
MySQL Connector/J Documentation
by Mark Matthews

MySQL Connector/J Documentation
by Mark Matthews
Copyright © 2004 MySQL AB

Table of Contents
1. Introduction ...

1.. What is MySQL Connector/J? ... 1
1.. Release Notes ... 1

1... Known Issues .. 1
2. Installation ..

2.. System Requirements .. 5
2... Java Versions Supported .. 5
2... MySQL Server Versions Supported ... 5

2.. Installing MySQL Connector/J .. 5
2... Setting the CLASSPATH (For Standalone Use) ... 5
2... Driver Class Name and JDBC URL Format ... 6
2... Installing MySQL Connector/J for Use With Servlets/JSP/EJB 13

2.. What's Next? .. 14
3. Developing Applications with MySQL Connector/J ..

3.. Basic Functionality ... 15
3... Registering MySQL Connector/J With the JDBC DriverManager 15
3... Opening a Connection to MySQL ... 15
3... Creating a Statement Instance ... 16
3... Executing a SELECT Query ... 16

3.. Advanced Functionality ... 17
3... Character Sets and Unicode .. 17
3... Stored Procedures .. 19
3... Connecting over SSL .. 22

4. How to Report Bugs or Problems ...
5. Troubleshooting ...
A. Reference ...

A.. Type Conversions Supported by MySQL Connector/J ... 31
B. ChangeLog ...

iv

List of Tables
2.1. Connection Properties .. 6
3.1. MySQL to Java Encoding Name Translations ... 17
A.1. Conversion Table ... 31

v

List of Examples
2.1. Setting the CLASSPATH Under UNIX ... 5
2.2. Setting the CLASSPATH Under Microsoft Windows 9X .. 5
3.1. Registering the Driver With the DriverManager .. 15
3.2. Obtaining a Connection From the DriverManager .. 15
3.3. Using java.sql.Statement to Execute a SELECT Query ... 16
3.4. Stored Procedure Example .. 19
3.5. Using Connection.prepareCall() ... 19
3.6. Registering Output Parameters ... 20
3.7. Setting CallableStatement Input Parameters .. 21
3.8. Retrieving Results and Output Parameter Values ... 21
5.1. Example of transaction with retry logic .. 28

vi

Chapter 1. Introduction

What is MySQL Connector/J?
MySQL Connector/J is an implementation of Sun's JDBC 3.0 API for the MySQL relational database server. It
strives to conform as much as possible to the JDBC API as specified by JavaSoft. It is known to work with many
third-party products, including:

Application Servers

• Apache Tomcat [http://jakarta.apache.org/]

• JBoss [http://www.jboss.org/]

• Weblogic [http://www.beasys.com/]

• IBM WebSphere [http://www-3.ibm.com/software/info1/websphere/]

Object Relational Mapping Tools

• Hibernate [http://hibernate.sourceforge.net/]

• Apache ObjectRelationalBridge [http://db.apache.org/ojb/]

• CocoBase [http://www.thoughtinc.com/]

• Kodo [http://www.solarmetric.com/]

Development Environments

• Eclipse [http://www.eclipse.org/]

• Borland JBuilder [http://www.borland.com/jbuilder/]

• IBM WebSphere Studio [http://www-3.ibm.com/software/awdtools/studioappdev/]

Release Notes

Known Issues

Implementation Notes (By java.sql and javax.sql Interface/Class)

MySQL Connector/J passes all of the tests in Sun's JDBC compliance testsuite except for tests requiring stored pro-

1

http://jakarta.apache.org/
http://www.jboss.org/
http://www.beasys.com/
http://www-3.ibm.com/software/info1/websphere/
http://hibernate.sourceforge.net/
http://db.apache.org/ojb/
http://www.thoughtinc.com/
http://www.solarmetric.com/
http://www.eclipse.org/
http://www.borland.com/jbuilder/
http://www-3.ibm.com/software/awdtools/studioappdev/

cedures (which MySQL does not have at this time). However, in many places the JDBC specification is vague about
how certain functionality should be implemented, or the specification allows leeway in implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions may affect
how you use MySQL Connector/J.

• Blob

The Blob implementation does not allow in-place modification (they are 'copies', as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the corresponding PreparedState-
ment.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes back to
the database.

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property 'emulateLo-
cators=true' to your JDBC URL. You must then use a column alias with the value of the column set to the actual
name of the Blob column in the SELECT that you write to retrieve the Blob. The SELECT must also reference
only one table, the table must have a primary key, and the SELECT must cover all columns that make up the
primary key. The driver will then delay loading the actual Blob data until you retrieve the Blob and call retrieval
methods (getInputStream(), getBytes(), etc) on it.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or
newer via the CallableStatement interface. Currently, the getParameterMetaData() method of
CallableStatement is not supported.

• Clob

The Clob implementation does not allow in-place modification (they are 'copies', as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the PreparedStatement.setClob()
method to save changes back to the database. The JDBC API does not have a ResultSet.updateClob() method.

• Connection

Unlike older versions of MM.MySQL the 'isClosed()' method does not "ping" the server to determine if it is
alive. In accordance with the JDBC specification, it only returns true if 'closed()' has been called on the connec-
tion. If you need to determine if the connection is still valid, you should issue a simple query, such as "SELECT
1". The driver will throw an exception if the connection is no longer valid.

• DatabaseMetaData

Foreign Key information (getImported/ExportedKeys() and getCrossReference()) is only available from 'In-
noDB'-type tables. However, the driver uses 'SHOW CREATE TABLE' to retrieve this information, so when
other table types support foreign keys, the driver will transparently support them as well.

• Driver

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Be-
cause of this, the driver does not implement getParameterMetaData() or getMetaData() as it would require the
driver to have a complete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and 'binary-encoded' result sets
are used when the server supports them.

Take care when using a server-side prepared statement with "large" parameters that are set via setBinaryS-
tream(), setAsciiStream(), setUnicodeStream(), setBlob(), or setClob(). If you want to re-execute the statement

Introduction

2

with any "large" parameter changed to a non-"large" parameter, it is necessary to call clearParameters() and set
all parameters again. The reason for this is as follows:

• The driver streams the 'large' data 'out-of-band' to the prepared statement on the server side when the para-
meter is set (before execution of the prepared statement).

• Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec),
and can't be read from again.

• If a parameter changes from "large" to non-"large", the driver must reset the server-side state of the prepared
statement to allow the parameter that is being changed to take the place of the prior "large" value. This re-
moves all of the 'large' data that has already been sent to the server, thus requiring the data to be re-sent, via
the setBinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the "type" of a parameter to a non-"large" one, you must call clearParamet-
ers() and set all parameters of the prepared statement again before it can be re-executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient
way to operate, and due to the design of the MySQL network protocol is easier to implement. If you are working
with ResultSets that have a large number of rows or large values, and can not allocate heap space in your JVM
for the memory required, you can tell the driver to 'stream' the results back one row at-a-time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a
signal to the driver to "stream" result sets row-by-row. After this any result sets created with the statement will
be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or close it) be-
fore you can issue any other queries on the connection, or an exception will be thrown. Also, any tables refer-
enced by the query that created the streaming result will be locked until all of the results have been read or the
connection closed.

• ResultSetMetaData

The 'isAutoIncrement()' method only works when using MySQL servers 4.0 and newer.

• Statement

Un-implemented Functionality

The following methods in the JDBC API have not been implemented yet. They rely on functionality that at this time
is not present in the MySQL server:

Introduction

3

• Blob.truncate()

• Connection.setSavePoint() is not supported in versions earlier than 3.1.1

• Connection.prepareCall(String) is not supported in versions earlier than 3.1.1

• Connection.releaseSavepoint(Savepoint) is not supported in versions earlier than 3.1.1

• Connection.rollback(Savepoint) is not supported in versions earlier than 3.1.1

• PreparedStatement.setArray(int, Array)

• PreparedStatement.setRef()

• PreparedStatement.getParameterMetaData()

• ResultSet.getArray(int)

• ResultSet.getArray(colName)

• ResultSet.getRef(int)

• ResultSet.getRef(String)

• ResultSet.rowDeleted()

• ResultSet.rowInserted()

• ResultSet.rowUpdated()

• ResultSet.updateArray(int, Array)

• ResultSet.updateArray(String, Array)

• ResultSet.updateRef(int, Ref)

• ResultSet.updateRef(String, Ref)

Introduction

4

Chapter 2. Installation
This chapter contains instructions for installing the MySQL Connector/J drivers on Microsoft Windows and UNIX
platforms. If you are on another platform that supports Java and the JDBC API then substitute commands appropri-
ate for your system.

System Requirements
Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including JDK-1.2.x, JDK-1.3.x and JDK-1.4.x, and requires JDK-1.4.x
or newer to compile (but not run). MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on JDKs older than
1.4 unless the class verifier is turned off (-Xverify:none), as the class verifier will try to load the class definition for
java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint functionality.

MySQL Server Versions Supported
MySQL Connector/J supports all known MySQL server versions. Some features (foreign keys, updatable result sets)
require more recent versions of MySQL to operate.

Installing MySQL Connector/J
MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files and a class-file
only "binary" .jar archive named "mysql-connector-java-[version]-bin.jar". You will need to use the appropriate gui
or command-line utility to un-archive the distribution (for example, WinZip for the .zip archive, and "tar" for the
.tar.gz archive).

Setting the CLASSPATH (For Standalone Use)
Once you have un-archived the distribution archive, you can install the driver in one of two ways: Either copy the
"com" and "org" subdirectories and all of their contents to anywhere you like, and put the directory holding the
"com" and "org" subdirectories in your classpath, or put mysql-connector-java-[version]-bin.jar in your classpath,
either by adding the FULL path to it to your CLASSPATH enviornment variable, or by copying the .jar file to
$JAVA_HOME/jre/lib/ext. If you are going to use the driver with the JDBC DriverManager, you would use
"com.mysql.jdbc.Driver" as the class that implements java.sql.Driver.

Example 2.1. Setting the CLASSPATH Under UNIX

The following command works for 'csh' under UNIX:

$ setenv CLASSPATH /path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

The above command can be added to the appropriate startup file for the login shell to make MySQL Connector/J
available to all Java applications.

Example 2.2. Setting the CLASSPATH Under Microsoft Windows 9X

5

The following is an example of setting the CLASSPATH under Microsoft Windows 95, 98, ME:

C:\> set CLASSPATH=\path\to\mysql-connector-java-[version]-bin.jar;%CLASSPATH%

This command can be added as the last line in AUTOEXEC.BAT. If this is done the MySQL Connector/J driver
will be made available to all Java applications that run on the Windows 9x system. This setting will require the com-
puter to be rebooted before the changes will take effect.

Driver Class Name and JDBC URL Format
The name of the class that implements java.sql.Driver in MySQL Connector/J is 'com.mysql.jdbc.Driver'. The
'org.gjt.mm.mysql.Driver' class name is also usable to remain backwards-compatible with MM.MySQL. You should
use this class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database][?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the hostname is not specified, it defaults to '127.0.0.1'. If the port is not specified, it defaults to '3306', the default
port number for MySQL servers.

