
jEdit 4.1 User’s Guide

jEdit 4.1 User’s Guide
Copyright © 1999, 2003 Slava Pestov
Copyright © 2001, 2002 John Gellene

Legal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no

“Invariant Sections”, “Front-Cover Texts” or “Back-Cover Texts”, each as defined in the license. A copy of the license

can be found in the fileCOPYING.DOC.txt included with jEdit.

Table of Contents
I. Using jEdit .. ix

1. Starting jEdit..1
1.1. Conventions..1
1.2. Platform-Independent Instructions..2
1.3. Starting jEdit on Windows..3
1.4. Command Line Usage...4

2. jEdit Basics..7
2.1. Buffers...7

2.1.1. Memory Usage...7
2.2. Views...8

2.2.1. Window Docking...9
2.2.2. The Status Bar..9

2.3. The Text Area and Gutter..11
3. Working With Files..13

3.1. Creating New Files...13
3.2. Opening Files..13
3.3. Saving Files...14

3.3.1. Autosave and Crash Recovery...14
3.3.2. Backups..15

3.4. Line Separators...15
3.5. Character Encodings...16

3.5.1. Commonly Used Encodings..16
3.6. The File System Browser..17

3.6.1. Navigating the File System..17
3.6.2. The Tool Bar..18
3.6.3. The Commands Menu..18
3.6.4. The Plugins Menu..19
3.6.5. The Favorites Menu...19
3.6.6. Keyboard Shortcuts..19

3.7. Reloading From Disk..20
3.8. Multi-Threaded I/O...20
3.9. Printing..20
3.10. Closing Files and Exiting jEdit...21

4. Editing Text..23
4.1. Moving The Caret...23
4.2. Selecting Text..24

4.2.1. Rectangular Selection..25

iii

4.2.2. Multiple Selection..25
4.3. Inserting and Deleting Text...26
4.4. Undo and Redo...26
4.5. Working With Words..27
4.6. Working With Lines..28
4.7. Working With Paragraphs...28
4.8. Wrapping Long Lines...29

4.8.1. Soft Wrap...29
4.8.2. Hard Wrap..30

4.9. Scrolling..30
4.10. Transferring Text...31

4.10.1. The Clipboard..31
4.10.2. Quick Copy..32
4.10.3. General Register Commands...32

4.11. Markers...33
4.12. Search and Replace...34

4.12.1. Searching For Text...34
4.12.2. Replacing Text...35

4.12.2.1. Text Replace..35
4.12.2.2. BeanShell Replace..36

4.12.3. HyperSearch...37
4.12.4. Multiple File Search...37
4.12.5. The Search Bar...38

4.13. Command Repetition..39
5. Editing Source Code..41

5.1. Edit Modes..41
5.1.1. Mode Selection..41
5.1.2. Syntax Highlighting...41

5.2. Tabbing and Indentation...41
5.2.1. Soft Tabs..42
5.2.2. Automatic Indent...43

5.3. Commenting Out Code...44
5.4. Bracket Matching..44
5.5. Abbreviations..45

5.5.1. Positional Parameters...46
5.6. Folding..46

5.6.1. Collapsing and Expanding Folds...48
5.6.2. Navigating Around With Folds..48
5.6.3. Miscellaneous Folding Commands..49
5.6.4. Narrowing..49

iv

6. Customizing jEdit..51
6.1. The Buffer Options Dialog Box..51
6.2. Buffer-Local Properties...51
6.3. The Global Options Dialog Box...52

6.3.1. The Abbreviations Pane...52
6.3.2. The Appearance Pane..53
6.3.3. The Context Menu Pane...53
6.3.4. The Docking Pane..53
6.3.5. The Editing Pane..53
6.3.6. The General Pane...53
6.3.7. The Gutter Pane...54
6.3.8. The Loading and Saving Pane...54
6.3.9. The Printing Pane...54
6.3.10. The Proxy Servers Pane...54
6.3.11. The Shortcuts Pane..54
6.3.12. The Status Bar Pane...54
6.3.13. The Syntax Highlighting Pane...55
6.3.14. The Text Area Pane..55
6.3.15. The Tool Bar Pane..55
6.3.16. The File System Browser Panes...55

6.4. The jEdit Settings Directory...55
7. Using Macros...59

7.1. Recording Macros...59
7.2. Running Macros..60
7.3. How jEdit Organizes Macros..60

8. Installing and Using Plugins..63
8.1. The Plugin Manager..63
8.2. Installing Plugins..63
8.3. Updating Plugins...64

A. Keyboard Shortcuts...65
B. The Activity Log...71
C. History Text Fields..73
D. Glob Patterns...75
E. Regular Expressions..77
F. Macros Included With jEdit...81

F.1. File Management Macros...81
F.2. Java Code Macros...81
F.3. Macros for Listing Properties...82
F.4. Miscellaneous Macros..83
F.5. Text Macros...85

v

G. jEditLauncher for Windows..87
G.1. Introduction..87
G.2. Starting jEdit..87
G.3. The Context Menu Handler..89
G.4. Using jEdit and jEditLauncher as a Diff Utility..89
G.5. Uninstalling jEdit and jEditLauncher..90
G.6. The jEditLauncher Interface..90
G.7. Scripting Examples..91
G.8. jEditLauncher Logging..93
G.9. Legal Notice...93

II. Writing Edit Modes ..95

9. Mode Definition Syntax...97
9.1. An XML Primer..97
9.2. The Preamble and MODE tag...98
9.3. The PROPS Tag..98
9.4. The RULES Tag..100

9.4.1. Highlighting Numbers...101
9.4.2. Rule Ordering Requirements...101
9.4.3. Per-Ruleset Properties..102

9.5. The TERMINATE Tag..103
9.6. The SPAN Tag...103
9.7. The SPAN_REGEXP Tag...104
9.8. The EOL_SPAN Tag...104
9.9. The EOL_SPAN_REGEXP Tag...105
9.10. The MARK_PREVIOUS Tag...105
9.11. The MARK_FOLLOWING Tag...106
9.12. The SEQ Tag...107
9.13. The SEQ_REGEXP Tag...107
9.14. The KEYWORDS Tag..108
9.15. Token Types..108

10. Installing Edit Modes...111
11. Updating Edit Modes for jEdit 4.1...113

III. Writing Macros ...115

12. Macro Basics..117
12.1. Introducing BeanShell..117
12.2. Single Execution Macros..117
12.3. The Mandatory First Example..118
12.4. Predefined Variables in BeanShell..121
12.5. Helpful Methods in the Macros Class...122

vi

12.6. BeanShell Dynamic Typing..124
12.7. Now For Something Useful..125

13. A Dialog-Based Macro..127
13.1. Use of the Macro...127
13.2. Listing of the Macro..127
13.3. Analysis of the Macro...130

13.3.1. Import Statements..130
13.3.2. Create the Dialog...130
13.3.3. Create the Text Fields..131
13.3.4. Create the Buttons..132
13.3.5. Register the Action Listeners...133
13.3.6. Make the Dialog Visible..133
13.3.7. The Action Listener...134
13.3.8. Get the User’s Input...134
13.3.9. Call jEdit Methods to Manipulate Text..135
13.3.10. The Main Routine..136

14. Macro Tips and Techniques...139
14.1. Getting Input for a Macro...139

14.1.1. Getting a Single Line of Text...139
14.1.2. Getting Multiple Data Items..140
14.1.3. Selecting Input From a List..142
14.1.4. Using a Single Keypress as Input..144

14.2. Startup Scripts...145
14.3. Running Scripts from the Command Line..146
14.4. Advanced BeanShell Techniques..148

14.4.1. BeanShell’s Convenience Syntax...148
14.4.2. Special BeanShell Keywords...148
14.4.3. Implementing Interfaces..149

14.5. Debugging Macros..149
14.5.1. Identifying Exceptions...149
14.5.2. Using the Activity Log as a Tracing Tool..150

15. BeanShell Commands..153
15.1. Output Commands..153
15.2. File Management Commands...153
15.3. Component Commands...154
15.4. Resource Management Commands...155
15.5. Script Execution Commands...155
15.6. BeanShell Object Management Commands...156
15.7. Other Commands..157

vii

IV. Writing Plugins ..159

16. Introducing the Plugin API...161
17. Implementing a Simple Plugin..163

17.1. How Plugins are Loaded..163
17.2. The QuickNotepadPlugin Class..164
17.3. The EditBus..166
17.4. The Property File..167
17.5. The Action Catalog...169
17.6. The Dockable Window Catalog..170
17.7. The QuickNotepad Class..171
17.8. The QuickNotepadToolBar Class...174
17.9. The QuickNotepadOptionPane Class...175
17.10. Plugin Documentation..177
17.11. Compiling the Plugin..178

18. Plugin Tips and Techniques...181
18.1. Bundling Additional Class Libraries..181

viii

I. Using jEdit
This part of the user’s guide covers jEdit’s text editing commands, along with basic usage of
macros and plugins.

This part of the user’s guide was written by Slava Pestov <slava@jedit.org >.

Chapter 1. Starting jEdit

1.1. Conventions
Several conventions are used throughout jEdit’s user interface and this manual. They will be
described here.

When a menu item selection is being described, the top level menu is listed first, followed by
successive levels of submenus, finally followed by the menu item itself. All menu
components are separated by greater-than symbols (“>”). For example,
View>Scrolling>Scroll to Current Line refers to theScroll to Current Line command
contained in theScrolling submenu of theView menu.

As with many other applications, menu items that end with ellipsis (...) display dialog boxes
or windows when invoked.

Many jEdit commands can be also be invoked using keystrokes. This speeds up editing by
letting you keep your hands on the keyboard. Not all commands with keyboard shortcuts are
accessible with one key stroke; for example, the keyboard shortcut forScroll to Current
Line is Control -E Control -J. That is, you must first pressControl -E, followed by
Control -J.

In many dialog boxes, the default button (it has a heavy outline, or a special border,
depending on the current Swing look and feel) can be activated by pressingEnter.
Similarly, pressingEscapewill usually close a dialog box.

Finally, some user interface elements (menus, menu items, buttons) have a certain letter in
their label underlined. Pressing this letter in combination with theAlt key activates the
associated user interface widget.

1

Chapter 1. Starting jEdit

MacOS

jEdit tries to adapt itself to established conventions when running on MacOS.

If you are using MacOS, mentally substitute the modifier keys you see in this manual
as follows:

• ReadControl asCommand

• ReadAlt asOption

If you only have a one-button mouse, a right button click (to show a context menu, and
so on) can be simulated by holding downControl while clicking. A middle button
click (to insert the most recent selection in the text area) can be simulated by holding
downOption while clicking.

1.2. Platform-Independent Instructions
Exactly how jEdit is started depends on the operating system; on Unix systems, usually you
would run the “jedit” command at the command line, or select jEdit from a menu; on
Windows, you might use the jEditLauncher package, which is documented inSection 1.3.

If jEdit is started while another copy is already running, control is transferred to the running
copy, and a second instance is not loaded. This saves time and memory if jEdit is started
multiple times. Communication between instances of jEdit is implemented using TCP/IP
sockets; the initial instance is known as theserver, and subsequent invocations areclients.

If the -background command line switch is specified, jEdit will continue running and
waiting for client requests even after all editor windows are closed. When run in background
mode, you can open and close jEdit any number of times, only having to wait for it to start
the first time. The downside of this is that jEdit will continue to consume memory when no
windows are open.

For more information about command line switches that control the server feature, see
Section 1.4. Note that if you are using jEditLauncher to start jEdit on Windows, this switch
cannot be specified on the MS-DOS prompt command line when starting jEdit; it must be
set as described inSection G.2.

Unlike other applications, jEdit automatically loads any files that were open last time in was
used, so you can get back to work immediately, without having to find the files you are
working on first. This feature can be disabled in theLoading and Saving pane of the

2

Chapter 1. Starting jEdit

Utilities>Global Options dialog box; seeSection 6.3.

The edit server and security

Not only does the server pick a random TCP port number on startup, it also requires
that clients provide anauthorization key; a randomly-generated number only
accessible to processes running on the local machine. So not only will “bad guys”
have to guess a 64-bit integer, they will need to get it right on the first try; the edit
server shuts itself off upon receiving an invalid packet.

In environments that demand absolute security, the edit server can be disabled by
specifying the-noserver command line switch.

1.3. Starting jEdit on Windows
On Windows, jEdit comes withjEditLauncher- an optional package of components that
make it easy to start jEdit, manage its command line settings, and launch files and macro
scripts.

The jEditLauncher package provides three shortcuts for running jEdit: one in the desktop’s
Start menu, a entry in the Programs menu, and a third shortcut on your desktop. Any of
these may be deleted or moved without affecting jEdit’s operation. To launch jEdit, simply
select one of these shortcuts as you would for any Windows application.

The jEditLauncher package includes a utility for changing the command line parameters that
are stored with jEditLauncher and used every time it runs jEdit. You can change the Java
interpreter used to launch jEdit, the amount of heap memory, the working directory and
other command line parameters. To make these changes, selectSet jEdit Parameters from
the jEdit group in the Programs menu, or runjedit /p from a command line that has
jEdit’s installation directory in its search path. A dialog will appear that allows you to
change and save a new set of command line parameters.

The package also adds menu items to the context or “right-click” menu displayed by the
Windows shell when you click on a file item in the desktop window, a Windows Explorer
window or a standard file selection dialog. The menu entries allow you to open selected files
in jEdit, starting the application if necessary. It will also allow you to open all files in a
directory with a given extension with a single menu selection. If a BeanShell macro script
with a .bsh extension is selected, the menu includes the option of running that script within
jEdit. If you have the JDiff plugin installed with jEdit, you can also select two files and have
jEdit compare them in a side-by-side graphical display.

3

Chapter 1. Starting jEdit

For a more detailed description of all features found in the jEditLauncher package, see
Appendix G.

1.4. Command Line Usage
On operating systems that support a command line, jEdit can be passed various arguments to
control its behavior.

If you are using jEditLauncher to start jEdit on Windows, only file names can be specified
on the command line; the parameters documented below must be set as described inSection
G.2.

When opening files from the command line, a line number or marker to position the caret on
can be specified like so:

$ jedit MyApplet.java +line:10
$ jedit thesis.tex +marker:c

A number of options can also be specified to control several obscure features. They are
listed in the following table.

Option Description
-background Runs jEdit in background mode. In background mode, the edit

server will continue listening for client connections even after all
views are closed. SeeChapter 1.

-nogui Makes jEdit not open an initial view, and instead only open one
when the first client connects. Can only be used in combination
with the-background switch. You can use this switch to
“pre-load” jEdit when you log in to your computer, for example.

-norestore Disables automatic restore of previously open files on startup.
This feature can also be set permanently in theLoading and
Saving pane of theUtilities>Global Options dialog box; see
Section 6.3.

-run= script Runs the specified BeanShell script. There can only be one of
these parameters on the command line. SeeSection 14.3for
details.

-server Stores the server port info in the file namedserver inside the
settings directory.

-server= name Stores the server port info in the file namedname. File names for
this parameter are relative to the settings directory.

4

Chapter 1. Starting jEdit

Option Description
-noserver Does not attempt to connect to a running edit server, and does not

start one either. For information about the edit server, seeChapter
1.

-settings= dir Loads and saves the user-specific settings in the directory named
dir , instead of the defaultuser.home /.jedit . The directory
will be created automatically if it does not exist. Has no effect
when connecting to another instance via the edit server.

-nosettings Starts jEdit without loading user-specific settings. SeeSection 6.4.

-noplugins Causes jEdit to not load any plugins. SeeChapter 8. Has no effect
when connecting to another instance via the edit server.

-nostartupscripts Causes jEdit to not run any startup scripts. SeeSection 14.2. Has
no effect when connecting to another instance via the edit server.

-usage Shows a brief command line usage message without starting jEdit.
This message is also shown if an invalid switch was specified.

-version Shows the version number without starting jEdit.

- - Specifies the end of the command line switches. Further
parameters are treated as file names, even if they begin with a
dash. Can be used to open files whose names start with a dash,
and so on.

5

Chapter 1. Starting jEdit

6

Chapter 2. jEdit Basics

2.1. Buffers
A buffer is the jEdit term for an open file. Several buffers can be opened and edited at once;
the combo box above the text area selects the buffer to edit. Different emblems are displayed
next to buffer names in the list, depending the buffer’s state; a red disk is shown for buffers
with unsaved changes, a lock is shown for read-only buffers, and a spark is shown for new
buffers which don’t yet exist on disk.

In addition to the buffer combo box, various commands can also be used to select the buffer
to edit.

View>Go to Previous Buffer (keyboard shortcut:Control -Page Up) switches to the
previous buffer in the list.

View>Go to Next Buffer (keyboard shortcut:Control -Page Down) switches to the next
buffer in the list.

View>Go to Recent Buffer (keyboard shortcut:Control -‘) switches to the buffer that was
being edited prior to the current one.

View>Show Buffer Switcher (keyboard shortcut:Alt -‘) has the same effect as clicking on
the buffer switcher combo box.

2.1.1. Memory Usage

The maximum number of open buffers depends on availableJava heap memory. When in
the Java heap, a buffer uses approximately two and a half times it’s size on disk. This
overhead is caused by the file being stored internally in Unicode (seeSection 3.5), and
various meta-data such as line numbers.

The status bar at the bottom of the view displays used and total Java heap memory; see
Section 2.2.2for details. This can give you a rough idea of how much memory the currently
opened files are using. The Java heap grows if it runs out of room, but it only grows to a
certain maximum size, and attempts to allocate Java objects that would grow the heap
beyond this size fail with out-of-memory errors.

As a result, if the maximum heap size is set too low, opening large files or performing other
memory-intensive operations can fail, even if you have a lot of free system memory.

To change the heap size on Windows, run “Set jEdit Parameters” from the “jEdit” group in
the Programs menu. Then, in the resulting dialog box, under “Command line options for

7

Chapter 2. jEdit Basics

Java executable”, change the option that looks like so:

-mx32m

(SeeSection G.2for more information about the “Set jEdit Parameters” dialog box.)

On Unix, edit thejedit shell script and change the line that looks like so:

JAVA_HEAP_SIZE=32

In both cases, replace “32” with the desired heap size, in megabytes.

2.2. Views
A view is the jEdit term for an editor window. It is possible to have multiple views open at
once, and each view can be split into multiple panes.

View>New View creates a new view.

View>New Plain View creates a new view but without any tool bars or docked windows.
This can be used to open a small, unobtrusive window for taking notes and so on.

View>Close View closes the current view. If only one view is open, closing it will exit
jEdit, unless background mode is on; seeChapter 1for information about starting jEdit in
background mode.

View>Split Horizontally (shortcut:Control -2) splits the view into two text areas, placed
above each other.

View>Split Vertically (shortcut:Control -3) splits the view into two text areas, placed next
to each other.

View>Unsplit Current (shortcut:Control -0) removes the split containing the current text
area only.

View>Unsplit All (shortcut:Control -1) removes all splits from the view.

When a view is split, editing commands operate on the text area that has keyboard focus. To
give a text area keyboard focus, click in it with the mouse, or use the following commands.

View>Go to Previous Text Area (shortcut:Alt -Page Up) shifts keyboard focus to the
previous text area.

View>Go to Next Text Area (shortcut:Alt -Page Down) shifts keyboard focus to the next
text area.

8

Chapter 2. jEdit Basics

Clicking the text area with the right mouse button displays a popup menu. Both this menu
and the tool bar at the top of the view offer quick mouse-based access to frequently-used
commands. The contents of the tool bar and right-click menu can be changed in the
Utilities>Global Options dialog box; seeSection 6.3.

2.2.1. Window Docking

Various jEdit and plugin windows can optionally be docked into the view. This can be
configured in theDocking pane of theUtilities>Global Options dialog box; seeSection 6.3.

When windows are docked into the view, strips of buttons are shown in the left, right, top,
and bottom sides of the text area. Each strip contains buttons for the windows docked in that
location, as well as a close box. Clicking a window’s button shows that dockable window;
clicking the close box hides the window again.

The commands in theView>Docking menu move keyboard focus between docking areas.

For power users

Each dockable has three commands associated with it; one is part of the menu bar and
opens the dockable. The other two commands are:

• Window Name (Toggle) - opens the dockable window if it is hidden, and hide it
if its already open.

• Window Name (New Floating Instance) - opens a new instance of the
dockable in a floating window, regardless of the docking configuration.

Another way to open a new floating instance of a window that is already docked
is to right-click on the appropriate strip of buttons; this shows a menu from which
you can choose to open a new floating instance.

This can be used to view two different directories side-by-side in two file system
browser windows, for example.

These commands cannot be invoked from the menu bar. However, they can be added
to the tool bar or context menu, and given keyboard shortcuts; seeSection 6.3.

9

Chapter 2. jEdit Basics

2.2.2. The Status Bar

Thestatus barat the bottom of the view consists of the following components, from left to
right:

• The line number containing the caret

• The column position of the caret, with the leftmost column being 1.

If the line contains tabs, thefile position (where a hard tab is counted as one column) is
shown first, followed by thescreenposition (where each tab counts for the number of
columns until the next tab stop).

Double-clicking on the caret location indicator displays theEdit>Go to Line dialog
box; seeSection 4.6.

• A message area where various prompts and status messages are shown.

• The current buffer’s edit mode, fold mode, and character encoding. Double-clicking
one of these displays theUtilities>Buffer Options dialog box. For more information
about these settings, see:

• Section 6.1

• Section 5.1

• Section 5.6

• Section 3.5

• A set of flags which indicate various editor features and settings. Clicking each flag
will toggle the feature in question; hovering the mouse over a flag will show a tool tip
with an explanation:

• Word wrap - seeSection 4.8.

• Multiple selection mode - seeSection 4.2.2.

• Overwrite mode - seeSection 4.3.

• Line separator - seeSection 3.4.

• A Java heap memory usage indicator, that shows used and total heap memory, in
megabytes. Double-clicking this indicator opens the
Utilities>Troubleshooting>Memory Status dialog box.

10

Chapter 2. jEdit Basics

The content of the status bar can be customized in theStatus Bar pane of the
Utilities>Global Options dialog box.

For power users

To quickly toggle the line separator or word wrap settings without having to use the
mouse, assign keyboard shortcuts to theToggle Line Separator andToggle Word
Wrap commands in theShortcuts pane of theUtilities>Global Options dialog box.

2.3. The Text Area and Gutter
Text editing takes place in the text area. It behaves in a similar manner to many Windows
and MacOS editors; the few unique features will be described in this section.

The text area will automatically scroll up or down if text editing is performed closer than
three lines from the top or bottom of the text area. This feature is calledelectric scrolling.

To aid in locating the caret, the current line is drawn with a different background color. To
make it clear which lines end with white space, end of line markers are drawn at the end of
each line.

The strip on the left of the text area is called agutter. The gutter displays marker and register
locations; it will also display line numbers if theView>Line Numbers (shortcut:Control -E
Control -T) command is invoked.

Many text area and gutter settings can be customized to suit your taste in theText Area and
Gutter panes of theUtilities>Global Options dialog box; seeSection 6.3.

11

Chapter 2. jEdit Basics

12

Chapter 3. Working With Files

3.1. Creating New Files
File>New (shortcut:Control -N) opens a new, empty, buffer. Another way to create a new
file is to specify a non-existent file name when starting jEdit on the command line. A new
file will be created on disk when the buffer is saved for the first time.

3.2. Opening Files
File>Open (shortcut:Control -O) displays a file system browser dialog box and loads the
specified file into a new buffer.

Multiple files can be opened at once by holding downControl while clicking on them in the
file system browser. The file system browser supports auto-completion; typing the first few
characters of a listed file name will select the file.

More advanced features of the file system browser are described inSection 3.6.

File>Insert displays a file system browser dialog box and inserts the contents of the
specified file at the caret position.

TheFile>Recent Files menu lists recently viewed files. When a recent file is opened, the
caret is automatically moved to its previous location in that file. The number of recent files
to remember can be changed and caret position saving can be disabled in theGeneral pane
of theUtilities>Global Options dialog box; seeSection 6.3.

TheUtilities>Current Directory menu lists all files and directories in the current buffer’s
directory. Selecting a file opens it in a buffer for editing; selecting a directory opens it in the
file system browser (seeSection 3.6).

Note: Files that you do not have write access to are opened in read-only mode, where
editing is not permitted.

Tip: jEdit supports transparent editing of GZipped files; if a file begins with the GZip
“magic number”, it is automatically decompressed before loading and compressed
when saving. To compress an existing file, you need to change a setting in the
Utilities>Buffer Options dialog box; see Section 6.1 for details.

13

Chapter 3. Working With Files

3.3. Saving Files
Changed made in a buffer do not affect the file on disk until the buffer issaved.

File>Save (shortcut:Control -S) saves the current buffer to disk.

File>Save As renames the buffer and saves it in a new location. Note that using this
command to save over another open buffer will close the other buffer, to stop two buffers
from being able to share the same path name.

File>Save a Copy As saves the buffer to different location but does not rename it., but
doesn’t rename the buffer, and doesn’t clear the “modified” flag. Note that using this
command to save over another open buffer will automatically reload the other buffer.

File>Save All (shortcut:Control -E Control -S) saves all open buffers to disk, asking for
confirmation first.

Two-stage save

To prevent data loss in the unlikely case that jEdit should crash in the middle of saving
a file, files are first saved to a temporary file named#filename #save# . If this
operation is successful, the original file is replaced with the temporary file.

However, in some situations, this behavior is undesirable. For example, on Unix
saving files this way will result in the owner and group of the file being reset. If this
bothers you, you can disable this so-called “two-stage save” in theLoading and
Saving pane of theUtilities>Global Options dialog box.

3.3.1. Autosave and Crash Recovery

The autosave feature protects your work from computer crashes and such. Every 30 seconds,
all buffers with unsaved changes are written out to their respective file names, enclosed in
hash (“#”) characters. For example,program.c will be autosaved to#program.c# .

Saving a buffer using one of the commands in the previous section automatically deletes the
autosave file, so they will only ever be visible in the unlikely event of a jEdit (or operating
system) crash.

If an autosave file is found while a buffer is being loaded, jEdit will offer to recover the
autosaved data.

14

Chapter 3. Working With Files

The autosave interval can be changed in theLoading and Saving pane of the
Utilities>Global Options dialog box; seeSection 6.3.

3.3.2. Backups

The backup feature can be used to roll back to the previous version of a file after changes
were made. When a buffer is saved for the first time after being opened, its original contents
are “backed up” under a different file name.

The behavior of the backup feature is specified in theLoading and Saving pane of the
Utilities>Global Options dialog box.

The default behavior is to back up the original contents to the buffer’s file name suffixed
with a tilde (“~”). For example, a file namedpaper.tex is backed up topaper.tex~ .

• TheMax number of backups setting determines the number of backups to save.
Setting this to zero disables the backup feature. Settings this to more than one adds
numbered suffixes to file names. By default only one backup is saved.

• If the Backup directory setting is non-empty, backups are saved in that location.
Otherwise, they are saved in the same directory as the original file. The latter is the
default behavior.

• TheBackup filename prefix setting is the prefix that is added to the backed-up file
name. This is empty by default.

• TheBackup filename suffix setting is the suffix that is added to the backed-up file
name. This is “~” by default.

• Backups can optionally be saved in a specified backup directory, instead of the
directory of the original file. This can reduce clutter.

• TheBackup on every save option is off by default, which results in a backup only
being created the first time a buffer is saved in an editing session. If switched on,
backups are created every time a buffer is saved.

3.4. Line Separators
Unix systems use newlines (\n) to mark line endings in text files. The MacOS uses
carriage-returns (\r). Windows uses a carriage-return followed by a newline (\r\n). jEdit
can read and write files in all three formats.

15

Chapter 3. Working With Files

The line separator used by the in-memory representation of file contents is always the
newline character. When a file is being loaded, the line separator used in the file on disk is
stored in a per-buffer property, and all line-endings are converted to newline characters for
the in-memory representation. When the buffer is consequently saved, the value of the
property replaces newline characters when the buffer is saved to disk. The line separator
used by a buffer can be changed in theUtilities>Buffer Options dialog box. SeeSection 6.1.

By default, new files are saved with your operating system’s native line separator. This can
be changed in theLoading and Saving pane of theUtilities>Global Options dialog box;
seeSection 6.3. Note that changing this setting has no effect on existing files.

3.5. Character Encodings
An encoding specifies a way of storing characters on disk. jEdit can use any encoding
supported by the Java platform. The current buffer’s encoding is shown in the status bar.

The default encoding, used to load and save files for which no other encoding is specified,
can be set in theLoading and Saving pane of theUtilities>Global Options dialog box.

Unless you change the default encoding, jEdit will use your operating system’s native
default;MacRomanon the MacOS,Cp1252 on Windows, and8859_1 on Unix.

To open a file stored using an encoding other than the default, select the encoding from the
Commands>Encoding menu of the file system browser before opening the file.

The encoding to use when saving a specific buffer can be set in theUtilities>Buffer Options
dialog box.

If a file is opened without an explicit encoding specified and it appears in the recent file list,
jEdit will use the encoding last used when working with that file; otherwise the default
encoding will be used.

Unfortunately, there is no way to obtain a list of all supported encodings using the Java
APIs, so jEdit only lists a few of the most common encodings; however, any other supported
encoding name can be typed in.

