform).
• Managing the Global Agent Descriptor Table (i.e. the set of all the agents hosted by the

distributed platform, together with their current location).
• Managing the MTP table (i.e. the set of all deployed MTP endpoints, together with their

deployment location).
• Hosting the platform AMS agent.
• Hosting the platform Default DF agent.
If the Main Container terminates or otherwise becomes unavailable to the other platform
containers, all the above features become unavailable and this severely hampers platform
operations.

To keep JADE fully operational even in the event of a failure of the Main-Container, support
for Main Container replication has been introduced. Using this support, it is possible to start any
number of Main Container nodes (a “master” main container actually holding the AMS and a
number of “backup” main containers), which will arrange themselves in a logical ring so that
whenever one of them fails, the others will notice and act accordingly.

Ordinary containers will then be able to connect to the platform through any of the active
Main Container nodes; the different copies will evolve together using cross-notification.
As the following figure shows, without Main Container replication JADE platform has a star
topology, end enabling Main Container replication turns the topology into a ring of stars.

In the fault-tolerant configuration shown on the right part of the figure, three Main Container
nodes are arranged in a ring, and each node is monitoring its neighbor: if the node Main-
Container-1 fails, the node Main-Container-2 will notice and inform all the other Main
Container nodes (in this case just the Main-Container one). Then, a smaller ring will be rebuilt
(with just two elements in the current example).

The figure also shows that peripheral containers can be arbitrarily spread among the
available Main Container nodes. Any single peripheral container is connected to exactly one node
and in absence of failures it is completely unaware of all the other copies. When a Main

Main-Container

Container-1

Container-2 Container-3

Main-Container

Main-Container-2

Main-Container-1

Container-2

Container-3

Container-1

JADE Administrator’s GUIDE

21

Container node fails, there will generally be some orphaned peripheral containers (in the current
example, supposing a Main-Container-1 failure, Container-3 will become an orphan).
When an orphan container detects that its Main Container node isn’t available anymore, it
attaches itself to another node: for this to succeed, a peripheral container must know the list of all
the Main Container nodes present in the platform.

JADE supports two policies in distributing the Main Container node list to peripheral
containers. A first option is to activate the Address-Notification service on all Main Container
nodes and on the peripheral containers. This service will detect additions and removals to the
Main Container nodes ring and update the address lists of all peripheral containers involved.

A second option is to pass the address list to a starting peripheral container with -smaddrs
command line argument. This approach avoids generating notification traffic towards peripheral
containers but assumes a fixed list of Main Container nodes, which is known beforehand.

4.1 Starting a Fault Tolerant Platform from the Command Line

A variety of fault-tolerant platform configurations can be obtained by different combinations
of a few command line options; this section will show some examples, mapping a sequence of
commands into the graphical representation of the platform configuration they create. In the
following, the various commands will supposedly be written at a command prompt that comprises
the host name: that is, a user@host1: command prompt means that the user login name was
used to connect to the host1 machine. Commands typed by the user will be shown in bold face
as usual.

4.1.1 Step 1: Two Main Container nodes on two host machines.

user@host1: java jade.Boot –name Hydra –services
jade.core.replication.MainReplicationService;jade.core.replication.AddressNotificationServ
ice

The command above starts a master Main Container node on machine host1 and activates the
Main-Replication and Address-Notification services on it (notice that such a command line does
not activate the Agent-Mobility and Notification services; refer to Section 2.3.2 for further
details). The -name option assigns a name (“Hydra” in this case) to the platform constituted by
the newly started main container. When starting more than one main container in the same
platform (as we are doing in this example) to create a fault-tolerant topology it is necessary to
specify the –name option for each2 main container so that they all see the same platform name.
Even if not required it is suggested to specify the –name option (with the same value) also for
peripheral containers.
user@host2: java jade.Boot –backupmain –local-port 1234 –host host1 –port 1099 –name Hydra
–services
jade.core.replication.MainReplicationService;jade.core.replication.AddressNotificationServ
ice

The command above, beyond activating the two services needed by a fault-tolerant platform, uses
the –backupmain option to specify that the newly started node is a Main Container, but does
not make a new platform on its own. Rather, this new node is to join an existing platform that is
specified by the -host, -port and –name options. In our example, these options point exactly at
the Main Container that was started with the first command line. Moreover the –local-port

2 The –name option can be omitted when launching the first main container (the master). In this case the platform
name is automatically set to host:port/JADE. Other (backup) main containers must be launched specifying that
name.