Starting with version 3.0.12 and 3.1.2, Connector/J supports multiple hosts with ports, separated by commas:

jdbc:mysql://[host:port],[host:port].../[database][?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no 'current' database. In this case, you will need to
either call the 'setCatalog()' method on the Connection instance, issue a 'USE dbname' query or fully-specify table
names using the database name (i.e. 'SELECT dbname.tablename.colname FROM dbname.tablename...') in your
SQL. Not specifying the database to use upon connection is generally only useful when building tools that work
with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of "slave" hosts and
still perform read-only queries. Fail-over only happens when the connection is in an autoCommit(true) state, because
fail-over can not happen reliably when a transaction is in progress. Most good application servers and connection
pools set autoCommit to 'true' at the end of every transaction/connection use. The fail-over functionality has the fol-
lowing behavior: If the URL property "autoReconnect" is false: Failover only happens at connection initialization,
and failback occurs when the driver determines that the first host has become available again If the URL property
"autoReconnect" is true: Failover happens when the driver determines that the connection has failed (before every
query), and falls back to the first host when it determines that the host has become available again (after queriesBe-
foreRetryMaster queries have been issued). In either case, whenever you are connected to a "failed-over" server, the
connection will be set to read-only state, so queries that would modify data will have exceptions thrown (the query
will never be processed by the MySQL server).

You may specify additional properties to the JDBC driver, either by placing them in a java.util.Properties instance
and passing that instance to the DriverManager when you connect, or by adding them to the end of your JDBC URL
as name-value pairs. The first property needs to be preceeded with a '?' character, and additional name-value pair
properties are separated by an '&' character. The properties, their definitions and their default values are covered in
the following table:

Table 2.1. Connection Properties

Property Name Definition Required? Default Value Since Version

user The user to connect
as

No All

Installation

6

Property Name Definition Required? Default Value Since Version

password The password to use
when connecting

No All

gatherPerfMetrics Should the driver
gather performance
metrics, and report
them via the con-
figured logger every
'reportMetricsInterval-
Millis' milliseconds?

false false 3.1.2

reportMetricsInterval-
Millis

If 'gatherPerfMetrics'
is enabled, how often
should they be logged
(in ms)?

false 30000 3.1.2

logSlowQueries Should queries that
take longer than
'slowQueryThreshold-
Millis' be logged?

false false 3.1.2

slowQueryThreshold-
Millis

If 'logSlowQueries' is
enabled, how long
should a query (in
ms) before it is
logged as 'slow'?

false 2000 3.1.2

failOverReadOnly When failing over in
autoReconnect mode,
should the connection
be set to 'read-only'?

false true 3.0.12

allowLoadLocalInfile Should the driver al-
low use of 'LOAD
DATA LOCAL IN-
FILE...' (defaults to
'true').

false true 3.0.3

allowMultiQueries Allow the use of ';' to
delimit multiple quer-
ies during one state-
ment (true/false, de-
faults to 'false'

false false 3.1.1

autoReconnect Should the driver try
to re-establish bad
connections?

false false 1.1

autoReconnectFor-
Pools

Use a reconnection
strategy appropriate
for connection pools
(defaults to 'false')

false false 3.0.8

cacheCallableStmts Should the driver
cache the parsing
stage of
CallableStatements

false false 3.1.2

cachePrepStmts Should the driver
cache the parsing
stage of Prepared-
Statements?

false false 3.0.10

cacheResultSet- Should the driver false false 3.1.1

Installation

7

Property Name Definition Required? Default Value Since Version

Metadata cache ResultSet-
MetaData for State-
ments and Prepared-
Statements? (Req.
JDK-1.4+, true/false,
default 'false')

capitalizeTypeNames Capitalize type names
in Database-
MetaData? (usually
only useful when us-
ing WebObjects, true/
false, defaults to
'false')

false false 2.0.7

clobberStreamin-
gResults

This will cause a
'streaming' ResultSet
to be automatically
closed, and any ous-
tanding data still
streaming from the
server to be discarded
if another query is ex-
ecuted before all the
data has been read
from the server.

false false 3.0.9

continueBatchOnErr-
or

Should the driver
continue processing
batch commands if
one statement fails.
The JDBC spec al-
lows either way
(defaults to 'true').

false true 3.0.3

useServerPrepStmts Use server-side pre-
pared statements if
the server supports
them? (defaults to
'true').

false true 3.1.0

emulateLocators N/A false false 3.1.0

explainSlowQueries If 'logSlowQueries' is
enabled, should the
driver automatically
issue an 'EXPLAIN'
on the server and
send the results to the
configured log at a
WARN level?

false false 3.1.2

ignoreNonTxTables Ignore non-
transactional table
warning for rollback?
(defaults to 'false').

false false 3.0.9

interactiveClient Set the CLI-
ENT_INTERACTIV
E flag, which tells
MySQL to timeout
connections based on

false false 3.1.0

Installation

8

Property Name Definition Required? Default Value Since Version

INTERACT-
IVE_TIMEOUT in-
stead of
WAIT_TIMEOUT

paranoid Take measures to pre-
vent exposure sensit-
ive information in er-
ror messages and
clear data structures
holding sensitive data
when possible?
(defaults to 'false')

false false 3.0.1

pedantic Follow the JDBC
spec to the letter.

false false 3.0.0

profileSQL Trace queries and
their execution/fetch
times to the con-
figured logger
(true/false) defaults to
'false'

false false 3.1.0

reconnectAtTxEnd If autoReconnect is
set to true, should the
driver attempt recon-
nectionsat the end of
every transaction?

false false 3.0.10

relaxAutoCommit If the version of
MySQL the driver
connects to does not
support transactions,
still allow calls to
commit(), rollback()
and setAutoCommit()
(true/false, defaults to
'false')?

false false 2.0.13

requireSSL Require SSL connec-
tion if useSSL=true?
(defaults to 'false').

false false 3.1.0

roundRobinLoadBal-
ance

When autoReconnect
is enabled, and fail-
overReadonly is false,
should we pick hosts
to connect to on a
round-robin basis?

false false 3.1.2

strictFloatingPoint Used only in older
versions of compli-
ance test

false false 3.0.0

strictUpdates Should the driver do
strict checking (all
primary keys selec-
ted) of updatable res-
ult sets (true, false,
defaults to 'true')?

false true 3.0.4

useCompression Use zlib compression false false 3.1.0

Installation

9

Property Name Definition Required? Default Value Since Version

when communicating
with the server
(true/false)? Defaults
to 'false'.

useHostsInPrivileges Add '@hostname' to
users in Database-
MetaData.getColumn/
TablePrivileges()
(true/false), defaults
to 'true'.

false true 3.0.2

useNewIO Should the driver use
the java.nio.* inter-
faces for network
communication
(true/false), defaults
to 'false'

false false 3.1.0

useSSL Use SSL when com-
municating with the
server (true/false), de-
faults to 'false'

false false 3.0.2

useStreamLengthsIn-
PrepStmts

Honor stream length
parameter in Pre-
paredStatement/Result-
Set.setXXXStream()
method calls
(true/false, defaults to
'true')?

false true 3.0.2

useTimezone Convert time/date
types between client
and server timezones
(true/false, defaults to
'false')?

false false 3.0.2

ultraDevHack Create PreparedState-
ments for prepare-
Call() when required,
because UltraDev is
broken and issues a
prepareCall() for
all statements?
(true/false, defaults to
'false')

false false 2.0.3

useUnbufferedInput Don't use BufferedIn-
putStream for reading
data from the server

false true 3.0.11

useUnicode Should the driver use
Unicode character en-
codings when hand-
ling strings? Should
only be used when
the driver can't de-
termine the character
set mapping, or you
are trying to 'force'
the driver to use a

false false 1.1g

Installation

10

Property Name Definition Required? Default Value Since Version

character set that
MySQL either doesn't
natively support (such
as UTF-8), true/false,
defaults to 'true'

useUsageAdvisor Should the driver is-
sue 'usage' warnings
advising proper and
efficient usage of JD-
BC and MySQL Con-
nector/J to the log
(true/false, defaults to
'false')?

false false 3.1.1

callableStmtCacheS-
ize

If 'cacheCallableSt-
mts' is enabled, how
many callable state-
ments should be
cached?

false 100 3.1.2

connectTimeout Timeout for socket
connect (in milli-
seconds), with 0 be-
ing no timeout. Only
works on JDK-1.4 or
newer. Defaults to '0'.

false 0 3.0.1

initialTimeout If autoReconnect is
enabled, the initial
time to wait between
re-connect attempts
(in seconds, defaults
to '2').

false 2 1.1

maxReconnects Maximum number of
reconnects to attempt
if autoReconnect is
true, default is '3'.

false 3 1.1

maxRows The maximum num-
ber of rows to return
(0, the default means
return all rows).

false -1 all versions

metadataCacheSize The number of quer-
ies to cacheResultSet-
Metadata for if
cacheResultSet-
MetaData is set to
'true' (default 50)

false 50 3.1.1

prepStmtCacheSize If prepared statement
caching is enabled,
how many prepared
statements should be
cached?

false 25 3.0.10

prepStmtCacheSql-
Limit

If prepared statement
caching is enabled,
what's the largest
SQL the driver will

false 256 3.0.10

Installation

11

Property Name Definition Required? Default Value Since Version

cache the parsing for?

queriesBeforeRetry-
Master

Number of queries to
issue before falling
back to master when
failed over (when us-
ing multi-host fail-
over). Whichever
condition is met first,
'queriesBeforeRetry-
Master' or 'secondsBe-
foreRetryMaster' will
cause an attempt to be
made to reconnect to
the master. Defaults
to 50.

false 50 3.0.2

secondsBeforeRetry-
Master

How long should the
driver wait, when
failed over, before at-
tempting to reconnect
to the master server?
Whichever condition
is met first, 'queries-
BeforeRetryMaster'
or 'secondsBe-
foreRetryMaster' will
cause an attempt to be
made to reconnect to
the master. Time in
seconds, defaults to
30

false 30 3.0.2

socketTimeout Timeout on network
socket operations (0,
the default means no
timeout).

false 0 3.0.1

characterEncoding If 'useUnicode' is set
to true, what charac-
ter encoding should
the driver use when
dealing with strings?
(defaults is to 'autode-
tect')

false 1.1g

logger The name of a class
that implements
'com.mysql.jdbc.log.
Log' that will be used
to log messages
to.(default is
'com.mysql.jdbc.log.S
tandardLogger',
which logs to
STDERR)

false com.mysql.jdbc.log.S
tandardLogger

3.1.1

profileSql Deprecated, use 'pro-
fileSQL' instead.
Trace queries and
their execution/fetch

false 2.0.14

Installation

12

Property Name Definition Required? Default Value Since Version

times on STDERR
(true/false) defaults to
'false'

serverTimezone Override detection/
mapping of timezone.
Used when timezone
from server doesn't
map to Java timezone

false 3.0.2

socketFactory The name of the class
that the driver should
use for creating sock-
et connections to the
server. This class
must implement the
interface
'com.mysql.jdbc.Sock
etFactory' and have
public no-args con-
structor.

false com.mysql.jdbc.Stand
ardSocketFactory

3.0.3

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the 'NamedPipeSock-
etFactory' as a plugin-socket factory via the 'socketFactory' property. If you don't use a 'namedPipePath' property,
the default of '\\.\pipe\MySQL' will be used. If you use the NamedPipeSocketFactory, the hostname and port number
values in the JDBC url will be ignored.