3.5.1. Commonly Used Encodings

The most frequently-used character encoding is ASCII, or “American Standard Code for
Information Interchange”. ASCII encodes Latin letters used in English, in addition to
numbers and a range of punctuation characters. The ASCII character set consists of 127
characters, and it is unsuitable for anything but English text (and other file types which only

16

Chapter 3. Working With Files

use English characters, like most program source). jEdit will load and save files as ASCII if
theASCII encoding is used.

Because ASCII is unsuitable for international use, most operating systems use an 8-bit
extension of ASCII, with the first 127 characters remaining the same, and the rest used to
encode accents, umlauts, and various less frequently used typographical marks. The three
major operating systems all extend ASCII in a different way. Files written by Macintosh
programs can be read using theMacRomanencoding; Windows text files are usually stored as
Cp1252. In the Unix world, the8859_1 character encoding has found widespread usage.

On Windows, various other encodings, which are known ascode pagesand are identified by
number, are used to store non-English text. The corresponding Java encoding name isCp

followed by the code page number.

Many common cross-platform international character sets are also supported;KOI8_R for
Russian text,Big5 andGBKfor Chinese, andSJIS for Japanese.

16-bit Unicode files are automatically detected as such when opened, regardless of the
encoding specified by the user. The closely-relatedUTF8 encoding, which uses
variable-length characters, is also supported, however UTF8 files arenot auto-detected.

3.6. The File System Browser
Utilities>File System Browser displays the file system browser. By default, the file system
browser is shown in a floating window. It can be set to dock into the view in theDocking
pane of theUtilities>Global Options dialog box; seeSection 2.2.1.

The file system browser can be customized in theUtilities>Global Options dialog box.

3.6.1. Navigating the File System

The directory to browse is specified in thePath text field. Clicking the mouse in the text
field automatically selects its contents allowing a new path to be quickly typed in. If a
relative path is entered, it will be resolved relative to the current path. This text field
remembers previously entered strings; seeAppendix C. The same list of previously browsed
directories is also listed in theUtilities>Recent Directories menu; selecting one opens it in
the file system browser.

To browse a listed directory, double-click it (or if you have a three-button mouse, you can
click the middle mouse button as well). Alternatively, click the disclosure widget next to a
directory to list its contents in place.

17

Chapter 3. Working With Files

To browse higher up in the directory hierarchy, double-click one of the parent directories in
the parent directory list.

Files and directories in the file list are shown in different colors depending on what glob
patterns their names match. The patterns and colors can be customized in theFile System
Browser>Colors pane of theUtilities>Global Options dialog box.

To see a specific set of files only (for example, those whose names end with.java), enter a
glob pattern in theFilter text field. This text fields remembers previously entered strings.

SeeAppendix Dfor information about glob patterns.

Unopened files can be opened by double-clicking (or by clicking the middle mouse button).
Open files have their names underlined, and can be selected by single-clicking. Holding
downShift while opening a file will open it in a new view.

Clicking a file or directory with the right mouse button displays a popup menu containing
various commands.

Tip: The file list sorting algorithm used in jEdit handles numbers in file names in an
intelligent manner. For example, a file named section10.xml will be placed after a file
named section5.xml . A conventional letter-by-letter sort would have placed these two
files in the wrong order.

3.6.2. The Tool Bar

The file system browser has a tool bar containing a number of buttons. Each item in the
Commands menu (described below) exceptShow Hidden Files andEncoding has a
corresponding tool bar button.

3.6.3. The Commands Menu

Clicking theCommands button displays a menu containing the following items:

• Parent Directory - moves up in the directory hierarchy.

• Reload Directory - reloads the file list from disk.

• Root Directory - on Unix, goes to the root directory (/). On Windows and MacOS X,
lists all mounted drives and network shares.

• Home Directory - displays your home directory.

18

Chapter 3. Working With Files

• Directory of Current Buffer - displays the directory containing the currently active
buffer.

• New File - opens new, empty, buffer in the current directory. The file will not actually
be created on disk until the buffer is saved.

• New Directory - creates a new directory after prompting for the desired name.

• Search in Directory - displays the search and replace dialog box set to search all files
in the current directory. If a file is selected when this command is invoked, its extension
becomes the file name filter for the search; otherwise, the file name filter entered in the
browser is used. SeeSection 4.12for details.

• Show Hidden Files - toggles if hidden files are to be shown in the file list.

• Encoding - a menu for selecting the character encoding to use when opening files. See
Section 3.5.

3.6.4. The Plugins Menu

Clicking thePlugins button displays a menu containing plugin commands. For information
about plugins, seeChapter 8.

3.6.5. The Favorites Menu

Clicking theFavorites button displays a menu showing all directories in the favorites list.
To add the selected directory to the favorites (or the current directory, if there is no
selection), invokeAdd to Favorites from this menu. To remove a directory from the
favorites, invokeEdit Favorites, which will show the favorites list in the file system view;
then selectDelete from the appropriate directory’s right-click menu.

3.6.6. Keyboard Shortcuts

The file system browser can be navigated from the keyboard:

• Enter - opens the currently selected file or directory.

• Shift-Enter - opens the currently selected file in a new view, or the currently selected
directory in a new file system browser window.

• Left - goes to the current directory’s parent.

• Up - selects previous file in list.

19

Chapter 3. Working With Files

• Down - selects next file in list.

• / - displays the root directory.

• ~ - displays your home directory.

• - - displays the directory containing the current buffer.

• Typing the first few characters of a file’s name will select that file.

The file system tree must have keyboard focus for these shortcuts to work. They are not
active in thePath or Filter text fields.

3.7. Reloading From Disk
If an open buffer is modified on disk by another application, a warning dialog box is
displayed, offering to either continue editing and lose changes made by the other
application, or to reload the buffer from disk and lose any unsaved changes made in jEdit.
This warning dialog box can be disabled in theGeneral pane of theUtilities>Global
Options dialog box; seeSection 6.3.

File>Reload can be used to reload the current buffer from disk at any other time; a
confirmation dialog box will be displayed first if the buffer has unsaved changes.

File>Reload All discards unsaved changes in all open buffers and reload them from disk,
asking for confirmation first.

3.8. Multi-Threaded I/O
To improve responsiveness and perceived performance, jEdit executes all buffer input/output
operations asynchronously. While I/O is in progress, the status bar displays the number of
remaining I/O operations. TheUtilities>Troubleshooting>I/O Progress Monitor
command displays a window with more detailed status information and progress meters.
This window is floating by default, but it can be set to dock into the view in theDocking
pane of theUtilities>Global Options dialog box; seeSection 2.2.1. I/O requests can also be
aborted in this window, however note that aborting a buffer save can result in data loss.

3.9. Printing
File>Print (shortcut:Control -P) prints the current buffer.

20

Chapter 3. Working With Files

File>Page Setup displays a dialog box for changing your operating system’s print settings,
such as margins, page size, print quality, and so on.

The print output can be customized in thePrinting pane of theUtilities>Global Options
dialog box. The following settings can be changed:

• The font to use when printing.

• If a header with the file name should be printed on each page.

• If a footer with the page number and current date should be printed on each page.

• If line numbers should be printed.

• If the output should be color or black and white.

• The tab size to use when printing - this will usually be less than the text area tab size, to
conserve space in the printed output.

3.10. Closing Files and Exiting jEdit
File>Close (shortcut:Control -W) closes the current buffer. If it has unsaved changes, jEdit
will ask if they should be saved first.

File>Close All (shortcut:Control -E Control -W) closes all buffers. If any buffers have
unsaved changes, they will be listed in a dialog box where they can be saved or discarded. In
the dialog box, multiple buffers to operate on at once can be selected by clicking on them in
the list while holding downControl . After all buffers have been closed, a new untitled
buffer is opened.

File>Exit (shortcut:Control -Q) will completely exit jEdit, prompting if unsaved buffers
should be saved first.

21

Chapter 3. Working With Files

22

Chapter 4. Editing Text

4.1. Moving The Caret
The simplest way to move the caret is to click the mouse at the desired location in the text
area. The caret can also be moved using the keyboard.

TheLeft , Right, Up andDown keys move the caret in the respective direction, and thePage
Up andPage Downkeys move the caret up and down one screenful, respectively.

When pressed once, theHomekey moves the caret to the first non-whitespace character of
the current screen line. Pressing it a second time moves the caret to the beginning of the
current buffer line. Pressing it a third time moves the caret to the first visible line.

TheEnd key behaves in a similar manner, going to the last non-whitespace character of the
current screen line, the end of the current buffer line, and finally to the last visible line.

If soft wrap is disabled, a “screen line” is the same as a “buffer line”. If soft wrap is enabled,
a screen line is a section of a newline-delimited buffer line that fits within the wrap margin
width. SeeSection 4.8.

Control -HomeandControl -End move the caret to the beginning and end of the buffer,
respectively.

More advanced caret movement is covered inSection 4.5, Section 4.6andSection 4.7.

23

Chapter 4. Editing Text

The Home and End keys

If you prefer more traditional behavior for theHomeandEnd keys, you can reassign
the respective keyboard shortcuts in theShortcuts pane of theUtilities>Global
Options.

By default, the shortcuts are assigned as follows:

• Home is bound toSmart Home.

• End is bound toSmart End.

• Shift-Home is bound toSelect to Smart Home Position.

• Shift-End is bound toSelect to Smart End Position.

However you can rebind them to anything you want, for example, various
combinations of the following, or indeed any other command or macro:

• Go to Start/End of White Space ,

• Go to Start/End of Line,

• Go to Start/End of Buffer,

• Select to Start/End of White Space ,

• Select to Start/End of Line,

• Select to Start/End of Buffer,

For information about changing keyboard shortcuts, seeSection 6.3.

4.2. Selecting Text
A selectionis a a block of text marked for further manipulation. jEdit supports both range
and rectangular selections, and several chunks of text can be selected simultaneously.

Dragging the mouse creates a range selection from where the mouse was pressed to where it
was released. Holding downShift while clicking a location in the buffer will create a
selection from the caret position to the clicked location.

Holding downShift in addition to a caret movement key (Left , Up, Home, etc) will extend
a selection in the specified direction.

Edit>Select All (shortcut:Control -A) selects the entire buffer.

24

Chapter 4. Editing Text

Edit>Select None>Select None (shortcut:Escape) deactivates the selection.

4.2.1. Rectangular Selection

Dragging with theControl key held down will create a rectangular selection. Holding down
Shift andControl while clicking a location in the buffer will create a rectangular selection
from the caret position to the clicked location.

It is possible to select a rectangle with zero width but non-zero height. This can be used to
insert a new column between two existing columns, for example. Such zero-width selections
are shown as a thin vertical line.

Rectangles can be deleted, copied, pasted, and operated on using ordinary editing
commands.

Note: Rectangular selections are implemented using character offsets, not absolute
screen positions, so they might not behave as you might expect if a proportional-width
font is being used or if soft wrap is enabled. The text area font can be changed in the
Text Area pane of the Utilities>Global Options dialog box. For information about soft
wrap, see Section 4.8.

4.2.2. Multiple Selection

Edit>More Selection>Multiple Selection (keyboard shortcut:Control -\) turns multiple
selection mode on and off. In multiple selection mode, multiple fragments of text can be
selected and operated on simultaneously, and the caret can be moved independently of the
selection. The status bar indicates if multiple selection mode is active; seeSection 2.2.2.

Various jEdit commands behave differently with multiple selections:

• Commands that copy text place the contents of each selection, separated by line breaks,
in the specified register.

• Commands that insert (or paste) text replace each selection with the entire text that is
being inserted.

• Commands that filter text (such asSpaces to Tabs, Range Comment, Replace in
Selection, and so on) behave as if each block was selected independently, and the
command invoked on each in turn.

25

Chapter 4. Editing Text

• Line-based commands (such asShift Indent Left, Shift Indent Right, andLine
Comment) operate on each line that contains at least one selection.

• Caret movement commands that would normally deactivate the selection (such as the
arrow keys, whileShift is not being held down), move the caret, leaving the selection
as-is.

• Some older plugins may not support multiple selection at all.

Edit>More Selection>Select None (shortcut:Escape) deactivates the selection containing
the caret, if there is one. Otherwise it deactivates all active selections.

Edit>More Selection>Invert Selection (shortcut:Control -E I) selects a set of text chunks
such that all text that was formerly part of a selection is now unselected, and all text that
wasn’t, is selected.

Note: Deactivating multiple selection mode while multiple blocks of text are selected
will leave the selections in place, but you will not be able to add new selections until
multiple selection mode is reactivated.

4.3. Inserting and Deleting Text
Text entered at the keyboard is inserted into the buffer. If overwrite mode is on, one character
is deleted from in front of the caret position for every character that is inserted. To activate
overwrite mode, pressInsert. The caret is drawn as horizontal line while in overwrite mode.
The status bar also indicates if overwrite mode is active; seeSection 2.2.2for details.

Inserting text while there is a selection will replace the selection with the inserted text.

When inserting text, keep in mind that theTab andEnter keys might not behave entirely
like you expect because of various indentation features; seeSection 5.2for details.

The simplest way to delete text is with theBackspaceandDeletekeys. If nothing is
selected, they delete the character before or after the caret, respectively. If a selection exists,
both delete the selection.

More advanced deletion commands are described inSection 4.5, Section 4.6andSection 4.7.

26

Chapter 4. Editing Text

4.4. Undo and Redo
Edit>Undo (shortcut:Control -Z) reverses the most recent editing command. For example,
this can be used to restore unintentionally deleted text. More complicated operations, such
as a search and replace, can also be undone. By default, information about the last 100 edits
is retained; older edits cannot be undone. The maximum number of undos can be changed in
theEditing pane of theUtilities>Global Options dialog box.

If you undo too many changes,Edit>Redo (shortcut:Control -R) can restore the changes
again. For example, if some text was inserted,Undo will remove it from the buffer.Redo
will insert it again.

4.5. Working With Words
Control -Left andControl -Right moves the caret a word at a time. Holding downShift in
addition to the above extends the selection a word at a time.

A single word can be selected by double-clicking with the mouse, or using theEdit>More
Selection>Select Word command (shortcut:Control -E W). A selection that begins and
ends on word boundaries can be created by double-clicking and dragging.

Control -BackspaceandControl -Deletedeletes the word before or after the caret,
respectively.

Edit>Word Count displays a dialog box with the number of characters, words and lines in
the current buffer.

Edit>Complete Word (shortcut:Control -B) locates possible completions for the word at
the caret, first by looking in the current edit mode’s syntax highlighting keyword list, and
then in the current buffer for words that begin with the word at the caret. This serves as a
very basic code completion feature.

If there is only one completion, it will be inserted into the buffer immediately. If multiple
completions were found, they will be listed in a popup below the caret position. To insert a
completion from the list, either click it with the mouse, or select it using theUp andDown
keys and pressEnter. To close the popup without inserting a completion, pressEscape.
Typing while the popup is visible will automatically update the popup and narrow the set of
completions as necessary.

27

Chapter 4. Editing Text

For power users

The default behavior of theControl -Left andControl -Right commands is to stop
both at the beginning and the end of each word. However this can be changed by
remapping these keystrokes to alternative actions whose names end with(Eat
Whitespace) in theShortcuts pane of theUtilities>Global Options dialog box.

4.6. Working With Lines
An entire line can be selected by triple-clicking with the mouse, or using theEdit>More
Selection>Select Line command (shortcut:Control -E L). A selection that begins and
ends on line boundaries can be created by triple-clicking and dragging.

Edit>Go to Line (shortcut:Control -L) prompts for a line number and moves the caret there.

Edit>More Selection>Select Line Range (shortcutControl -E Control -L) prompts for
two line numbers and selects all text between them.

Edit>Text>Delete Line (shortcut:Control -D) deletes the current line.

Edit>Text>Delete to Start Of Line (shortcut:Control -Shift-Backspace) deletes all text
from the start of the current line to the caret.

Edit>Text>Delete to End Of Line (shortcut:Control -Shift-Delete) deletes all text from
the caret to the end of the current line.

Edit>Text>Join Lines (shortcut:Control -J) removes any whitespace from the start of the
next line and joins it with the current line. The caret is moved to the position where the two
lines were joined. For example, if you invokeJoin Lines with the caret on the first line of
the following Java code:

new Widget(Foo
.createDefaultFoo());

It will be changed to:

new Widget(Foo.createDefaultFoo());

4.7. Working With Paragraphs
As far as jEdit is concerned, “paragraphs” are delimited by double newlines. This is also

28

Chapter 4. Editing Text

how TeX defines a paragraph. Note that jEdit doesn’t parse HTML files for “<P>” tags, nor
does it support paragraphs delimited only by a leading indent.

Control -Up andControl -Down move the caret to the previous and next paragraph,
respectively. Holding downShift in addition to the above extends the selection a paragraph
at a time.

Edit>More Selection>Select Paragraph (shortcut:Control -E P) selects the paragraph
containing the caret.

Edit>Text>Format Paragraph (shortcut:Control -E F) splits and joins lines in the current
paragraph to make it fit within the wrap column position. SeeSection 4.8for information
and word wrap and changing the wrap column.

Edit>Text>Delete Paragraph (shortcut:Control -E D) deletes the paragraph containing the
caret.

4.8. Wrapping Long Lines
Theword wrapfeature splits lines at word boundaries in order to fit text within a specified
wrap margin. The wrap margin position is indicated in the text are as a faint blue vertical
line. There are two “wrap modes”, “soft” and “hard”; they are described below. The wrap
mode can be changed in one of the following ways:

• On a global or mode-specific basis in theEditing pane of theUtilities>Global Options
dialog box. SeeSection 6.3.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box. SeeSection 6.1.

• In the current buffer for future editing sessions by placing the following in one of the
first or last 10 lines of the buffer, wheremode is either “none”, “soft” or “hard”, and
column is the desired wrap margin:

:wrap= mode:maxLineLen= column :

4.8.1. Soft Wrap

In soft wrap mode, lines are automatically wrapped when displayed on screen. Newlines are
not inserted at the wrap positions, and the wrapping is automatically updated when text is
inserted or removed.

29

Chapter 4. Editing Text

If end of line markers are enabled in theText Area pane of theUtilities>Global Options
dialog box, a colon (“:”) is painted at the end of wrapped lines.

Note that since jEdit only scrolls one whole “physical” (newline-delimited) line at a time,
having lines wrapped into more sections than visible in the text area will render portions of
the buffer inaccessible.

Tip: If you enable soft wrap and set the wrap margin to 0, text will be wrapped to the
width of the text area.

4.8.2. Hard Wrap

In hard wrap mode, inserting text at the end of a line will automatically break the line if it
extends beyond the wrap margin. Inserting or removing text in the middle of a line has no
effect, however text can be re-wrapped using theEdit>Text>Format Paragraph command.
SeeSection 4.7.

Hard wrap is implemented using character offsets, not screen positions, so it might not
behave like you expect if a proportional-width font is being used. The text area font can be
changed in theText Area pane of theUtilities>Global Options dialog box.

4.9. Scrolling
View>Scrolling>Scroll to Current Line (shortcut:Control -E Control -J) scrolls the text
area in order to make the caret visible, if necessary. It does nothing if the caret is already
visible.

View>Scrolling>Center Caret on Screen (shortcut:Control -E Control -I) moves the
caret to the line in the middle of the screen.

View>Scrolling>Line Scroll Up (shortcut:Control -’) scrolls the text area up by one line.

View>Scrolling>Line Scroll Down (shortcut:Control -/) scrolls the text area down by one
line.

View>Scrolling>Page Scroll Up (shortcut:Alt -’) scrolls the text area up by one screenful.

View>Scrolling>Page Scroll Down (shortcut:Alt -/) scrolls the text area down by one
screenful.

30

Chapter 4. Editing Text

The above scrolling commands differ from the caret movement commands in that they don’t
actually move the caret; they just change the scroll bar position.

View>Scrolling>Synchronized Scrolling is a check box menu item. If it is selected,
scrolling one text area in a split view will scroll all other text areas in the view. Has no effect
if the view is not split.

Mouse Wheel Scrolling

If you have a mouse with a scroll wheel and are running Java 2 version 1.4, you can
use the wheel to scroll up and down in the text area. Various modifier keys change the
action of the wheel:

• Shift - scrolls an entire page at a time.

• Control - scrolls a single line at a time.

• Alt - moves the caret up and down instead of scrolling.

• Alt -Shift - extends the selection up and down instead of scrolling.

4.10. Transferring Text
jEdit provides a rich set of commands for moving and copying text. Commands are provided
for moving chunks of text from buffers toregistersand vice-versa. A register is a holding
area for an arbitrary length of text, with a single-character name. The system clipboard is
mapped to the register named$. jEdit offers clipboard-manipulation commands similar to
those found in other applications, in addition to a more flexible set of commands for
working with registers directly.

4.10.1. The Clipboard

Edit>Cut (shortcut:Control -X) places the selected text in the clipboard and removes it
from the buffer.

Edit>Copy (shortcut:Control -C) places the selected text in the clipboard and leaves it in
the buffer.

Edit>Paste (shortcut:Control -V) inserts the clipboard contents in place of the selection (or
at the caret position, if there is no selection).

31

Chapter 4. Editing Text

TheCut andCopy commands replace the old clipboard contents with the selected text.
There are two alternative commands which add the selection at the end of the existing
clipboard contents, instead of replacing it.

Edit>More Clipboard>Cut Append (shortcut:Control -E Control -U) appends the selected
text to the clipboard, then removes it from the buffer. After this command has been invoked,
the clipboard will consist of the former clipboard contents, followed by a newline, followed
by the selected text.

Edit>More Clipboard>Copy Append (shortcut:Control -E Control -A) is the same asCut
Append except it does not remove the selection from the buffer.

4.10.2. Quick Copy

Quick copy is disabled by default, but it can be enabled in theText Area pane of the
Utilities>Global Options dialog box. When quick copy is enabled, clicking the middle
mouse button in the text area inserts the most recently selected text at the clicked location. If
you only have a two-button mouse, you can click the left mouse button while holding down
Alt instead of middle-clicking.

This is implemented by storing the most recently selected text in the register named%.

If jEdit is being run under Java 2 version 1.4 on Unix, you will be able to transfer text with
other X Windows applications using the quick copy feature. On other platforms and Java
versions, the contents of the quick copy register are only accessible from within jEdit.

Also, dragging with the middle mouse button creates a selection without moving the caret.
As soon as the mouse button is released, the selected text is inserted at the caret position and
the selection is deactivated. A message is shown in the status bar while text is being selected
to remind you that this is not an ordinary selection.

4.10.3. General Register Commands

These commands require more keystrokes than the two methods shown above, but they can
operate on any register, allowing an arbitrary number of text chunks to be retained at a time.

Each command prompts for a single-character register name to be entered after being
invoked. PressingEscapeinstead of specifying a register name will cancel the operation.

Edit>More Clipboard>Cut to Register (shortcut:Control -R Control -X key) stores the
selected text in the specified register, removing it from the buffer.

Edit>More Clipboard>Copy to Register (shortcut:Control -R Control -C key) stores the
selected text in the specified register, leaving it in the buffer.

32

Chapter 4. Editing Text

Edit>More Clipboard>Cut Append to Register (shortcut:Control -R Control -U key)
adds the selected text to the existing contents of the specified register, and removes it from
the buffer.

Edit>More Clipboard>Copy Append to Register (shortcut:Control -R Control -A key)
adds the selected text to the existing contents of the specified register, without removing it
from the buffer.

Edit>More Clipboard>Paste from Register (shortcut:Control -R Control -V key)
replaces the selection with the contents of the specified register.

The last two commands display dialog boxes instead of prompting for a register name.

Edit>More Clipboard>Paste Previous (shortcut:Control -E Control -V) displays a dialog
box listing recently copied and pasted text. By default, the last 20 strings are remembered;
this can be changed in theGeneral pane of theUtilities>Global Options dialog box; see
Section 6.3.

Edit>More Clipboard>View Registers displays a dialog box for viewing the contents of
registers (including the clipboard).

4.11. Markers
A markeris a pointer to a specific location within a buffer, which may or may not have a
single-charactershortcutassociated with it. Markers are persistent; they are saved to
. filename .marks , wherefilename is the name of the buffer. (The dot prefix makes the
markers file hidden on Unix systems.) Marker saving can be disabled in theLoading and
Saving pane of theUtilities>Global Options dialog box; seeSection 6.3.

Markers>Add/Remove Marker (shortcut:Control -E Control -M) adds a marker without a
shortcut pointing to the current line. If a marker is already set on the current line, the marker
is removed instead. If text is selected, markers are added to the first and last line of each
selection.

Markers>Remove All Markers removes all markers set in the current buffer.

Markers are listed in theMarkers menu; selecting a marker from this menu will move the
caret to its location.

Markers>Go to Previous Marker (shortcut:Control -E Control -,) goes to the marker
immediately before the caret position.

Markers>Go to Next Marker (shortcut:Control -E Control -.) goes to the marker
immediately after the caret position.

33

Chapter 4. Editing Text

Markers with shortcuts allow for quicker keyboard-based navigation. The following
commands all prompt for a single-character shortcut when invoked. PressingEscapeinstead
of specifying a shortcut will cancel the operation.

Markers>Add Marker With Shortcut (shortcut:Control -T key) adds a marker with the
specified shortcut. If marker with that shortcut already exists, it will remain in the buffer but
lose its shortcut.

Markers>Go to Marker (shortcut:Control -Y key) moves the caret to the location of the
marker with the specified shortcut.

Markers>Select to Marker (shortcut:Control -U key) creates a selection from the caret
location to the marker with the specified shortcut.

Markers>Swap Caret and Marker (shortcut:Control -U key) moves the caret to the
location of the marker with the specified shortcut, and reassigns the marker to point to the
former caret location. Invoke this command multiple times to flip between two locations in
the buffer.

Lines which contain markers are indicated in the gutter with a highlight. Moving the mouse
over the highlight displays a tool tip showing the marker’s shortcut, if it has one. SeeSection
2.3for information about the gutter.

4.12. Search and Replace

4.12.1. Searching For Text

Search>Find (shortcut:Control -F) displays the search and replace dialog box.

The search string can be entered in theSearch for text field. This text field remembers
previously entered strings; seeAppendix Cfor details.

If text was selected in the text area and the selection does not span a line break, the selected
text becomes the default search string.

If the selection spans a line break, theSearch in Selection andHyperSearch buttons will
be pre-selected, and the search string field will be initially blank. (SeeSection 4.12.3for
information about the HyperSearch feature.)

Selecting theIgnore case check box makes the search case insensitive - for example,
searching for “Hello” will match “hello”, “HELLO” and “HeLlO”.

Selecting theRegular expressions check box allows a regular expression to be used in the
search string. Regular expressions can match inexact sequences of text that optionally span

34

Chapter 4. Editing Text

more than one line. Regular expression syntax is described inAppendix E.

TheBackward andForward buttons specify the search direction. Note that regular
expressions can only be used when searching in a forward direction.

Clicking Find will locate the next occurrence of the search string (or previous occurrence, if
searching backwards). If theKeep dialog check box is selected, the dialog box will remain
open after the search string has been located; otherwise, it will close.

If no occurrences could be found and theAuto wrap check box is selected, the search will
automatically restart from the beginning of the buffer (or the end, if searching backwards). If
Auto wrap is not selected, a confirmation dialog box is shown before restarting the search.

Search>Find Next (shortcut:Control -G) locates the next occurrence of the most recent
search string without displaying the search and replace dialog box.

Search>Find Previous (shortcut:Control -H) locates the previous occurrence of the most
recent search string without displaying the search and replace dialog box.

4.12.2. Replacing Text

The replace string text field of the search dialog remembers previously entered strings; see
Appendix Cfor details.

Clicking Replace & Find will perform a replacement in the current selection and locate the
next occurrence of the search string. ClickingReplace All will replace all occurrences of
the search string with the replacement string in the current search scope (which is either the
selection, the current buffer, or a set of buffers, as specified in the search and replace dialog
box).

Occurrences of the search string can be replaced with either a replacement string, or the
return value of a BeanShell script snippet. Two radio buttons in the search and replace dialog
box select between the two replacement modes, which are described in detail below.

4.12.2.1. Text Replace

If the Text button is selected, the search string is simply replaced with the replacement
string.

If regular expressions are enabled, positional parameters ($0, $1, $2, and so on) can be used
to insert the contents of matched subexpressions in the replacement string; seeAppendix E
for more information.

If the search is case-insensitive, jEdit attempts to modify the case of the replacement string
to match that of the particular instance of the search string being replaced. For example,

35

Chapter 4. Editing Text

searching for “label” and replacing it with “text”, will perform the following replacements:

• “String label” would become “String text”

• “setLabel” would become “setText”

• “DEFAULT_LABEL” would become “DEFAULT_TEXT”

4.12.2.2. BeanShell Replace

In BeanShell replacement mode, the search string is replaced with the return value of a
BeanShell snippet. The following predefined variables can be referenced in the snippet:

• _0 -- the text to be replaced

• _1 - _9 -- if regular expressions are enabled, these contain the values of matched
subexpressions.

BeanShell syntax and features are covered in great detail inPart III in jEdit 4.1 User’s
Guide, but here are some examples:

To replace each occurrence of “Windows” with “Linux”, and each occurrence of “Linux”
with “Windows”, search for the following regular expression:

(Windows|Linux)

Replacing it with the following BeanShell snippet:

_1.equals("Windows") ? "Linux" : "Windows"

To convert all HTML tags to lower case, search for the following regular expression:

<(.*?)>

Replacing it with the following BeanShell snippet:

"<" + _1.toLowerCase() + ">"

To replace arithmetic expressions contained in curly braces with the result of evaluating
the expression, search for the following regular expression:

\{(.+?)\}

Replacing it with the following BeanShell snippet:

eval(_1)

36

Chapter 4. Editing Text

These examples only scratch the surface; the possibilities are endless.