JADE Administrator’s GUIDE

22

option specifies the port that new containers will have to indicate to connect to this main
container.
The graphical representation of the JADE platform follows.

4.1.2 Step 2: Adding peripheral containers

Regardless their activation order, the two Main Container nodes started in the previous step
are now absolutely interchangeable. The platform built so far is a single, redundant platform
named Hydra, exposing two Service Manager addresses (namely, host1:1099 and
host2:1234) for peripheral containers to join. In this step we will start two such containers, one
for each address (and thus one for each active Main Container node).
user@host3: java jade.Boot –container –host host1 –port 1099 -name Hydra –services
jade.core.replication.AddressNotificationService

The above command uses the -container option to launch a peripheral container and activates
the Address-Notification service on it. The container will join the Hydra platform using the host
host1 and the port 1099, thus connecting to the Main-Container node.
user@host4: java jade.Boot –container –host host2 –port 1234 –name Hydra –smaddrs
host1:1099;host2:1234

This second command is similar to the first one, but here we chose not to activate the Address-
Notification service; instead, we used the -smaddrs option to provide the list of the available
Service Manager addresses. Since we want this container to connect to the Main-Container-1
node, we use suitable –host and -port options.
The shape of the agent platform after this step is shown in the following figure.

Main-Container

Main-Container-1

Main-Container

Main-Container-1

Container-2

Container-1

JADE Administrator’s GUIDE

23

4.1.3 Step 3: Completing the platform.

In this final step we start one more Main Container node and one more peripheral container
node, so that we reach the platform topology used at the beginning of this section as an example
of fault-tolerant platform.
user@host5: java jade.Boot –backupmain –local-port 1099 –host host1 –port 1099 –name Hydra
–services
jade.core.replication.MainReplicationService;jade.core.replication.AddressNotificationServ
ice

The above command starts a third Main Container node, exporting a Service Manager address on
host host5, port 1099.
user@host6: java jade.Boot –container –host host2 –port 1234 -name Hydra –services
jade.core.replication.AddressNotificationService

The above command starts a peripheral container with the Address-Notification service active,
joining the platform through the Main-Container-1 node. With this last command we obtained
the complete platform topology mentioned earlier.

4.2 Surviving Main Container failures.

After explaining how to set up a redundant agent platform in the previous subsections, we
now describe how such a platform can recover and reconfigure itself after a Main Container node
failure, continuing normal operations. For the purpose of this example, we will suppose that all
application agents are hosted by the three peripheral containers, and that one of the Main
Container nodes will terminate abruptly: let that be the Main-Container-1 node.
The recovery process can be observed if an RMA agent is started on one of the peripheral
containers. As soon as the Main-Container-1 node terminates, the Main-Container-2 node
will notice and inform the Main-Container node. A new, tighter Main Container ring will
result (composed of the two surviving nodes). Nothing happens to the Container-1 node, while
the other two peripheral containers will reconnect themselves to another Main Container node as
soon as they need it. After this failure, the new platform topology could look like this.

All Main Container nodes are replicas of each other, with one single difference. Only one of the
replicas (the master main container) appears to actually host the platform AMS and Default DF

Main-Container

Main-Container-2

Container-2

Container-3

Container-1

JADE Administrator’s GUIDE

24

agents: this one is the first replica in the ring, which is Main-Container node in our case. The
previous crash of Main-Container-1 node left the AMS and Default DF untouched, but let us
now consider the case of Main-Container node failure.
The course of events is the same, with Main-Container-2 node realizing the failure and the
three peripheral containers reconnecting to it when needed. However, this time the Main-
Container-2 node realizes that the failed node was hosting the platform system agents and
proceeds to activate its own replicas of the AMS and Default DF (each Main Container node has
a dormant replica of the two, which is kept updated just like the other platform-level data
structures). From the perspective of an RMA agent living on e.g. Container-3 node, the only
difference is that Main-Container has disappeared from the platform and ams and df agents
have now moved on Main-Container-2.