Adding the following property to your URL will enable the NamedPipeSocketFactory:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one the JDBC
driver is being used on. In simple performance tests, it appears that named pipe access is between 30%-50% faster
than the standard TCP/IP access.

You can create your own socket factories by following the example code in
com.mysql.jdbc.NamedPipeSocketFactory, or com.mysql.jdbc.StandardSocketFactory.

Installing MySQL Connector/J for Use With Servlets/JSP/EJB
If you want to use MySQL Connector/J with a servlet engine or application server such as Tomcat or JBoss, you will
have to read your vendor's documentation for more information on how to configure third-party class libraries, as
most application servers ignore the CLASSPATH environment variable.

If you are developing servlets and/or JSPs, and your application server is J2EE-compliant, you should put the
driver's .jar file in the WEB-INF/lib subdirectory of your webapp, as this is the standard location for third party class
libraries in J2EE web applications.

You can also use the MysqlDataSource, MysqlConnectionPoolDataSource or MysqlXADataSource classes in the
com.mysql.jdbc.jdbc2.optional and com.mysql.jdbc.jdbc2.optional.xa packages, if your J2EE application server sup-
ports or requires them. The various MysqlDataSource classes support the following parameters (through standard
"set" mutators):

• user

• password

Installation

13

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

What's Next?
Once the driver has been installed into your CLASSPATH or application server, the driver is ready for use! Taking a
look at the next chapter containing programming information might be a good idea, however.

Installation

14

Chapter 3. Developing Applications with
MySQL Connector/J

...

Basic Functionality

Registering MySQL Connector/J With the JDBC DriverManager
When you are using JDBC outside of an application server, the DriverManager class manages the establishment of
Connections.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with. The easiest way to
do this is to use Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connect-
or/J, the name of this class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file
to supply the driver class name and driver parameters to use when connecting to a database.

Example 3.1. Registering the Driver With the DriverManager

The following section of Java code shows how you might register MySQL Connector/J from the main() method of
your application.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.jdbc.*
// or you will have problems!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newInstance() call is a work around for some
// broken Java implementations

Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {

// handle the error
}

}

Opening a Connection to MySQL
After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected
to a particular database by calling DriverManager.getConnection():

Example 3.2. Obtaining a Connection From the DriverManager

This example shows how you can obtain a Connection instance from the DriverManager. There are a few different
signatures for the getConnection() method. You should see the API documentation that comes with your JDK for

15

more specific information on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

... try {
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/test?user=monty&password=greatsqldb");

// Do something with the Connection

....
} catch (SQLException ex) {

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statements and PreparedStatements, as well as retrieve
metadata about the database. This is explained in the following sections.

Creating a Statement Instance
Statements allow you to execute basic SQL queries and retrieve the results through the ResultSet class which is de-
scribed later. To get a Statement object, you call the createStatement() method on the Connection object you have
retrieved via the DriverManager.getConnection() method. Once you have a Statement object, you can execute a SE-
LECT query by calling the executeQuery(String SQL) method with the SQL you want to use. To update data in the
database use the executeUpdate(String SQL) method. This method returns the number of rows affected by the up-
date statement. If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/IN-
SERT, then you can use the execute(String SQL) method. This method will return true if the SQL query was a SE-
LECT, or false if an UPDATE/INSERT/DELETE query. If the query was a SELECT query, you can retrieve the
results by calling the getResultSet() method. If the query was an UPDATE/INSERT/DELETE query, you can re-
trieve the affected rows count by calling getUpdateCount() on the Statement instance.

Executing a SELECT Query

Example 3.3. Using java.sql.Statement to Execute a SELECT Query

// assume conn is an already created JDBC connection
Statement stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");

// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...

if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();

}

// Now do something with the ResultSet
} finally {

// it is a good idea to release

Developing Applications with MySQL Connector/J

16

// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) { // ignore }

rs = null;
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) { // ignore }

stmt = null;
}

}

Advanced Functionality

Character Sets and Unicode
All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to
the client character encoding, including all queries sent via Statement.execute(), State-
ment.executeUpdate(), Statement.executeQuery() as well as all PreparedStatement and
CallableStatement parameters with the exclusion of parameters set using setBytes(), setBinaryStream(),
setAsiiStream(), setUnicodeStream() and setBlob().

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either
be automatically detected from the server configuration, or could be configured by the user through the useU-
nicode and characterEncoding properties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and server, and
any number of character encodings for data returned by the server to the client in ResultSets.

The character encoding between client and server is automatically detected upon connection. The encoding used by
the driver is specified on the server via the configuration variable 'character_set' for server versions older than
4.1.0 and 'character_set_server' for server versions 4.1.0 and newer. See the "Server Character Set and Colla-
tion [http://www.mysql.com/doc/en/Charset-server.html]" section in the MySQL server manual for more informa-
tion.

To override the automatically-detected encoding on the client side, use the characterEncoding property in the
URL used to connect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following table lists
Java-style names for MySQL character sets:

Table 3.1. MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name

usa7 US-ASCII

big5 Big5

gbk GBK

Developing Applications with MySQL Connector/J

17

http://www.mysql.com/doc/en/Charset-server.html
http://www.mysql.com/doc/en/Charset-server.html

MySQL Character Set Name Java-Style Character Encoding Name

sjis SJIS

gb2312 EUC_CN

ujis EUC_JP

euc_kr EUC_KR

latin1 ISO8859_1

latin1_de ISO8859_1

german1 ISO8859_1

danish ISO8859_1

latin2 ISO8859_2

czech ISO8859_2

hungarian ISO8859_2

croat ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

latin5 ISO8859_9

latvian ISO8859_13

latvian1 ISO8859_13

estonia ISO8859_13

dos Cp437

pclatin2 Cp852

cp866 Cp866

koi8_ru KOI8_R

tis620 TIS620

win1250 Cp1250

win1250ch Cp1250

win1251 Cp1251

cp1251 Cp1251

win1251ukr Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names' with Connector/J, as the driver will not detect that the character set has
changed, and will continue to use the character set detected during the initial connection setup.

To allow multiple character sets to be sent from the client, the "UTF-8" encoding should be used, either by configur-
ing "utf8" as the default server character set, or by configuring the JDBC driver to use "UTF-8" through the char-
acterEncoding property.

Developing Applications with MySQL Connector/J

18

Stored Procedures
Starting with MySQL 5.0 and Connector/J 3.1.1, the java.sql.CallableStatement interface is fully implemen-
ted with the exception of the getParameterMetaData() method.

MySQL's stored procedure syntax is documented in the "Stored Procedures and Functions
[http://www.mysql.com/doc/en/Stored_Procedures.html]" section of the MySQL Reference Manual.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the
string passed in via inputParam as a ResultSet:

Example 3.4. Stored Procedure Example

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), INOUT inOutParam INT)
BEGIN

DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;

SELECT inputParam;

SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placehold-
ers are not optional:

Example 3.5. Using Connection.prepareCall()

import java.sql.CallableStatement;

...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//

CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver per-

Developing Applications with MySQL Connector/J

19

http://www.mysql.com/doc/en/Stored_Procedures.html

forms to support output parameters. For performance reasons, you should try to minimize unnecessary calls
to Connection.prepareCall() by reusing CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored
procedure), JDBC requires that they be specified before statement execution using the various registerOut-
putParameter() methods in the CallableStatement interface:

Example 3.6. Registering Output Parameters

import java.sql.Types;

...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output
//

cStmt.registerOutParameter(2);

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam'
//

cStmt.registerOutParameter("inOutParam");

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);

...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also
supports setting parameters by name:

Developing Applications with MySQL Connector/J

20

Example 3.7. Setting CallableStatement Input Parameters

...

//
// Set a parameter by index
//

cStmt.setString(1, "abcdefg");

//
// Alternatively, set a parameter using
// the parameter name
//

cStmt.setString("inputParameter", "abcdefg");

//
// Set the 'in/out' parameter using an index
//

cStmt.setInt(2, 1);

//
// Alternatively, set the 'in/out' parameter
// by name
//

cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

While CallableStatement supports calling any of the Statement execute methods (executeUpdate(),
executeQuery() or execute()), the most flexible method to call is execute(), as you do not need to
know ahead of time if the stored procedure returns result sets:

Example 3.8. Retrieving Results and Output Parameter Values

...

boolean hadResults = cStmt.execute();

//
// Process all returned result sets
//

while (hadResults) {
ResultSet rs = cStmt.getResultSet();

// process result set
...

hadResults = cStmt.getMoreResults();
}

//
// Retrieve output parameters
//
// Connector/J supports both index-based and

Developing Applications with MySQL Connector/J

21

// name-based retrieval
//

int outputValue = cStmt.getInt(1); // index-based

outputValue = cStmt.getInt("inOutParam"); // name-based

...

Connecting over SSL
SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the
server. The performance penalty for enabling SSL is an increase in query processing time between 35% and 50%,
depending on the size of the query, and the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently
work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL-4.0.4 or
later, see: http://www.mysql.com/doc/en/Secure_connections.html

• A client certificate (covered later in this section)

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA
Certificate is located in the 'SSL' subdirectory of the MySQL source distribution. This is what SSL will use to de-
termine if you are communicating with a secure MySQL server.

To use Java's 'keytool' to create a truststore in the current directory , and import the server's CA certificate
('cacert.pem'), you can do the following (assuming that'keytool' is in your path. It's located in the 'bin' subdirectory
of your JDK or JRE):

shell> keytool -import -alias mysqlServerCACert -file cacert.pem -keystore truststore

Keytool will respond with the following information:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Some
-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Som
e-State, C=RU
Serial number: 0
Valid from: Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You will then need to generate a client certificate, so that the MySQL server knows that it is talking to a secure cli-

Developing Applications with MySQL Connector/J

22

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://www.mysql.com/doc/en/Secure_connections.html

ent:

shell> keytool -genkey -keyalg rsa -alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named 'keystore' in the current direct-
ory.

You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?

[Unknown]: Matthews
What is the name of your organizational unit?

[Unknown]: Software Development
What is the name of your organization?

[Unknown]: MySQL AB
What is the name of your City or Locality?

[Unknown]: Flossmoor
What is the name of your State or Province?

[Unknown]: IL
What is the two-letter country code for this unit?

[Unknown]: US
Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system
properties when you start your JVM, replacing 'path_to_keystore_file' with the full path to the keystore file you cre-
ated, 'path_to_truststore_file' with the path to the truststore file you created, and using the appropriate password val-
ues for each property.

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=*********
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=*********

You will also need to set 'useSSL' to 'true' in your connection parameters for MySQL Connector/J, either by adding
'useSSL=true' to your URL, or by setting the property 'useSSL' to 'true' in the java.util.Properties instance you pass
to DriverManager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key
events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, 54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, 217, 219, 239, 202, 19, 121, 78 }
Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1

Developing Applications with MySQL Connector/J

23

RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, 202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, 132, 110, 82, 148, 160, 92 }
Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, 182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, 219, 158, 177, 187, 143}
Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

JSSE provides debugging (to STDOUT) when you set the following system property: -Djavax.net.debug=all This
will tell you what keystores and truststores are being used, as well as what is going on during the SSL handshake
and certificate exchange. It will be helpful when trying to determine what is not working when trying to get an SSL
connection to happen.