4.12.3. HyperSearch

If the HyperSearch check box in the search and replace dialog box is selected, clicking
Find lists all occurrences of the search string, instead of locating the next match.

HyperSearch results are shown in a new window; the window can be set to dock into the
view in theDocking pane of theUtilities>Global Options dialog box; seeSection 2.2.1.

If the Multiple results check box is selected in the results window, past search results are
retained.

Running searches can be stopped in theUtilities>Troubleshooting>I/O Progress Monitor
dialog box.

4.12.4. Multiple File Search

Search and replace commands can be performed over an arbitrary set of files in one step.
The set of files to search is selected with a set of buttons in the search dialog box.

If the Current buffer button is selected, only the current buffer is searched. This is the
default behavior.

If the All buffers button is selected, all open buffers whose names match the glob pattern
entered in theFilter text field will be searched. SeeAppendix Dfor more information about
glob patterns.

If the Directory radio button is selected, all files contained in the specified directory whose
names match the glob will be searched. The directory to search in can either be entered in
theDirectory text field, or chosen in a file selector dialog box by clicking theChoose
button next to the field. If theSearch subdirectories check box is selected, all
subdirectories of the specified directory will also be searched. Keep in mind that searching
through directories containing many files can take a long time.

TheDirectory andFilter text fields remember previously entered strings; seeAppendix C
for details.

Note that clicking theAll Buffers or Directory radio buttons also selects theHyperSearch
check box since that is what you would want, most of the time. However, normal
match-by-match searching is supported for multiple files as well.

Two convenience commands are provided for performing multiple file searches.

37

Chapter 4. Editing Text

Search>Search in Open Buffers (shortcut:Control -E Control -B) displays the search
dialog box and selects theAll buffers button.

Search>Search in Directory (shortcut:Control -E Control -D) displays the search dialog
box and selects theDirectory button.

4.12.5. The Search Bar

The search bar feature provides a convenient way to search in the current buffer without
opening the search dialog box. The search bar does not support replacement or multiple file.
Previously entered strings can be recalled in the search bar with theUp andDown arrow
keys; seeAppendix C.

By default, the search bar remains hidden until one of the quick search commands
(described below) is invoked; however you can choose to have it always visible in the
General pane of theUtilities>Global Options dialog box.

Search>Incremental Search Bar (shortcut:Control -,) displays the search bar if
necessary, and gives it keyboard focus. If this command is invoked while there is a selection,
the selection is placed in the search string field.

Search>Incremental Search for Word (shortcut:Alt -,) behaves like the above command
except it places the word at the caret in the search string field.

Unless theHyperSearch check box is selected, the search bar will perform anincremental
search. In incremental search mode, the first occurrence of the search string is located in the
current buffer as it is being typed. PressingEnter andShift-Enter searches for the next and
previous occurrence, respectively. Once the desired occurrence has been located, pressing
Escapereturns keyboard focus to the text area. Unless the search bar is set to be always
visible (see above), pressingEscapewill also hide the search bar.

Note: Incremental searches cannot be not recorded in macros. If your macro needs to
perform a search, use the search and replace dialog box instead. See Chapter 7 for
information about macros.

Search>HyperSearch Bar (shortcut:Control -.) displays the search bar if necessary, gives
it keyboard focus, and selects theHyperSearch check box. If this command is invoked
while there is a selection, the selected text will be searched for immediately and the search
bar will not be shown.

If the HyperSearch check box is selected, pressingEnter in the search string field will
perform a HyperSearch in the current buffer.

38

Chapter 4. Editing Text

Search>HyperSearch for Word (shortcut:Alt -.) performs a HyperSearch for the word at
the caret. This command does not show the search bar or give it keyboard focus.

4.13. Command Repetition
The final feature discussed in this chapter provides a way to repeat a command any number
of times.

To repeat a command multiple times, pressControl -Enter, enter the desired repeat count,
then invoke the command to repeat (either using a keyboard shortcut, or by selecting it from
the menu bar). For example, “Control -Enter 1 4 Control-D” will delete 14 lines;
“Control -Enter 9 #” will insert “#########” in the buffer.

If you specify a repeat count greater than 20, a confirmation dialog box will be displayed,
asking if you really want to perform the action. This prevents you from hanging jEdit by
executing a command too many times.

39

Chapter 4. Editing Text

40

Chapter 5. Editing Source Code

5.1. Edit Modes
An edit modespecifies syntax highlighting rules, auto indent behavior, and various other
customizations for editing a certain file type. This section only covers using existing edit
modes; information about writing your own can be found inPart II in jEdit 4.1 User’s Guide.

5.1.1. Mode Selection

When a file is opened, jEdit first checks the file name against a list of known patterns. For
example, files whose names end with “.c” are opened with C mode, and files named
Makefile are opened with Makefile mode. If a suitable match based on file name cannot be
found, jEdit checks the first line of the file. For example, files whose first line is “#!/bin/sh”
are opened with shell script mode.

File name and first line globs can be changed in theEditing pane of theUtilities>Global
Options dialog box. SeeAppendix Dfor information about glob patterns.

The edit mode can be specified manually as well. The current buffer’s edit mode can be set
on a one-time basis in theUtilities>Buffer Options dialog box; seeSection 6.1. To set a
buffer’s edit mode for future editing sessions, place the following in one of the first or last 10
lines of the buffer, whereedit mode is the name of the desired edit mode:

:mode= edit mode :

A list of edit modes can be found in theUtilities>Buffer Options dialog box.

5.1.2. Syntax Highlighting

Syntax highlighting is the display of programming language tokens using different fonts and
colors. This makes code easier to follow and errors such as misplaced quotes easier to spot.
All edit modes except for the plain text mode perform some kind of syntax highlighting.

The colors and styles used to highlight syntax tokens can be changed in theSyntax
Highlighting pane of theUtilities>Global Options dialog box; seeSection 6.3.

41

Chapter 5. Editing Source Code

5.2. Tabbing and Indentation
jEdit makes a distinction between thetab width, which is is used when displaying hard tab
characters, and theindent width, which is used when a level of indent is to be added or
removed, for example by mode-specific auto indent routines. Both can be changed in one of
several ways:

• On a global or mode-specific basis in theEditing pane of the theUtilities>Global
Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in one of the
first or last 10 lines of the buffer, wheren is the desired tab width, andmis the desired
indent width:

:tabSize= n:indentSize= m:

Edit>Indent>Shift Indent Left (shortcut:Shift-Tab or Alt -Left) adds one level of indent to
each selected line, or the current line if there is no selection.

Edit>Indent>Shift Indent Right (shortcut:Alt -Right) removes one level of indent from
each selected line, or the current line if there is no selection. PressingTab while a multi-line
selection is active has the same effect.

Edit>Indent>Remove Trailing Whitespace (shortcut:Control -E R) removes all
whitespace from the end of each selected line, or the current line if there is no selection.

5.2.1. Soft Tabs

Files containing hard tab characters may look less than ideal if the default tab size is
changed, so some people prefer using multiple space characters instead of hard tabs to
indent code.

This feature is known assoft tabs. Soft tabs can be enabled or disabled in one of several
ways:

• On a global or mode-specific basis in theEditing pane of theUtilities>Global Options
dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

42

Chapter 5. Editing Source Code

• In the current buffer for future editing sessions by placing the following in one of the
first or last 10 lines of the buffer, whereflag is either “true” or “false”:

:noTabs= flag :

Changing the soft tabs setting has no effect on existing tab characters; it only affects
subsequently-inserted tabs.

Edit>Source>Spaces to Tabs converts soft tabs to hard tabs in the current selection, or
the entire buffer if nothing is selected.

Edit>Source>Tabs to Spaces converts hard tabs to soft tabs in the current selection, or
the entire buffer if nothing is selected.

5.2.2. Automatic Indent

The auto indent feature inserts the appropriate number of tabs or spaces at the beginning of a
line by looking at program structure.

In the default configuration, pressingEnter will create a new line with the appropriate
amount of indent automatically, and pressingTab at the beginning of, or inside the leading
whitespace of a line will insert the appropriate amount of indentation. Pressing it again will
insert a tab character.

The behavior of theEnter andTab keys can be configured in theShortcuts pane of the
Utilities>Global Options dialog. box, just as with any other key. TheEnter key can be
bound to one of the following, or indeed any other command or macro:

• Insert Newline.

• Insert Newline and Indent, which is the default.

TheTab can be bound to one of the following, or again, any other command or macro:

• Insert Tab.

• Insert Tab or Indent, which is the default.

• Indent Selected Lines.

SeeSection 6.3for details.

Auto indent behavior is mode-specific. In most edit modes, the indent of the previous line is
simply copied over. However, in C-like languages (C, C++, Java, JavaScript), curly brackets

43

Chapter 5. Editing Source Code

and language statements are taken into account and indent is added and removed as
necessary.

Edit>Source>Indent Selected Lines (shortcut:Control -I) indents all selected lines, or
the current line if there is no selection.

To insert a literal tab or newline without performing indentation, prefix the tab or newline
with Control -E V. For example, to create a new line without any indentation, type
Control -E V Enter .

5.3. Commenting Out Code
Most programming and markup languages support the notion of “comments”, or regions of
code which are ignored by the compiler/interpreter. jEdit has commands which make
inserting comments more convenient.

Comment strings are mode-specific, and some in some modes such as HTML different parts
of a buffer can have different comment strings. For example, in HTML files, different
comment strings are used for HTML text and inline JavaScript.

Edit>Source Code>Range Comment (shortcut:Control -E Control -C) encloses the
selection with comment start and end strings, for example/* and*/ in Java mode.

Edit>Source Code>Line Comment (shortcut:Control -E Control -K) inserts the line
comment string, for example// in Java mode, at the start of each selected line.

5.4. Bracket Matching
Misplaced and unmatched brackets are one of the most common syntax errors encountered
when writing code. jEdit has several features to make brackets easier to deal with.

Positioning the caret immediately before or after a bracket will highlight the corresponding
closing or opening bracket (assuming it is visible), and draw a scope indicator in the gutter.
If the highlighted bracket is not visible, the text of the matching line will be shown in the
status bar. If the matching line consists of only whitespace and the bracket itself, the
previous lineis shown instead. This feature is very useful when your code is indented as
follows, with braces on their own lines:

public void someMethod()
{

if(isOK)
{

44

Chapter 5. Editing Source Code

doSomething();
}

}

InvokingEdit>Source>Go to Matching Bracket (shortcut:Control -]) or clicking the
scope indicator in the gutter moves the caret to the matching bracket.

Edit>Source>Select Code Block (shortcut:Control -[) selects all text between the closest
two brackets surrounding the caret.

Holding downControl while clicking the scope indicator in the gutter or a bracket in the
text area will select all text between the two matching brackets.

Edit>Source>Go to Previous Bracket (shortcut:Control -E Control -[) moves the caret to
the previous opening bracket.

Edit>Source>Go to Next Bracket (shortcut:Control -E Control -]) moves the caret to the
next closing bracket.

Bracket highlighting in the text area and bracket scope display in the gutter can be
customized in theText Area andGutter panes of theUtilities>Global Options dialog box;
seeSection 6.3.

Note: jEdit’s bracket matching algorithm only checks syntax tokens with the same type
as the original bracket, so for example unmatched brackets inside string literals and
comments will be skipped when matching brackets that are part of program syntax.

5.5. Abbreviations
Using abbreviations reduces the time spent typing long but commonly used strings. For
example, in Java mode, the abbreviation “sout” is defined to expand to
“System.out.println()”, so to insert “System.out.println()” in a Java buffer, you only need to
type “sout” followed byControl -;. An abbreviation can either be global, in which case it
can be used in all edit modes, or specific to a single mode.

Abbreviations can be edited in theAbbreviations pane of theUtilities>Global Options
dialog box; seeSection 6.3. The Java, VHDL. XML and XSL edit modes include some
pre-defined abbreviations you might find useful. Other modes do not have any abbreviations
defined by default.

45

Chapter 5. Editing Source Code

Edit>Expand Abbreviation (keyboard shortcut:Control -;) attempts to expand the
abbreviation named by the word before the caret. If no expansion could be found, it will
offer to define one.

Automatic abbreviation expansion can be enabled in theAbbreviations pane of the
Utilities>Global Options dialog box; seeSection 6.3. If enabled, pressing the space bar
after entering an abbreviation will automatically expand it.

If automatic expansion is enabled, a space can be inserted without expanding the word
before the caret by pressingControl -E V Space.

5.5.1. Positional Parameters

Positional parameters are an advanced feature that make abbreviations much more useful.
The best way to describe them is with an example.

Java mode defines an abbreviation “F” that is set to expand to the following:

for(int $1 = 0; $1 < $2; $1++)

ExpandingF#j#array.length# will insert the following text into the buffer:

for(int j = 0; j < array.length; j++)

Expansions can contain up to nine positional parameters. Note that a trailing hash character
(“#”) must be entered when expanding an abbreviation with parameters.

If you do not specify the correct number of positional parameters when expanding an
abbreviation, any missing parameters will be blank in the expansion, and extra parameters
will be ignored. A status bar message will be shown stating the required number of
parameters.

5.6. Folding
Program source code and other structured text files can be thought of as containing a
hierarchy of sections, which themselves might contain sub-sections. The folding feature lets
you selectively hide and show these sections, replacing hidden ones with a single line that
serves as an “overview” of that section.

Folding is disabled by default. To enable it, you must choose one of the available folding
modes. “Indent” mode creates folds based on a line’s leading whitespace; the more leading
whitespace a block of text has, the further down it is in the hierarchy. For example:

46

Chapter 5. Editing Source Code

This is a section
This is a sub-section
This is another sub-section

This is a sub-sub-section
Another top-level section

“Explicit” mode folds away blocks of text surrounded with “{{{” and “}}}”. For example:

{{{ The first line of a fold.
When this fold is collapsed, only the above line will be visible.

{{{ A sub-section.
With text inside it.
}}}

{{{ Another sub-section.
}}}

}}}

Both modes have distinct advantages and disadvantages; indent folding requires no changes
to be made to a buffer’s text and does a decent job with most program source. Explicit
folding requires “fold markers” to be inserted into the text, but is more flexible in exactly
what to fold away.

Some plugins might add additional folding modes; seeChapter 8for information about
plugins.

Folding can be enabled in one of several ways:

• On a global or mode-specific basis in theEditing pane of theUtilities>Global Options
dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box.

• In the current buffer for future editing sessions by placing the following in the first or
last 10 lines of a buffer, wheremode is either “indent”, “explicit”, or the name of a
plugin folding mode:

:folding= mode:

47

Chapter 5. Editing Source Code

Warning
When using indent folding, portions of the buffer may become inaccessible
if you change the leading indent of the first line of a collapsed fold. If you
experience this, you can use the Expand All Folds command to make the
text visible again.

5.6.1. Collapsing and Expanding Folds

The first line of each fold has a triangle drawn next to it in the gutter (seeSection 2.3for
more information about the gutter). The triangle points toward the line when the fold is
collapsed, and downward when the fold is expanded. Clicking the triangle collapses and
expands the fold. To expand all sub-folds as well, hold down theShift while clicking.

The first line of a collapsed fold is drawn with a different background color, and the number
of lines in the fold is shown to the right of the line’s text.

Folds can also be collapsed and expanded using menu item commands and keyboard
shortcuts.

Folding>Collapse Fold (keyboard shortcut:Alt -Backspace) collapses the fold containing
the caret position.

Folding>Expand Fold One Level (keyboard shortcut:Alt -Enter) expands the fold
containing the caret position. Nested folds will remain collapsed, and the caret is positioned
on the first nested fold (if any).

Folding>Expand Fold Fully (keyboard shortcut:Alt -Shift-Enter) expands the fold
containing the caret position, also expanding any nested folds.

Folding>Collapse All Folds (keyboard shortcut:Control -E C) collapses all folds in the
buffer.

Folding>Expand All Folds (keyboard shortcut:Control -E X) expands all folds in the
buffer.

5.6.2. Navigating Around With Folds

Folding>Go to Parent Fold (keyboard shortcut:Control -e u) moves the caret to the fold
containing the one at the caret position.

Folding>Go to Previous Fold (keyboard shortcut:Alt -Up) moves the caret to the fold
immediately before the caret position.

48

Chapter 5. Editing Source Code

Folding>Go to Next Fold (keyboard shortcut:Alt -Down) moves the caret to the fold
immediately after the caret position.

5.6.3. Miscellaneous Folding Commands

Folding>Add Explicit Fold (keyboard shortcut:Control -E A) is a convenience command
that surrounds the selection with “{{{” and “}}}”. If the current buffer’s edit mode defines
comment strings (seeSection 5.3) the explicit fold markers will automatically be
commented out as well.

Folding>Select Fold (keyboard shortcut:Control -E S) selects all lines within the fold
containing the caret position.Control -clicking a fold expansion triangle in the gutter has the
same effect.

Folding>Expand Folds With Level (keyboard shortcut:Control -E Enter key) reads the
next character entered at the keyboard, and expands folds in the buffer with a fold level less
than that specified, while collapsing all others.

Sometimes it is desirable to have files open with folds initially collapsed. This can be
configured as follows:

• On a global or mode-specific basis in theEditing pane of theUtilities>Global Options
dialog box.

• In the current buffer for future editing sessions by placing the following in the first or
last 10 lines of a buffer, wherelevel is the desired fold level:

:collapseFolds= level :

5.6.4. Narrowing

The narrowing feature temporarily “narrows” the display of a buffer to a specified region.
Text outside the region is not shown, but is still present in the buffer.

Folding>Narrow Buffer to Fold (keyboard shortcut:Control -E N N) hides all lines the
buffer except those in the fold containing the caret.

Folding>Narrow Buffer to Selection (keyboard shortcut:Control -E N S) hides all lines
the buffer except those in the selection.

Folding>Expand All Folds (keyboard shortcut:Control -E X) shows lines that were hidden
as a result of narrowing.

49

Chapter 5. Editing Source Code

50

Chapter 6. Customizing jEdit

6.1. The Buffer Options Dialog Box
Utilities>Buffer Options displays a dialog box for changing editor settings on a per-buffer
basis. Changes made in this dialog box are not retained after the buffer is closed.

The following settings can be changed here:

• The line separator (seeSection 3.4)

• The character encoding (seeSection 3.5)

• If the file should be GZipped on disk (seeSection 3.2)

• The edit mode (seeSection 5.1)

• The fold mode (seeSection 5.6)

• The wrap mode and margin (seeSection 4.8)

• The tab width (seeSection 5.2)

• The indent width

• If soft tabs should be used (seeSection 5.2)

6.2. Buffer-Local Properties
Buffer-local properties provide an alternate way to change editor settings on a per-buffer
basis. While changes made in theBuffer Options dialog box are lost after the buffer is
closed, buffer-local properties take effect each time the file is opened, because they are
embedded in the file itself.

When jEdit loads a file, it checks the first and last 10 lines for colon-enclosed name/value
pairs. For example, placing the following in a buffer changes the indent width to 4
characters, enables soft tabs, and activates the Perl edit mode:

:indentSize=4:noTabs=true:mode=perl:

Adding buffer-local properties to a buffer takes effect after the next time the buffer is saved.

The following table describes each buffer-local property in detail.

51

Chapter 6. Customizing jEdit

Property name Description
collapseFolds Folds with a level of this or higher will be collapsed when the

buffer is opened. If set to zero, all folds will be expanded initially.
SeeSection 5.6.

folding The fold mode; one of “none”, “indent”, “explicit”, or the name of
a plugin folding mode. SeeSection 5.6.

indentSize The width, in characters, of one indent. Must be an integer greater
than 0. SeeSection 5.2.

maxLineLen The maximum line length and wrap column position. Inserting
text beyond this column will automatically insert a line break at
the appropriate position. SeeSection 4.3.

mode The default edit mode for the buffer. SeeSection 5.1.

noTabs If set to “true”, soft tabs (multiple space characters) will be used
instead of “real” tabs. SeeSection 5.2.

noWordSep A list of non-alphanumeric characters that arenot to be treated as
word separators. Global default is “_”.

tabSize The tab width. Must be an integer greater than 0. SeeSection 5.2.

wordBreakChars Characters, in addition to spaces and tabs, at which lines may be
split when word wrapping. SeeSection 4.3.

wrap The word wrap mode; one of “none”, “soft”, or “hard”. See
Section 4.8.

6.3. The Global Options Dialog Box
Utilities>Global Options displays the global options dialog box. The dialog box is divided
into several panes, each pane containing a set of related options. Use the list on the left of
the dialog box to switch between panes. Only panes created by jEdit are described here;
some plugins add their own option panes, and information about them can be found in the
documentation for the plugins in question.

6.3.1. The Abbreviations Pane

TheAbbreviations option pane can be used to enable or disable automatic abbreviation
expansion, and to edit currently defined abbreviations.

The combo box labeled “Abbrev set” selects the abbreviation set to edit. The first entry,
“global”, contains abbreviations available in all edit modes. The subsequent entries
correspond to each mode’s local set of abbreviations.

52

Chapter 6. Customizing jEdit

To change an abbreviation or its expansion, either double-click the appropriate table entry,
or click a table entry and then click theEdit button. This will display a dialog box for
modifying the abbreviation.

TheAdd button displays a dialog box where you can define a new abbreviation. The
Remove button removes the currently selected abbreviation from the list.

SeeSection 5.5.1for information about positional parameters in abbreviations.

6.3.2. The Appearance Pane

TheAppearance pane can be used to change the appearance of user interface controls such
as buttons, labels and menus.

6.3.3. The Context Menu Pane

TheContext Menu option pane edits the text area’s right-click context menu.

6.3.4. The Docking Pane

TheDocking option pane specifies which dockable windows should be floating, and which
should be docked in the view.

6.3.5. The Editing Pane

TheEditing option pane contains settings such as the tab size, syntax highlighting and soft
tabs on a global or mode-specific basis.

When changing mode-specific settings, theFile name glob andFirst line glob text fields
let you specify a glob pattern that names and first lines of buffers will be matched against to
determine the edit mode. SeeAppendix Dfor information about glob patterns.

This option pane does not change XML mode definition files on disk; it merely writes values
to the user properties file which override those set in mode files. To find out how to edit
mode files directly, seePart II in jEdit 4.1 User’s Guide.

53

Chapter 6. Customizing jEdit

6.3.6. The General Pane

TheGeneral pane contains various miscellaneous settings, such as the number of recent
files to remember, if the buffer list should be sorted, and so on.

6.3.7. The Gutter Pane

TheGutter option pane contains settings to customize the appearance of the gutter.

6.3.8. The Loading and Saving Pane

TheLoading and Saving option pane contains settings such as the autosave frequency,
backup settings, file encoding, and so on.

6.3.9. The Printing Pane

ThePrinting option pane contains settings to control the appearance of printed output.

6.3.10. The Proxy Servers Pane

TheProxy Servers option pane lets you specify HTTP and SOCKS proxy servers to use
when jEdit makes network connections (for example, when the plugin manager downloads
plugins).

6.3.11. The Shortcuts Pane

TheShortcuts option pane associates keyboard shortcuts with commands. Each command
can have up to two shortcuts associated with it.

The combo box at the top of the option pane selects the command set to edit. Command sets
include the set of all built-in commands, the commands of each plugin, and the set of
macros.

To change a shortcut, click the appropriate table entry and press the keys you want
associated with that command in the resulting dialog box. The dialog box will warn you if
the shortcut is already assigned.

54

Chapter 6. Customizing jEdit

6.3.12. The Status Bar Pane

TheStatus Bar option pane contains settings to customize the status bar, or disable it
completely.

6.3.13. The Syntax Highlighting Pane

TheSyntax Highlighting pane can be used to customize the fonts and colors for syntax
highlighting.

6.3.14. The Text Area Pane

TheText Area pane contains settings to customize the appearance of the text area.

6.3.15. The Tool Bar Pane

TheTool Bar option pane lets you edit the tool bar, or disable it completely.

6.3.16. The File System Browser Panes

TheFile System Browser group contains two option panes,General andColors. The
former contains various file system browser settings. The latter configures glob patterns used
for coloring the file list. SeeSection 3.6for more information.

6.4. The jEdit Settings Directory
jEdit stores settings, macros, and plugins as files inside thesettings directory. In most cases,
editing these files by hand is not necessary, since graphical tools and editor commands can
do the job. However, being familiar with the structure of the settings directory still comes in
handy in certain situations, for example when you want to copy jEdit settings between
computers.

The location of the settings directory is system-specific; it is printed to the activity log
(Utilities>Troubleshooting>Activity Log). For example:

[message] jEdit: Settings directory is /home/slava/.jedit

55

Chapter 6. Customizing jEdit

Specifying the-settings switch on the command line instructs jEdit to store settings in a
directory other than the default. For example, the following command will instruct jEdit to
store all settings in thejedit subdirectory of theC: drive:

C:\jedit> jedit -settings=C:\jedit

The-nosettings switch will force jEdit to not look for or create a settings directory;
default settings will be used instead.

If you are using jEditLauncher to start jEdit on Windows, these parameters cannot be
specified on the MS-DOS prompt command line when starting jEdit; they must be set as
described inSection G.2.

jEdit creates the following files and directories inside the settings directory; plugins may add
more:

• abbrevs - a plain text file which stores all defined abbreviations. SeeSection 5.5.

• activity.log - a plain text file which contains the full activity log. SeeAppendix B.

• history - a plain text file which stores history lists, used by history text fields and the
Edit>Paste Previous command. SeeSection 4.10andAppendix C.

• jars - this directory contains plugins. SeeChapter 8.

• macros - this directory contains macros. SeeChapter 7.

• modes - this directory contains custom edit modes. SeePart II in jEdit 4.1 User’s Guide.

• PluginManager.download - this directory is usually empty. It only contains files
while the plugin manager is downloading a plugin. For information about the plugin
manager, seeChapter 8.

• printspec - a binary file which stores printing settings when running under Java 2
version 1.4.

• properties - a plain text file which stores the majority of jEdit’s settings.

• recent.xml - an XML file which stores the list of recently opened files. jEdit
remembers the caret position and character encoding of each recent file, and
automatically restores those values when one of the files is opened.

• server - a plain text file that only exists while jEdit is running. The edit server’s port
number and authorization key is stored here. SeeChapter 1.

• session - a list of files, used when restoring previously open files on startup.

56

Chapter 6. Customizing jEdit

• settings-backups - this directory contains numbered backups of all
automatically-written settings files (abbrevs , activity.log , history , properties ,
recent.xml , andsession).

57

Chapter 6. Customizing jEdit

58

Chapter 7. Using Macros
Macros in jEdit are short scripts written in a scripting language calledBeanShell. They
provide an easy way to automate repetitive keyboard and menu procedures, as well as access
to the objects and methods created by jEdit. Macros also provide a powerful facility for
customizing jEdit and automating complex text processing and programming tasks. This
section describes how to record and run macros. A detailed guide on writing macros appears
later; seePart III in jEdit 4.1 User’s Guide.

7.1. Recording Macros
The simplest use of macros is to record a series of key strokes and menu commands as a
BeanShell script, and play them back later. While this doesn’t let you take advantage of the
full power of BeanShell, it is still a great time saver and can even be used to “prototype”
more complicated macros.

Macros>Record Macro (shortcut:Control -M Control -R) prompts for a macro name and
begins recording.

While recording is in progress, the string “Macro recording” is displayed in the status bar.
jEdit records the following:

• Key strokes

• Menu item commands

• Tool bar clicks

• All search and replace operations, except incremental search

Mouse clicks in the text area arenot recorded; use text selection commands or arrow keys
instead.

Macros>Stop Recording (shortcut:Control -M Control -S) stops recording. It also
switches to the buffer containing the recorded macro, giving you a chance to check over the
recorded commands and make any necessary changes. When you are happy with the macro,
save the buffer and it will appear in theMacros menu. To discard the macro, close the buffer
without saving it.

The file name extension.bsh is automatically appended to the macro name, and all spaces
are converted to underscore characters, in order to make the macro name a valid file name.
These two operations are reversed when macros are displayed in theMacros menu; see
Section 7.3for details.

59

Chapter 7. Using Macros

If a complicated operation only needs to be repeated a few times, using the temporary macro
feature is quicker than saving a new macro file.

Macros>Record Temporary Macro (shortcut:Control -M Control -M) begins recording
to a buffer namedTemporary_Macro.bsh . Once recording of a temporary macro is
complete, jEdit does not display the buffer containing the recorded commands, but the name
Temporary_Macro.bsh will be visible on any list of open buffers. By switching to that
buffer, you can view the commands, edit them, and save them if you wish to a permanent
macro file. Whether or not you look at or save the temporary macro contents, it is
immediately available for playback.

Macros>Run Temporary Macro (shortcut:Control -M Control -P) plays the macro
recorded to theTemporary_Macro.bsh buffer.

Only one temporary macro is available at a time. If you begin recording a second temporary
macro, the first is erased and cannot be recovered unless you have saved the contents to a file
with a name other thanTemporary_Macro.bsh . If you do not save the temporary macro,
you must keep the buffer containing the macro script open during your jEdit session. To
have the macro available for your next jEdit session, save the bufferTemporary_Macro.bsh

as an ordinary macro with a descriptive name of your choice. The new name will then be
displayed in theMacros menu.