5 PERSISTENT DELIVERY OF ACL MESSAGES

JADE allows the platform administrator to define a buffering, storage and retry strategy for
undelivered ACL messages. When the receiver agent is not found in the platform, the ACL
message delivery fails and a suitable FAILURE message is sent back to the originator, in
compliance with the FIPA specifications.

Using the Persistent-Delivery kernel service, it is possible to avoid sending back the
FAILURE notification, and buffer the undelivered message instead. Messages are matched against
a user-defined filter and can simply be buffered in memory, or they can be stored within the file
system. Different containers in the platform can define different filters and storage methods.

5.1 Defining a filter for ACL messages

In order to provide application-specific logic to the Persistent-Delivery service, a Java class
must be defined and compiled. This class has to implement the PersistentDeliveryFilter
interface, defined in the jade.core.messaging package and reported below.

public interface PersistentDeliveryFilter {

 static final long NOW = 0;

 static final long NEVER = -1;

 long delayBeforeExpiration(ACLMessage msg);

}

As the code above shows, there is just a single method in the interface. Whenever an ACL
message fails to be delivered to one of its receivers, the persistent delivery filters installed on all
the platform containers are given a chance to claim the message for buffering. The
delayBeforeExpiration() method of each filter is called, and the undelivered ACL message
is passed to it. If the method call returns NOW, the message is considered unclaimed by the filter,
and another filter (on a different container) is invoked. This process goes on until a filter claims
the message (by returning something other than NOW) or all installed filters have been invoked (in
the second case, the FAILURE notification is sent to the message sender).
If a filter returns a different value from NOW, it is considered as a time delay in milliseconds. The
ACL message will be buffered on the node where the filter is deployed, and a delivery attempt
will be periodically made. If the message is still undelivered after the delay returned by the filter,
the delivery process will abort and the FAILURE will be sent back to the message sender.

JADE Administrator’s GUIDE

25

The following code shows a sample implementation of the delayBeforeExpiration()
method. In this example, all the messages belonging to a news delivery application (identified by
their :ontology slot) are claimed. If a claimed message defines a :reply-by slot, a suitable
delay is generated, otherwise the message is buffered indefinitely.

 public long delayBeforeExpiration(ACLMessage msg) {

 if(msg.getOntology().equals(“News-Ontology”)) {

 Date d = msg.getReplyByDate();

 if(d != null) {

 long delay = d.getTime() - System.currentTimeMillis();

 return (delay > 0) ? delay : 0;

 }

 else {

 return NEVER;

 }

 }

 else {

 return NOW;

 }

 }

5.2 Installing and configuring the Persistent-Delivery service

The Persistent-Delivery kernel service can be installed on a container at start-up time, just
like the other JADE services. A set of profile properties is defined to allow flexible configuration
of the service.

• The persistent-delivery-filter property names the application-defined class
(a subtype of jade.core.messaging.PersistentDeliveryFilter interface)
that will be dynamically loaded and installed as the message filter on this container.

• The persistent-delivery-sendfailureperiod property defines how often
the service will try to deliver again ACL messages, checking their expiration in the
process. This property is expressed in milliseconds and its default value is 60000 (one
minute).

• The persistent-delivery-storagemethod property specifies how buffered
ACL messages are to be persisted. By default, messages are kept in memory and no
persistent storage is used. A filesystem-based persistent storage is provided, which can be
selected giving the file value to this profile property.

• The persistent-delivery-basedir property is used by the file persistent
storage method. The directories and files holding the persisted buffered messages are
created as children of the directory given as value of this property. If this property is not
used, by default a subdirectory of the current directory is used, named
PersistentDeliveryStore.

If the file persistent storage method is used, a directory tree in the local filesystem is used to
hold the buffered messages. The directory tree is organized as follows:
A base directory is created according to the value of the persistent-delivery-basedir
profile property. Undelivered ACL messages are encapsulated in delivery items objects. A
delivery item contains:

• The ACL message.