Developing Applications with MySQL Connector/J

24

Chapter 4. How to Report Bugs or
Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database
is public, and can be browsed and searched by anyone. If you log in to the system, you will also be able to enter new
reports.

If you have found a sensitive security bug in MySQL, you can send email to security@mysql.com
[mailto:security@mysql.com] Writing a good bug report takes patience, but doing it right the first time saves time
both for us and for yourself. A good bug report, containing a full test case for the bug, makes it very likely that we
will fix the bug in the next release. This section will help you write your report correctly so that you don't waste
your time doing things that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/ [???]. Any bug
that we are able to repeat has a high chance of being fixed in the next MySQL release. To report other problems, you
can use one of the MySQL mailing lists. Remember that it is possible for us to respond to a message containing too
much information, but not to one containing too little. People often omit facts because they think they know the
cause of a problem and assume that some details don't matter. A good principle is this: If you are in doubt about stat-
ing something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait
longer for the answer if we must ask you to provide information that was missing from the initial report. The most
common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and
(b) not fully describing the platform on which Connector/J is installed (including the JVM version, and the platform
type and version number that MySQL itself is installed on). This is highly relevant information, and in 99 cases out
of 100, the bug report is useless without it. Very often we get questions like, ``Why doesn't this work for me?'' Then
we find that the feature requested wasn't implemented in that MySQL version, or that a bug described in a report has
already been fixed in newer MySQL versions. Sometimes the error is platform-dependent; in such cases, it is next to
impossible for us to fix anything without knowing the operating system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own
class that inherits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tear-
Down() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to demon-
strate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created in the 'setUp'
method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection() method to create a
JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists,
that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (i.e. there's more than
one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

25

http://bugs.mysql.com/
mailto:security@mysql.com
???

• getConnection(String url, Properties props) - Returns a connection using the given URL and properties.

If you need to use a JDBC URL that is different than 'jdbc:mysql:///test', then override the method getUrl() as
well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean ex-
pression) methods to create conditions that must be met in your testcase demonstrating the behavior you are ex-
pecting (vs. the behavior you are observing, which is why you are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it
with your bug report to http://bugs.mysql.com/.

How to Report Bugs or Problems

26

http://bugs.mysql.com/

Chapter 5. Troubleshooting
There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J. This section
deals with their symptoms, and their resolutions. If you have further issues, see the "SUPPORT" section.

5.1.
When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain
Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in MySQL server
will use its grant tables to determine whether or not the connection should be allowed.

You must add grants to allow this to happen. The following is an example of how to do this (but not the most
secure).

From the mysql command-line client, logged in as a user that can grant privileges, issue the following com-
mand:

GRANT ALL PRIVILEGES ON [dbname].* to
'[user]'@'[hostname]' identified by
'[password]'

replacing [dbname] with the name of your database, [user] with the user name, [hostname] with the host that
MySQL Connector/J will be connecting from, and [password] with the password you want to use. Be aware
that RedHat Linux is broken with respect to the hostname portion for the case when you are connecting from
localhost. You need to use "localhost.localdomain" for the [hostname] value in this case. Follow this by issu-
ing the "FLUSH PRIVILEGES" command.

Note

Testing your connectivity with the "mysql" command-line client will not work unless you add the "--host"
flag, and use something other than "localhost" for the host. The "mysql" command-line client will use Unix
domain sockets if you use the special hostname "localhost". If you are testing connectivity to "localhost",
use "127.0.0.1" as the hostname instead.

Warning

If you don't understand what the 'GRANT' command does, or how it works, you should read and under-
stand the 'General Security Issues and the MySQL Access Privilege System'
[http://www.mysql.com/doc/en/Privilege_system.html] section of the MySQL manual before attempting to
change privileges.

Changing privileges and permissions improperly in MySQL can potentially cause security problems with
your MySQL server.

5.2.
My application throws a SQLException 'No Suitable Driver'. Why is this happening?

27

http://www.mysql.com/doc/en/Privilege_system.html

One of two things are happening. Either the driver is not in your CLASSPATH (see the "INSTALLATION"
section above), or your URL format is incorrect (see "Developing Applications with MySQL Connector/J").

5.3.
I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" option
set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the
.class files for the applet. This means that MySQL must run on the same machine (or you must have some sort
of port re-direction) for this to work. This also means that you will not be able to test applets from your local
file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix do-
main sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the "-
-skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of MySQL
server does this for example), you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of
course your my.cnf file might also exist in the "data" directory of your MySQL server, or anywhere else
(depending on how MySQL was compiled for your system). Binaries created by MySQL AB always look in /
etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall
configured to allow TCP/IP connections from the host where your Java code is running to the MySQL server
on the port that MySQL is listening to (by default, 3306).

5.4.
I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles
stale connections or use the "autoReconnect" parameter (see "Developing Applications with MySQL Connect-
or/J").

Also, you should be catching SQLExceptions in your application and dealing with them, rather than propagat-
ing them all the way until your application exits, this is just good programming practice. MySQL Connector/J
will set the SQLState (see java.sql.SQLException.getSQLState() in your APIDOCS) to "08S01" when it en-
counters network-connectivity issues during the processing of a query. Your application code should then at-
tempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 5.1. Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

Troubleshooting

28

//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;

boolean transactionCompleted = false;

do {
try {

conn = getConnection(); // assume getting this from a
// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);

//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry count
// to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;

stmt = conn.createStatement();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stmt.executeQuery(query);

while (rs.next()) {
}

rs.close();
rs = null;

stmt.close();
stmt = null;

conn.commit();
conn.close();
conn = null;

transactionCompleted = true;
} catch (SQLException sqlEx) {

//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 41000 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//

String sqlState = sqlEx.getSQLState();

if ("08S01".equals(sqlState) || "41000".equals(sqlState)) {

Troubleshooting

29

retryCount--;
} else {

retryCount = 0;
}

} finally {
if (rs != null) {

try {
rs.close();

} catch (SQLException sqlEx) {
// You'd probably want to log this . . .

}
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this as well . . .
}

}

if (conn != null) {
try {

//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done

try {
conn.rollback();

} finally {
conn.close();

}
} catch (SQLException sqlEx) {

//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .

throw sqlEx;
}

}
}

} while (!transactionCompleted && (retryCount > 0));
}

5.5.
I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have
come from queries on tables that have at least one primary key, the query must select all of the primary key(s)
and the query can only span one table (i.e. no joins). This is outlined in the JDBC specification.

Troubleshooting

30

Appendix A. Reference

Type Conversions Supported by MySQL Connector/
J

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be converted to
any of the Java numerical types, although round-off, overflow, or loss of precision may occur.

The conversions that are always guaranteed to work are listed in the following table:

Table A.1. Conversion Table

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET java.lang.String, java.io.InputStream, java.io.Reader,
java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NUMERIC,
DECIMAL, TINYINT, SMALLINT, MEDIUMINT, IN-
TEGER, BIGINT

java.lang.String, java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Double, java.math.BigDecimal

Note

round-off, overflow or loss of precision may oc-
cur if you choose a Java numeric data type that
has less precision or capacity than the MySQL
data type you are converting to/from.

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date, java.sql.Timestamp

31

Appendix B. ChangeLog
Changelog
$Id: CHANGES,v 1.38.4.62 2004/02/11 02:15:16 mmatthew Exp $

xx-xx-04 - Version 3.1.2-alpha (not yet released)

- Fixed stored procedure parameter parsing info when size was
specified for a parameter (i.e. char(), varchar()).

- Enabled callable statement caching via 'cacheCallableStmts'
property.

- Fixed case when no output parameters specified for a
stored procedure caused a bogus query to be issued
to retrieve out parameters, leading to a syntax error
from the server.

- Fixed case when no parameters could cause a NullPointerException
in CallableStatement.setOutputParameters().

- Removed wrapping of exceptions in MysqlIO.changeUser().

- Fixed sending of split packets for large queries, enabled nio
ability to send large packets as well.

- Added .toString() functionality to ServerPreparedStatement,
which should help if you're trying to debug a query that is
a prepared statement (it shows SQL as the server would process).

- Added 'gatherPerformanceMetrics' property, along with properties
to control when/where this info gets logged (see docs for more
info).

- ServerPreparedStatements weren't actually de-allocating
server-side resources when .close() was called.

02-14-04 - Version 3.1.1-alpha

- Fixed bug with UpdatableResultSets not using client-side
prepared statements.

- Fixed character encoding issues when converting bytes to
ASCII when MySQL doesn't provide the character set, and
the JVM is set to a multibyte encoding (usually affecting
retrieval of numeric values).

- Unpack 'unknown' data types from server prepared statements
as Strings.

- Implemented long data (Blobs, Clobs, InputStreams, Readers)
for server prepared statements.

- Implemented Statement.getWarnings() for MySQL-4.1 and newer
(using 'SHOW WARNINGS').

- Default result set type changed to TYPE_FORWARD_ONLY
(JDBC compliance).

- Centralized setting of result set type and concurrency.

- Re-factored how connection properties are set and exposed
as DriverPropertyInfo as well as Connection and DataSource
properties.

- Support for NIO. Use 'useNIO=true' on platforms that support
NIO.

- Support for SAVEPOINTs (MySQL >= 4.0.14 or 4.1.1).

32

- Support for mysql_change_user()...See the changeUser() method
in com.mysql.jdbc.Connection.

- Reduced number of methods called in average query to be more
efficient.

- Prepared Statements will be re-prepared on auto-reconnect. Any errors
encountered are postponed until first attempt to re-execute the
re-prepared statement.

- Ensure that warnings are cleared before executing queries
on prepared statements, as-per JDBC spec (now that we support
warnings).

- Support 'old' profileSql capitalization in ConnectionProperties.
This property is deprecated, you should use 'profileSQL' if possible.

- Optimized Buffer.readLenByteArray() to return shared empty byte array
when length is 0.

- Allow contents of PreparedStatement.setBlob() to be retained
between calls to .execute*().

- Deal with 0-length tokens in EscapeProcessor (caused by callable
statement escape syntax).

- Check for closed connection on delete/update/insert row operations in
UpdatableResultSet.

- Fix support for table aliases when checking for all primary keys in
UpdatableResultSet.

- Removed useFastDates connection property.

- Correctly initialize datasource properties from JNDI Refs, including
explicitly specified URLs.

- DatabaseMetaData now reports supportsStoredProcedures() for
MySQL versions >= 5.0.0

- Fixed stack overflow in Connection.prepareCall() (bad merge).

- Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue
(for JDK < 1.4).

- Fix for BUG#1673, where DatabaseMetaData.getColumns() is not
returning correct column ordinal info for non '%' column name patterns.

- Merged fix of datatype mapping from MySQL type 'FLOAT' to
java.sql.Types.REAL from 3.0 branch.

- Detect collation of column for RSMD.isCaseSensitive().

- Fixed sending of queries > 16M.

- Added named and indexed input/output parameter support to CallableStatement.
MySQL-5.0.x or newer.

- Fixed NullPointerException in ServerPreparedStatement.setTimestamp(),
as well as year and month descrepencies in
ServerPreparedStatement.setTimestamp(), setDate().

- Added ability to have multiple database/JVM targets for compliance
and regression/unit tests in build.xml.

- Fixed NPE and year/month bad conversions when accessing some
datetime functionality in ServerPreparedStatements and their
resultant result sets.