7.2. Running Macros
Macros supplied with jEdit, as well as macros that you record or write, are displayed under
theMacros menu in a hierarchical structure. The jEdit installation includes about 30 macros
divided into several major categories. Each category corresponds to a nested submenu under
theMacros menu. An index of these macros containing short descriptions and usage notes
is found inAppendix F.

To run a macro, choose theMacros menu, navigate through the hierarchy of submenus, and
select the name of the macro to execute. You can also assign execution of a particular macro
to a keyboard shortcut, toolbar button or context menu using theMacro Shortcuts, Tool
Bar or Context Menu panes of theUtilities>Global Options dialog; seeSection 6.3.

Macros>Run Last Macro (shortcut:Control -M Control -L) runs the last macro run by
jEdit again.

7.3. How jEdit Organizes Macros
Every macro, whether or not you originally recorded it, is stored on disk and can be edited

60

Chapter 7. Using Macros

as a text file. The file name of a macro must have a.bsh extension in order for jEdit to be
aware of it. By default, jEdit associates a.bsh file with the BeanShell edit mode for
purposes of syntax highlighting, indentation and other formatting. However, BeanShell
syntax does not impose any indentation or line break requirements.

TheMacros menu lists all macros stored in two places: themacros subdirectory of the jEdit
home directory, and themacros subdirectory of the user-specific settings directory (see
Section 6.4for information about the settings directory). Any macros you record will be
stored in the user-specific directory.

Macros stored elsewhere can be run using theMacros>Run Other Macro command, which
displays a file chooser dialog box, and runs the specified file.

The listing of individual macros in theMacros menu can be organized in a hierarchy using
subdirectories in the general or user-specific macro directories; each subdirectory appears as
a submenu. You will find such a hierarchy in the default macro set included with jEdit.

When jEdit first loads, it scans the designated macro directories and assembles a listing of
individual macros in theMacros menu. When scanning the names, jEdit will delete
underscore characters and the.bsh extension for menu labels, so that
List_Useful_Information.bsh , for example, will be displayed in theMacros menu as
List Useful Information.

You can browse the user and system macro directories by opening themacros directory
from theUtilities>jEdit Home Directory andUtilities>Settings Directory menus.

Macros can be opened and edited much like ordinary files from the file system browser.
Editing macros from within jEdit will automatically update the macros menu; however, if
you modify macros from another program or add macro files to the macro directories, you
should run theMacros>Rescan Macros command to update the macro list.

61

Chapter 7. Using Macros

62

Chapter 8. Installing and Using Plugins
A plugin is an application which is loaded and runs as part of another, host application.
Plugins respond to user commands and perform tasks that supplement the host application’s
features.

This chapter covers installing, updating and removing plugins. Documentation for the
plugins themselves can be found inHelp>jEdit Help, and information about writing plugins
can be found inPart IV in jEdit 4.1 User’s Guide.

8.1. The Plugin Manager
Plugins>Plugin Manager displays the plugin manager window. The plugin manager lists
all installed plugins; clicking on a plugin in the list will display information about it.

To remove plugins, select them (multiple plugins can be selected by holding downControl)
and clickRemove Plugins. This will display a confirmation dialog box first.

8.2. Installing Plugins
Plugins can be installed in two ways; manually, and from the plugin manager. In most cases,
plugins should be installed from the plugin manager. It is easier and more convenient.

To install plugins manually, go tohttp://plugins.jedit.org in a web browser and
follow the directions on that page.

To install plugins from the plugin manager, make sure you are connected to the Internet and
click theInstall Plugins button in the plugin manager window. The plugin manager will
then download information about available plugins from the jEdit web site, and present a list
of plugins compatible with your jEdit release which may be installed.

Click on a plugin in the list to see some information about it. To select plugins for
installation, click the check box next to their names in the list.

TheTotal download size field shows the total size of all plugins chosen for installation,
along with any plugins that will be automatically downloaded in order to fulfill
dependencies. TheDownload size field in the plugin information area only shows the size
of the currently selected plugin.

TheInstall source code check box controls if source code for the plugins should be
downloaded and installed. Unless you are a developer, you probably don’t need the source.

63

Chapter 8. Installing and Using Plugins

The two radio buttons select the location where the plugins are to be installed. Plugins can
be installed in either thejars subdirectory of the jEdit installation directory, or thejars

subdirectory of the user-specific settings directory. For information about the settings
directory,Section 6.4.

Once you have specified plugins to install, clickInstall Plugins to begin the download
process. Once all plugins have been downloaded and installed, a dialog box is shown
advising that jEdit must be restarted before plugins can be used.

Proxy Servers and Firewalls

If you are connected to the Internet through an HTTP proxy or SOCKS firewall, you
will need to specify the relevant details in theProxy Servers pane of the
Utilities>Global Options dialog box.

8.3. Updating Plugins
Clicking Update Plugins in the plugin manager will show a dialog box very similar to the
one for installing plugins. It will list plugins for which updated versions are available. It will
also offer to delete any obsolete plugins.

64

Appendix A. Keyboard Shortcuts
This appendix documents the default set of keyboard shortcuts. They can be customized to
suit your taste in theShortcuts pane of theUtilities>Global Options dialog box; see
Section 6.3.

Files
For details, seeSection 2.1, Section 2.2andChapter 3.

Control -N New file.

Control -O Open file.

Control -W Close buffer.

Control -E Control -W Close all buffers.

Control -S Save buffer.

Control -E Control -S Save all buffers.

Control -P Print buffer.

Control -Page Up Go to previous buffer.

Control -Page Down Go to next buffer.

Control -‘ Go to recent buffer.

Alt -‘ Show buffer switcher.

Control -Q Exit jEdit.

Views
For details, seeSection 2.2.

Control -E Control -T Turn gutter (line numbering) on and off.

Control -0 Remove split containing current text area only.

Control -1 Remove all splits.

Control -2 Split view horizontally.

Control -3 Split view vertically.

Alt -Page Up Send keyboard focus to previous text area.

Alt -Page Down Send keyboard focus to next text area.

Control -E Control -Up;
Control -Left ; Control -Down;
Control -Right

Send keyboard focus to top; bottom; left; right docking
area.

65

Appendix A. Keyboard Shortcuts

Control -E Control -‘ Close currently focused docking area.

Control -E Control -E Send keyboard focus back to current text area.

Repeating
For details, seeSection 4.13.

Control -Enter number
command

Repeat the command (it can be a keystroke, menu item
selection or tool bar click) the specified number of
times.

Moving the Caret
For details, seeSection 4.1, Section 4.5, Section 4.6, Section 4.7andSection 5.4.

Arrow Move caret one character or line.

Control -Arrow Move caret one word or paragraph.

Page Up; Page Down Move caret one screenful.

Home First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

End Last non-whitespace character of line, end of line, last
visible line (repeated presses).

Control -Home Beginning of buffer.

Control -End End of buffer.

Control -] Go to matching bracket.

Control -E Control -[;
Control -]

Go to previous; next bracket.

Control -L Go to line.

Selecting Text
For details, seeSection 4.2, Section 4.5, Section 4.6, Section 4.7andSection 5.4.

Shift-Arrow Extend selection by one character or line.

Control -Shift-Arrow Extend selection by one word or paragraph.

Shift-Page Up; Shift-Page
Down

Extend selection by one screenful.

66

Appendix A. Keyboard Shortcuts

Shift-Home Extend selection to first non-whitespace character of
line, beginning of line, first visible line (repeated
presses).

Shift-End Extend selection to last non-whitespace character of
line, end of line, last visible line (repeated presses).

Control -Shift-Home Extend selection to beginning of buffer.

Control -Shift-End Extend selection to end of buffer.

Control -[Select code block.

Control -E W; L ; P Select word; line; paragraph.

Control -E Control -L Select line range.

Control -\ Switch between single and multiple selection mode.

Scrolling
For details, seeSection 2.2.

Control -E Control -J Ensure current line is visible.

Control -E Control -I Center caret on screen.

Control -’ ; Control -/ Scroll up; down one line.

Alt -’ ; Alt -/ Scroll up; down one page.

Text Editing
For details, seeSection 4.4, Section 4.3, Section 4.5, Section 4.6andSection 4.7.

Control -Z Undo.

Control -E Control -Z Redo.

Backspace; Delete Delete character before; after caret.

Control -Backspace;
Control -Delete

Delete word before; after caret.

Control -D; Control -E D Delete line; paragraph.

Control -Shift-Backspace;
Control -Shift-Delete

Delete from caret to beginning; end of line.

Control -E R Remove trailing whitespace from the current line (or all
selected lines).

Control -J Join lines.

Control -B Complete word.

67

Appendix A. Keyboard Shortcuts

Control -E F Format paragraph (or selection).

Clipboard and Registers
For details, seeSection 4.10.

Control -X or Shift-Delete Cut selected text to clipboard.

Control -C or Control -Insert Copy selected text to clipboard.

Control -E Control -U Append selected text to clipboard, removing it from the
buffer.

Control -E Control -A Append selected text to clipboard, leaving it in the
buffer.

Control -V or Shift-Insert Paste clipboard contents.

Control -E Control -P Vertically paste clipboard contents.

Control -R Control -X key Cut selected text to registerkey .

Control -R Control -C key Copy selected text to registerkey .

Control -R Control -U key Append selected text to registerkey , removing it from
the buffer.

Control -R Control -A key Append selected text to registerkey , leaving it in the
buffer.

Control -R Control -V key Paste contents of registerkey .

Control -R Control -P key Vertically paste contents of registerkey .

Control -E Control -V Paste previous.

Markers
For details, seeSection 4.11.

Control -E Control -M If current line doesn’t contain a marker, one will be
added. Otherwise, the existing marker will be removed.
Use theMarkers menu to return to markers added in
this manner.

Control -T key Add marker with shortcutkey .

Control -Y key Go to marker with shortcutkey .

Control -U key Select to marker with shortcutkey .

Control -K key Go to marker with shortcutkey , and move the marker
to the previous caret position.

68

Appendix A. Keyboard Shortcuts

Control -E Control -,;
Control -.

Move caret to previous; next marker.

Search and Replace
For details, seeSection 4.12.

Control -F Open search and replace dialog box.

Control -G Find next.

Control -H Find previous.

Control -E Control -B Search in open buffers.

Control -E Control -D Search in directory.

Control -E Control -R Replace in selection.

Control -E Control -G Replace in selection and find next.

Control -, Incremental search bar.

Control -. HyperSearch bar.

Alt -, Incremental search for word under the caret.

Alt -. HyperSearch for word under the caret.

Source Code Editing
For details, seeSection 5.5, Section 5.2andSection 5.3.

Control -; Expand abbreviation.

Alt -Left ; Alt -Right Shift current line (or all selected lines) left; right.

Shift-Tab; Tab Shift selected lines left; right. Note that pressingTab
with no selection active will insert a tab character at the
caret position.

Control -I Indent current line (or all selected lines).

Control -E Control -C Wing comment selection.

Control -E Control -B Box comment selection.

Folding and Narrowing
For details, seeSection 5.6andSection 5.6.4.

Alt -Backspace Collapse fold containing caret.

69

Appendix A. Keyboard Shortcuts

Alt -Enter Expand fold containing caret one level only.

Alt -Shift-Enter Expand fold containing caret fully.

Control -E X Expand all folds.

Control -E A Add explicit fold.

Control -E S Select fold.

Control -E Enter key Expand folds with level less thankey , collapse all
others.

Control -E N N Narrow to fold.

Control -E N S Narrow to selection.

Alt -Up Alt -Down Moves caret to previous; next fold.

Control -E U Moves caret to the parent fold of the one containing the
caret.

Macros
For details, seeChapter 7.

Control -M Control -R Record macro.

Control -M Control -M Record temporary macro.

Control -M Control -S Stop recording.

Control -M Control -P Run temporary macro.

Control -M Control -L Run most recently played or recorded macro.

Alternative Shortcuts
A few frequently-used commands have alternative shortcuts intended to help you keep your
hands from moving all over the keyboard.

Alt -J; Alt -L Move caret to previous, next character.

Alt -I ; Alt -K Move caret up, down one line.

Alt -Q; Alt -A Move caret up, down one screenful.

Alt -Z First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

Alt -X Last non-whitespace character of line, end of line, last
visible line (repeated presses).

70

Appendix B. The Activity Log
Theactivity log is very useful for troubleshooting problems, and helps when developing
plugins.

Utilities>Troubleshooting>Activity Log displays the last 500 lines of the activity log. By
default, the log is shown in a floating window. It can be set to dock into the view in the
Docking pane of theUtilities>Global Options dialog box; seeSection 2.2.1. The complete
log can be found in theactivity.log file inside the jEdit settings directory, the path of
which is shown inside the activity log window.

jEdit writes the following information to the activity log:

• Information about your Java implementation (version, operating system, architecture,
etc).

• All error messages and runtime exceptions (most errors are shown in dialog boxes as
well, but the activity log usually contains more detailed and technical information).

• All sorts of debugging information that can be helpful when tracking down bugs.

• Information about loaded plugins.

While jEdit is running, the log file on disk may not always accurately reflect what has been
logged, due to buffering being done for performance reasons. To ensure the file on disk is up
to date, invoke theUtilities>Troubleshooting>Update Activity Log on Disk command.
The log file is also automatically updated on disk when jEdit exits.

71

Appendix B. The Activity Log

72

Appendix C. History Text Fields
The text fields in the search and replace dialog box and the file system browser remember
the last 20 entered strings by default. The number of strings to remember can be changed in
theGeneral pane of theUtilities>Global Options dialog box; seeSection 6.3.

PressingUp recalls previous strings. PressingDown after recalling previous strings recalls
later strings.

PressingShift-Up or Shift-Down will search backwards or forwards, respectively, for
strings beginning with the text already entered in the text field.

Clicking the triangle to the right of the text field, or clicking with the right-mouse button
anywhere else will display a pop-up menu of all previously entered strings; selecting one
will input it into the text field. Holding downShift while clicking will display a menu of all
previously entered strings that begin with the text already entered.

73

Appendix C. History Text Fields

74

Appendix D. Glob Patterns
jEdit uses glob patterns similar to those in the various Unix shells to implement file name
filters in the file system browser. Glob patterns resemble regular expressions somewhat, but
have a much simpler syntax. The following character sequences have special meaning
within a glob pattern:

• ? matches any one character

• * matches any number of characters

• {! glob } Matches anything that doesnot matchglob

• { a, b, c } matches any one ofa, b or c

• [abc] matches any character in the seta, b or c

• [^ abc] matches any character not in the seta, b or c

• [a-z] matches any character in the rangea to z , inclusive. A leading or trailing dash
will be interpreted literally

In addition to the above, a number of “character class expressions” may be used as well:

• [[:alnum:]] matches any alphanumeric character

• [[:alpha:]] matches any alphabetical character

• [[:blank:]] matches a space or horizontal tab

• [[:cntrl:]] matches a control character

• [[:digit:]] matches a decimal digit

• [[:graph:]] matches a non-space, non-control character

• [[:lower:]] matches a lowercase letter

• [[:print:]] same as[[:graph:]] , but also space and tab

• [[:punct:]] matches a punctuation character

• [[:space:]] matches any whitespace character, including newlines

• [[:upper:]] matches an uppercase letter

• [[:xdigit:]] matches a valid hexadecimal digit

Here are some examples of glob patterns:

75

Appendix D. Glob Patterns

• * - all files.

• *.java - all files whose names end with “.java”.

• *.[ch] - all files whose names end with either “.c” or “.h”.

• [^#]* - all files whose names do not start with “#”.

76

Appendix E. Regular Expressions
jEdit uses regular expressions to implement inexact search and replace. A regular expression
consists of a string where some characters are given special meaning with regard to pattern
matching.

Within a regular expression, the following characters have special meaning:

Positional Operators

• ^ matches at the beginning of a line

• $ matches at the end of a line

• \b matches at a word break

• \B matches at a non-word break

• \< matches at the start of a word

• \> matches at the end of a word

One-Character Operators

• . matches any single character

• \d matches any decimal digit

• \D matches any non-digit

• \n matches the newline character

• \s matches any whitespace character

• \S matches any non-whitespace character

• \t matches a horizontal tab character

• \w matches any word (alphanumeric) character

• \W matches any non-word (alphanumeric) character

• \\ matches the backslash (“\”) character

Character Class Operator

• [abc] matches any character in the seta, b or c

• [^ abc] matches any character not in the seta, b or c

77

Appendix E. Regular Expressions

• [a-z] matches any character in the rangea to z , inclusive. A leading or trailing dash
will be interpreted literally

• [[:alnum:]] matches any alphanumeric character

• [[:alpha:]] matches any alphabetical character

• [[:blank:]] matches a space or horizontal tab

• [[:cntrl:]] matches a control character

• [[:digit:]] matches a decimal digit

• [[:graph:]] matches a non-space, non-control character

• [[:lower:]] matches a lowercase letter

• [[:print:]] same as[[:graph:]] , but also space and tab

• [[:punct:]] matches a punctuation character

• [[:space:]] matches any whitespace character, including newlines

• [[:upper:]] matches an uppercase letter

• [[:xdigit:]] matches a valid hexadecimal digit

Subexpressions and Backreferences

• (abc) matches whatever the expressionabc would match, and saves it as a
subexpression. Also used for grouping

• (?: ...) pure grouping operator, does not save contents

• (?# ...) embedded comment, ignored by engine

• (?= ...) positive lookahead; the regular expression will match if the text in the
brackets matches, but that text will not be considered part of the match

• (?! ...) negative lookahead; the regular expression will match if the text in the
brackets does not match, and that text will not be considered part of the match

• \ n where 0 <n < 10, matches the same thing thenth subexpression matched. Can only
be used in the search string

• $n where 0 <n < 10, substituted with the text matched by thenth subexpression. Can
only be used in the replacement string

78

Appendix E. Regular Expressions

Branching (Alternation) Operator

• a| b matches whatever the expressiona would match, or whatever the expressionb
would match.

Repeating Operators

These symbols operate on the previous atomic expression.

• ? matches the preceding expression or the null string

• * matches the null string or any number of repetitions of the preceding expression

• + matches one or more repetitions of the preceding expression

• { m} matches exactlymrepetitions of the one-character expression

• { m, n} matches betweenmandn repetitions of the preceding expression, inclusive

• { m,} matchesmor more repetitions of the preceding expression

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed by a?, the repeating operator will
stop at the smallest number of repetitions that can complete the rest of the match.

79

Appendix E. Regular Expressions

80

Appendix F. Macros Included With jEdit
jEdit comes with a large number of sample macros that perform a variety of tasks. The
following index provides short descriptions of each macro, in some cases accompanied by
usage notes.

In addition to the macros included with jEdit, a very large collection of user-contributed
macros is available in the “Downloads” section of thecommunity.jedit.org web site.
There are detailed descriptions for each macro as well as a search facility.

F.1. File Management Macros
These macros automate the opening and closing of files.

• Browse_Directory.bsh

Opens a directory supplied by the user in the file system browser.

• Close_All_Except_Active.bsh

Closes all files except the current buffer.

Prompts the user to save any buffer containing unsaved changes.

• Open_Path.bsh

Opens the file supplied by the user in an input dialog.

• Open_Selection.bsh

Opens the file named by the current buffer’s selected text.

F.2. Java Code Macros
These macros handle text formatting and generation tasks that are particularly useful in
writing Java code.

81

Appendix F. Macros Included With jEdit

• Get_Class_Name.bsh

Inserts a Java class name based upon the buffer’s file name.

• Get_Package_Name.bsh

Inserts a plausible Java package name for the current buffer.

The macro compares the buffer’s path name with the elements of the classpath being
used by the jEdit session. An error message will be displayed if no suitable package
name is found. This macro will not work if jEdit is being run as a JAR file without
specifying a classpath; in that case the classpath seen by the macro consists solely of
the JAR file.

• Make_Get_and_Set_Methods.bsh

CreatesgetXXX() or setXXX() methods that can be pasted into the buffer text.

This macro presents a dialog that will “grab” the names of instance variables from the
caret line of the current buffer and paste a correspondinggetXXX() or setXXX()

method to one of two text areas in the dialog. The text can be edited in the dialog and
then pasted into the current buffer using theInsert... buttons. If the caret is set to a line
containing something other than an instance variable, the text grabbing routine is likely
to generate nonsense.

As explained in the notes accompanying the source code, the macro uses a global
variable which can be set to configure the macro to work with either Java or C++ code.
When set for use with C++ code, the macro will also write (in commented text)
definitions ofgetXXX() or setXXX() suitable for inclusion in a header file.

• Preview_Javadoc_of_Buffer.bsh

Creates and displays javadoc for current buffer.

The macro includes configuration variables for using different doclets for generating
javadocs and for generating javadocs of the package of which the current buffer is a
part. Details for use are included in the note accompanying the macro’s source code.

82

Appendix F. Macros Included With jEdit

F.3. Macros for Listing Properties
These macros produce lists or tables containing properties used by the Java platform or jEdit
itself.

• jEdit_Properties.bsh

Writes an unsorted list of jEdit properties in a new buffer.

• System_Properties.bsh

Writes an unsorted list of all Java system properties in a new buffer.

• Look_and_Feel_Properties.bsh

Writes an unsorted list of the names of Java Look and Feel properties in a new buffer.

F.4. Miscellaneous Macros
While these macros do not fit easily into the other categories, they all provide interesting and
useful functions.

• Cascade_jEdit_Windows.bsh

Rearranges view and floating plugin windows.

The windows are arranged in an overlapping “cascade” pattern beginning near the
upper left corner of the display.

• Display_Abbreviations.bsh

Displays the abbreviations registered for each of jEdit’s editing modes.

The macro provides a read-only view of the abbreviations contained in the
“Abbreviations” option pane. Pressing a letter key will scroll the table to the first entry
beginning with that letter. A further option is provided to write a selected mode’s
abbreviations or all abbreviations in a text buffer for printing as a reference. Notes in
the source code listing point out some display options that are configured by modifying
global variables.

83

Appendix F. Macros Included With jEdit

• Display_Shortcuts.bsh

Displays a sorted list of the keyboard shortcuts currently in effect.

The macro provides a combined read-only view of command, macro and plugin
shortcuts. Pressing a letter key will scroll the table to the first entry beginning with that
letter. A further option is provided to write the shortcut assignments in a text buffer for
printing as a reference. Notes in the source code listing point out some display options
that are configured by modifying global variables.

• Evaluate_Buffer_in_BeanShell.bsh

Evaluates contents of current buffer as a BeanShell script, and opens a new buffer to
receive any text output.

This is a quick way to test a macro script even before its text is saved to a file. Opening
a new buffer for output is a precaution to prevent the macro from inadvertently erasing
or overwriting itself. BeanShell scripts that operate on the contents of the current buffer
will not work meaningfully when tested using this macro.

• Hex_Convert.bsh

Converts byte characters to their hex equivalent, and vice versa.

• Include_Guard.bsh

Intended for C/C++ header files, this macro inserts a preprocessor directive in the
current buffer to ensure that the header is included only once per compilation unit.

To use the macro, first place the caret at the beginning of the header file before any
uncommented text. The macro will return to this position upon completion. The defined
term that triggers the “include guard” is taken from the buffer’s name.

• Make_Bug_Report.bsh

Creates a new buffer with installation and error information extracted from the activity
log.

The macro extracts initial messages written to the activity log describing the user’s
operating system, JDK, jEdit version and installed plugins. It then appends the last set

84

Appendix F. Macros Included With jEdit

of error messages written to the activity log. The new text buffer can be saved and
attached to an email message or a bug report made on SourceForge.

• Run_Script.bsh

Runs script using interpreter based upon buffer’s editing mode (by default, determined
using file extension). You must have the appropriate interpreter (such as Perl, Python,
or Windows Script Host) installed on your system.

• Show_Threads.bsh

Displays in a tree format all running Java threads of the current Java Virtual Machine.

• Write_HyperSearch_Results.bsh

This macro writes the contents of the “HyperSearch Results” window to a new buffer in
a simple text report format.

F.5. Text Macros
These macros generate various forms of formatted text.

• Add_Prefix_and_Suffix.bsh

Adds user-supplied “prefix” and “suffix” text to each line in a group of selected lines.

Text is added after leading whitespace and before trailing whitespace. A dialog window
receives input and “remembers” past entries.

• Color_Picker.bsh

Displays a color picker and inserts the selected color in hexadecimal format, prefixed
with a “#”.

• Duplicate_Line.bsh

Duplicates the line on which the caret lies immediately beneath it and moves the caret
to the new line.

85

Appendix F. Macros Included With jEdit

• Insert_Date.bsh

Inserts the current date and time in the current buffer.

The inserted text includes a representation of the time in the “Internet Time” format.

• Insert_Tag.bsh

Inserts a balanced pair of HTML/SGML/XML markup tags as supplied in a input
dialog. The tags will surround any selected text.

• Next_Char.bsh

Finds next occurrence of character on current line.

The macro takes the next character typed after macro execution as the character being
searched. That character is not displayed. If the character does not appear in the
balance of the current line, no action occurs.

This macro illustrates the use ofInputHandler.readNextChar() as a means of
obtaining user input. SeeSection 14.1.4.

• Toggle_Line_Comment.bsh

Toggles line comments, alternately inserting and deleting them at the beginning of each
selected line. If there is no selection, the macro operates on the current line.

A “line comment” is a token that designates the entire contents of a line as commented
text; it does not use or require a closing token. If the editing mode does not provide for
line comments (for example, text or XML modes), the macro will display an error
message.

86

Appendix G. jEditLauncher for
Windows

G.1. Introduction
The jEditLauncher package is a set of lightweight components for running jEdit under the
Windows group of operating systems. The package is designed to run on Windows 95,
Windows 98, Windows Me, Windows NT (versions 4.0 and greater), Windows 2000 and
Windows XP.

While jEdit does not make available a component-type interface, it does contains an
“EditServer” that listens on a socket for requests to load scripts written in the BeanShell
scripting language. When the server activates, it writes the server port number and a
pseudo-random, numeric authorization key to a text file. By default, the file is named
server and is located in the settings directory (seeSection 6.4).

The jEditLauncher component locates and reads this file, opens a socket and attempts to
connect to the indicated port. If successful, it transmits the appropriate BeanShell script to
the server. If unsuccessful, it attempts to start jEdit and repeats the socket transmission once
it can obtain the port and key information. The component will abandon the effort to connect
roughly twenty seconds after it launches the application.

G.2. Starting jEdit
The main component of the jEditLauncher package is a client application entitledjedit.exe.
It may be executed either from either Windows Explorer, a shortcut icon or the command
line. It uses the jEditLauncher COM component to open files in jEdit that are listed as
command line parameters. It supports Windows and UNC file specifications as well as wild
cards. If called without parameters, it will launch jEdit. If jEdit is already running, it will
simply open a new, empty buffer.

jedit.exesupports five command-line options. Except for the/1 option, if any of these
options are invoked correctly, the application will not load files or execute jEdit.

• The option/h causes a window to be displayed with a brief description of the
application and its various options.

87

Appendix G. jEditLauncher for Windows

• The option/p will activate a dialog window displaying the command-line parameters
to be used when calling jEdit. This option can also be triggered by selectingSet jEdit
Parameters from thejEdit section of the Windows Programs menu, or by running the
utility programjedinit.exe

Using the dialog, you can change parameters specifying the executable for the Java
application loader (eitherjava.exe or javaw.exe), the location of the jEdit archive
file, jedit.jar , and command line options for both.

• The input fields for Java options and jEdit options are separate. If you insert an
option in the wrong place it will not be properly executed.

• If the -jar option is not used with the Java application loader the principal jEdit
class oforg.gjt.sp.jedit.jEdit is set as fixed data.

• The working directory for the Java interpreter’s process can also be specified.

A read-only window at the bottom of the dialog displays the full command line that
jEditLauncher will invoke.

Before committing changes to the command line parameters,jedit.exevalidates the
paths for the Java and jEdit targets as well as the working directory. It will complain if
the paths are invalid. It will not validate command line options, but it will warn you if it
finds the-noserver option used for jEdit, since this will deactivate the edit server
and make it impossible for jEditLauncher to open files.

Note that due to the design of jEditLauncher, platform-independent command line
options handled by jEdit itself (such as-background and-norestore) must be
entered in the “Set jEdit Parameters” dialog box, and cannot be specified on the
jedit.execommand line directly. For information about platform-independent
command line options, seeSection 1.4.

• The option/1 is intended for use in circumstances where a single file name is passed
to jEdit for opening, and quotation marks cannot be used to delimit file names
containing whitespace. The launcher reads the entire command line following the/1
options as a single file path, regardless of the presence of whitespace, and passes the
resulting string as a single file name parameter to jEdit.

This option allows jEdit to be used with version 5 or greater of Internet Explorer as an
alternate text editor or as the target of theView Source command. Included with the
jEditLauncher distribution is a file namedjEdit_IE.reg.txt containing an example
of a Window registry file that you can use to register jEdit as a HTML editor with
Internet Explorer. Instructions for the file’s use are included in the text.

88

Appendix G. jEditLauncher for Windows

The use of the/1 option with multiple file names or other parameters will lead to
program errors or unpredictable results.

• The option/i is not mentioned in the help window forjedit.exe . It is intended
primarily to be used in conjunction with jEdit’s Java installer, but it can also be used to
install or reinstall jEditLauncher manually. When accompanied by a second parameter
specifying the directory where your preferred Java interpreter is located, jEditLauncher
will install itself and set a reasonable initial set of command line parameters for
executing jEdit. You can change these parameters later by runningjedinit.exe or
jedit.exe with the/p option.