JADE Administrator’s GUIDE

26

• The AID of the intended receiver.
• The due date within which the message is to be delivered (calculated using the delay

provided by the persistent delivery filter which claimed the message).
The intended receiver AID is hashed to a numeric value, which is used to create a subdirectory
for the base directory. Thus, all undelivered messages for a given AID will end up in the same
directory.
The <ACL Message; Receiver AID> pair is hashed to a numeric value, which is used to
create a file within the aforementioned directory. That file contains, orderly:

• The number of message copies currently buffered (if the same message is sent many
times, it consistently hashes to the same file).

• The absolute due date for message delivery, or the keyword FOREVER.
• The AID of the intended receiver, in SL format.
• The whole ACL message, in S-expression format.

When an undelivered ACL message is stored, a suitable file with the above content is created, and
as soon as the message is delivered or the FAILURE notification is sent back the file is deleted.
When the service starts up, it looks for delivery items from previous platform executions and
loads them in memory.

5.3 Command-line examples

The Persistent-Delivery service is not activated by default, so an explicit -services command-
line parameter is needed. The following example starts a container with the Persistent-Delivery
service on it, a MyFilter message filter class and no persistent storage of undelivered
messages.
user@host: java jade.Boot –persistent-delivery-filter MyFilter -services
jade.core.messaging.PersistentDeliveryService
The following command line, instead, configures the Persistent-Delivery service so that it uses a
app.news.NewsMessage filter class and stores undelivered messages under the
/usr/local/news directory.
user@host: java jade.Boot –persistent-delivery-filter app.news.NewsMessage -services
jade.core.messaging.PersistentDeliveryService –persistent-delivery-storagemethod file
–persistent-delivery-basedir /usr/local/news

6 GRAPHICAL USER INTERFACE TO MANAGE AND MONITOR THE AP ACTIVITY

To support the difficult task of debugging multi-agent applications, some tools have been
developed. Each tool is packaged as an agent itself, obeying the same rules, the same
communication capabilities, and the same life cycle of a generic application agent.

6.1 Remote Monitoring Agent

The Remote Monitoring Agent (RMA) allows controlling the life cycle of the agent platform
and of all the registered agents. The distributed architecture of JADE allows also remote
controlling, where the GUI is used to control the execution of agents and their life cycle from a
remote host.

An RMA is a Java object, instance of the class jade.tools.rma.rma and can be
launched from the command line as an ordinary agent (i.e. with the command java

JADE Administrator’s GUIDE

27

jade.Boot myConsole:jade.tools.rma.rma), or by supplying the ‘-gui’ option the
command line parameters (i.e. with the command java jade.Boot –gui).

More than one RMA can be started on the same platform as long as every instance has a
different local name, but only one RMA can be executed on the same agent container.

 Figure 2 Snapshot of the RMA GUI

The followings are the commands that can be executed from the menu bar (or the tool bar) of

the RMA GUI.
♦ File menu:

This menu contains the general commands to the RMA.
♦ Close RMA Agent

Terminates the RMA agent by invoking its doDelete() method. The closure of
the RMA window has the same effect as invoking this command.

♦ Exit this Container
Terminates the agent container where the RMA is living in, by killing the RMA and
all the other agents living on that container. If the container is the Agent Platform
Main-Container, then the whole platform is shut down.

♦ Shut down Agent Platform
Shut down the whole agent platform, terminating all connected containers and all the
living agents.

♦ Actions menu:

JADE Administrator’s GUIDE

28

This menu contains items to invoke all the various administrative actions needed on the
platform as a whole or on a set of agents or agent containers. The requested action is
performed by using the current selection of the agent tree as the target; most of these
actions are also associated to and can be executed from toolbar buttons.
♦ Start New Agent

This action creates a new agent. The user is prompted for the name of the new
agent and the name of the Java class the new agent is an instance of. Moreover, if an
agent container is currently selected, the agent is created and started on that container;
otherwise, the user can write the name of the container he wants the agent to start on.
If no container is specified, the agent is launched on the Agent Platform Main-
Container.