- Display where/why a connection was implicitly closed (to

ChangeLog

33

aid debugging).

- CommunicationsException implemented, that tries to determine
why communications was lost with a server, and displays
possible reasons when .getMessage() is called.

- Fixed BUG#2359, NULL values for numeric types in binary
encoded result sets causing NullPointerExceptions.

- Implemented Connection.prepareCall(), and DatabaseMetaData.
getProcedures() and getProcedureColumns().

- Reset 'long binary' parameters in ServerPreparedStatement when
clearParameters() is called, by sending COM_RESET_STMT to the
server.

- Merged prepared statement caching, and .getMetaData() support
from 3.0 branch.

- Fixed off-by-1900 error in some cases for
years in TimeUtil.fastDate/TimeCreate() when unpacking results
from server-side prepared statements.

- Fixed BUG#2502 -- charset conversion issue in getTables().

- Implemented multiple result sets returned from a statement
or stored procedure.

- Fixed BUG#2606 -- Server side prepared statements not returning
datatype 'YEAR' correctly.

- Enabled streaming of result sets from server-side prepared
statements.

- Fixed BUG#2623 -- Class-cast exception when using
scrolling result sets and server-side prepared statements.

- Merged unbuffered input code from 3.0.

- Fixed ConnectionProperties that weren't properly exposed
via accessors, cleaned up ConnectionProperties code.

- Fixed BUG#2671, NULL fields not being encoded correctly in
all cases in server side prepared statements.

- Fixed rare buffer underflow when writing numbers into buffers
for sending prepared statement execution requests.

02-18-03 - Version 3.1.0-alpha

- Added 'requireSSL' property.

- Added 'useServerPrepStmts' property (default 'false'). The
driver will use server-side prepared statements when the
server version supports them (4.1 and newer) when this
property is set to 'true'. It is currently set to 'false'
by default until all bind/fetch functionality has been
implemented. Currently only DML prepared statements are
implemented for 4.1 server-side prepared statements.

- Track open Statements, close all when Connection.close()
is called (JDBC compliance).

05-27-04 - Version 3.0.14-production
- Fixed BUG#3923 - URL parsing error

05-27-04 - Version 3.0.13-production
- Fixed BUG#3848 - Using a MySQLDatasource without server name fails

- Fixed BUG#3920 - "No Database Selected" when using
MysqlConnectionPoolDataSource.

ChangeLog

34

- Fixed BUG#3873 - PreparedStatement.getGeneratedKeys() method returns only
1 result for batched insertions

05-18-04 - Version 3.0.12-production
- Add unsigned attribute to DatabaseMetaData.getColumns() output

in the TYPE_NAME column.

- Added 'failOverReadOnly' property, to allow end-user to configure
state of connection (read-only/writable) when failed over.

- Backported 'change user' and 'reset server state' functionality
from 3.1 branch, to allow clients of MysqlConnectionPoolDataSource
to reset server state on getConnection() on a pooled connection.

- Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

- Allow 'url' parameter for MysqlDataSource and MysqlConnectionPool
DataSource so that passing of other properties is possible from
inside appservers.

- Map duplicate key and foreign key errors to SQLState of
'23000'.

- Backport documentation tooling from 3.1 branch.

- Return creating statement for ResultSets created by
getGeneratedKeys() (BUG#2957)

- Allow java.util.Date to be sent in as parameter to
PreparedStatement.setObject(), converting it to a Timestamp
to maintain full precision (BUG#3103).

- Don't truncate BLOBs/CLOBs when using setBytes() and/or
setBinary/CharacterStream() (BUG#2670).

- Dynamically configure character set mappings for field-level
character sets on MySQL-4.1.0 and newer using 'SHOW COLLATION'
when connecting.

- Map 'binary' character set to 'US-ASCII' to support DATETIME
charset recognition for servers >= 4.1.2

- Use 'SET character_set_results" during initialization to allow any
charset to be returned to the driver for result sets.

- Use charsetnr returned during connect to encode queries before
issuing 'SET NAMES' on MySQL >= 4.1.0.

- Add helper methods to ResultSetMetaData (getColumnCharacterEncoding()
and getColumnCharacterSet()) to allow end-users to see what charset
the driver thinks it should be using for the column.

- Only set character_set_results for MySQL >= 4.1.0.

- Fixed BUG#3511, StringUtils.escapeSJISByteStream() not covering all
eastern double-byte charsets correctly.

- Renamed StringUtils.escapeSJISByteStream() to more appropriate
escapeEasternUnicodeByteStream().

- Fixed BUG#3554 - Not specifying database in URL caused MalformedURL
exception.

- Auto-convert MySQL encoding names to Java encoding names if used
for characterEncoding property.

- Added encoding names that are recognized on some JVMs to fix case
where they were reverse-mapped to MySQL encoding names incorrectly.

- Use junit.textui.TestRunner for all unit tests (to allow them to be

ChangeLog

35

run from the command line outside of Ant or Eclipse).

- Fixed BUG#3557 - UpdatableResultSet not picking up default values
for moveToInsertRow().

- Fixed BUG#3570 - inconsistent reporting of column type. The server
still doesn't return all types for *BLOBs *TEXT correctly, so the
driver won't return those correctly.

- Fixed BUG#3520 -- DBMD.getSQLStateType() returns incorrect value.

- Fixed regression in PreparedStatement.setString() and eastern character
encodings.

- Made StringRegressionTest 4.1-unicode aware.

02-19-04 - Version 3.0.11-stable

- Trigger a 'SET NAMES utf8' when encoding is forced to 'utf8' _or_
'utf-8' via the 'characterEncoding' property. Previously, only the
Java-style encoding name of 'utf-8' would trigger this.

- AutoReconnect time was growing faster than exponentially (BUG#2447).

- Fixed failover always going to last host in list (BUG#2578)

- Added 'useUnbufferedInput' parameter, and now use it by default
(due to JVM issue
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html)

- Detect 'on/off' or '1','2','3' form of lower_case_table_names on
server.

- Return 'java.lang.Integer' for TINYINT and SMALLINT types from
ResultSetMetaData.getColumnClassName() (fix for BUG#2852).

- Return 'java.lang.Double' for FLOAT type from ResultSetMetaData.
getColumnClassName() (fix for BUG#2855).

- Return '[B' instead of java.lang.Object for BINARY, VARBINARY and
LONGVARBINARY types from ResultSetMetaData.getColumnClassName()
(JDBC compliance).

- Issue connection events on all instances created from a
ConnectionPoolDataSource.

01-13-04 - Version 3.0.10-stable

- Don't count quoted id's when inside a 'string' in PreparedStatement
parsing (fix for BUG#1511).

- 'Friendlier' exception message for PacketTooLargeException
(BUG#1534).

- Backported fix for aliased tables and UpdatableResultSets in
checkUpdatability() method from 3.1 branch.

- Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows()
(BUG#1695).

- Fixed BUG#1576, dealing with large blobs and split packets not being
read correctly.

- Fixed regression of Statement.getGeneratedKeys() and REPLACE statements.

- Fixed BUG#1630, subsequent call to ResultSet.updateFoo() causes NPE if
result set is not updatable.

- Fix for 4.1.1-style auth with no password.

- Fix for BUG#1731, Foreign Keys column sequence is not consistent in

ChangeLog

36

DatabaseMetaData.getImported/Exported/CrossReference().

- Fix for BUG#1775 - DatabaseMetaData.getSystemFunction() returning
bad function 'VResultsSion'.

- Fix for BUG#1592 -- cross-database updatable result sets
are not checked for updatability correctly.

- DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for
MySQL LONGTEXT type.

- ResultSet.getObject() on TINYINT and SMALLINT columns should return
Java type 'Integer' (BUG#1913)

- Added 'alwaysClearStream' connection property, which causes the driver
to always empty any remaining data on the input stream before
each query.

- Added more descriptive error message 'Server Configuration Denies
Access to DataSource', as well as retrieval of message from server.

- Autoreconnect code didn't set catalog upon reconnect if it had been
changed.

- Implement ResultSet.updateClob().

- ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR
columns.

- Fix for BUG#1933 -- Connection property "maxRows" not honored.

- Fix for BUG#1925 -- Statements being created too many times in
DBMD.extractForeignKeyFromCreateTable().

- Fix for BUG#1914 -- Support escape sequence {fn convert ... }

- Fix for BUG#1958 -- ArrayIndexOutOfBounds when parameter number ==
number of parameters + 1.

- Fix for BUG#2006 -- ResultSet.findColumn() should use first matching
column name when there are duplicate column names in SELECT query
(JDBC-compliance).

- Removed static synchronization bottleneck from
PreparedStatement.setTimestamp().

- Removed static synchronization bottleneck from instance factory
method of SingleByteCharsetConverter.

- Enable caching of the parsing stage of prepared statements via
the 'cachePrepStmts', 'prepStmtCacheSize' and 'prepStmtCacheSqlLimit'
properties (disabled by default).

- Speed up parsing of PreparedStatements, try to use one-pass whenever
possible.

- Fixed security exception when used in Applets (applets can't
read the system property 'file.encoding' which is needed
for LOAD DATA LOCAL INFILE).

- Use constants for SQLStates.

- Map charset 'ko18_ru' to 'ko18r' when connected to MySQL-4.1.0 or
newer.

- Ensure that Buffer.writeString() saves room for the \0.

- Fixed exception 'Unknown character set 'danish' on connect w/ JDK-1.4.0

- Fixed mappings in SQLError to report deadlocks with SQLStates of '41000'.

ChangeLog

37

- 'maxRows' property would affect internal statements, so check it for all
statement creation internal to the driver, and set to 0 when it is not.

10-07-03 - Version 3.0.9-stable

- Faster date handling code in ResultSet and PreparedStatement (no longer
uses Date methods that synchronize on static calendars).

- Fixed test for end of buffer in Buffer.readString().

- Fixed ResultSet.previous() behavior to move current
position to before result set when on first row
of result set (bugs.mysql.com BUG#496)

- Fixed Statement and PreparedStatement issuing bogus queries
when setMaxRows() had been used and a LIMIT clause was present
in the query.

- Fixed BUG#661 - refreshRow didn't work when primary key values
contained values that needed to be escaped (they ended up being
doubly-escaped).

- Support InnoDB contraint names when extracting foreign key info
in DatabaseMetaData BUG#517 and BUG#664
(impl. ideas from Parwinder Sekhon)

- Backported 4.1 protocol changes from 3.1 branch (server-side SQL
states, new field info, larger client capability flags,
connect-with-database, etc).

- Fix UpdatableResultSet to return values for getXXX() when on
insert row (BUG#675).

- The insertRow in an UpdatableResultSet is now loaded with
the default column values when moveToInsertRow() is called
(BUG#688)

- DatabaseMetaData.getColumns() wasn't returning NULL for
default values that are specified as NULL.

- Change default statement type/concurrency to TYPE_FORWARD_ONLY
and CONCUR_READ_ONLY (spec compliance).

- Don't try and reset isolation level on reconnect if MySQL doesn't
support them.

- Don't wrap SQLExceptions in RowDataDynamic.

- Don't change timestamp TZ twice if useTimezone==true (BUG#774)

- Fixed regression in large split-packet handling (BUG#848).

- Better diagnostic error messages in exceptions for 'streaming'
result sets.