• The option/u will cause jEditLauncher to be uninstalled by removing its registry
entries. This option does not delete any jEditLauncher or jEdit files.

G.3. The Context Menu Handler
The jEditLauncher package also implements a context menu handler for the Windows shell.
It is intended to be be installed as a handler available for any file. When you right-click on a
file or shortcut icon, the context menu that appears will include an item displaying the jEdit
icon and captionedOpen with jEdit. If the file has an extension, another item will appear
captionedOpen *.XXX with jEdit, where XXX is the extension of the selected file. Clicking
this item will cause jEdit to load all files with the same extension in the same directory as
the selected file. Multiple file selections are also supported; in this circumstance only the
Open with jEdit item appears.

If a single file with a.bsh extension is selected, the menu will also contain an item
captionedRun script in jEdit. Selecting this item will cause jEditLauncher to run the
selected file as a BeanShell script.

If exactly two files are selected, the menu will contain an entry forShow diff in jEdit.
Selecting this item will load the two files in jEdit and have them displayed side-by-side with
their differences highlighted by the JDiff plugin. The file selected first will be treated as the
base for comparison purposes. If the plugin is not installed, an error message will be
displayed in jEdit. SeeChapter 8for more information about installing plugins.

G.4. Using jEdit and jEditLauncher as a Diff Utility
As noted above, you can create a graphical diff display comparing the contents of two text
files by selecting the two files in an Explorer window, right-clicking to produce a context

89

Appendix G. jEditLauncher for Windows

menu, and selecting theShow diff in jEdit menu item. The utilityjedidiff.exe allows
you to perform this operation from a command line. The command takes the two files to be
compared as parameters; they should be delimited by quotation marks if their paths contain
whitespace.

G.5. Uninstalling jEdit and jEditLauncher

There are three ways to uninstall jEdit and jEditLauncher.

• First, you can rununlaunch.exe in the jEdit installation directory.

• Second, you can chooseUninstall jEdit from thejEdit section of the Programs menu.

• Third, you can choose the uninstall option for jEdit in the Control Panel’s
Add/Remove Programs applet.

Each of these options will deactivate jEditLauncher and delete all files in jEdit’s installation
directory. As a safeguard, jEditLauncher displays a warning window and requires the user to
confirm an uninstall operation. Because the user’s settings directory can be set and changed
from one jEdit session to another, user settings files must be deleted manually.

To deactivate jEditLauncher without deleting any files, runjedit /u from any command
prompt where the jEdit installation directory is in the search path. This will remove the
entries for jEditLauncher from the Windows registry. It will also disable the context menu
handler and the automatic launching and scripting capabilities. The package can reactivated
by executingjedit.exeagain, and jEdit can be started in the same manner as any other Java
application on your system.

G.6. The jEditLauncher Interface
The core of the jEditLauncher package is a COM component that can communicate with the
EditServer, or open jEdit if it is not running or is otherwise refusing a connection. The
component supports both Windows and UNC file specifications, including wild cards. It will
resolve shortcut links to identify and transmit the name of the underlying file.

Because it is implemented with a “dual interface”, the functions of jEditLauncher are
available to scripting languages in the Windows environment such as VBScript, JScript, Perl
(using the Win32::OLE package) and Python (using the win32com.client package).

The scriptable interface consists of two read-only properties and six functions:

Properties

90

Appendix G. jEditLauncher for Windows

• ServerPort - a read-only property that returns the port number found in jEdit’s server
file; the value is not tested for authenticity. It returns zero if the server information file
cannot be located.

• ServerKey - a read-only property that returns the numeric authorization key found in
jEdit’s server file; the value is not tested for authenticity. It returns zero if the server
information file cannot be located.

Functions

• OpenFile - a method that takes a single file name (with or without wild card
characters) as a parameter.

• OpenFiles - this method takes a array of file names (with or without wild card
characters) as a parameter. The form of the array is that which is used for arrays in the
scripting environment. In JScript, for example the data type of theVARIANT holding the
array isVT_DISPATCH; in VBScript, it isVT_ARRAY | VT_VARIANT, with array
members having data typeVT_BSTR.

• Launch - this method with no parameters attempts to open jEdit without loading
additional files.

• RunScript - this method takes a file name or full file path as a parameter and runs the
referenced file as a BeanShell script in jEdit. The predefined variablesview , editPane ,
textArea andbuffer are available to the script. If more than one view is open, the
variable are initialized with reference to the earliest opened view. If no path is given for
the file it will use the working directory of the calling process.

• EvalScript - this method takes a string as a parameter containing one or more
BeanShell statements and runs the script in jEdit’s BeanShell interpreter. The
predefined variables are available on the same basis as inRunScript .

• RunDiff - this method takes two strings representing file names as parameters. If the
JDiff plugin is installed, this method will activate the JDiff plugin and display the two
files in the plugin’s graphical “dual diff” format. The first parameter is treated as the
base for display purposes. If the JDiff plugin is not installed, a error message box will
be displayed in jEdit.

G.7. Scripting Examples
Here are some brief examples of scripts using jEditLauncher. The first two will run under
Windows Script Host, which is either installed or available for download for 32-bit Windows
operating systems. The next example is written in Perl and requires the Win32::OLE

91

Appendix G. jEditLauncher for Windows

package. The last is written in Python and requires the win32gui and win32com.client
extensions.

If Windows Script Host is installed, you can run the first two scripts by typing the name of
the file containing the script at a command prompt. In jEdit’s Console plugin, you can type
cmd /c script_path or wscript script_path .

’ Example VBScript using jEditLauncher interface
dim launcher
set launcher = CreateObject("JEdit.JEditLauncher")
a = Array("I:\Source Code Files\shellext\jeditshell*.h", _

"I:\Source Code Files\shellext\jeditshell*.cpp")
MsgBox "The server authorization code is " + _

FormatNumber(launcher.ServerKey, 0, 0, 0, 0) + ".", _
vbOKOnly + vbInformation, "jEditLauncher"

launcher.openFiles(a)
myScript = "jEdit.newFile(view); textArea.setSelectedText(" _

& CHR(34) _
& "Welcome to jEditLauncher." _
& CHR(34) & ");"

launcher.evalScript(myScript)

/* Example JScript using jEditLauncher interface
* Note: in contrast to VBScript, JScript does not
* directly support message boxes outside a browser window
*/

var launcher = WScript.createObject("JEdit.JEditLauncher");
var a = new Array("I:\\weather.html", "I:\\test.txt");
b = "I:*.pl";
launcher.openFiles(a);
launcher.openFile(b);
c = "G:\\Program Files\\jEdit\\macros\\Misc"

+ "\\Properties\\System_properties.bsh";
launcher.runScript(c);

Example Perl script using jEditLauncher interface
use Win32::OLE;
$launcher = Win32::OLE->new(’JEdit.JEditLauncher’) ||

die "JEditLauncher: not found !\n";
@files = ();
foreach $entry (@ARGV) {

@new = glob($entry);
push(@files,@new);

}
$launcher->openFiles(\@files);

92

Appendix G. jEditLauncher for Windows

my($script) = "Macros.message(view, \"I found "
.(scalar @files)." files.\");";

$launcher->evalScript($script);

Example Python script using jEditLauncher interface
import win32gui
import win32com.client
o = win32com.client.Dispatch("JEdit.JEditLauncher")
port = o.ServerPort
if port == 0:

port = "inactive. We will now launch jEdit"
win32gui.MessageBox(0, "The server port is %s." % port,

"jEditLauncher", 0)
path = "C:\\WINNT\\Profiles\\Administrator\\Desktop\\"
o.RunDiff(path + "Search.bsh", path + "Search2.bsh")

G.8. jEditLauncher Logging
The jEditLauncher package has a logging facility that is separate from jEdit’s Activity Log
to provide a record of events occurring outside the Java virtual machine environment in
which jEdit operates. The logging facility maintains two log files:jelaunch.log for events
relating to starting jEdit, loading files and running scripts, andinstall.log for
jEditLauncher installation activity. Both files are maintained in the directory in which jEdit
is installed. They are cumulative from session to session, but may be manually deleted at
any time without affecting program execution.

G.9. Legal Notice
All source code and software distributed as the jEditLauncher package in which the author
holds the copyright is made available under the GNU General Public License (“GPL”). A
copy of the GPL is included in the fileCOPYING.txt included with jEdit.

Notwithstanding the terms of the General Public License, the author grants permission to
compile and link object code generated by the compilation of this program with object code
and libraries that are not subject to the GNU General Public License, provided that the
executable output of such compilation shall be distributed with source code on substantially
the same basis as the jEditLauncher package of which this source code and software is a
part. By way of example, a distribution would satisfy this condition if it included a working
Makefile for any freely available make utility that runs on the Windows family of operating
systems. This condition does not require a licensee of this software to distribute any

93

Appendix G. jEditLauncher for Windows

proprietary software (including header files and libraries) that is licensed under terms
prohibiting or limiting redistribution to third parties.

The purpose of this specific permission is to allow a user to link files contained or generated
by the source code with library and other files licensed to the user by Microsoft or other
parties, whether or not that license conforms to the requirements of the GPL. This
permission should not be construed to expand the terms of any license for any source code
or other materials used in the creation of jEditLauncher.

94

II. Writing Edit Modes
This part of the user’s guide covers writing edit modes for jEdit.

Edit modes specify syntax highlighting rules, auto indent behavior, and various other
customizations for editing different file types. For general information about edit modes, see
Section 5.1.

This part of the user’s guide was written by Slava Pestov <slava@jedit.org >.

Chapter 9. Mode Definition Syntax
Edit modes are defined using XML, theextensible markup language; mode files have the
extension.xml . XML is a very simple language, and as a result edit modes are easy to
create and modify. This section will start with a short XML primer, followed by detailed
information about each supported tag and highlighting rule.

Editing a mode or a mode catalog file within jEdit will cause the changes to take effect
immediately. If you edit modes using another application, the changes will take effect after
theUtilities>Reload Edit Modes command is invoked.

9.1. An XML Primer
A very simple XML file (which also happens to be an edit mode) looks like so:

<?xml version="1.0"?>

<!DOCTYPE MODE SYSTEM "xmode.dtd">

<MODE>
<PROPS>

<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />

</PROPS>

<RULES>

<BEGIN>/*</BEGIN>
<END>*/</END>

</RULES>

</MODE>

Note that each opening tag must have a corresponding closing tag. If there is nothing
between the opening and closing tags, for example<TAG></TAG>, the shorthand notation
<TAG /> may be used. An example of this shorthand can be seen in the<PROPERTY>tags
above.

XML is case sensitive.Span or span is not the same asSPAN.

To insert a special character such as < or > literally in XML (for example, inside an attribute
value), you must write it as anentity. An entity consists of the character’s symbolic name
enclosed with “&” and “;”. The most frequently used entities are:

97

Chapter 9. Mode Definition Syntax

• < - The less-than (<) character

• > - The greater-than (>) character

• & - The ampersand (&) character

For example, the following will cause a syntax error:

<SEQ TYPE="OPERATOR">&</SEQ>

Instead, you must write:

<SEQ TYPE="OPERATOR">&</SEQ>

Now that the basics of XML have been covered, the rest of this section will cover each
construct in detail.

9.2. The Preamble and MODE tag
Each mode definition must begin with the following:

<?xml version="1.0"?>
<!DOCTYPE MODE SYSTEM "xmode.dtd">

Each mode definition must also contain exactly oneMODEtag. All other tags (PROPS, RULES)
must be placed inside theMODEtag. TheMODEtag does not have any defined attributes. Here
is an example:

<MODE>
... mode definition goes here ...

</MODE>

9.3. The PROPS Tag
ThePROPStag and thePROPERTYtags inside it are used to define mode-specific properties.
EachPROPERTYtag must have aNAMEattribute set to the property’s name, and aVALUE

attribute with the property’s value.

All buffer-local properties listed inSection 6.2may be given values in edit modes.

The following mode properties specify commenting strings:

• commentEnd - the comment end string, used by theRange Comment command.

98

Chapter 9. Mode Definition Syntax

• commentStart - the comment start string, used by theRange Comment command.

• lineComment - the line comment string, used by theLine Comment command.

When performing auto indent, a number of mode properties determine the resulting indent
level:

• The line and the one before it are scanned for brackets listed in the
indentCloseBrackets andindentOpenBrackets properties. Opening brackets in
the previous line increase indent.

If lineUpClosingBracket is set totrue , then closing brackets on the current line will
line up with the line containing the matching opening bracket. For example, in Java
modelineUpClosingBracket is set totrue , resulting in brackets being indented like
so:

{
// Code
{

// More code
}

}

If lineUpClosingBracket is set tofalse , the lineafter a closing bracket will be lined
up with the line containing the matching opening bracket. For example, in Lisp mode
lineUpClosingBracket is set tofalse , resulting in brackets being indented like so:

(foo ’a-parameter
(crazy-p)
(bar baz ()))

(print "hello world")

• If the previous line contains no opening brackets, or if thedoubleBracketIndent

property is set totrue , the previous line is checked against the regular expressions in
the indentNextLine andindentNextLines properties. If the previous line matches
the former, the indent of the current line is increased and the subsequent line is shifted
back again. If the previous line matches the latter, the indent of the current and
subsequent lines is increased.

In Java mode, for example, theindentNextLine property is set to match control
structures such as “if”, “else”, “while”, and so on.

ThedoubleBracketIndent property, if set to the default offalse , results in code
indented like so:

while(objects.hasNext())

99

Chapter 9. Mode Definition Syntax

{
Object next = objects.hasNext();
if(next instanceof Paintable)

next.paint(g);
}

On the other hand, settings this property to “true” will give the following result:

while(objects.hasNext())
{

Object next = objects.hasNext();
if(next instanceof Paintable)

next.paint(g);
}

Here is the complete<PROPS>tag for Java mode:

<PROPS>
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />
<PROPERTY NAME="lineComment" VALUE="//" />
<PROPERTY NAME="wordBreakChars" VALUE=",+-=<>/?^&*" />

<!-- Auto indent -->
<PROPERTY NAME="indentOpenBrackets" VALUE="{" />
<PROPERTY NAME="indentCloseBrackets" VALUE="}" />
<PROPERTY NAME="indentNextLine"

VALUE="\s*(((if|while)\s*\(|else\s*|else\s+if\s*\(|for\s*\(.*\))[^{;]*)" />
<!-- set this to ’true’ if you want to use GNU coding style -->
<PROPERTY NAME="doubleBracketIndent" VALUE="false" />
<PROPERTY NAME="lineUpClosingBracket" VALUE="true" />

</PROPS>

9.4. The RULES Tag
RULEStags must be placed inside theMODEtag. EachRULEStag defines aruleset. A ruleset
consists of a number ofparser rules, with each parser rule specifying how to highlight a
specific syntax token. There must be at least one ruleset in each edit mode. There can also be
more than one, with different rulesets being used to highlight different parts of a buffer (for
example, in HTML mode, one rule set highlights HTML tags, and another highlights inline
JavaScript). For information about using more than one ruleset, seeSection 9.6.

TheRULEStag supports the following attributes, all of which are optional:

100

Chapter 9. Mode Definition Syntax

• SET - the name of this ruleset. All rulesets other than the first must have a name.

• IGNORE_CASE- if set toFALSE, matches will be case sensitive. Otherwise, case will not
matter. Default isTRUE.

• NO_WORD_SEP- any non-alphanumeric characternot in this list is treated as a word
separator for the purposes of syntax highlighting.

• DEFAULT- the token type for text which doesn’t match any specific rule. Default is
NULL. SeeSection 9.15for a list of token types.

• HIGHLIGHT_DIGITS

• DIGIT_RE - see below for information about these two attributes.

Here is an exampleRULEStag:

<RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE">
... parser rules go here ...

</RULES>

9.4.1. Highlighting Numbers

If the HIGHLIGHT_DIGITS attribute is set toTRUE, jEdit will attempt to highlight numbers in
this ruleset.

Any word consisting entirely of digits (0-9) will be highlighted with theDIGIT token type.
A word that contains other letters in addition to digits will be highlighted with theDIGIT

token type only if it matches the regular expression specified in theDIGIT_RE attribute. If
this attribute is not specified, it will not be highlighted.

Here is an exampleDIGIT_RE regular expression that highlights Java-style numeric literals
(normal numbers, hexadecimals prefixed with0x , numbers suffixed with various type
indicators, and floating point literals containing an exponent):

DIGIT_RE="(0x[[:xdigit:]]+|[[:digit:]]+(e[[:digit:]]*)?)[lLdDfF]?"

Regular expression syntax is described inAppendix E.

9.4.2. Rule Ordering Requirements

You might encounter this very common pitfall when writing your own modes.

Since jEdit checks buffer text against parser rules in the order they appear in the ruleset,
more specific rules must be placed before generalized ones, otherwise the generalized rules
will catch everything.

101

Chapter 9. Mode Definition Syntax

This is best demonstrated with an example. The following is incorrect rule ordering:

<BEGIN>[</BEGIN>
<END>]</END>

<BEGIN>[!</BEGIN>
<END>]</END>

If you write the above in a rule set, any occurrence of “[” (even things like “[!DEFINE”, etc)
will be highlighted using the first rule, because it will be the first to match. This is most
likely not the intended behavior.

The problem can be solved by placing the more specific rule before the general one:

<BEGIN>[!</BEGIN>
<END>]</END>

<BEGIN>[</BEGIN>
<END>]</END>

Now, if the buffer contains the text “[!SPECIAL]”, the rules will be checked in order, and
the first rule will be the first to match. However, if you write “[FOO]”, it will be highlighted
using the second rule, which is exactly what you would expect.

9.4.3. Per-Ruleset Properties

ThePROPStag (described inSection 9.3) can also be placed inside theRULEStag to define
ruleset-specific properties. The following properties can be set on a per-ruleset basis:

• commentEnd - the comment end string.

• commentStart - the comment start string.

• lineComment - the line comment string.

102

Chapter 9. Mode Definition Syntax

This allows different parts of a file to have different comment strings (in the case of HTML,
for example, in HTML text and inline JavaScript). For information about the commenting
commands, seeSection 5.3.

9.5. The TERMINATE Tag
TheTERMINATErule, which must be placed inside aRULEStag, specifies that parsing should
stop after the specified number of characters have been read from a line. The number of
characters to terminate after should be specified with theAT_CHARattribute. Here is an
example:

<TERMINATE AT_CHAR="1" />

This rule is used in Patch mode, for example, because only the first character of each line
affects highlighting.

9.6. The SPAN Tag
TheSPANrule, which must be placed inside aRULEStag, highlights text between a start and
end string. The start and end strings are specified inside child elements of theSPANtag. The
following attributes are supported:

• TYPE- The token type to highlight the span with. SeeSection 9.15for a list of token
types.

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a line.

• AT_WHITESPACE_END- If set toTRUE, the span will only be highlighted if the start
sequence is the first non-whitespace text in the line.

• AT_WORD_START- If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a word.

• DELEGATE- text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate to a
ruleset defined in another mode, specify a name of the formmode:: ruleset . Note that
the first (unnamed) ruleset in a mode is called “MAIN”.

• EXCLUDE_MATCH- If set toTRUE, the start and end sequences will not be highlighted,
only the text between them will.

103

Chapter 9. Mode Definition Syntax

• NO_LINE_BREAK- If set toTRUE, the span will not cross line breaks.

• NO_WORD_BREAK- If set toTRUE, the span will not cross word breaks.

Here is aSPANthat highlights Java string literals, which cannot include line breaks:

<BEGIN>"</BEGIN>
<END>"</END>

Here is aSPANthat highlights Java documentation comments by delegating to the
“JAVADOC” ruleset defined elsewhere in the current mode:

<BEGIN>/**</BEGIN>
<END>*/</END>

Here is aSPANthat highlights HTML cascading stylesheets inside<STYLE> tags by
delegating to the main ruleset in the CSS edit mode:

<BEGIN><style></BEGIN>
<END></style></END>

9.7. The SPAN_REGEXP Tag
TheSPAN_REGEXPrule is similar to theSPANrule except the start sequence is taken to be a
regular expression. In addition to the attributes supported by theSPANtag, theHASH_CHAR

attribute must be specified. It must be set to the first character that the regular expression
matches. Note that this disallows regular expressions which can match more than one
character at the start position.

Regular expression syntax is described inAppendix E.

Here is aSPAN_REGEXPrule that highlights constructs placed between<#ftl and>, as long
as the<#ftl is followed by a word break:

<SPAN_REGEXP TYPE="KEYWORD1" HASH_CHAR="<" DELEGATE="EXPRESSION">
<BEGIN><#ftl\></BEGIN>
<END>></END>

</SPAN_REGEXP>

104

Chapter 9. Mode Definition Syntax

9.8. The EOL_SPAN Tag
An EOL_SPANis similar to aSPANexcept that highlighting stops at the end of the line, and
no end sequence needs to be specified. The text to match is specified between the opening
and closingEOL_SPANtags. The following attributes are supported:

• TYPE- The token type to highlight the span with. SeeSection 9.15for a list of token
types.

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a line.

• AT_WHITESPACE_END- If set toTRUE, the span will only be highlighted if the sequence
is the first non-whitespace text in the line.

• AT_WORD_START- If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a word.

• DELEGATE- text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate to a
ruleset defined in another mode, specify a name of the formmode:: ruleset . Note that
the first (unnamed) ruleset in a mode is called “MAIN”.

• EXCLUDE_MATCH- If set toTRUE, the start and end sequences will not be highlighted,
only the text between them will.

Here is anEOL_SPANthat highlights C++ comments:

<EOL_SPAN TYPE="COMMENT1">//</EOL_SPAN>

9.9. The EOL_SPAN_REGEXP Tag
TheEOL_SPAN_REGEXPrule is similar to theEOL_SPANrule except the match sequence is
taken to be a regular expression. In addition to the attributes supported by theEOL_SPANtag,
theHASH_CHARattribute must be specified. It must be set to the first character that the
regular expression matches. Note that this disallows regular expressions which can match
more than one character at the start position.

Regular expression syntax is described inAppendix E.

105

Chapter 9. Mode Definition Syntax

9.10. The MARK_PREVIOUS Tag
TheMARK_PREVIOUSrule, which must be placed inside aRULEStag, highlights from the end
of the previous syntax token to the matched text. The text to match is specified between
opening and closingMARK_PREVIOUStags. The following attributes are supported:

• TYPE- The token type to highlight the text with. SeeSection 9.15for a list of token
types.

• AT_LINE_START - If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a line.

• AT_WHITESPACE_END- If set toTRUE, the sequence will only be highlighted if it is the
first non-whitespace text in the line.

• AT_WORD_START- If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a word.

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text before
it will.

Here is a rule that highlights labels in Java mode (for example, “XXX:”):

<MARK_PREVIOUS AT_WHITESPACE_END="TRUE"
EXCLUDE_MATCH="TRUE">:</MARK_PREVIOUS>

9.11. The MARK_FOLLOWING Tag
TheMARK_FOLLOWINGrule, which must be placed inside aRULEStag, highlights from the
start of the match to the next syntax token. The text to match is specified between opening
and closingMARK_FOLLOWINGtags. The following attributes are supported:

• TYPE- The token type to highlight the text with. SeeSection 9.15for a list of token
types.

• AT_LINE_START - If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a line.

• AT_WHITESPACE_END- If set toTRUE, the sequence will only be highlighted if it is the
first non-whitespace text in the line.

• AT_WORD_START- If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a word.

106

Chapter 9. Mode Definition Syntax

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text after it
will.

Here is a rule that highlights variables in Unix shell scripts (“$CLASSPATH”, “$IFS”, etc):

<MARK_FOLLOWING TYPE="KEYWORD2">$</MARK_FOLLOWING>

9.12. The SEQ Tag
TheSEQrule, which must be placed inside aRULEStag, highlights fixed sequences of text.
The text to highlight is specified between opening and closingSEQtags. The following
attributes are supported:

• TYPE- the token type to highlight the sequence with. SeeSection 9.15for a list of token
types.

• AT_LINE_START - If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a line.

• AT_WHITESPACE_END- If set toTRUE, the sequence will only be highlighted if it is the
first non-whitespace text in the line.

• AT_WORD_START- If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a word.

• DELEGATE- if this attribute is specified, all text after the sequence will be highlighted
using this ruleset. To delegate to a ruleset defined in the current mode, just specify its
name. To delegate to a ruleset defined in another mode, specify a name of the form
mode:: ruleset . Note that the first (unnamed) ruleset in a mode is called “MAIN”.

The following rules highlight a few Java operators:

<SEQ TYPE="OPERATOR">+</SEQ>
<SEQ TYPE="OPERATOR">-</SEQ>
<SEQ TYPE="OPERATOR">*</SEQ>
<SEQ TYPE="OPERATOR">/</SEQ>

9.13. The SEQ_REGEXP Tag
TheSEQ_REGEXPrule is similar to theSEQrule except the match sequence is taken to be a
regular expression. In addition to the attributes supported by theSEQtag, theHASH_CHAR

attribute must be specified. It must be set to the first character that the regular expression

107

Chapter 9. Mode Definition Syntax

matches. Note that this disallows regular expressions which can match more than one
character at the start position.

Here is an example of aSEQ_REGEXPrule that highlights Perl’s matcher constructions such
asm/(.+):(\d+):(.+)/ :

<SEQ_REGEXP TYPE="MARKUP"
HASH_CHAR="m"
AT_WORD_START="TRUE"

>m([[:punct:]])(?:.*?[^\\])*?\1[sgiexom]*</SEQ_REGEXP>

Regular expression syntax is described inAppendix E.

9.14. The KEYWORDS Tag
TheKEYWORDStag, which must be placed inside aRULEStag and can only appear once,
specifies a list of keywords to highlight. Keywords are similar toSEQs, except thatSEQs
match anywhere in the text, whereas keywords only match whole words. Words are
considered to be runs of text separated by non-alphanumeric characters.

TheKEYWORDStag does not define any attributes.

Each child element of theKEYWORDStag is an element whose name is a token type, and
whose content is the keyword to highlight. For example, the following rule highlights the
most common Java keywords:

<KEYWORDS>
<KEYWORD1>if</KEYWORD1>
<KEYWORD1>else</KEYWORD1>
<KEYWORD3>int</KEYWORD3>
<KEYWORD3>void</KEYWORD3>

</KEYWORDS>

9.15. Token Types
Parser rules can highlight tokens using any of the following token types:

• NULL - no special highlighting is performed on tokens of typeNULL

• COMMENT1

• COMMENT2

108

Chapter 9. Mode Definition Syntax

• FUNCTION

• INVALID

• KEYWORD1

• KEYWORD2

• KEYWORD3

• LABEL

• LITERAL1

• LITERAL2

• MARKUP

• OPERATOR

109

Chapter 9. Mode Definition Syntax

110

Chapter 10. Installing Edit Modes
jEdit looks for edit modes in two locations; themodes subdirectory of the jEdit settings
directory, and themodes subdirectory of the jEdit install directory. The location of the
settings directory is system-specific; seeSection 6.4.

Each mode directory contains acatalog file. All edit modes contained in that directory
must be listed in the catalog, otherwise they will not be available to jEdit.

Catalogs, like modes themselves, are written in XML. They consist of a singleMODEStag,
with a number ofMODEtags inside. Each mode tag associates a mode name with an XML
file, and specifies the file name and first line pattern for the mode. A sample mode catalog
looks as follows:

<?xml version="1.0"?>
<!DOCTYPE CATALOG SYSTEM "catalog.dtd">

<MODES>
<MODE NAME="shellscript" FILE="shellscript.xml"

FILE_NAME_GLOB="*.sh"
FIRST_LINE_GLOB="#!/*sh*" />

</MODES>

In the above example, a mode named “shellscript” is defined, and is used for files whose
names end with.sh , or whose first line starts with “#!/” and contains “sh”.

TheMODEtag supports the following attributes:

• NAME- the name of the edit mode, as it will appear in theBuffer Options dialog box,
the status bar, and so on.

• FILE - the name of the XML file containing the mode definition.

• FILE_NAME_GLOB- files whose names match this glob pattern will be opened in this
edit mode.

• FIRST_LINE_GLOB - files whose first line matches this glob pattern will be opened in
this edit mode.

Glob pattern syntax is described inAppendix D.

Tip: If an edit mode in the user-specific catalog has the same name as an edit mode in
the system catalog, the version in the user-specific catalog will override the system
default.

111

Chapter 10. Installing Edit Modes

112

Chapter 11. Updating Edit Modes for
jEdit 4.1

In jEdit 4.1, the mode file grammar has been cleaned up somewhat. As a result, some edit
modes written for jEdit 4.0 and earlier need to be updated:

• Defining<WHITESPACE>rules is no longer necessary and doing so will print warnings
to the activity logs.

• The<KEYWORDS>tag no longer accepts anIGNORE_CASEattribute. Set the
IGNORE_CASEattribute of the<RULES>tag instead.

• The<END>tag of therule used to be optional, in which case any occurrence of
the start string would cause the remainder of the buffer to be highlighted with the span.
In jEdit 4.1, the<END>tag can no longer be omitted, however a<SEQ>tag with a
DELEGATEattribute can be used to achieve the same effect as endless span.