♦ Kill Selected Items
This action kills all the agents and agent containers currently selected. Killing an

agent is equivalent to calling its doDelete() method, whereas killing an agent
container kills all the agents living on the container and then de-registers that
container from the platform. Of course, if the Agent Platform Main-Container is
currently selected, then the whole platform is shut down.

♦ Suspend Selected Agents
This action suspends the selected agents and is equivalent to calling the

doSuspend() method. Beware that suspending a system agent, particularly the
AMS, deadlocks the entire platform.

♦ Resume Selected Agents
This action puts the selected agents back into the AP_ACTIVE state, provided

they were suspended, and works just the same as calling their doActivate()
method.

♦ Send Custom Message to Selected Agents
This action allows to send an ACL message to an agent. When the user selects

this menu item, a special dialog is displayed in which an ACL message can be
composed and sent, as shown in the figure.

JADE Administrator’s GUIDE

29

♦ Migrate Agent
This action allows to migrate an agent. When the user selects this menu item, a

special dialog is displayed in which the user must specify the container of the platform
where the selected agent must migrate. Not all the agents can migrate because of lack
of serialization support in their implementation. In this case the user can press the
cancel button of this dialog.

JADE Administrator’s GUIDE

30

♦ Clone Agent
This action allows to clone a selected agent. When the user selects this menu

item a dialog is displayed in which the user must write the new name of the agent and
the container where the new agent will start.

♦ Tools menu:

This menu contains the commands to start all the tools provided by JADE to
application programmers. These tools will help developing and testing JADE based agent
systems.

♦ RemotePlatforms menu:

This menu allows controlling some remote platforms that comply with the FIPA
specifications. Notice that these remote platforms can even be non-JADE platforms.
♦ Add Remote Platform via AMS AID

This action allows getting the description (called APDescription in FIPA
terminology) of a remote Agent Platform via the remote AMS. The user is
requested to insert the AID of the remote AMS and the remote platform is then
added to the tree showed in the RMA GUI.

♦ Add Remote Platform via URL
This action allows getting the description (called APDescription in FIPA
terminology) of a remote Agent Platform via a URL. The content of the URL
must be the stringified APDescription, as specified by FIPA. The user is
requested to insert the URL that contains the remote APDescription and the
remote platform is then added to the tree showed in the RMA GUI.

♦ View APDescription
To view the AP Description of a selected platform.

♦ Refresh APDescription
This action asks the remote AMS for the APDescription and refresh the old one.

♦ Remove Remote Platform
This action permits to remove from the GUI the selected remote platform.

♦ Refresh Agent List
This action performs a search with the AMS of the Remote Platform and
the full list of agents belonging to the remote platform are then displayed
in the tree.

JADE Administrator’s GUIDE

31

6.2 DummyAgent

The DummyAgent tool allows users to interact with JADE agents in a custom way. The GUI
allows composing and sending ACL messages and maintains a list of all ACL messages sent and
received. This list can be examined by the user and each message can be viewed in detail or even
edited. Furthermore, the message list can be saved to disk and retrieved later. Many instances of
the DummyAgent can be started as and where required.

The DummyAgent can both be launched from the Tool menu of the RMA and from the
command line, as follows:

Java jade.Boot theDummy:jade.tools.DummyAgent.DummyAgent

Figure 3 Snapshot of the DummyAgent GUI

JADE Administrator’s GUIDE

32

6.3 DF GUI

A GUI of the DF can be launched from the Tools menu of the RMA. This action is actually
implemented by sending an ACL message to the DF asking it to show its GUI. Therefore, the
GUI can just be shown on the host where the platform (main-container) was executed.

By using this GUI, the user can interact with the DF: view the descriptions of the registered
agents, register and deregister agents, modify the description of registered agent, and also search
for agent descriptions.

The GUI allows also to federate the DF with other DF's and create a complex network of
domains and sub-domains of yellow pages. Any federated DF, even if resident on a remote non-
JADE agent platform, can also be controlled by the same GUI and the same basic operations
(view/register/deregister/modify/search) can be executed on the remote DF.