- Issue exception on ResultSet.getXXX() on empty result set (wasn't
caught in some cases).

- Don't hide messages from exceptions thrown in I/O layers.

- Don't fire connection closed events when closing pooled connections, or
on PooledConnection.getConnection() with already open connections (BUG#884).

- Clip +/- INF (to smallest and largest representative values for the type in
MySQL) and NaN (to 0) for setDouble/setFloat(), and issue a warning on the
statement when the server does not support +/- INF or NaN.

- Fix for BUG#879, double-escaping of '\' when charset is SJIS or GBK and '\'
appears in non-escaped input.

- When emptying input stream of unused rows for 'streaming' result sets,

ChangeLog

38

have the current thread yield() every 100 rows in order to not monopolize
CPU time.

- Fixed BUG#1099, DatabaseMetaData.getColumns() getting confused about the
keyword 'set' in character columns.

- Fixed deadlock issue with Statement.setMaxRows().

- Fixed CLOB.truncate(), BUG#1130

- Optimized CLOB.setChracterStream(), BUG#1131

- Made databaseName, portNumber and serverName optional parameters
for MysqlDataSourceFactory (BUG#1246)

- Fix for BUG#1247 -- ResultSet.get/setString mashing char 127

- Backported auth. changes for 4.1.1 and newer from 3.1 branch.

- Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases
for bug reports.

- Added property to 'clobber' streaming results, by setting the
'clobberStreamingResults' property to 'true' (the default is 'false').
This will cause a 'streaming' ResultSet to be automatically
closed, and any oustanding data still streaming from the server to
be discarded if another query is executed before all the data has been
read from the server.

05-23-03 - Version 3.0.8-stable

- Allow bogus URLs in Driver.getPropertyInfo().

- Return list of generated keys when using multi-value INSERTS
with Statement.getGeneratedKeys().

- Use JVM charset with filenames and 'LOAD DATA [LOCAL] INFILE'

- Fix infinite loop with Connection.cleanup().

- Changed Ant target 'compile-core' to 'compile-driver', and
made testsuite compilation a separate target.

- Fixed result set not getting set for Statement.executeUpdate(),
which affected getGeneratedKeys() and getUpdateCount() in
some cases.

- Unicode character 0xFFFF in a string would cause the driver to
throw an ArrayOutOfBoundsException (Bug #378)

- Return correct amount of generated keys when using 'REPLACE'
statements.

- Fix problem detecting server character set in some cases.

- Fix row data decoding error when using _very_ large packets.

- Optimized row data decoding.

- Issue exception when operating on an already-closed
prepared statement.

- Fixed SJIS encoding bug, thanks to Naoto Sato.

- Optimized usage of EscapeProcessor.

- Allow multiple calls to Statement.close()

04-08-03 - Version 3.0.7-stable

- Fixed MysqlPooledConnection.close() calling wrong event type.

ChangeLog

39

- Fixed StringIndexOutOfBoundsException in PreparedStatement.
setClob().

- 4.1 Column Metadata fixes

- Remove synchronization from Driver.connect() and
Driver.acceptsUrl().

- IOExceptions during a transaction now cause the Connection to
be closed.

- Fixed missing conversion for 'YEAR' type in ResultSetMetaData.
getColumnTypeName().

- Don't pick up indexes that start with 'pri' as primary keys
for DBMD.getPrimaryKeys().

- Throw SQLExceptions when trying to do operations on a forcefully
closed Connection (i.e. when a communication link failure occurs).

- You can now toggle profiling on/off using
Connection.setProfileSql(boolean).

- Fixed charset issues with database metadata (charset was not
getting set correctly).

- Updatable ResultSets can now be created for aliased tables/columns
when connected to MySQL-4.1 or newer.

- Fixed 'LOAD DATA LOCAL INFILE' bug when file > max_allowed_packet.

- Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

- Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

- Ensure that packet size from alignPacketSize() does not
exceed MAX_ALLOWED_PACKET (JVM bug)

- Don't reset Connection.isReadOnly() when autoReconnecting.

02-18-03 - Version 3.0.6-stable

- Fixed ResultSetMetaData to return "" when catalog not known.
Fixes NullPointerExceptions with Sun's CachedRowSet.

- Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning
different value for precision in TEXT/BLOB types.

- Allow ignoring of warning for 'non transactional tables' during
rollback (compliance/usability) by setting 'ignoreNonTxTables'
property to 'true'.

- Fixed SQLExceptions getting swallowed on initial connect.

- Fixed Statement.setMaxRows() to stop sending 'LIMIT' type queries
when not needed (performance)

- Clean up Statement query/method mismatch tests (i.e. INSERT not
allowed with .executeQuery()).

- More checks added in ResultSet traversal method to catch
when in closed state.

- Fixed ResultSetMetaData.isWritable() to return correct value.

- Add 'window' of different NULL sorting behavior to
DBMD.nullsAreSortedAtStart (4.0.2 to 4.0.10, true, otherwise,
no).

- Implemented Blob.setBytes(). You still need to pass the

ChangeLog

40

resultant Blob back into an updatable ResultSet or
PreparedStatement to persist the changes, as MySQL does
not support 'locators'.

- Backported 4.1 charset field info changes from Connector/J 3.1

01-22-03 - Version 3.0.5-gamma

- Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds
exceptions with some queries when unpacking fields.

- Implemented an empty TypeMap for Connection.getTypeMap() so that
some third-party apps work with MySQL (IBM WebSphere 5.0 Connection
pool).

- Added missing LONGTEXT type to DBMD.getColumns().

- Retrieve TX_ISOLATION from database for
Connection.getTransactionIsolation() when the MySQL version
supports it, instead of an instance variable.

- Quote table names in DatabaseMetaData.getColumns(),
getPrimaryKeys(), getIndexInfo(), getBestRowIdentifier()

- Greatly reduce memory required for setBinaryStream() in
PreparedStatements.

- Fixed ResultSet.isBeforeFirst() for empty result sets.

- Added update options for foreign key metadata.

01-06-03 - Version 3.0.4-gamma

- Added quoted identifiers to database names for
Connection.setCatalog.

- Added support for quoted identifiers in PreparedStatement
parser.

- Streamlined character conversion and byte[] handling in
PreparedStatements for setByte().

- Reduce memory footprint of PreparedStatements by sharing
outbound packet with MysqlIO.

- Added 'strictUpdates' property to allow control of amount
of checking for 'correctness' of updatable result sets. Set this
to 'false' if you want faster updatable result sets and you know
that you create them from SELECTs on tables with primary keys and
that you have selected all primary keys in your query.

- Added support for 4.0.8-style large packets.

- Fixed PreparedStatement.executeBatch() parameter overwriting.

12-17-02 - Version 3.0.3-dev

- Changed charsToByte in SingleByteCharConverter to be non-static

- Changed SingleByteCharConverter to use lazy initialization of each
converter.

- Fixed charset handling in Fields.java

- Implemented Connection.nativeSQL()

- More robust escape tokenizer -- recognize '--' comments, and allow
nested escape sequences (see testsuite.EscapeProcessingTest)

- DBMD.getImported/ExportedKeys() now handles multiple foreign keys

ChangeLog

41

per table.

- Fixed ResultSetMetaData.getPrecision() returning incorrect values
for some floating point types.

- Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for
TEXT and TEXT for BLOB types.

- Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

- Added CLIENT_LONG_FLAG to be able to get more column flags
(isAutoIncrement() being the most important)

- Because of above, implemented ResultSetMetaData.isAutoIncrement()
to use Field.isAutoIncrement().

- Honor 'lower_case_table_names' when enabled in the server when
doing table name comparisons in DatabaseMetaData methods.

- Some MySQL-4.1 protocol support (extended field info from selects)

- Use non-aliased table/column names and database names to fullly
qualify tables and columns in UpdatableResultSet (requires
MySQL-4.1 or newer)

- Allow user to alter behavior of Statement/
PreparedStatement.executeBatch() via 'continueBatchOnError' property
(defaults to 'true').

- Check for connection closed in more Connection methods
(createStatement, prepareStatement, setTransactionIsolation,
setAutoCommit).

- More robust implementation of updatable result sets. Checks that
all primary keys of the table have been selected.

- 'LOAD DATA LOCAL INFILE ...' now works, if your server is configured
to allow it. Can be turned off with the 'allowLoadLocalInfile'
property (see the README).

- Substitute '?' for unknown character conversions in single-byte
character sets instead of '\0'.

- NamedPipeSocketFactory now works (only intended for Windows), see
README for instructions.

11-08-02 - Version 3.0.2-dev

- Fixed issue with updatable result sets and PreparedStatements not
working

- Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN)

- Fixed issue when calling Statement.setFetchSize() when using
arbitrary values

- Fixed incorrect conversion in ResultSet.getLong()

- Implemented ResultSet.updateBlob().

- Removed duplicate code from UpdatableResultSet (it can be inherited
from ResultSet, the extra code for each method to handle updatability
I thought might someday be necessary has not been needed).

- Fixed "UnsupportedEncodingException" thrown when "forcing" a
character encoding via properties.

- Fixed various non-ASCII character encoding issues.

- Added driver property 'useHostsInPrivileges'. Defaults to true.
Affects whether or not '@hostname' will be used in

ChangeLog

42

DBMD.getColumn/TablePrivileges.

- All DBMD result set columns describing schemas now return NULL
to be more compliant with the behavior of other JDBC drivers
for other databases (MySQL does not support schemas).

- Added SSL support. See README for information on how to use it.

- Properly restore connection properties when autoReconnecting
or failing-over, including autoCommit state, and isolation level.

- Use 'SHOW CREATE TABLE' when possible for determining foreign key
information for DatabaseMetaData...also allows cascade options for
DELETE information to be returned

- Escape 0x5c character in strings for the SJIS charset.

- Fixed start position off-by-1 error in Clob.getSubString()

- Implemented Clob.truncate()

- Implemented Clob.setString()

- Implemented Clob.setAsciiStream()

- Implemented Clob.setCharacterStream()

- Added com.mysql.jdbc.MiniAdmin class, which allows you to send
'shutdown' command to MySQL server...Intended to be used when 'embedding'
Java and MySQL server together in an end-user application.

- Added 'connectTimeout' parameter that allows users of JDK-1.4 and newer
to specify a maxium time to wait to establish a connection.

- Failover and autoReconnect only work when the connection is in a
autoCommit(false) state, in order to stay transaction safe

- Added 'queriesBeforeRetryMaster' property that specifies how many
queries to issue when failed over before attempting to reconnect
to the master (defaults to 50)

- Fixed DBMD.supportsResultSetConcurrency() so that it returns true
for ResultSet.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or
ResultSet.CONCUR_UPDATABLE

- Fixed ResultSet.isLast() for empty result sets (should return false).

- PreparedStatement now honors stream lengths in setBinary/Ascii/Character
Stream() unless you set the connection property
'useStreamLengthsInPrepStmts' to 'false'.

- Removed some not-needed temporary object creation by using Strings
smarter in EscapeProcessor, Connection and DatabaseMetaData classes.

09-21-02 - Version 3.0.1-dev

- Fixed ResultSet.getRow() off-by-one bug.

- Fixed RowDataStatic.getAt() off-by-one bug.