• Defining<SEQ TYPE="NULL"> rules for word separators is no longer necessary. Now,
any non-alphanumeric character not appearing in a keyword definition or the ruleset’s
NO_WORD_SEPattribute is considered a word separator.

113

Chapter 11. Updating Edit Modes for jEdit 4.1

114

III. Writing Macros
This part of the user’s guide covers writing macros for jEdit.

First, we will tell you a little about BeanShell, jEdit’s macro scripting language. Next, we
will walk through a few simple macros. We then present and analyze a dialog-based macro
to illustrate additional macro writing techniques. Finally, we discuss several tips and
techniques for writing and debugging macros.

This part of the user’s guide was written by John Gellene <jgellene@nyc.rr.com >.

Chapter 12. Macro Basics

12.1. Introducing BeanShell
Here is how BeanShell’s author, Pat Niemeyer, describes his creation:

“BeanShell is a small, free, embeddable, Java source interpreter with object scripting language
features, written in Java. BeanShell executes standard Java statements and expressions, in
addition to obvious scripting commands and syntax. BeanShell supports scripted objects as
simple method closures like those in Perl and JavaScript.”

You do not have to know anything about Java to begin writing your own jEdit macros. But if
you know how to program in Java, you already know how to write BeanShell scripts. The
major strength of using BeanShell with a program written in Java is that it allows the user to
customize the program’s behavior using the same interfaces designed and used by the
program itself. BeanShell can turn a well-designed application into a powerful, extensible
toolkit.

This guide focuses on using BeanShell in macros. If you are interested in learning more
about BeanShell generally, consult theBeanShell web site . Information on how to run
and organize macros, whether included with the jEdit installation or written by you, can be
found inChapter 7.

12.2. Single Execution Macros
As noted inSection 7.3, you can save a BeanShell script of any length as a text file with the
.bsh extension and run it from theMacros menu. There are three other ways jEdit lets you
use BeanShell quickly, without saving a script to storage, on a “one time only” basis. You
will find them in theUtilities menu.

Utilities>BeanShell>Evaluate BeanShell Expression displays a text input dialog that
asks you to type a single line of BeanShell commands. You can type more than one
BeanShell statement so long as each of them ends with a semicolon. If BeanShell
successfully interprets your input, a message box will appear with the return value of the last
statement.

Utilities>BeanShell>Evaluate For Selected Lines displays a text input dialog that asks
you to type a single line of BeanShell commands. The commands are evaluated for each line
of the selection. In addition to the standard set of variables described inSection 12.4, this
command defines the following:

117

Chapter 12. Macro Basics

• line - the line number, from the start of the buffer. The first line is numbered 0.

• index - the line number, from the start of the selection. The first line is numbered 0.

• text - the text of the line.

Try typing an expression like(line + 1) + ": " + text in theEvaluate For
Selected Lines dialog box. This will add a line number to each selected line beginning
with the number1.

The BeanShell expression you enter will be evaluated and substituted in place of the entire
text of a selected line. If you want to leave the line’s current text as an element of the
modified line, you must include the defined variabletext as part of the BeanShell
expression that you enter.

Utilities>BeanShell>Evaluate Selection evaluates the selected text as a BeanShell script
and replaces it with the return value of the statement.

UsingEvaluate Selection is an easy way to do arithmetic calculations inline while editing.
BeanShell uses numbers and arithmetic operations in an ordinary, intuitive way.

Try typing an expression like(3745*856)+74 in the buffer, select it, and choose
Utilities>BeanShell>Evaluate Selection. The selected text will be replaced by the
answer,3205794 .

Console plugin

You can also do the same thing using the BeanShell interpreter option of the Console
plugin.

12.3. The Mandatory First Example

Macros.message(view, "Hello world!");

Running this one line script causes jEdit to display a message box (more precisely, a
JOptionPane object) with the traditional beginner’s message and anOK button. Let’s see
what is happening here.

118

Chapter 12. Macro Basics

This statement calls a static method (or function) namedmessage in jEdit’s Macros class. If
you don’t know anything about classes or static methods or Java (or C++, which employs
the same concept), you will need to gain some understanding of a few terms. Obviously this
is not the place for academic precision, but if you are entirely new to object-oriented
programming, here are a few skeleton ideas to help you with BeanShell.

• An objectis a collection of data that can be initialized, accessed and manipulated in
certain defined ways.

• A classis a specification of what data an object contains and what methods can be
used to work with the data. A Java application consists of one or more classes (in the
case of jEdit ,over 600 classes) written by the programmer that defines the application’s
behavior. A BeanShell macro uses these classes, along with built-in classes that are
supplied with the Java platform, to define its own behavior.

• A subclass(or child class) is a class which uses (or “inherits”) the data and methods of
its parent class along with additions or modifications that alter the subclass’s behavior.
Classes are typically organized in hierarchies of parent and child classes to organize
program code, to define common behavior in shared parent class code, and to specify
the types of similar behavior that child classes will perform in their own specific ways.

• A method(or function) is a procedure that works with data in a particular object, other
data (including other objects) supplied asparameters, or both. Methods typically are
applied to a particular object which is aninstanceof the class to which the method
belongs.

• A static methoddiffers from other methods in that it does not deal with the data in a
particular object but is included within a class for the sake of convenience.

Java has a rich set of classes defined as part of the Java platform. Like all Java applications,
jEdit is organized as a set of classes that are themselves derived from the Java platform’s
classes. We will refer toJava classesandjEdit classesto make this distinction. Some of
jEdit’s classes (such as those dealing with regular expressions and XML) are derived from
or make use of classes in other open-source Java packages. Except for BeanShell itself, we
won’t be discussing them in this guide.

In our one line script, the static methodMacros.message() has two parameters because
that is the way the method is defined in theMacros class. You must specify both parameters
when you call the function. The first parameter,view , is a a variable naming the current,
activeView object. Information about pre-defined variables can be found inSection 12.4.

The second parameter, which appears to be quoted text, is astring literal - a sequence of
characters of fixed length and content. Behind the scenes, BeanShell and Java take this
string literal and use it to create aString object. Normally, if you want to create an object

119

Chapter 12. Macro Basics

in Java or BeanShell, you must construct the object using thenew keyword and aconstructor
method that is part of the object’s class. We’ll show an example of that later. However, both
Java and BeanShell let you use a string literal anytime a method’s parameter calls for a
String .

If you are a Java programmer, you might wonder about a few things missing from this one
line program. There is no class definition, for example. You can think of a BeanShell script
as an implicit definition of amain() method in an anonymous class. That is in fact how
BeanShell is implemented; the class is derived from a BeanShell class calledXThis . If you
don’t find that helpful, just think of a script as one or more blocks of procedural statements
conforming to Java syntax rules. You will also get along fine (for the most part) with C or
C++ syntax if you leave out anything to do with pointers or memory management - Java and
BeanShell do not have pointers and deal with memory management automatically.

Another missing item from a Java perspective is apackage statement. In Java, such a
statement is used to bundle together a number of files so that their classes become visible to
one another. Packages are not part of BeanShell, and you don’t need to know anything about
them to write BeanShell macros.

Finally, there are noimport statements in this script. In Java, animport statement makes
public classes from other packages visible within the file in which the statement occurs
without having to specify a fully qualified class name. Without an import statement or a
fully qualified name, Java cannot identify most classes using a single name as an identifier.

jEdit automatically imports a number of commonly-used packages into the namespace of
every BeanShell script. Because of this, the script output of a recorded macro does not
containimport statements. For the same reason, most BeanShell scripts you write will not
requireimport statements.

Java requiresimport statement to be located at the beginning of a source file. BeanShell
allows you to placeimport statements anywhere in a script, including inside a block of
statements. Theimport statement will cover all names used following the statement in the
enclosing block.

If you try to use a class that is not imported without its fully-qualified name, the BeanShell
interpreter will complain with an error message relating to the offending line of code.

120

Chapter 12. Macro Basics

Here is the full list of packages automatically imported by jEdit:

java.awt
java.awt.event
java.net
java.util
java.io
java.lang
javax.swing
javax.swing.event
org.gjt.sp.jedit
org.gjt.sp.jedit.browser
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.print
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

12.4. Predefined Variables in BeanShell
The following variables are always available for use in BeanShell scripts:

• buffer - a Buffer object represents the contents of an open text file. The variable
buffer is predefined as the current, visible buffer being edited.

• view - A View represents a top-level window, extending Java’sJFrame class, that
contains the various visible components of the program, including the text area, menu
bar, toolbar, and any docked windows. The variableview is defined as the current,
activeView object.

This variable has the same value as calling:

jEdit.getActiveView()

121

Chapter 12. Macro Basics

• editPane - anEditPane object contains a text area and buffer switcher. A view can be
split to display multiple buffers, each in its own edit pane. Among other things, the
EditPane class contains methods for selecting the buffer to edit.

Most of the time your macros will manipulate thebuffer or thetextArea . Sometimes
you will need to useview as a parameter in a method call. You will probably only need
to useeditPane if your macros work with split views.

This variable has the same value as calling:

view.getEditPane()

• textArea - a JEditTextArea is the visible component that displays the file being
edited. It is derived from theJComponent class. The variabletextArea represents the
currentJEditTextArea object, which in turn displays the current buffer.

This variable has the same value as calling:

editPane.getTextArea()

• scriptPath - set to the full path of the script currently being executed.

Note that these variables are set at the beginning of macro execution. If the macro switches
views, buffers or edit panes, the variables will be out of date. In that case, you can use the
method calls equivalent to the values of the variables.

12.5. Helpful Methods in the Macros Class
Includingmessage() , there are five static methods in theMacros class that allow you to
converse easily with your macros. They all encapsulate calls to methods of the Java
platform’sJOptionPane class.

• public static void message (Component comp, String message);

• public static void error (Component comp, String message);

• public static String input (Component comp, String prompt);

• public static String input (Component comp, String prompt , String

defaultValue);

• public static int confirm (Component comp, String prompt , int

buttons);

122

Chapter 12. Macro Basics

The format of these fourdeclarationsprovides a concise reference to the way in which the
methods may be used. The keywordpublic means that the method can be used outside the
Macros class. The alternatives areprivate andprotected . For purposes of BeanShell, you
just have to know that BeanShell can only use public methods of other Java classes. The
keywordstatic we have already discussed. It means that the method does not operate on a
particular object. You call a static function using the name of the class (likeMacros) rather
than the name of a particular object (likeview). The third word is the type of the value
returned by the method. The keywordvoid is Java’s way of saying the the method does not
have a return value.

Theerror() method works just likemessage() but displays an error icon in the message
box. Theinput() method furnishes a text field for input, anOK button and aCancel
button. IfCancel is pressed, the method returnsnull . If OK is pressed, aString

containing the contents of the text field is returned. Note that there are two forms of the
input() method; the first form with two parameters displays an empty input field, the other
forms lets you specify an initial, default input value.

For those without Java experience, it is important to know thatnull is not the same as an
empty, “zero-length”String . It is Java’s way of saying that there is no object associated
with this variable. Whenever you seek to use a return value frominput() in your macro,
you should test it to see if it isnull . In most cases, you will want to exit gracefully from the
script with areturn statement, because the presence of a null value for an input variable
usually means that the user intended to cancel macro execution. BeanShell will complain if
you call any methods on anull object.

Theconfirm() method in theMacros class is a little more complex. Thebuttons

parameter has anint type, and the usual way to supply a value is to use one of the
predefined values taken from Java’sJOptionPane class. You can choose among
JOptionPane.YES_NO_OPTION , JOptionPane.YES_NO_CANCEL_OPTION, or
JOptionPane.OK_CANCEL_OPTION . The return value of the method is also anint , and
should be tested against the value of other predefined constants:JOptionPane.YES_OPTION ,
JOptionPane.NO_OPTION , JOptionPane.OK_OPTION or JOptionPane.CANCEL_OPTION .

We’ve looked at usingMacros.message() . To use the other methods, you would write
something like the following:

Macros.error(view, "Goodbye, cruel world!");

String result = Macros.input(view, "Type something here.");

String result = Macros.input(view, "When were you born?",
"I don’t remember, I was very young at the time");

123

Chapter 12. Macro Basics

int result = Macros.confirm("Do you really want to learn"
+ " about BeanShell?",JOptionPane.YES_NO_OPTION);

In the last three examples, placing the wordString or int before the variable nameresult

tells BeanShell that the variable refers to an integer or aString object, even before a
particular value is assigned to the variable. In BeanShell, thisdeclarationof thetypeof
result is not necessary; BeanShell can figure it out when the macro runs. This can be
helpful if you are not comfortable with specifying types and classes; just use your variables
and let BeanShell worry about it.

12.6. BeanShell Dynamic Typing
Without an explicittype declarationlike String result , BeanShell variables can change
their type at runtime depending on the object or data assigned to it. This dynamic typing
allows you to write code like this (if you really wanted to):

// note: no type declaration
result = Macros.input(view, “Type something here.”);

// this is our predefined, current View
result = view;

// this is an “int” (for integer);
// in Java and BeanShell, int is one of a small number
// of “primitive” data types which are not classes
result = 14;

However, if you first declaredresult to be typeString and and then tried these
reassignments, BeanShell would complain. While avoiding explicit type declaration makes
writing macro code simpler, using them can act as a check to make sure you are not using
the wrong variable type of object at a later point in your script. It also makes it easier (if you
are so inclined) to take a BeanShell “prototype” and incorporate it in a Java program.

One last thing before we bury our first macro. The double slashes in the examples just above
signify that everything following them on that line should be ignored by BeanShell as a
comment. As in Java and C/C++, you can also embed comments in your BeanShell code by
setting them off with pairs of/* */ , as in the following example:

/* This is a long comment that covers several lines
and will be totally ignored by BeanShell regardless of how
many lines it covers */

124

Chapter 12. Macro Basics

12.7. Now For Something Useful
Here is a macro that inserts the path of the current buffer in the text:

String newText = buffer.getPath();
textArea.setSelectedText(newText);

Unlike in our first macro example, here we are calling class methods on particular objects.
First, we callgetPath() on the currentBuffer object to get the full path of the text file
currently being edited. Next, we callsetSelectedText() on the current text display
component, specifying the text to be inserted as a parameter.

In precise terms, thesetSelectedText() method substitutes the contents of theString

parameter for a range of selected text that includes the current caret position. If no text is
selected at the caret position, the effect of this operation is simply to insert the new text at
that position.

Here’s a few alternatives to the full file path that you could use to insert various useful
things:

// the file name (without full path)
String newText = buffer.getName();

// today’s date
import java.text.DateFormat;

String newText = DateFormat.getDateInstance()
.format(new Date());

// a line count for the current buffer
String newText = "This file contains "

+ textArea.getLineCount() + " lines.";

Here are brief comments on each:

• In the first, the call togetName() invokes another method of theBuffer class.

• The syntax of the second example chains the results of several methods. You could
write it this way:

import java.text.DateFormat;
Date d = new Date();
DateFormat df = DateFormat.getDateInstance();
String result = df.format(d);

Taking the pieces in order:

125

Chapter 12. Macro Basics

• A JavaDate object is created using thenew keyword. The empty parenthesis after
Date signify a call on theconstructor methodof Date having no parameters;
here, aDate is created representing the current date and time.

• DateFormat.getDateInstance() is a static method that creates and returns a
DateFormat object. As the name implies,DateFormat is a Java class that takes
Date objects and produces readable text. The methodgetDateInstance()

returns aDateFormat object that parses and formats dates. It will use the default
localeor text format specified in the user’s Java installation.

• Finally, DateFormat.format() is called on the newDateFormat object using
theDate object as a parameter. The result is aString containing the date in the
default locale.

• Note that theDate class is contained in thejava.util package, so an explicit
import statement is not required. However,DateFormat is part of thejava.text

package, which is not automatically imported, so an explicitimport statement
must be used.

• The third example shows three items of note:

• getLineCount() is a method in jEdit’sJEditTextArea class. It returns anint

representing the number of lines in the current text buffer. We call it ontextArea ,
the pre-defined, currentJEditTextArea object.

• The use of the+ operator (which can be chained, as here) appends objects and
string literals to return a single, concatenatedString .

126

Chapter 13. A Dialog-Based Macro
Now we will look at a more complicated macro which will demonstrate some useful
techniques and BeanShell features.

13.1. Use of the Macro
Our new example adds prefix and suffix text to a series of selected lines. This macro can be
used to reduce typing for a series of text items that must be preceded and following by
identical text. In Java, for example, if we are interested in making a series of calls to
StringBuffer.append() to construct a lengthy, formatted string, we could type the
parameter for each call on successive lines as follows:

profileString_1
secretThing.toString()
name
address
addressSupp
city
“state/province”
country

Our macro would ask for input for the common “prefix” and “suffix” to be applied to each
line; in this case, the prefix isourStringBuffer.append(and the suffix is); . After
selecting these lines and running the macro, the resulting text would look like this:

ourStringBuffer.append(profileString_1);
ourStringBuffer.append(secretThing.toString());
ourStringBuffer.append(name);
ourStringBuffer.append(address);
ourStringBuffer.append(addressSupp);
ourStringBuffer.append(city);
ourStringBuffer.append(“state/province”);
ourStringBuffer.append(country);

13.2. Listing of the Macro
The macro script follows. You can find it in the jEdit distribution in theText subdirectory of
themacros directory. You can also try it out by invokingMacros>Text>Add Prefix and
Suffix.

127

Chapter 13. A Dialog-Based Macro

// beginning of Add_Prefix_and_Suffix.bsh

// import statement (see Section 13.3.1)
import javax.swing.border.*;

// main routine
void prefixSuffixDialog()
{

// create dialog object (see Section 13.3.2)
title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
content.setPreferredSize(new Dimension(320, 160));
dialog.setContentPane(content);

// add the text fields (see Section 13.3.3)
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField(“macro.add-prefix”);
prefixLabel = new JLabel(“Prefix to add:”);
suffixField = new HistoryTextField(“macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, “Center”);

// add a panel containing the buttons (see Section 13.3.4)
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton(“OK”);
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

// register this method as an ActionListener for
// the buttons and text fields (see Section 13.3.5)
ok.addActionListener(this);

128

Chapter 13. A Dialog-Based Macro

cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

// locate the dialog in the center of the
// editing pane and make it visible (see Section 13.3.6)
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

// this method will be called when a button is clicked
// or when ENTER is pressed (see Section 13.3.7)
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();
}
dialog.dispose();

}

// this is where the work gets done to insert
// the prefix and suffix (see Section 13.3.8)
void processText()
{

prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)

return;
prefixField.addCurrentToHistory();
suffixField.addCurrentToHistory();

// text manipulation begins here using calls
// to jEdit methods (see Section 13.3.9)
buffer.beginCompoundEdit();
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{

offsetBOL = textArea.getLineStartOffset(
selectedLines[i]);

textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

129

Chapter 13. A Dialog-Based Macro

}
buffer.endCompoundEdit();

}
}

// this single line of code is the script’s main routine
// (see Section 13.3.10)
prefixSuffixDialog();

// end of Add_Prefix_and_Suffix.bsh

13.3. Analysis of the Macro

13.3.1. Import Statements

// import statement
import javax.swing.border.*;

This macro makes use of classes in thejavax.swing.border package, which is not
automatically imported. As we mentioned previously (seeSection 12.3), jEdit’s
implementation of BeanShell causes a number of classes to be automatically imported.
Classes that are not automatically imported must be identified by a full qualified name or be
the subject of animport statement.

13.3.2. Create the Dialog

// create dialog object
title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
dialog.setContentPane(content);

To get input for the macro, we need a dialog that provides for input of the prefix and suffix
strings, anOK button to perform text insertion, and aCancel button in case we change our
mind. We have decided to make the dialog window non-modal. This will allow us to move
around in the text buffer to find things we may need (including text to cut and paste) while
the macro is running and the dialog is visible.

130

Chapter 13. A Dialog-Based Macro

The Java object we need is aJDialog object from the Swing package. To construct one, we
use thenew keyword and call aconstructorfunction. The constructor we use takes three
parameters: the owner of the new dialog, the title to be displayed in the dialog frame, and a
boolean parameter (true or false) that specifies whether the dialog will be modal or
non-modal. We define the variabletitle using a string literal, then use it immediately in the
JDialog constructor.

A JDialog object is a window containing a single object called acontent pane. The content
pane in turn contains the various visible components of the dialog. AJDialog creates an
empty content pane for itself as during its construction. However, to control the dialog’s
appearance as much as possible, we will separately create our own content pane and attach it
to theJDialog . We do this by creating aJPanel object. AJPanel is a lightweight container
for other components that can be set to a given size and color. It also contains alayout
scheme for arranging the size and position of its components. Here we are constructing a
JPanel as a content pane with aBorderLayout . We put aEmptyBorder inside it to serve as
a margin between the edge of the window and the components inside. We then attach the
JPanel as the dialog’s content pane, replacing the dialog’s home-grown version.

A BorderLayout is one of the simpler layout schemes available for container objects like
JPanel . A BorderLayout divides the container into five sections: “North”, “South”, “East”,
“West” and “Center”. Components are added to the layout using the container’sadd method,
specifying the component to be added and the section to which it is assigned. Building a
component like our dialog window involves building a set of nested containers and
specifying the location of each of their member components. We have taken the first step by
creating aJPanel as the dialog’s content pane.

13.3.3. Create the Text Fields

// add the text fields
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel(“Prefix to add”:);
suffixField = new HistoryTextField(“macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, “Center”);

Next we shall create a smaller panel containing two fields for entering the prefix and suffix
text and two labels identifying the input fields.

131

Chapter 13. A Dialog-Based Macro

For the text fields, we will use jEdit’sHistoryTextField class. It is derived from the Java
Swing classJTextField . This class offers the enhancement of a stored list of prior values
used as text input. When the component has input focus, the up and down keys scroll
through the prior values for the variable.

To create theHistoryTextField objects we use a constructor method that takes a single
parameter: the name of the tag under which history values will be stored. Here we choose
names that are not likely to conflict with existing jEdit history items.

The labels that accompany the text fields areJLabel objects from the Java Swing package.
The constructor we use for both labels takes the label text as a singleString parameter.

We wish to arrange these four components from top to bottom, one after the other. To
achieve that, we use aJPanel container object namedfieldPanel that will be nested inside
the dialog’s content pane that we have already created. In the constructor forfieldPanel ,
we assign a newGridLayout with the indicated parameters: four rows, one column, zero
spacing between columns (a meaningless element of a grid with only one column, but
nevertheless a required parameter) and spacing of six pixels between rows. The spacing
between rows spreads out the four “grid” elements. After the components, the panel and the
layout are specified, the components are added tofieldPanel top to bottom, one “grid cell”
at a time. Finally, the completefieldPanel is added to the dialog’s content pane to occupy
the “Center” section of the content pane.

13.3.4. Create the Buttons

// add the buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton(“OK”);
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

To create the dialog’s buttons, we follow repeat the “nested container” pattern we used in
creating the text fields. First, we create a new, nested panel. This time we use aBoxLayout

132

Chapter 13. A Dialog-Based Macro

that places components either in a single row or column, depending on the parameter passed
to its constructor. This layout object is more flexible than aGridLayout in that variable
spacing between elements can be specified easily. We put anEmptyBorder in the new panel
to set margins for placing the buttons. Then we create the buttons, using aJButton

constructor that specifies the button text. After setting the size of theOK button to equal the
size of theCancel button, we designate theOK button as the default button in the dialog.
This causes theOK button to be outlined when the dialog if first displayed. Finally, we place
the buttons side by side with a 6 pixel gap between them (for aesthetic reasons), and place
the completedbuttonPanel in the “South” section of the dialog’s content pane.

13.3.5. Register the Action Listeners

// register this method as an ActionListener for
// the buttons and text fields
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

In order to specify the action to be taken upon clicking a button or pressing theEnter key,
we must register anActionListener for each of the four active components of the dialog -
the twoHistoryTextField components and the two buttons. In Java, anActionListener

is aninterface- an abstract specification for a derived class to implement. The
ActionListener interface contains a single method to be implemented:

public void actionPerformed (ActionEvent e);

BeanShell does not permit a script to create derived classes. However, BeanShell offers a
useful substitute: a method can be used as a scripted object that can include nested methods
implementing a number of Java interfaces. The methodprefixSuffixDialog() that we
are writing can thus be treated as anActionListener object. To accomplish this, we call
addActionListener() on each of the four components specifyingthis as the
ActionListener . We still need to implement the interface. We will do that shortly.

13.3.6. Make the Dialog Visible

// locate the dialog in the center of the

133

Chapter 13. A Dialog-Based Macro

// editing pane and make it visible
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

Here we do three things. First, we activate all the layout routines we have established by
calling thepack() method for the dialog as the top-level window. Next we center the
dialog’s position in the active jEditview by callingsetLocationRelativeTo() on the
dialog. We also call thesetDefaultCloseOperation() function to specify that the dialog
box should be immediately disposed if the user clicks the close box. Finally, we activate the
dialog by callingsetVisible() with the state parameter set totrue .

At this point we have a decent looking dialog window that doesn’t do anything. Without
more code, it will not respond to user input and will not accomplish any text manipulation.
The remainder of the script deals with these two requirements.

13.3.7. The Action Listener

// this method will be called when a button is clicked
// or when ENTER is pressed
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();
}
dialog.dispose();

}

The methodactionPerformed() nested insideprefixSuffixDialog() implements the
implicit ActionListener interface. It looks at the source of theActionEvent , determined
by a call togetSource() . What we do with this return value is straightforward: if the source
is not theCancel button, we call theprocessText() method to insert the prefix and suffix
text. Then the dialog is closed by calling itsdispose() method.

The ability to implement interfaces likeActionListener inside a BeanShell script is one of
the more powerful features of the BeanShell package. With anActionListener interface,
which has only a single method, implementation is simple. When using other interfaces with
multiple methods, however, there are some details to deal with that will vary depending on
the version of the Java platform that you are running. These techniques are discussed in the
next chapter; seeSection 14.4.3.

134

Chapter 13. A Dialog-Based Macro

13.3.8. Get the User’s Input

// this is where the work gets done to insert
// the prefix and suffix
void processText()
{

prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)

return;
prefixField.addCurrentToHistory();
suffixField.addCurrentToHistory();

The methodprocessText() does the work of our macro. First we obtain the input from the
two text fields with a call to theirgetText() methods. If they are both empty, there is
nothing to do, so the method returns. If there is input, any text in the field is added to that
field’s stored history list by callingaddCurrentToHistory() . We do not need to test the
prefixField or suffixField controls fornull or empty values because
addCurrentToHistory() does that internally.

13.3.9. Call jEdit Methods to Manipulate Text

// text manipulation begins here using calls
// to jEdit methods
buffer.beginCompoundEdit();
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{

offsetBOL = textArea.getLineStartOffset(
selectedLines[i]);

textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

}
buffer.endCompoundEdit();

}

The text manipulation routine loops through each selected line in the text buffer. We get the
loop parameters by callingtextArea.getSelectedLines() , which returns an array
consisting of the line numbers of every selected line. The array includes the number of the

135

Chapter 13. A Dialog-Based Macro

current line, whether or not it is selected, and the line numbers are sorted in increasing order.
We iterate through each member of theselectedLines array, which represents the number
of a selected line, and apply the following routine:

• Get the buffer position of the start of the line (expressed as a zero-based index from the
start of the buffer) by callingtextArea.getLineStartOffset(selectedLines[i]) ;

• Move the caret to that position by callingtextArea.setCaretPosition() ;

• Find the first and last non-whitespace characters on the line by calling
textArea.goToStartOfWhiteSpace() andtextArea.goToEndOfWhiteSpace() ;

ThegoTo... methods inJEditTextArea take a single parameter which tells jEdit
whether the text between the current caret position and the desired position should be
selected. Here, we calltextArea.goToStartOfWhiteSpace(false) so that no text is
selected, then calltextArea.goToEndOfWhiteSpace(true) so that all of the text
between the beginning and ending whitespace is selected.

• Retrieve the selected text by storing the return value of
textArea.getSelectedText() in a new variabletext .

If the line is empty,getSelectedText() will return null . In that case, we assign an
empty string totext to avoid calling methods on a null object.

• Change the selected text toprefix + text + suffix by calling
textArea.setSelectedText() . If there is no selected text (for example, if the line is
empty), the prefix and suffix will be inserted without any intervening characters.

Compound edits

Note thebeginCompoundEdit() andendCompoundEdit() calls. These ensure that
all edits performed between the two calls can be undone in one step. Normally, jEdit
automatically wraps a macro call in these methods; however if the macro shows a
non-modal dialog box, as far as jEdit is concerned the macro has finished executing by
the time the dialog is shown, since control returns to the event dispatch thread.

If you do not understand this, don’t worry; just keep it in mind if your macro needs to
show a non-modal dialog box for some reason; Most macros won’t.

136

Chapter 13. A Dialog-Based Macro

13.3.10. The Main Routine

// this single line of code is the script’s main routine
prefixSuffixDialog();

The call toprefixSuffixDialog() is the only line in the macro that is not inside an
enclosing block. BeanShell treats such code as a top-levelmain method and begins
execution with it.

Our analysis ofAdd_Prefix_and_Suffix.bsh is now complete. In the next section, we
look at other ways in which a macro can obtain user input, as well as other macro writing
techniques.

137

Chapter 13. A Dialog-Based Macro

138

Chapter 14. Macro Tips and Techniques

14.1. Getting Input for a Macro
The dialog-based macro discussed inChapter 13reflects a conventional approach to
obtaining input in a Java program. Nevertheless, it can be too lengthy or tedious for
someone trying to write a macro quickly. Not every macro needs a user interface specified in
such detail; some macros require only a single keystroke or no input at all. In this section we
outline some other techniques for obtaining input that will help you write macros quickly.