Figure 3 – Snapshot of the GUI of the DF

JADE Administrator’s GUIDE

33

6.4 Sniffer Agent

As the name itself points out, the Sniffer Agent is basically a FIPA-compliant Agent with
sniffing features.

When the user decides to sniff an agent or a group of agents, every message directed to/from
that agent / agent group is tracked and displayed in the Sniffer Agent’s gui. The user can view
every message and save it to disk. The user can also save all the tracked messages and reload it
from a single file for later analysis.

This agent can be started both from the Tools menu of the RMA and also from the command
line as follows:

java jade.Boot sniffer:jade.tools.sniffer.Sniffer

The figure shows a snapshot of the GUI.

 Figure 4 - Snapshot of the sniffer agent GUI

At start up, the sniffer subscribes itself with the platform in order to be informed every time
an agent is born or dies, as well as a container is created or deleted.

 A properties file may be used to control different sniffer properties. These optional
properties are as follows:

• preload - A list of preload descriptions seperated by a semi-colon. Each
description consists of an agent name match string and optional list of performatives
each seperated by a space. If there is no @ in the agent name, it assumes the current
HAP for it. If the performative list is not present, then the sniffer will display all
messages; otherwise, only those messages that have a matching performative
mentioned will be displayed.
Examples:

preload=da0;da1 inform propose

JADE Administrator’s GUIDE

34

preload=agent?? inform
preload=*

• clip - A list of agent name prefixes separated by a semi-colon which will be
removed when showing the agent's name in the agent box. This is helpful to
eliminate common agent prefixes.
Example:

clip=com.hp.palo-alto.;helper.
The property file called ‘sniffer.properties’ is looked for in the current directory, and if not

found, the agent looks in the parent directory and continues this until the file is either found or
there isn't a parent directory.

The original implementation processed a file called ‘sniffer.inf’ file. For backward
compatability this has been preserved but its usage should be converted to use the new .properties
file. The format of the .inf file is a set of lines, where each line contains an agent name to be
sniffer and optional list of performatives.

Example:
da0
da1 inform propose

Notes:
If a message is one that is to be ignored, then it is dropped totally. If you look at the sniffer

dump of messages, it will not be there.
The same functionality is provided via command line arguments for the Sniffer Agent.
Example:

java jade.Boot
Sniffer:jade.tools.sniffer.Sniffer(df* ; RMA inform)

JADE Administrator’s GUIDE

35

6.5 Introspector Agent

This tool allows to monitor and control the life-cycle of a running agent and its exchanged
messages, both the queue of sent and received messages. It allows also to monitor the queue of
behaviours, including executing them step-by-step.

Figure 4 - Snapshot of the Introspector Agent GUI

Agents can be passed to the Introspector Agent in the same way as to the Sniffer Agent via
the command line, or via a configuration file. The specification of performative filters, e.g.
inform, agree, etc. is not supported by the Introspector Agent.

JADE Administrator’s GUIDE

36

7 LIST OF ACRONYMS AND ABBREVIATED TERMS

ACL Agent Communication Language
AID Agent Identifier
AMS Agent Management Service. According to the FIPA architecture, this is the agent that is

responsible for managing the platform and providing the white-page service.
AP Agent Platform
API Application Programming Interface
DF Directory Facilitator. According to the FIPA architecture, this is the agent that provides

the yellow-page service.
EBNF Extended Backus-Naur Form
FIPA Foundation for Intelligent Physical Agents
GUI Graphical User Interface
GUID Globally Unique Identifier
HAP Home Agent Platform
HTML Hyper Text Markup Language
HTTP Hypertext Transmission Protocol
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
INS
IOR Interoperable Object Reference
JADE Java Agent DEvelopment Framework
JDK Java Development Kit
JVM Java Virtual Machine
LGPL Lesser GNU Public License
MTP Message Transport Protocol. According to the FIPA architecture, this component is

responsible for handling communication with external platforms and agents.
ORB Object Request Broker
POA Portable Object Adapter
RMA Remote Monitoring Agent. In the JADE platform, this type of agent provides a

graphical console to monitor and control the platform and, in particular, the life-cycle of
its agents.

RMI Remote Method Invocation
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