- Added limited Clob functionality (ResultSet.getClob(),
PreparedStatemtent.setClob(),
PreparedStatement.setObject(Clob).

- Added socketTimeout parameter to URL.

- Connection.isClosed() no longer "pings" the server.

- Connection.close() issues rollback() when getAutoCommit() == false

- Added "paranoid" parameter...sanitizes error messages removing

ChangeLog

43

"sensitive" information from them (i.e. hostnames, ports,
usernames, etc.), as well as clearing "sensitive" data structures
when possible.

- Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

- Charsets now automatically detected. Optimized code for single-byte
character set conversion.

- Implemented ResultSet.getCharacterStream()

- Added "LOCAL TEMPORARY" to table types in DatabaseMetaData.getTableTypes()

- Massive code clean-up to follow Java coding conventions (the time had come)

07-31-02 - Version 3.0.0-dev

- !!! LICENSE CHANGE !!! The driver is now GPL. If you need
non-GPL licenses, please contact me <mark@mysql.com>

- JDBC-3.0 functionality including
Statement/PreparedStatement.getGeneratedKeys() and
ResultSet.getURL()

- Performance enchancements - driver is now 50-100% faster
in most situations, and creates fewer temporary objects

- Repackaging...new driver name is "com.mysql.jdbc.Driver",
old name still works, though (the driver is now provided
by MySQL-AB)

- Better checking for closed connections in Statement
and PreparedStatement.

- Support for streaming (row-by-row) result sets (see README)
Thanks to Doron.

- Support for large packets (new addition to MySQL-4.0 protocol),
see README for more information.

- JDBC Compliance -- Passes all tests besides stored procedure tests

- Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086)

- Float types now reported as java.sql.Types.FLOAT (SF bug 579573)

- ResultSet.getTimestamp() now works for DATE types (SF bug 559134)

- ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid
values that have been set to all zeroes by MySQL (SF bug 586058)

- Testsuite now uses Junit (which you can get from www.junit.org)

- The driver now only works with JDK-1.2 or newer.

- Added multi-host failover support (see README)

- General source-code cleanup.

- Overall speed improvements via controlling transient object
creation in MysqlIO class when reading packets

- Performance improvements in string handling and field
metadata creation (lazily instantiated) contributed by
Alex Twisleton-Wykeham-Fiennes

05-16-02 - Version 2.0.14

ChangeLog

44

- More code cleanup

- PreparedStatement now releases resources on .close() (SF bug 553268)

- Quoted identifiers not used if server version does not support them. Also,
if server started with --ansi or --sql-mode=ANSI_QUOTES then '"' will be
used as an identifier quote, otherwise '`' will be used.

- ResultSet.getDouble() now uses code built into JDK to be more precise (but slower)

- LogicalHandle.isClosed() calls through to physical connection

- Added SQL profiling (to STDERR). Set "profileSql=true" in your JDBC url.
See README for more information.

- Fixed typo for relaxAutoCommit parameter.

04-24-02 - Version 2.0.13

- More code cleanup.

- Fixed unicode chars being read incorrectly (SF bug 541088)

- Faster blob escaping for PrepStmt

- Added set/getPortNumber() to DataSource(s) (SF bug 548167)

- Added setURL() to MySQLXADataSource (SF bug 546019)

- PreparedStatement.toString() fixed (SF bug 534026)

- ResultSetMetaData.getColumnClassName() now implemented

- Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0
now implemented (you need to be using JDK-1.4 for this to work, I
believe)

- DBMetaData.getIndexInfo() - bad PAGES fixed (SF BUG 542201)

04-07-02 - Version 2.0.12

- General code cleanup.

- Added getIdleFor() method to Connection and MysqlLogicalHandle.

- Relaxed synchronization in all classes, should fix 520615 and 520393.

- Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

- Added new types to getTypeInfo(), fixed existing types thanks to
Al Davis and Kid Kalanon.

- Added support for BIT types (51870) to PreparedStatement.

- Fixed getRow() bug (527165) in ResultSet

- Fixes for ResultSet updatability in PreparedStatement.
- Fixed timezone off by 1-hour bug in PreparedStatement (538286, 528785).

- ResultSet: Fixed updatability (values being set to null
if not updated).

- DataSources - fixed setUrl bug (511614, 525565),
wrong datasource class name (532816, 528767)

- Added identifier quoting to all DatabaseMetaData methods
that need them (should fix 518108)

- Added support for YEAR type (533556)

- ResultSet.insertRow() should now detect auto_increment fields

ChangeLog

45

in most cases and use that value in the new row. This detection
will not work in multi-valued keys, however, due to the fact that
the MySQL protocol does not return this information.

- ResultSet.refreshRow() implemented.

- Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

01-27-02 - Version 2.0.11

- Fixed missing DELETE_RULE value in
DBMD.getImported/ExportedKeys() and getCrossReference().

- Full synchronization of Statement.java.

- More changes to fix "Unexpected end of input stream"
errors when reading BLOBs. This should be the last fix.

01-24-02 - Version 2.0.10

- Fixed spurious "Unexpected end of input stream" errors in
MysqlIO (bug 507456).

- Fixed null-pointer-exceptions when using
MysqlConnectionPoolDataSource with Websphere 4 (bug 505839).

01-13-02 - Version 2.0.9

- Ant build was corrupting included jar files, fixed
(bug 487669).

- Fixed extra memory allocation in MysqlIO.readPacket()
(bug 488663).

- Implementation of DatabaseMetaData.getExported/ImportedKeys() and
getCrossReference().

- Full synchronization on methods modifying instance and class-shared
references, driver should be entirely thread-safe now (please
let me know if you have problems)

- DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional
package, and (initial) implementations of PooledConnectionDataSource
and XADataSource are in place (thanks to Todd Wolff for the
implementation and testing of PooledConnectionDataSource with
IBM WebSphere 4).

- Added detection of network connection being closed when reading packets
(thanks to Todd Lizambri).

- Fixed quoting error with escape processor (bug 486265).

- Report batch update support through DatabaseMetaData (bug 495101).

- Fixed off-by-one-hour error in PreparedStatement.setTimestamp()
(bug 491577).

- Removed concatenation support from driver (the '||' operator),
as older versions of VisualAge seem to be the only thing that
use it, and it conflicts with the logical '||' operator. You will
need to start mysqld with the "--ansi" flag to use the '||'
operator as concatenation (bug 491680)

- Fixed casting bug in PreparedStatement (bug 488663).

11-25-01 - Version 2.0.8

- Batch updates now supported (thanks to some inspiration
from Daniel Rall).

- XADataSource/ConnectionPoolDataSource code (experimental)

ChangeLog

46

- PreparedStatement.setAnyNumericType() now handles positive
exponents correctly (adds "+" so MySQL can understand it).

- DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier()
are now more robust in identifying primary keys (matches
regardless of case or abbreviation/full spelling of Primary Key
in Key_type column).

10-24-01 - Version 2.0.7

- PreparedStatement.setCharacterStream() now implemented

- Fixed dangling socket problem when in high availability
(autoReconnect=true) mode, and finalizer for Connection will
close any dangling sockets on GC.

- Fixed ResultSetMetaData.getPrecision() returning one
less than actual on newer versions of MySQL.

- ResultSet.getBlob() now returns null if column value
was null.

- Character sets read from database if useUnicode=true
and characterEncoding is not set. (thanks to
Dmitry Vereshchagin)

- Initial transaction isolation level read from
database (if avaialable) (thanks to Dmitry Vereshchagin)

- Fixed DatabaseMetaData.supportsTransactions(), and
supportsTransactionIsolationLevel() and getTypeInfo()
SQL_DATETIME_SUB and SQL_DATA_TYPE fields not being
readable.

- Fixed PreparedStatement generating SQL that would end
up with syntax errors for some queries.

- Fixed ResultSet.isAfterLast() always returning false.

- Fixed timezone issue in PreparedStatement.setTimestamp()
(thanks to Erik Olofsson)

- Captialize type names when "captializeTypeNames=true"
is passed in URL or properties (for WebObjects, thanks
to Anjo Krank)

- Updatable result sets now correctly handle NULL
values in fields.

- PreparedStatement.setDouble() now uses full-precision
doubles (reverting a fix made earlier to truncate them).

- PreparedStatement.setBoolean() will use 1/0 for values
if your MySQL Version >= 3.21.23.

06-16-01 - Version 2.0.6

- Fixed PreparedStatement parameter checking

- Fixed case-sensitive column names in ResultSet.java

06-13-01 - Version 2.0.5

- Fixed ResultSet.getBlob() ArrayIndex out-of-bounds

- Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB

- Fixed ArrayIndexOutOfBounds when sending large BLOB queries
(Max size packet was not being set)

ChangeLog

47

- Added ISOLATION level support to Connection.setIsolationLevel()

- Fixed NPE on PreparedStatement.executeUpdate() when all columns
have not been set.

- Fixed data parsing of TIMESTAMPs with 2-digit years

- Added Byte to PreparedStatement.setObject()

- ResultSet.getBoolean() now recognizes '-1' as 'true'

- ResultSet has +/-Inf/inf support

- ResultSet.insertRow() works now, even if not all columns are
set (they will be set to "NULL")

- DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB

- getObject() on ResultSet correctly does TINYINT->Byte and
SMALLINT->Short

12-03-00 - Version 2.0.3

- Implemented getBigDecimal() without scale component
for JDBC2.

- Fixed composite key problem with updateable result sets.

- Added detection of -/+INF for doubles.

- Faster ASCII string operations.

- Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending
large blobs should work now.

- Fixed off-by-one error in java.sql.Blob implementation code.

- Added "ultraDevHack" URL parameter, set to "true" to allow
(broken) Macromedia UltraDev to use the driver.

04-06-00 - Version 2.0.1

- Fixed RSMD.isWritable() returning wrong value.
Thanks to Moritz Maass.

- Cleaned up exception handling when driver connects

- Columns that are of type TEXT now return as Strings
when you use getObject()

- DatabaseMetaData.getPrimaryKeys() now works correctly wrt
to key_seq. Thanks to Brian Slesinsky.

- No escape processing is done on PreparedStatements anymore
per JDBC spec.

- Fixed many JDBC-2.0 traversal, positioning bugs, especially
wrt to empty result sets. Thanks to Ron Smits, Nick Brook,
Cessar Garcia and Carlos Martinez.

- Fixed some issues with updatability support in ResultSet when
using multiple primary keys.

02-21-00 - Version 2.0pre5

- Fixed Bad Handshake problem.

01-10-00 - Version 2.0pre4

- Fixes to ResultSet for insertRow() - Thanks to
Cesar Garcia

ChangeLog

48

- Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0
class, instead of relying on JDK version numbers. Thanks
to John Baker.

- Fixed ResultSet to return correct row numbers

- Statement.getUpdateCount() now returns rows matched,
instead of rows actually updated, which is more SQL-92
like.

10-29-99

- Statement/PreparedStatement.getMoreResults() bug fixed.
Thanks to Noel J. Bergman.

- Added Short as a type to PreparedStatement.setObject().
Thanks to Jeff Crowder

- Driver now automagically configures maximum/preferred packet
sizes by querying server.

- Autoreconnect code uses fast ping command if server supports
it.

- Fixed various bugs wrt. to packet sizing when reading from
the server and when alloc'ing to write to the server.