14.1.1. Getting a Single Line of Text

As mentioned earlier inSection 12.5, the methodMacros.input() offers a convenient way
to obtain a single line of text input. Here is an example that inserts a pair of HTML markup
tags specified by the user.

// Insert_Tag.bsh

void insertTag()
{

caret = textArea.getCaretPosition();
tag = Macros.input(view, “Enter name of tag:”);
if(tag == null || tag.length() == 0) return;
text = textArea.getSelectedText();
if(text == null) text = “”;
sb = new StringBuffer();
sb.append(“<”).append(tag).append(“>”);
sb.append(text);
sb.append(“</”).append(tag).append(“>”);
textArea.setSelectedText(sb.toString());
if(text.length() == 0)

textArea.setCaretPosition(caret + tag.length() + 2);
}

insertTag();

// end Insert_Tag.bsh

Here the call toMacros.input() seeks the name of the markup tag. This method sets the
message box title to a fixed string, “Macro input”, but the specific messageEnter name of
tag provides all the information necessary. The return valuetag must be tested to see if it is

139

Chapter 14. Macro Tips and Techniques

null. This would occur if the user presses theCancel button or closes the dialog window
displayed byMacros.input() .

14.1.2. Getting Multiple Data Items

If more than one item of input is needed, a succession of calls toMacros.input() is a
possible, but awkward approach, because it would not be possible to correct early input after
the corresponding message box is dismissed. Where more is required, but a full dialog
layout is either unnecessary or too much work, the Java method
JOptionPane.showConfirmDialog() is available. The version to use has the following
prototype:

• public static int showConfirmDialog (Component parentComponent ,

Object message , String title , int optionType , int messageType);

The usefulness of this method arises from the fact that themessage parameter can be an
object of any Java class (since all classes are derived fromObject), or any array of objects.
The following example shows how this feature can be used.

// excerpt from Write_File_Header.bsh

title = “Write file header”;

currentName = buffer.getName();

nameField = new JTextField(currentName);
authorField = new JTextField(“Your name here”);
descField = new JTextField(“”, 25);

namePanel = new JPanel(new GridLayout(1, 2));
nameLabel = new JLabel(“Name of file:”, SwingConstants.LEFT);
saveField = new JCheckBox(“Save file when done”,

!buffer.isNewFile());
namePanel.add(nameLabel);
namePanel.add(saveField);

message = new Object[9];
message[0] = namePanel;
message[1] = nameField;
message[2] = Box.createVerticalStrut(10);
message[3] = “Author’s name:”;
message[4] = authorField;

140

Chapter 14. Macro Tips and Techniques

message[5] = Box.createVerticalStrut(10);
message[6] = “Enter description:”;
message[7] = descField;
message[8] = Box.createVerticalStrut(5);

if(JOptionPane.OK_OPTION !=
JOptionPane.showConfirmDialog(view, message, title,

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE))

return null;

// *****remainder of macro script omitted*****

// end excerpt from Write_File_Header.bsh

This macro takes several items of user input and produces a formatted file header at the
beginning of the buffer. The full macro is included in the set of macros installed by jEdit.
There are a number of input features of this excerpt worth noting.

• The macro uses a total of seven visible components. Two of them are created behind
the scenes byshowConfirmDialog() , the rest are made by the macro. To arrange
them, the script creates an array ofObject objects and assigns components to each
location in the array. This translates to a fixed, top-to-bottom arrangement in the
message box created byshowConfirmDialog() .

• The macro usesJTextField objects to obtain most of the input data. The fields
nameField andauthorField are created with constructors that take the initial, default
text to be displayed in the field as a parameter. When the message box is displayed, the
default text will appear and can be altered or deleted by the user.

• The text fielddescField uses an empty string for its initial value. The second
parameter in its constructor sets the width of the text field component, expressed as the
number of characters of “average” width. WhenshowConfirmDialog() prepares the
layout of the message box, it sets the width wide enough to accommodate the
designated with ofdescField . This technique produces a message box and input text
fields that are wide enough for your data with one line of code.

• The displayed message box includes aJCheckBox component that determines whether
the buffer will be saved to disk immediately after the file header is written. To conserve
space in the message box, we want to display the check box to the right of the label
Name of file:. To do that, we create aJPanel object and populate it with the label and
the checkbox in a left-to-rightGridLayout . TheJPanel containing the two
components is then added to the beginning ofmessage array.

141

Chapter 14. Macro Tips and Techniques

• The two visible components created byshowConfirmDialog() appear at positions 3
and 6 of themessage array. Only the text is required; they are rendered as text labels.

• There are three invisible components created byshowConfirmDialog() . Each of
them involves a call toBox.createVerticalStrut() . TheBox class is a sophisticated
layout class that gives the user great flexibility in sizing and positioning components.
Here we use astatic method of theBox class that produces a verticalstrut. This is a
transparent component whose width expands to fill its parent component (in this case,
the message box). The single parameter indicates the height of the strut in pixels. The
last call tocreateVerticalStrut() separates the description text field from theOK
andCancel buttons that are automatically added byshowConfirmDialog() .

• Finally, the call toshowConfirmDialog() uses defined constants for the option type
and the message type. The constants are the same as those used with the
Macros.confirm() method; seeSection 12.5. The option type signifies the use ofOK
andCancel buttons. TheQUERY_MESSAGEmessage type causes the message box to
display a question mark icon.

The return value of the method is tested against the valueOK_OPTION. If the return
value is something else (because theCancel button was pressed or because the
message box window was closed without a button press), anull value is returned to a
calling function, signaling that the user canceled macro execution. If the return value is
OK_OPTION, each of the input components can yield their contents for further
processing by calls toJTextField.getText() (or, in the case of the check box,
JCheckBox.isSelected()).

14.1.3. Selecting Input From a List

Another useful way to get user input for a macro is to use a combo box containing a number
of pre-set options. If this is the only input required, one of the versions of
showInputDialog() in theJOptionPane class provides a shortcut. Here is its prototype:

• public static Object showInputDialog (Component parentComponent ,

Object message , String title , int messageType , Icon icon , Object[]

selectionValues , Object initialSelectionValue);

This method creates a message box containing a drop-down list of the options specified in
the method’s parameters, along withOK andCancel buttons. Compared to
showConfirmDialog() , this method lacks anoptionType parameter and has three
additional parameters: anicon to display in the dialog (which can be set tonull), an array

142

Chapter 14. Macro Tips and Techniques

of selectionValues objects, and a reference to one of the options as the
initialSelectionValue to be displayed. In addition, instead of returning anint

representing the user’s action,showInputDialog() returns theObject corresponding to
the user’s selection, ornull if the selection is canceled.

The following macro fragment illustrates the use of this method.

// fragment illustrating use of showInputDialog()
options = new Object[5];
options[0] = "JLabel";
options[1] = "JTextField";
options[2] = "JCheckBox";
options[3] = "HistoryTextField";
options[4} = "-- other --";

result = JOptionPane.showInputDialog(view,
"Choose component class",
"Select class for input component",
JOptionPane.QUESTION_MESSAGE,
null, options, options[0]);

The return valueresult will contain either theString object representing the selected text
item ornull representing no selection. Any further use of this fragment would have to test
the value ofresult and likely exit from the macro if the value equalednull .

A set of options can be similarly placed in aJComboBox component created as part of a
larger dialog orshowMessageDialog() layout. Here are some code fragments showing this
approach:

// fragments from Display_Abbreviations.bsh
// import statements and other code omitted

// from main routine, this method call returns an array
// of Strings representing the names of abbreviation sets

abbrevSets = getActiveSets();

...

// from showAbbrevs() method

combo = new JComboBox(abbrevSets);
// set width to uniform size regardless of combobox contents
Dimension dim = combo.getPreferredSize();
dim.width = Math.max(dim.width, 120);
combo.setPreferredSize(dim);

143

Chapter 14. Macro Tips and Techniques

combo.setSelectedItem(STARTING_SET); // defined as "global"

// end fragments

14.1.4. Using a Single Keypress as Input

Some macros may choose to emulate the style of character-based text editors such as emacs
or vi. They will require only a single keypress as input that would be handled by the macro
but not displayed on the screen. If the keypress corresponds to a character value, jEdit can
pass that value as a parameter to a BeanShell script.

The jEdit classInputHandler is an abstract class that that manages associations between
keyboard input and editing actions, along with the recording of macros. Keyboard input in
jEdit is normally managed by the derived classDefaultInputHandler . One of the methods
in the InputHandler class handles input from a single keypress:

• public void readNextChar (String prompt , String code);

When this method is called, the contents of theprompt parameter is shown in the view’s
status bar. The method then waits for a key press, after which the contents of thecode

parameter will be run as a BeanShell script, with one important modification. Each time the
string__char__ appears in the parameter script, it will be substituted by the character
pressed. The key press is “consumed” byreadNextChar() . It will not be displayed on the
screen or otherwise processed by jEdit.

UsingreadNextChar() requires a macro within the macro, formatted as a single,
potentially lengthy string literal. The following macro illustrates this technique. It selects a
line of text from the current caret position to the first occurrence of the character next typed
by the user. If the character does not appear on the line, no new selection occurs and the
display remains unchanged.

// Next_Char.bsh

script = new StringBuffer(512);
script.append("start = textArea.getCaretPosition();");
script.append("line = textArea.getCaretLine();");
script.append("end = textArea.getLineEndOffset(line) + 1;");
script.append("text = buffer.getText(start, end - start);");
script.append("match = text.indexOf(__char__, 1);");
script.append("if(match != -1) {");
script.append("if(__char__ != ’\\n’) ++match;");
script.append("textArea.select(start, start + match - 1);");
script.append("}");

144

Chapter 14. Macro Tips and Techniques

view.getInputHandler().readNextChar("Enter a character",
script.toString());

// end Next_Char.bsh

Once again, here are a few comments on the macro’s design.

• A StringBuffer object is used for efficiency; it obviates multiple creation of
fixed-lengthString objects. The parameter to the constructor ofscript specifies the
initial size of the buffer that will receive the contents of the child script.

• Besides the quoting of the script code, the formatting of the macro is entirely optional
but (hopefully) makes it easier to read.

• It is important that the child script be self-contained. It does not run in the same
namespace as the “parent” macroNext_Char.bsh and therefore does not share
variables, methods, or scripted objects defined in the parent macro.

• Finally, access to theInputHandler object used by jEdit is available by calling
getInputHandler() on the current view.

14.2. Startup Scripts
On startup, jEdit runs any BeanShell scripts located in thestartup subdirectory of the jEdit
installation and user settings directories (seeSection 6.4). As with macros, the scripts must
have a.bsh file name extension. Startup scripts are run near the end of the startup sequence,
after plugins, properties and such have been initialized, but before the first view is opened.

Startup scripts can perform initialization tasks that cannot be handled by command line
options or ordinary configuration options, such as customizing jEdit’s user interface by
changing entries in the Java platform’sUIManager class.

Startup scripts have an additional feature lacking in ordinary macros that can help you
further customize jEdit. Variables and methods defined in a startup script are available in all
instances of the BeanShell interpreter created in jEdit. This allows you to create a personal
library of methods and objects that can be accessed at any time during the editing session in
another macro, the BeanShell shell of the Console plugin, or menu items such as
Utilities>BeanShell>Evaluate BeanShell Expression.

The startup script routine will run script files in the installation directory first, followed by
scripts in the user settings directory. In each case, scripts will be executed in alphabetical

145

Chapter 14. Macro Tips and Techniques

order, applied without regard to whether the file name contains upper or lower case
characters.

If a startup script throws an exception (because, for example, it attempts to call a method on
a null object). jEdit will show an error dialog box and move on to the next startup script. If
script bugs are causing jEdit to crash or hang on startup, you can use the
-nostartupscripts command line option to disable them for that editing session.

Another important difference between startup scripts and ordinary macros is that startup
scripts cannot use the pre-defined variablesview , textArea , editPane andbuffer . This is
because they are executed before the initial view is created.

If you are writing a method in a startup script and wish to use one of the above variables,
pass parameters of the appropriate type to the method, so that a macro calling them after
startup can supply the appropriate values. For example, a startup script could include a
method

void doSomethingWithView(View v, String s) {
...

}

so that during the editing session another macro can call the method using

doSomethingWithView(view, "something");

Reloading startup scripts without restarting

It is actually possible to reload startup scripts or load other scripts without restarting
jEdit, using a BeanShell statement like the following:

BeanShell.runScript(view, path ,null,false);

Forpath , you can substitute any string, or a method call such asbuffer.getPath() .

14.3. Running Scripts from the Command Line
The-run command line switch specifies a BeanShell script to run on startup:

$ jedit -run=test.bsh

146

Chapter 14. Macro Tips and Techniques

Note that just like with startup scripts, theview , textArea , editPane andbuffer variables
are not defined.

If another instance is already running, the script will be run in that instance, and you will be
able to use thejEdit.getLastView() method to obtain a view. However, if a new instance
of jEdit is being started, the script will be run at the same time as all other startup scripts;
that is, before the first view is opened.

If your script needs a view instance to operate on, you can use the following code pattern to
obtain one, no matter how or when the script is being run:

void doSomethingUseful()
{

void run()
{

view = jEdit.getLastView();

// put actual script body here
}

if(jEdit.getLastView() == null)
VFSManager.runInAWTThread(this);

else
run();

}

doSomethingUseful();

If the script is being run in a loaded instance, it can be invoked to perform its work
immediately. However, if the script is running at startup, before an initial view exists, its
operation must be delayed to allow the view object first to be created and displayed. In order
to queue the macro’s operation, the scripted “closure” nameddoSomethingUseful()

implements theRunnable interface of the Java platform. That interface contains only a
singlerun() method that takes no parameters and has no return value. The macro’s
implementation of therun() method contains the “working” portion of the macro. Then the
scripted object, represented by a reference tothis , is passed to therunInAWTThread()

method. This schedules the macro’s operations for execution after the startup routine is
complete.

As this example illustrates, therunInAWTThread() method can be used to ensure that a
macro will perform operations after other operations have completed. If it is invoked during
startup, it schedules the specifiedRunnable object to run after startup is complete. If
invoked when jEdit is fully loaded, theRunnable object will execute after all pending
input/output is complete, or immediately if there are no pending I/O operations. This will
delay operations on a new buffer, for example, until after the buffer is loaded and displayed.

147

Chapter 14. Macro Tips and Techniques

14.4. Advanced BeanShell Techniques
BeanShell has a few advanced features that we haven’t mentioned yet. They will be
discussed in this section.

14.4.1. BeanShell’s Convenience Syntax

We noted earlier that BeanShell syntax does not require that variables be declared or defined
with their type, and that variables that are not typed when first used can have values of
differing types assigned to them. In addition to this “loose” syntax, BeanShell allows a
“convenience” syntax for dealing with the properties of JavaBeans. They may be accessed or
set as if they were data members. They may also be accessed using the name of the property
enclosed in quotation marks and curly brackets. For example, the following statement are all
equivalent, assumingbtn is aJButton instance:

b.setText("Choose");
b.text = "Choose";
b{"text"} = "Choose";

The last form can also be used to access a key-value pair of aHashtable object.

14.4.2. Special BeanShell Keywords

BeanShell uses special keywords to refer to variables or methods defined in the current or an
enclosing block’s scope:

• The keywordthis refers to the current scope.

• The keywordsuper refers to the immediately enclosing scope.

• The keywordglobal refers to the top-level scope of the macro script.

The following script illustrates the use of these keywords:

a = "top\n";
foo() {

a = "middle\n";
bar() {

a = "bottom\n";
textArea.setSelectedText(global.a);
textArea.setSelectedText(super.a);
// equivalent to textArea.setSelectedText(this.a):
textArea.setSelectedText(a);

148

Chapter 14. Macro Tips and Techniques

}

bar();
}
foo();

When the script is run, the following text is inserted in the current buffer:

top
middle
bottom

14.4.3. Implementing Interfaces

As discussed in the macro example inChapter 13, scripted objects can implement Java
interfaces such asActionListener . Which interfaces may be implemented varies
depending upon the version of the Java runtime environment being used. If running under
Java 1.1 or 1.2, BeanShell objects can only implement the AWT or Swing event listener
interfaces contained in thejava.awt.event andjavax.swing.event packages, along
with the java.lang.Runnable interface. If BeanShell is running under Java 1.3 or 1.4,
which jEdit 4.0 requires, any interface can be implemented.

Frequently it will not be necessary to implement all of the methods of a particular interface
in order to specify the behavior of a scripted object. Under Java 1.3 and above, the virtual
machine’s reflection mechanism will throw an exception for any missing interface methods.
This will bring macro execution to a halt unless the exception is trapped and handled. The
solution is to implement theinvoke() method, which is called when an undefined method
is invoked on a scripted object. Typically, the implementation of this method will do
nothing, as in the following example:

invoke(method, args) {}

14.5. Debugging Macros
Here are a few techniques that can prove helpful in debugging macros.

149

Chapter 14. Macro Tips and Techniques

14.5.1. Identifying Exceptions

An exceptionis a condition reflecting an error or other unusual result of program execution
that requires interruption of normal program flow and some kind of special handling. Java
has a rich (and extensible) collection of exception classes which represent such conditions.

jEdit catches exceptions thrown by BeanShell scripts and displays them in a dialog box. In
addition, the full traceback is written to the activity log (seeAppendix Bfor more
information about the activity log).

There are two broad categories of errors that will result in exceptions:

• Interpreter errors, which may arise from typing mistakes like mismatched brackets or
missing semicolons, or from BeanShell’s failure to find a class corresponding to a
particular variable.

Interpreter errors are usually accompanied by the line number in the script, along with
the cause of the error.

• Execution errors, which result from runtime exceptions thrown by the Java platform
when macro code is executed.

Some exceptions thrown by the Java platform can often seem cryptic. Nevertheless,
examining the contents of the activity log may reveals clues as to the cause of the error.

14.5.2. Using the Activity Log as a Tracing Tool

Sometimes exception tracebacks will say what kind of error occurred but not where it arose
in the script. In those cases, you can insert calls that log messages to the activity log in your
macro. If the logged messages appear when the macro is run, it means that up to that point
the macro is fine; but if an exception is logged first, it means the logging call is located after
the cause of the error.

To write a message to the activity log, use the following method of theLog class:

• public static void log (int urgency , Object source , Object message);

The parameterurgency can take one of the following constant values:

• Log.DEBUG

150

Chapter 14. Macro Tips and Techniques

• Log.MESSAGE

• Log.NOTICE

• Log.WARNING

• Log.ERROR

Note that theurgency parameter merely changes the string prefixed to the log message; it
does not change the logging behavior in any other way.

The parametersource can be either an object or a class instance. When writing log
messages from macros, set this parameter toBeanShell.class to make macro errors easier
to spot in the activity log.

The following code sends a typical debugging message to the activity log:

Log.log(Log.DEBUG, BeanShell.class,
"counter = " + counter);

The corresponding activity log entry might read as follows:

[debug] BeanShell: counter = 15

Using message dialog boxes as a tracing tool

If you would prefer not having to deal with the activity log, you can use the
Macros.message() method as a tracing tool. Just insert calls like the following in the
macro code:

Macros.message(view,"tracing");

Execution of the macro is halted until the message dialog box is closed. When you
have finished debugging the macro, you should delete or comment out the debugging
calls toMacros.message() in your final source code.

151

Chapter 14. Macro Tips and Techniques

152

Chapter 15. BeanShell Commands
BeanShell includes a set ofcommands; subroutines that can be called from any script or
macro. The following is a summary of those commands which may be useful within jEdit.

Note: Plugins, because they are written in Java and not BeanShell, cannot make use
of BeanShell commands.

15.1. Output Commands

• void cat (String filename);

Writes the contents offilename to the activity log.

• void javap (String | Object | Class target);

Writes the public fields and methods of the specified class to the output stream of the
current process. Requires Java 2 version 1.3 or greater.

• void print (arg);

Writes the string value of the argument to the activity log, or if run from the Console
plugin, to the current output window. Ifarg is an array,print runs itself recursively
on the array’s elements.

15.2. File Management Commands

• void cd (String dirname);

Changes the working directory of the BeanShell interpreter todirname .

• void dir (String dirname);

153

Chapter 15. BeanShell Commands

Displays the contents of directorydirname . The format of the display is similar to the
Unix ls -l command.

• void mv(String fromFile , String toFile);

Moves the file named byfromFile to toFile .

• File pathToFile (String filename);

Create aFile object corresponding tofilename . Relative paths are resolved with
reference to the BeanShell interpreter’s working directory.

• void pwd();

Writes the current working directory of the BeanShell interpreter to the output stream
of the current process.

• void rm(String pathname);

Deletes the file name bypathname .

15.3. Component Commands

• JFrame frame (Component frame);

Displays the component in a top-levelJFrame , centered and packed. Returns the
JFrame object.

• Object load (String filename);

Loads and returns a serialized Java object fromfilename .

• void save (Component component , String filename);

Savescomponent in serialized form tofilename .

154

Chapter 15. BeanShell Commands

• Font setFont (Component comp, int ptsize);

Set the font size ofcomponent to ptsize and returns the new font.

15.4. Resource Management Commands

• URL getResource (String path);

Returns the resource specified bypath . A absolute path must be used to return any
resource available in the current classpath.

15.5. Script Execution Commands

• Thread bg(String filename);

Run the BeanShell script named byfilename in a copy of the existing namespace
and in a separate thread. Returns theThread object so created.

• void exec (String cmdline);

Start the external process by callingRuntime.exec() oncmdline . Any output is
directed to the output stream of the calling process.

• Object eval (String expression);

Evaluates the stringexpression as a BeanShell script in the interpreter’s current
namespace. Returns the result of the evaluation ofnull .

• bsh.This run (String filename);

Run the BeanShell script named byfilename in a copy of the existing namespace.
The return value represent the object context of the script, allowing you to access its
variables and methods.

155

Chapter 15. BeanShell Commands

• void source (String filename);

Evaluates the contents offilename as a BeanShell script in the interpreter’s current
namespace.

15.6. BeanShell Object Management Commands

• bind (bsh.This ths , bsh.Namespace namespace);

Binds the scripted objectths to namespace .

• void clear ();

Clear all variables, methods, and imports from this namespace. If this namespace is the
root, it will be reset to the default imports.

• bsh.This extend (bsh.This object);

Creates a new BeanShellThis scripted object that is a child of the parameterobject .

• bsh.This object ();

Creates a new BeanShellThis scripted object which can hold data members. You can
use this to create an object for storing miscellaneous crufties, like so:

crufties = object();
crufties.foo = "hello world";
crufties.counter = 5;
...

• setNameSpace (bsh.Namespace namespace);

Set the namespace of the current scope tonamespace .

• bsh.This super (String scopename);

156

Chapter 15. BeanShell Commands

Returns a reference to the BeanShellThis object representing the enclosing method
scope specified byscopename . This method work similar to thesuper keyword but
can refer to enclosing scope at higher levels in a hierarchy of scopes.

• void unset (String name);

Removes the variable named byname from the current interpreter namespace. This has
the effect of “undefining” the variable.

15.7. Other Commands

• void debug ();

Toggles BeanShell’s internal debug reporting to the output stream of the current
process.

• getSourceFileInfo ();

Returns the name of the file or other source from which the BeanShell interpreter is
reading.

157

Chapter 15. BeanShell Commands

158

IV. Writing Plugins
This part of the user’s guide covers writing plugins for jEdit.

Like jEdit itself, plugins are written primarily in Java. While this guide assumes some
working knowledge of the language, you are not required to be a Java wizard. If you can
write a useful application of any size in Java, you can write a plugin.

This part of the user’s guide was written by John Gellene <jgellene@nyc.rr.com >.

Chapter 16. Introducing the Plugin API
The jEdit Plugin APIprovides a framework for hosting plugin applications without
imposing any requirements on the design or function of the plugin itself. You could write a
application that performs spell checking, displays a clock or plays chess and turn it into a
jEdit plugin. There are currently over 50 released plugins for jEdit. While none of them play
chess, they perform a wide variety of editing and file management tasks.

A detailed listing of available plugins is available atplugins.jedit.org . You can also find
beta versions of new plugins in the “Downloads” area ofcommunity.jedit.org .

Using the “Plugin Manager” feature of jEdit, users with an Internet connection can check for
new or updated plugins and install and remove them without leaving jEdit. SeeChapter 8for
details.

Requirements for “plugging in” to jEdit are as follows:

• This plugin must supply information about itself, such as its name, version, author, and
compatibility with versions of jEdit.

• The plugin must provide for activating, displaying and deactivating itself upon
direction from jEdit, typically in response to user input.

• The plugin may defineactions, both explicitly with an action definition file, or
implicitly by providing dockable windows. Actions are small blocks of BeanShell code
that jEdit will perform on behalf of the plugin upon user request. They provide the
“glue” between user input and specific plugin routines.

By convention, plugins display their available actions in submenus of jEdit’sPlugins
menu; each menu item corresponds to an action. The user can also assign actions to
keyboard shortcuts, toolbar buttons or entries in the text area’s right-click menu.

• The plugin may, but need not, provide a user interface.

If the plugin has a visible interface, it can be shown in any object derived from one of
Java top-level container classes:JWindow , JDialog , or JFrame . jEdit also provides a
dockable window API, which allows plugin windows derived from theJComponent

class to be docked into views or shown in top-level frames, at the user’s request.

Plugins can also act directly upon jEdit’s text area. They can add graphical elements to
the text display (like error highlighting in the case of the ErrorList plugin) or
decorations surrounding the text area (like the JDiff plugin’s summary views).

161

Chapter 16. Introducing the Plugin API

• Plugins may provide a range of options that the user can modify to alter their
configuration.

If a plugin provides configuration options in accordance with the plugin API, jEdit will
make them available in theGlobal Options dialog box.

• While it is not required, plugins are encouraged to provide documentation.

As noted, many of these features are optional; it is possible to write a plugin that does not
provide actions, configuration options, or dockable windows. The majority of plugins,
however, provide most of these services.

Plugins and different jEdit versions

As jEdit continues to evolve and improve, elements of the plugin API may change
with a new jEdit release.

On occasion an API change will break code used by plugins, although efforts are made
to maintain or deprecate plugin-related code on a transitional basis. While the majority
of plugins are unaffected by most changes and will continue working, it is a good idea
to monitor the jEdit change log, the mailing lists andcommunity.jedit.org for API
changes so that you can update your plugin if necessary.

162

Chapter 17. Implementing a Simple
Plugin

There are many applications for the leading operating systems that provide a “scratch-pad”
or “sticky note” facility for the desktop display. A similar type of facility operating within
the jEdit display would be a convenience. The use of dockable windows would allow the
notepad to be displayed or hidden with a single mouse click or keypress (if a keyboard
shortcut were defined). The contents of the notepad could be saved at program exit (or, if
earlier, deactivation of the plugin) and retrieved at program startup or plugin activation.

We will keep the capabilities of this plugin modest, but a few other features would be
worthwhile. The user should be able to write the contents of the notepad to storage on
demand. It should also be possible to choose the name and location of the file that will be
used to hold the notepad text. This would allow the user to load other files into the notepad
display. The path of the notepad file should be displayed in the plugin window, but will give
the user the option to hide the file name. Finally, there should be an action by which a single
click or keypress would cause the contents of the notepad to be written to the new text buffer
for further processing.

The full source code for QuickNotepad is contained in jEdit’s source code distribution. We
will provide excerpts in this discussion where it is helpful to illustrate specific points. You
are invited to obtain the source code for further study or to use as a starting point for your
own plugin.

17.1. How Plugins are Loaded
We will discuss the implementation of the QuickNotepad plugin, along with the jEdit APIs
it makes use of. But first, we describe how plugins are loaded.

As part of its startup routine, jEdit’smain method calls various methods to load and
initialize plugins.

Plugin loading occurs after jEdit has loaded application properties, any user-supplied
properties, and the application’s set of actions that will be available from jEdit’s menu bar
(as well as the toolbar and keyboard shortcuts).

Plugin loading occurs before jEdit opens the initial view or loads any files for editing. It also
occurs before jEdit runs any startup scripts.

Plugins are loaded from files with the.jar filename extension located in thejars

subdirectories of the jEdit installation and user settings directories (seeSection 6.4).

163

Chapter 17. Implementing a Simple Plugin

For each JAR archive file it finds, jEdit scans its entries and performs the following tasks:

• Adds to a collection maintained by jEdit a new object of typeEditPlugin.JAR . This is
a data structure holding the name of the JAR archive file, a reference to the

JARClassLoader , and a collection of plugins found in the archive file.

• Loads any properties defined in files ending with the extension.props that are
contained in the archive. SeeSection 17.4.

• Reads action definitions from any file namedactions.xml in the archive (the file
need not be at the top level). SeeSection 17.5.

• Parses and loads the contents of any file nameddockables.xml in the archive (the file
need not be at the top level). This file contains BeanShell code for creating docking or
floating windows that will contain the visible components of the plugin. Not all plugins
define dockable windows, but those that do need adockables.xml file. SeeSection
17.6.

• Checks for a class name with a name ending withPlugin.class .

Such a class is known as aplugin core classand must extend jEdit’s abstract
EditPlugin class. The initialization routine checks the plugin’s properties to see if it is

subject to any dependencies. For example, a plugin may require that the version of the
Java runtime environment or of jEdit itself be equal to or above some threshold version.
A plugin can also require the presence of another plugin.