08-17-99 - Version 2.0pre

- Now compiles under JDK-1.2. The driver supports both JDK-1.1
and JDK-1.2 at the same time through a core set of classes.
The driver will load the appropriate interface classes at
runtime by figuring out which JVM version you are using.

- Fixes for result sets with all nulls in the first row.
(Pointed out by Tim Endres)

- Fixes to column numbers in SQLExceptions in ResultSet
(Thanks to Blas Rodriguez Somoza)

- The database no longer needs to specified to connect.
(Thanks to Christian Motschke)

07-04-99 - Version 1.2b

- Better Documentation (in progress), in doc/mm.doc/book1.html

- DBMD now allows null for a column name pattern (not in
spec), which it changes to '%'.

- DBMD now has correct types/lengths for getXXX().

- ResultSet.getDate(), getTime(), and getTimestamp() fixes.
(contributed by Alan Wilken)

- EscapeProcessor now handles \{ \} and { or } inside quotes
correctly. (thanks to Alik for some ideas on how to fix it)

- Fixes to properties handling in Connection.
(contributed by Juho Tikkala)

- ResultSet.getObject() now returns null for NULL columns
in the table, rather than bombing out.
(thanks to Ben Grosman)

- ResultSet.getObject() now returns Strings for types
from MySQL that it doesn't know about. (Suggested by
Chris Perdue)

- Removed DataInput/Output streams, not needed, 1/2 number

ChangeLog

49

of method calls per IO operation.

- Use default character encoding if one is not specified. This
is a work-around for broken JVMs, because according to spec,
EVERY JVM must support "ISO8859_1", but they don't.

- Fixed Connection to use the platform character encoding
instead of "ISO8859_1" if one isn't explicitly set. This
fixes problems people were having loading the character-
converter classes that didn't always exist (JVM bug).
(thanks to Fritz Elfert for pointing out this problem)

- Changed MysqlIO to re-use packets where possible to reduce
memory usage.

- Fixed escape-processor bugs pertaining to {} inside
quotes.

04-14-99 - Version 1.2a

- Fixed character-set support for non-Javasoft JVMs
(thanks to many people for pointing it out)

- Fixed ResultSet.getBoolean() to recognize 'y' & 'n'
as well as '1' & '0' as boolean flags.
(thanks to Tim Pizey)

- Fixed ResultSet.getTimestamp() to give better performance.
(thanks to Richard Swift)

- Fixed getByte() for numeric types.
(thanks to Ray Bellis)

- Fixed DatabaseMetaData.getTypeInfo() for DATE type.
(thanks to Paul Johnston)

- Fixed EscapeProcessor for "fn" calls.
(thanks to Piyush Shah at locomotive.org)

- Fixed EscapeProcessor to not do extraneous work if there
are no escape codes.
(thanks to Ryan Gustafson)

- Fixed Driver to parse URLs of the form "jdbc:mysql://host:port"
(thanks to Richard Lobb)

03-24-99 - Version 1.1i

- Fixed Timestamps for PreparedStatements

- Fixed null pointer exceptions in RSMD and RS

- Re-compiled with jikes for valid class files (thanks ms!)

03-08-99 - Version 1.1h

- Fixed escape processor to deal with un-matched { and }
(thanks to Craig Coles)

- Fixed escape processor to create more portable (between
DATETIME and TIMESTAMP types) representations so that
it will work with BETWEEN clauses.
(thanks to Craig Longman)

- MysqlIO.quit() now closes the socket connection. Before,
after many failed connections some OS's would run out
of file descriptors. (thanks to Michael Brinkman)

- Fixed NullPointerException in Driver.getPropertyInfo.
(thanks to Dave Potts)

ChangeLog

50

- Fixes to MysqlDefs to allow all *text fields to be
retrieved as Strings.
(thanks to Chris at Leverage)

- Fixed setDouble in PreparedStatement for large numbers
to avoid sending scientific notation to the database.
(thanks to J.S. Ferguson)

- Fixed getScale() and getPrecision() in RSMD.
(contrib'd by James Klicman)

- Fixed getObject() when field was DECIMAL or NUMERIC
(thanks to Bert Hobbs)

- DBMD.getTables() bombed when passed a null table-name
pattern. Fixed. (thanks to Richard Lobb)

- Added check for "client not authorized" errors during
connect. (thanks to Hannes Wallnoefer)

02-19-99 - Version 1.1g

- Result set rows are now byte arrays. Blobs and Unicode
work bidriectonally now. The useUnicode and encoding
options are implemented now.

- Fixes to PreparedStatement to send binary set by
setXXXStream to be sent un-touched to the MySQL server.

- Fixes to getDriverPropertyInfo().

12-31-98 - Version 1.1f

- Changed all ResultSet fields to Strings, this should allow
Unicode to work, but your JVM must be able to convert
between the character sets. This should also make reading
data from the server be a bit quicker, because there is now
no conversion from StringBuffer to String.

- Changed PreparedStatement.streamToString() to be more
efficient (code from Uwe Schaefer).

- URL parsing is more robust (throws SQL exceptions on errors
rather than NullPointerExceptions)

- PreparedStatement now can convert Strings to Time/Date values
via setObject() (code from Robert Currey).

- IO no longer hangs in Buffer.readInt(), that bug was
introduced in 1.1d when changing to all byte-arrays for
result sets. (Pointed out by Samo Login)

11-03-98 - Version 1.1b

- Fixes to DatabaseMetaData to allow both IBM VA and J-Builder
to work. Let me know how it goes. (thanks to Jac Kersing)

- Fix to ResultSet.getBoolean() for NULL strings
(thanks to Barry Lagerweij)

- Beginning of code cleanup, and formatting. Getting ready
to branch this off to a parallel JDBC-2.0 source tree.

- Added "final" modifier to critical sections in MysqlIO and
Buffer to allow compiler to inline methods for speed.

9-29-98

- If object references passed to setXXX() in PreparedStatement are
null, setNull() is automatically called for you. (Thanks for the
suggestion goes to Erik Ostrom)

ChangeLog

51

- setObject() in PreparedStatement will now attempt to write a
serialized representation of the object to the database for
objects of Types.OTHER and objects of unknown type.

- Util now has a static method readObject() which given a ResultSet
and a column index will re-instantiate an object serialized in
the above manner.

9-02-98 - Vesion 1.1

- Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than
catch an exception, Buffer.isLastDataPacket() was fixed.

- Connection.getCatalog() and Connection.setCatalog()
should work now.

- Statement.setMaxRows() works, as well as setting
by property maxRows. Statement.setMaxRows() overrides
maxRows set via properties or url parameters.

- Automatic re-connection is available. Because it has
to "ping" the database before each query, it is
turned off by default. To use it, pass in "autoReconnect=true"
in the connection URL. You may also change the number of
reconnect tries, and the initial timeout value via
"maxReconnects=n" (default 3) and "initialTimeout=n"
(seconds, default 2) parameters. The timeout is an
exponential backoff type of timeout, e.g. if you have initial
timeout of 2 seconds, and maxReconnects of 3, then the driver
will timeout 2 seconds, 4 seconds, then 16 seconds between each
re-connection attempt.

8-24-98 - Version 1.0

- Fixed handling of blob data in Buffer.java

- Fixed bug with authentication packet being
sized too small.

- The JDBC Driver is now under the LPGL

8-14-98 -

- Fixed Buffer.readLenString() to correctly
read data for BLOBS.

- Fixed PreparedStatement.stringToStream to
correctly read data for BLOBS.

- Fixed PreparedStatement.setDate() to not
add a day.
(above fixes thanks to Vincent Partington)

- Added URL parameter parsing (?user=... etc).

8-04-98 - Version 0.9d

- Big news! New package name. Tim Endres from ICE
Engineering is starting a new source tree for
GNU GPL'd Java software. He's graciously given
me the org.gjt.mm package directory to use, so now
the driver is in the org.gjt.mm.mysql package scheme.
I'm "legal" now. Look for more information on Tim's
project soon.

- Now using dynamically sized packets to reduce
memory usage when sending commands to the DB.

- Small fixes to getTypeInfo() for parameters, etc.

ChangeLog

52

- DatabaseMetaData is now fully implemented. Let me
know if these drivers work with the various IDEs
out there. I've heard that they're working with
JBuilder right now.

- Added JavaDoc documentation to the package.

- Package now available in .zip or .tar.gz.

7-28-98 - Version 0.9

- Implemented getTypeInfo().
Connection.rollback() now throws an SQLException
per the JDBC spec.

- Added PreparedStatement that supports all JDBC API
methods for PreparedStatement including InputStreams.
Please check this out and let me know if anything is
broken.

- Fixed a bug in ResultSet that would break some
queries that only returned 1 row.

- Fixed bugs in DatabaseMetaData.getTables(),
DatabaseMetaData.getColumns() and
DatabaseMetaData.getCatalogs().

- Added functionality to Statement that allows
executeUpdate() to store values for IDs that are
automatically generated for AUTO_INCREMENT fields.
Basically, after an executeUpdate(), look at the
SQLWarnings for warnings like "LAST_INSERTED_ID =
'some number', COMMAND = 'your SQL query'".

If you are using AUTO_INCREMENT fields in your
tables and are executing a lot of executeUpdate()s
on one Statement, be sure to clearWarnings() every
so often to save memory.

7-06-98 - Version 0.8

- Split MysqlIO and Buffer to separate classes. Some
ClassLoaders gave an IllegalAccess error for some
fields in those two classes. Now mm.mysql works in
applets and all classloaders.

Thanks to Joe Ennis <jce@mail.boone.com> for pointing
out the problem and working on a fix with me.

7-01-98 - Version 0.7

- Fixed DatabaseMetadata problems in getColumns() and
bug in switch statement in the Field constructor.

Thanks to Costin Manolache <costin@tdiinc.com> for
pointing these out.

5-21-98 - Version 0.6

- Incorporated efficiency changes from
Richard Swift <Richard.Swift@kanatek.ca> in
MysqlIO.java and ResultSet.java

- We're now 15% faster than gwe's driver.

- Started working on DatabaseMetaData.

The following methods are implemented:
* getTables()
* getTableTypes()

ChangeLog

53

* getColumns
* getCatalogs()

ChangeLog

54

	MySQL Connector/J Documentation
	Table of Contents
	Chapter 1. Introduction
	What is MySQL Connector/J?
	Release Notes
	Known Issues
	Implementation Notes (By java.sql and javax.sql Interface/Class)
	Un-implemented Functionality

	Chapter 2. Installation
	System Requirements
	Java Versions Supported
	MySQL Server Versions Supported

	Installing MySQL Connector/J
	Setting the CLASSPATH (For Standalone Use)
	Driver Class Name and JDBC URL Format
	Installing MySQL Connector/J for Use With Servlets/JSP/EJB

	What's Next?

	Chapter 3. Developing Applications with MySQL Connector/J
	Basic Functionality
	Registering MySQL Connector/J With the JDBC DriverManager
	Opening a Connection to MySQL
	Creating a Statement Instance
	Executing a SELECT Query

	Advanced Functionality
	Character Sets and Unicode
	Stored Procedures
	Connecting over SSL

	Chapter 4. How to Report Bugs or Problems
	Chapter 5. Troubleshooting
	Appendix A. Reference
	Type Conversions Supported by MySQL Connector/J

	Appendix B. ChangeLog