If any dependency is not satisfied, the loader marks the plugin as “broken” and logs an
error message.

After scanning the plugin JAR file and loading any resources, a new instance of the plugin
core class is created and added to the collection maintained by the appropriate

EditPlugin.JAR . jEdit then calls thestart() method of the plugin core class. Thestart()

method can perform initialization of the object’s data members. Because this method is
defined as an empty “no-op” in theEditPlugin abstract class, a plugin need not provide an
implementation if no unique initialization is required.

17.2. The QuickNotepadPlugin Class
The major issues encountered when writing a plugin core class arise from the developer’s
decisions on what features the plugin will make available. These issues have implications for
other plugin elements as well.

164

Chapter 17. Implementing a Simple Plugin

• Will the plugin provide for actions that the user can trigger using jEdit’s menu items,
toolbar buttons and keyboard shortcuts?

• Will the plugin have its own visible interface?

• Will the plugin have settings that the user can configure?

• Will the plugin respond to any messages reflecting changes in the host application’s
state?

Recall that the plugin core class must extendEditPlugin . In QuickNotepad’s plugin core
class, there are no special initialization or shutdown chores to perform, so we will not need a
start() or stop() method.

The resulting plugin core class is lightweight and straightforward to implement:

•

public class QuickNotepadPlugin extends EditPlugin {
public static final String NAME = "quicknotepad";
public static final String MENU = "quicknotepad.menu";
public static final String PROPERTY_PREFIX

= "plugin.QuickNotepadPlugin.";
public static final String OPTION_PREFIX

= "options.quicknotepad.";

First we define a few staticString data members to enforce consistent syntax for the
name of properties we will use throughout the plugin.

•

public void createMenuItems(Vector menuItems) {
menuItems.addElement(GUIUtilities.loadMenu(MENU));

}

This implementation of theEditPlugin.createMenuItems() method is very typical. It
uses a jEdit utility function to create the menu, taking the list of actions from the
quicknotepad property, and the label fromquotenotepad.label .

If the plugin only had a single menu item (for example, an item activating a dockable
window), we would call GUIUtilities.loadMenuItem() instead of

GUIUtilities.loadMenu() .

165

Chapter 17. Implementing a Simple Plugin

•

public void createOptionPanes(OptionsDialog od) {
od.addOptionPane(new QuickNotepadOptionPane());

}

}

This implementation of theEditPlugin.createOptionPanes() method adds a new
instance ofQuickNotepadOptionPane to the given instance of theGlobal Options
dialog box.

17.3. The EditBus
Plugins register EBComponent instances with theEditBus to receive messages reflecting
changes in jEdit’s state.

The message classes derived fromEBMessage cover the opening and closing of the
application, changes in the status of buffers and views, changes in user settings, as well as
changes in the state of other program features. A full list of messages can be found in the
org.gjt.sp.jedit.msg package.

EBComponents are added and removed with theEditBus.addToBus() and
EditBus.removeFromBus() methods.

Typically, the EBComponent.handleMessage() method is implemented with one or moreif

blocks that test whether the message is an instance of a derived message class in which the
component has an interest.

if(msg instanceof BufferUpdate) {
// a buffer’s state has changed!

}
else if(msg instanceof ViewUpdate) {

// a view’s state has changed!
}
// ... and so on

166

Chapter 17. Implementing a Simple Plugin

If a plugin core class will respond to EditBus messages, it can be derived fromEBPlugin , in
which case no explicitaddToBus() call is necessary. Otherwise,EditPlugin will suffice as
a plugin base class. Note that QuickNotepad uses the latter.

17.4. The Property File
jEdit maintains a list of “properties”, which are name/value pairs used to store
human-readable strings, user settings, and various other forms of meta-data. During startup,
jEdit loads the default set of properties, followed by plugin properties stored in plugin JAR
files, finally followed by user properties.

Some properties are used by the plugin API itself. Others are accessed by the plugin using
methods in the jEdit class.

Property files contained in plugin JARs must end with the filename extension.props , and
have a very simple syntax, which the following example illustrates:

Lines starting with ’#’ are ignored.
name=value
another.name=another value
long.property=Long property value, split over \

several lines
escape.property=Newlines and tabs can be inserted \

using the \t and \n escapes
backslash.property=A backslash can be inserted by writing \\.

Now we look at theQuickNotepad.props file which contains properties for the
QuickNotepad plugin. The first type of property data is information about the plugin itself;
these are the only properties that must be specified in order for the plugin to load:

general plugin information
plugin.QuickNotepadPlugin.name=QuickNotepad
plugin.QuickNotepadPlugin.author=John Gellene
plugin.QuickNotepadPlugin.version=4.1
plugin.QuickNotepadPlugin.docs=QuickNotepad.html
plugin.QuickNotepadPlugin.depend.0=jedit 04.00.01.00

These properties are described in detail in the documentation for theEditPlugin class and
do not require further discussion here.

Next in the file comes a property that sets the title of the plugin’s dockable window.
Dockable windows are discussed in detail inSection 17.6.

167

Chapter 17. Implementing a Simple Plugin

dockable window name
quicknotepad.title=QuickNotepad

Next, we see menu item labels for the plugin’s actions. Actions are discussed in detail in
Section 17.5.

action labels
quicknotepad.label=QuickNotepad
quicknotepad.choose-file.label=Choose notepad file
quicknotepad.save-file.label=Save notepad file
quicknotepad.copy-to-buffer.label=Copy notepad to buffer

Next, the plugin’s menu is defined. SeeSection 17.2.

application menu items
quicknotepad.menu.label=QuickNotepad
quicknotepad.menu=quicknotepad - quicknotepad.choose-file \

quicknotepad.save-file quicknotepad.copy-to-buffer

We have created a small toolbar as a component of QuickNotepad, so file names for the
button icons follow:

plugin toolbar buttons
quicknotepad.choose-file.icon=Open.png
quicknotepad.save-file.icon=Save.png
quicknotepad.copy-to-buffer.icon=Edit.png

The menu item labels corresponding to these icons will also serve as tooltip text.

Finally, the properties file set forth the labels and settings used by the option pane:

Option pane labels
options.quicknotepad.label=QuickNotepad
options.quicknotepad.file=File:
options.quicknotepad.choose-file=Choose
options.quicknotepad.choose-file.title=Choose a notepad file
options.quicknotepad.choose-font=Font:
options.quicknotepad.show-filepath.title=Display notepad file path

Initial default font settings
options.quicknotepad.show-filepath=true
options.quicknotepad.font=Monospaced
options.quicknotepad.fontstyle=0
options.quicknotepad.fontsize=14

168

Chapter 17. Implementing a Simple Plugin

Setting not defined but supplied for completeness
options.quicknotepad.filepath=

17.5. The Action Catalog
Actions define procedures that can be bound to a menu item, a toolbar button or a keyboard
shortcut. Actions are short scripts written in BeanShell, jEdit’s macro scripting language.
These scripts either direct the action themselves, delegate to a method in one of the plugin’s
classes that encapsulates the action, or do a little of both. The scripts are usually short;
elaborate action protocols are usually contained in compiled code, rather than an interpreted
macro script, to speed execution.

Actions are defined by creating an XML file entitledactions.xml and placing it in the
plugin JAR file.

Theactions.xml file from the QuickNotepad plugin looks as follows:

<?xml version="1.0"?>

<!DOCTYPE ACTIONS SYSTEM "actions.dtd">

<ACTIONS>
<ACTION NAME="quicknotepad.choose-file">

<CODE>
view.getDockableWindowManager()

.getDockable(QuickNotepadPlugin.NAME).chooseFile();
</CODE>

</ACTION>

<ACTION NAME="quicknotepad.save-file">
<CODE>

view.getDockableWindowManager()
.getDockable(QuickNotepadPlugin.NAME).saveFile();

</CODE>
</ACTION>

<ACTION NAME="quicknotepad.copy-to-buffer">
<CODE>

view.getDockableWindowManager()
.getDockable(QuickNotepadPlugin.NAME).copyToBuffer();

</CODE>
</ACTION>

</ACTIONS>

169

Chapter 17. Implementing a Simple Plugin

This file defines three actions. They use the current view’sDockableWindowManager object
and the methodgetDockable() to find the QuickNotepad plugin window and call the
desired method.

When an action is invoked, the BeanShell scripts address the plugin through static methods,
or if instance data is needed, the currentView , its DockableWindowManager , and the plugin
object return by thegetDockable() method.

If you are unfamiliar with BeanShell code, you may nevertheless notice that the code
statements bear a strong resemblance to Java code, with one exception: the variableview is
never assigned any value.

For complete answers to this and other BeanShell mysteries, seePart III in jEdit 4.1 User’s
Guide; two observations will suffice here. First, the variableview is predefined by jEdit’s
implementation of BeanShell to refer to the currentView object. Second, the BeanShell
scripting language is based upon Java syntax, but allows variables to be typed at run time, so
explicit types for variables need not be declared.

A formal description of each element of theactions.xml file can be found in the
documentation of theActionSet class.

17.6. The Dockable Window Catalog
The jEdit plugin API uses BeanShell to create the top-level visible container of a plugin’s
interface. The BeanShell code is contained in a file nameddockables.xml . It usually is
quite short, providing only a single BeanShell expression used to create a visible plugin
window.

The following example from the QuickNotepad plugin illustrates the requirements of the
data file:

<?xml version="1.0"?>

<!DOCTYPE DOCKABLES SYSTEM "dockables.dtd">

<DOCKABLES>
<DOCKABLE NAME="quicknotepad">

new QuickNotepad(view, position);
</DOCKABLE>

</DOCKABLES>

In this example, the<DOCKABLE>element has a single attribute, the dockable window’s
identifier. This attribute is used to key a property where the window title is stored; see

170

Chapter 17. Implementing a Simple Plugin

Section 17.4.

The contents of the<DOCKABLE>element itself is a BeanShell expression that constructs a
newQuickNotepad object. Theview andposition are predefined by the plugin API as the
view in which the plugin window will reside, and the docking position of the plugin.

A formal description of each element of thedockables.xml file can be found in the
documentation of theDockableWindowManager class.

17.7. The QuickNotepad Class
Here is where most of the features of the plugin will be implemented. To work with the
dockable window API, the top level window will be aJPanel . The visible components
reflect a simple layout. Inside the top-level panel we will place a scroll pane with a text area.
Above the scroll pane we will place a panel containing a small tool bar and a label
displaying the path of the current notepad file.

We have identified three user actions that need implementation here:chooseFile() ,
saveFile() , andcopyToBuffer() . As noted earlier, we also want the text area to change
its appearance in immediate response to a change in user options settings. In order to do that,
the window class must respond to aPropertiesChanged message from the EditBus.

Unlike theEBPlugin class, theEBComponent interface does not deal with the component’s
actual subscribing and unsubscribing to the EditBus. To accomplish this, we use a pair of
methods inherited from the Java platform’sJComponent class that are called when the
window is made visible, and when it is hidden. These two methods,addNotify() and
removeNotify() , are overridden to add and remove the visible window from the list of
EditBus subscribers.

We will provide for two minor features when the notepad is displayed in the floating
window. First, when a floating plugin window is created, we will give the notepad text area
input focus. Second, when the notepad if floating and has input focus, we will have the
Escapekey dismiss the notepad window. AnAncestorListener and aKeyListener will
implement these details.

Here is the listing for the data members, the constructor, and the implementation of the
EBComponent interface:

public class QuickNotepad extends JPanel
implements EBComponent

{
private String filename;
private String defaultFilename;

171

Chapter 17. Implementing a Simple Plugin

private View view;
private boolean floating;

private QuickNotepadTextArea textArea;
private QuickNotepadToolPanel toolPanel;

//
// Constructor
//

public QuickNotepad(View view, String position)
{

super(new BorderLayout());

this.view = view;
this.floating = position.equals(

DockableWindowManager.FLOATING);

this.filename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath");

if(this.filename == null || this.filename.length() == 0)
{

this.filename = new String(jEdit.getSettingsDirectory()
+ File.separator + "qn.txt");

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath",this.filename);

}
this.defaultFilename = new String(this.filename);

this.toolPanel = new QuickNotepadToolPanel(this);
add(BorderLayout.NORTH, this.toolPanel);

if(floating)
this.setPreferredSize(new Dimension(500, 250));

textArea = new QuickNotepadTextArea();
textArea.setFont(QuickNotepadOptionPane.makeFont());
textArea.addKeyListener(new KeyHandler());
textArea.addAncestorListener(new AncestorHandler());
JScrollPane pane = new JScrollPane(textArea);
add(BorderLayout.CENTER, pane);

readFile();
}

//

172

Chapter 17. Implementing a Simple Plugin

// Attribute methods
//

// for toolBar display
public String getFilename()
{

return filename;
}

//
// EBComponent implementation
//

public void handleMessage(EBMessage message)
{

if (message instanceof PropertiesChanged)
{

propertiesChanged();
}

}

private void propertiesChanged()
{

String propertyFilename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "filepath");

if(!defaultFilename.equals(propertyFilename))
{

saveFile();
toolPanel.propertiesChanged();
defaultFilename = propertyFilename.clone();
filename = defaultFilename.clone();
readFile();

}
Font newFont = QuickNotepadOptionPane.makeFont();
if(!newFont.equals(textArea.getFont()))
{

textArea.setFont(newFont);
textArea.invalidate();

}
}

// These JComponent methods provide the appropriate points
// to subscribe and unsubscribe this object to the EditBus

public void addNotify()
{

173

Chapter 17. Implementing a Simple Plugin

super.addNotify();
EditBus.addToBus(this);

}

public void removeNotify()
{

saveFile();
super.removeNotify();
EditBus.removeFromBus(this);

}

...

}

This listing refers to aQuickNotebookTextArea object. It is currently implemented as a
JTextArea with word wrap and tab sizes hard-coded. Placing the object in a separate class
will simply future modifications.

17.8. The QuickNotepadToolBar Class
There is nothing remarkable about the toolbar panel that is placed inside theQuickNotepad

object. The constructor shows the continued use of items from the plugin’s properties file.

public class QuickNotepadToolPanel extends JPanel
{

private QuickNotepad pad;
private JLabel label;

public QuickNotepadToolPanel(QuickNotepad qnpad)
{

pad = qnpad;
JToolBar toolBar = new JToolBar();
toolBar.setFloatable(false);

toolBar.add(makeCustomButton("quicknotepad.choose-file",
new ActionListener() {

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.chooseFile();

}
}));

toolBar.add(makeCustomButton("quicknotepad.save-file",
new ActionListener() {

174

Chapter 17. Implementing a Simple Plugin

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.saveFile();

}
}));

toolBar.add(makeCustomButton("quicknotepad.copy-to-buffer",
new ActionListener() {

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.copyToBuffer();

}
}));

label = new JLabel(pad.getFilename(),
SwingConstants.RIGHT);

label.setForeground(Color.black);
label.setVisible(jEdit.getProperty(

QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath").equals("true"));

this.setLayout(new BorderLayout(10, 0));
this.add(BorderLayout.WEST, toolBar);
this.add(BorderLayout.CENTER, label);
this.setBorder(BorderFactory.createEmptyBorder(0, 0, 3, 10));

}

...

}

The methodmakeCustomButton() provides uniform attributes for the three toolbar buttons
corresponding to three of the plugin’s use actions. The menu titles for the user actions serve
double duty as tooltip text for the buttons. There is also apropertiesChanged() method
for the toolbar that sets the text and visibility of the label containing the notepad file path.

17.9. The QuickNotepadOptionPane Class
Using the default implementation provided byAbstractOptionPane reduces the
preparation of an option pane to two principal tasks: writing a_init() method to layout
and initialize the pane, and writing a_save() method to commit any settings changed by
user input. If a button on the option pane should trigger another dialog, such as a
JFileChooser or jEdit’s own enhancedVFSFileChooserDialog , the option pane will also
have to implement theActionListener interface to display additional components.

The QuickNotepad plugin has only three options to set: the path name of the file that will
store the notepad text, the visibility of the path name on the tool bar, and the notepad’s

175

Chapter 17. Implementing a Simple Plugin

display font. Using the shortcut methods of the plugin API, the implementation of_init()

looks like this:

public class QuickNotepadOptionPane extends AbstractOptionPane
implements ActionListener

{
private JTextField pathName;
private JButton pickPath;
private FontSelector font;

...

public void _init()
{

showPath = new JCheckBox(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath.title"),

jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "show-filepath")
.equals("true"));

addComponent(showPath);

pathName = new JTextField(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath"));

JButton pickPath = new JButton(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "choose-file"));

pickPath.addActionListener(this);

JPanel pathPanel = new JPanel(new BorderLayout(0, 0));
pathPanel.add(pathName, BorderLayout.CENTER);
pathPanel.add(pickPath, BorderLayout.EAST);

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "file"),
pathPanel);

font = new FontSelector(makeFont());
addComponent(jEdit.getProperty(

QuickNotepadPlugin.OPTION_PREFIX + "choose-font"),
font);

}

...

176

Chapter 17. Implementing a Simple Plugin

}

Here we adopt the vertical arrangement offered by use of theaddComponent() method with
one embellishment. We want the first “row” of the option pane to contain a text field with
the current notepad file path and a button that will trigger a file chooser dialog when pressed.
To place both of them on the same line (along with an identifying label for the file option),
we create aJPanel to contain both components and pass the configured panel to
addComponent() .

The_init() method uses properties from the plugin’s property file to provide the names of
label for the components placed in the option pane. It also uses a property whose name
begins withPROPERTY_PREFIXas a persistent data item - the path of the current notepad
file. The elements of the notepad’s font are also extracted from properties using a static
method of the option pane class.

The_save() method extracts data from the user input components and assigns them to the
plugin’s properties. The implementation is straightforward:

public void _save()
{

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath", pathName.getText());

Font _font = font.getFont();

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "font", _font.getFamily());

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "fontsize", String.valueOf(_font.getSize()));

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "fontstyle", String.valueOf(_font.getStyle()));

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath", String.valueOf(showPath.isSelected()));

}

The class has only two other methods, one to display a file chooser dialog in response to
user action, and the other to construct aFont object from the plugin’s font properties. They
do not require discussion here.

17.10. Plugin Documentation
While not required by the plugin API, a help file is an essential element of any plugin
written for public release. A single web page is often all that is required. There are no

177

Chapter 17. Implementing a Simple Plugin

specific requirements on layout, but because of the design of jEdit’s help viewer, the use of
frames should be avoided. Topics that would be useful include the following:

• a description of the purpose of the plugin;

• an explanation of the type of input the user can supply through its visible interface
(such as mouse action or text entry in controls);

• a listing of available user actions that can be taken when the plugin does not have input
focus;

• a summary of configuration options;

• information on development of the plugin (such as a change log, a list of “to do” items,
and contact information for the plugin’s author); and

• licensing information, including acknowledgments for any library software used by the
plugin.

The location of the plugin’s help file is stored in theplugin.QuickNotepad.docs property;
seeSection 17.4.

17.11. Compiling the Plugin
We have already outlined the contents of the user action catalog, the properties file and the
documentation file in our earlier discussion. The final step is to compile the source file and
build the archive file that will hold the class files and the plugin’s other resources.

Publicly released plugins include with their source a makefile in XML format for the Ant
utility. The format for this file requires few changes from plugin to plugin. Here is the
version ofbuild.xml used by QuickNotepad and many other plugins:

<project name="QuickNotepad" default="dist" basedir=".">

<property name="jedit.install.dir" value="../.."/>
<property name="jar.name" value="QuickNotepad.jar"/>

<property name="install.dir" value=".."/>

<path id="project.class.path">
<pathelement location="${jedit.install.dir}/jedit.jar"/>
<pathelement location="."/>

</path>

178

Chapter 17. Implementing a Simple Plugin

<target name="compile">
<javac

srcdir="."
deprecation="on"
includeJavaRuntime="yes"

>
<classpath refid="project.class.path"/>

</javac>
</target>

<target name="dist" depends="compile">
<mkdir dir="${install.dir}"/>
<jar jarfile="${install.dir}/${jar.name}">

<fileset dir=".">
<include name="**/*.class"/>
<include name="**/*.props"/>
<include name="**/*.html"/>
<include name="actions.xml"/>
<include name="dockables.xml"/>

</fileset>
</jar>

</target>
</project>

For a full discussion of theAnt file format and command syntax, you should consult theAnt

documentation site . Modifying this makefile for a different plugin will likely only
require three changes:

• the name of the plugin;

• the choice of compiler (made by inserting and deleting the comment character’#’);
and

• the classpath variables forjedit.jar any plugins this one depends on.

If you have reached this point in the text, you are probably serious about writing a plugin for
jEdit. Good luck with your efforts, and thank you for contributing to the jEdit project.

179

Chapter 17. Implementing a Simple Plugin

180

Chapter 18. Plugin Tips and
Techniques

18.1. Bundling Additional Class Libraries
Recall that any class whose name ends withPlugin.class is called a plugin core class.
JAR files with no plugin core classes are also loaded by jEdit; the classes they contain are
made available to other plugins. Many plugins that rely on third-party class libraries ship
them as separate JAR files. The libraries will be available inside the jEdit environment but
are not part of a general classpath or library collection when running other Java applications.

A plugin that bundles extra JAR files must list them in theplugin. class name .jars

property. See the documentation for theEditPlugin class for details.

181

Chapter 18. Plugin Tips and Techniques

182

	jEdit 4.1 User's Guide
	Table of Contents
	I. Using jEdit
	Chapter 1. Starting jEdit
	1.1. Conventions
	1.2. PlatformIndependent Instructions
	1.3. Starting jEdit on Windows
	1.4. Command Line Usage

	Chapter 2. jEdit Basics
	2.1. Buffers
	2.1.1. Memory Usage

	2.2. Views
	2.2.1. Window Docking
	2.2.2. The Status Bar

	2.3. The Text Area and Gutter

	Chapter 3. Working With Files
	3.1. Creating New Files
	3.2. Opening Files
	3.3. Saving Files
	3.3.1. Autosave and Crash Recovery
	3.3.2. Backups

	3.4. Line Separators
	3.5. Character Encodings
	3.5.1. Commonly Used Encodings

	3.6. The File System Browser
	3.6.1. Navigating the File System
	3.6.2. The Tool Bar
	3.6.3. The Commands Menu
	3.6.4. The Plugins Menu
	3.6.5. The Favorites Menu
	3.6.6. Keyboard Shortcuts

	3.7. Reloading From Disk
	3.8. MultiThreaded I/O
	3.9. Printing
	3.10. Closing Files and Exiting jEdit

	Chapter 4. Editing Text
	4.1. Moving The Caret
	4.2. Selecting Text
	4.2.1. Rectangular Selection
	4.2.2. Multiple Selection

	4.3. Inserting and Deleting Text
	4.4. Undo and Redo
	4.5. Working With Words
	4.6. Working With Lines
	4.7. Working With Paragraphs
	4.8. Wrapping Long Lines
	4.8.1. Soft Wrap
	4.8.2. Hard Wrap

	4.9. Scrolling
	4.10. Transferring Text
	4.10.1. The Clipboard
	4.10.2. Quick Copy
	4.10.3. General Register Commands

	4.11. Markers
	4.12. Search and Replace
	4.12.1. Searching For Text
	4.12.2. Replacing Text
	4.12.2.1. Text Replace
	4.12.2.2. BeanShell Replace

	4.12.3. HyperSearch
	4.12.4. Multiple File Search
	4.12.5. The Search Bar

	4.13. Command Repetition

	Chapter 5. Editing Source Code
	5.1. Edit Modes
	5.1.1. Mode Selection
	5.1.2. Syntax Highlighting

	5.2. Tabbing and Indentation
	5.2.1. Soft Tabs
	5.2.2. Automatic Indent

	5.3. Commenting Out Code
	5.4. Bracket Matching
	5.5. Abbreviations
	5.5.1. Positional Parameters

	5.6. Folding
	5.6.1. Collapsing and Expanding Folds
	5.6.2. Navigating Around With Folds
	5.6.3. Miscellaneous Folding Commands
	5.6.4. Narrowing

	Chapter 6. Customizing jEdit
	6.1. The Buffer Options Dialog Box
	6.2. BufferLocal Properties
	6.3. The Global Options Dialog Box
	6.3.1. The Abbreviations Pane
	6.3.2. The Appearance Pane
	6.3.3. The Context Menu Pane
	6.3.4. The Docking Pane
	6.3.5. The Editing Pane
	6.3.6. The General Pane
	6.3.7. The Gutter Pane
	6.3.8. The Loading and Saving Pane
	6.3.9. The Printing Pane
	6.3.10. The Proxy Servers Pane
	6.3.11. The Shortcuts Pane
	6.3.12. The Status Bar Pane
	6.3.13. The Syntax Highlighting Pane
	6.3.14. The Text Area Pane
	6.3.15. The Tool Bar Pane
	6.3.16. The File System Browser Panes

	6.4. The jEdit Settings Directory

	Chapter 7. Using Macros
	7.1. Recording Macros
	7.2. Running Macros
	7.3. How jEdit Organizes Macros

	Chapter 8. Installing and Using Plugins
	8.1. The Plugin Manager
	8.2. Installing Plugins
	8.3. Updating Plugins

	Appendix A. Keyboard Shortcuts
	Appendix B. The Activity Log
	Appendix C. History Text Fields
	Appendix D. Glob Patterns
	Appendix E. Regular Expressions
	Appendix F. Macros Included With jEdit
	F.1. File Management Macros
	F.2. Java Code Macros
	F.3. Macros for Listing Properties
	F.4. Miscellaneous Macros
	F.5. Text Macros

	Appendix G. jEditLauncher for Windows
	G.1. Introduction
	G.2. Starting jEdit
	G.3. The Context Menu Handler
	G.4. Using jEdit and jEditLauncher as a Diff Utility
	G.5. Uninstalling jEdit and jEditLauncher
	G.6. The jEditLauncher Interface
	G.7. Scripting Examples
	G.8. jEditLauncher Logging
	G.9. Legal Notice

	II. Writing Edit Modes
	Chapter 9. Mode Definition Syntax
	9.1. An XML Primer
	9.2. The Preamble and MODE tag
	9.3. The PROPS Tag
	9.4. The RULES Tag
	9.4.1. Highlighting Numbers
	9.4.2. Rule Ordering Requirements
	9.4.3. PerRuleset Properties

	9.5. The TERMINATE Tag
	9.6. The SPAN Tag
	9.7. The SPANREGEXP Tag
	9.8. The EOLSPAN Tag
	9.9. The EOLSPANREGEXP Tag
	9.10. The MARKPREVIOUS Tag
	9.11. The MARKFOLLOWING Tag
	9.12. The SEQ Tag
	9.13. The SEQREGEXP Tag
	9.14. The KEYWORDS Tag
	9.15. Token Types

	Chapter 10. Installing Edit Modes
	Chapter 11. Updating Edit Modes for jEdit 4.1
	III. Writing Macros
	Chapter 12. Macro Basics
	12.1. Introducing BeanShell
	12.2. Single Execution Macros
	12.3. The Mandatory First Example
	12.4. Predefined Variables in BeanShell
	12.5. Helpful Methods in the Macros Class
	12.6. BeanShell Dynamic Typing
	12.7. Now For Something Useful

	Chapter 13. A DialogBased Macro
	13.1. Use of the Macro
	13.2. Listing of the Macro
	13.3. Analysis of the Macro
	13.3.1. Import Statements
	13.3.2. Create the Dialog
	13.3.3. Create the Text Fields
	13.3.4. Create the Buttons
	13.3.5. Register the Action Listeners
	13.3.6. Make the Dialog Visible
	13.3.7. The Action Listener
	13.3.8. Get the User's Input
	13.3.9. Call jEdit Methods to Manipulate Text
	13.3.10. The Main Routine

	Chapter 14. Macro Tips and Techniques
	14.1. Getting Input for a Macro
	14.1.1. Getting a Single Line of Text
	14.1.2. Getting Multiple Data Items
	14.1.3. Selecting Input From a List
	14.1.4. Using a Single Keypress as Input

	14.2. Startup Scripts
	14.3. Running Scripts from the Command Line
	14.4. Advanced BeanShell Techniques
	14.4.1. BeanShell's Convenience Syntax
	14.4.2. Special BeanShell Keywords
	14.4.3. Implementing Interfaces

	14.5. Debugging Macros
	14.5.1. Identifying Exceptions
	14.5.2. Using the Activity Log as a Tracing Tool

	Chapter 15. BeanShell Commands
	15.1. Output Commands
	15.2. File Management Commands
	15.3. Component Commands
	15.4. Resource Management Commands
	15.5. Script Execution Commands
	15.6. BeanShell Object Management Commands
	15.7. Other Commands

	IV. Writing Plugins
	Chapter 16. Introducing the Plugin API
	Chapter 17. Implementing a Simple Plugin
	17.1. How Plugins are Loaded
	17.2. The QuickNotepadPlugin Class
	17.3. The EditBus
	17.4. The Property File
	17.5. The Action Catalog
	17.6. The Dockable Window Catalog
	17.7. The QuickNotepad Class
	17.8. The QuickNotepadToolBar Class
	17.9. The QuickNotepadOptionPane Class
	17.10. Plugin Documentation
	17.11. Compiling the Plugin

	Chapter 18. Plugin Tips and Techniques
	18.1. Bundling Additional Class Libraries

