Autonomic Control of On-the-Cloud Applications
for Distributed Collaborative Systems

Bogdan Solomon, Dan Ionescu, Stejarel Veres
NCCT Lab, University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada

Toronto, Ontario, Canada

Gabriel Iszlai
IBM Center
for Advanced Studies
Toronto, Ontario, Canada

Marin Litoiu
York University
4700 Keele Street

Octavian Prostean

“Politehnica” University

Abstract—On-the-Cloud computing became an establish do-
main of research which materialized in a variety of *as a Service
applications. One of the issues with cloud computing relates to the
complexity of the IT operations needed to install and maintain
the *as a Service infrastructure. Autonomic Computing Systems
have been seen as a solution for providing the ‘“*as a Service”
with self management, due to their ability to configure, optimize,
heal and protect themselves with little to no human intervention.
The Autonomic systems must be able to analyze themselves
and their environment -the *as a Service infrastructure- in
order to determine how best they can achieve the high-level
goals and policies given to them by system managers. Previous
work on Autonomic Systems has focused on management of
resources which are collocated in the same datacenter. However,
new services like Content Delivery Networks require that the
servers which provide the service be distributed across different
datacenters. At the same time web applications are increasingly
used for people to collaborate within the same organization or
among organizations. This paper focuses on the issues related
to the design and implementation of an Autonomic Computing
infrastructure specially built for autonomically managing an *as
a Service system by applying known patterns from real-time
control to the on-the-cloud deployed collaborative application.
The autonomic system architecture for the self-management of
on-the-cloud distributed applications is approached through an
abstract application model while real-time control patterns are
applied to the combination of the self-* parts of the architecture
and the on-the-cloud distributed application. The test bed for a
practical deployment of such a system together with some tests
performed, are provided at the end of this paper.

I. INTRODUCTION

With the advent of new paradigms for the deployment and
efficiency of application oriented software products, the IT
departments have become more pervasive and more complex
leading very often to unmanageable IT infrastructures. Failures
of those infrastructures can have disastrous consequences for
the company and sometimes for a region or a country’s
economy. In a world that evolves as fast as the current one, an

of Timisoara

Timisoara, Romania

IT failure can result in lost sales and even the loss of customers
to competitors for a company.

Cloud computing exacerbates these issues an IT infras-
tructure must face by moving the IT outside the company’s
premises. Where before each small enterprise would run its
own small IT department, now large data centers provide
IT services to multiple consumers and enterprises (SaaS,
HaaS, TaaS). For the IT providers the ability to maintain the
systems’ service level agreements and prevent service outages
is paramount since long period of failures can open them to
large liabilities from their customers. At the same time, cloud
computing provides the ability for companies to pay only
for the required resources and to scale up or down as more
resources are needed or as resources are no longer required.
Due to this capability, a solution is needed for cloud computing
users in order to intelligently decide when to request more
servers and when to release used servers. From the point of
view of cloud computing providers, a solution is needed in
order to move server loads such that only the required CPU
power is used for a certain demand via virtualization. Server
virtualization also increases the complexity of managing the
servers in data centers, since suddenly one single hardware
server can be running tens of virtual machines, each with
its own load and processing requirements. Ensuring that the
appropriate number of virtual machines are deployed on a
hardware platform, such that the hardware is neither under-
utilized, nor that the virtual machines starve each other for
resources is not a trivial administrative task.

These are the problems that autonomic management systems
attempt to solve. Autonomic computing systems are capable
of self-managing themselves by self-configuring, self-healing,
self-optimizing and self-protecting themselves, together known
as self-CHOP. Such a system must be able to analyze itself
at runtime, determine its state, determine a desired state and
then if necessary attempt to reach the desired state from

the current state. Normally the desired state is a state that
maintains the system’s Service Level Agreement (SLA). For
a self-configuring system for example, this could include
finding missing libraries and installing them with no human
intervention. A self-healing system would be able to determine
errors in execution and recover to a known safe state. A self-
optimizing system example would be a cluster of servers that
dynamically adds and removes servers at runtime in order to
maintain a certain utilization and client response time. Finally,
a self-protecting system example would be a server that detects
a denial of service (DoS) attack and prevents it by refusing
requests from certain Internet Protocol (IP) addresses.

Furthermore, companies have policies which do not allow
certain data or mission-critical applications to be moved out-
side the premises of the company. As such, companies are
developing clouds which are part public and part private -
called hybrid clouds. These systems must also be managed,
and due to the split between private and public clouds the
management is further complicated. Some of these systems
will require that data from the public cloud be used by
applications in the private cloud, and possibly that this data
is combined with data stored in the public cloud. In order to
optimize the performance of such a system, both the public
and private clouds must be optimized separately, as well as
the combined use case. The problem becomes even more
complicated when it comes to collaborative applications. Such
applications, have different SLA requirements then standard
web applications. While response time is very important for
a normal web application, latency and jitter are critical to
any collaborative application which includes video or audio
streaming between parties.

In this paper a model driven architecture for the on-the-
cloud computing and a real-time architecture for the auto-
nomic computing capable of self-CHOPing the on-the-cloud
computing environment based on control loop models will
be introduced. The design and implementation of a network
based test bed on which these principles were tested are
described as well. The issues that must be dealt with, in
order to autonomically manage an *as a Service system by
applying known patterns to the whole infrastructure are then
discussed. The paper considers, as a case study, an application
which enables real-time collaboration among its users. The
application studied has its resources distributed in multiple
datacenters over a production network called NCIT*net 2. The
autonomic system architecture for the self-management of the
on-the-cloud distributed application which enables the users’
collaboration is approached via the application model. The
real-time control patterns will be applied to the combination
of the self-* part of the architecture and the on-the-cloud
distributed application.

The approach proposed in this paper is based on an ar-
chitecture rooted in real-time system theory and on software
engineering patterns and practices, presented in [8] and [9].
The rest of the paper is structured as follows: Section II
introduces in depth the use case for this problem. Section III
briefly presents the foundation of the proposed architecture.

Section IV presents the approach taken in order to self-
optimize the application described in section II. Secion V
presents some results and finally, section VI presents the
conclusions and future work to be done.

II. DISTRIBUTED COLLABORATIVE APPLICATION: THE
USE CASE

As described in the introduction, the use case for a dis-
tributed autonomic system is a real-time collaborative ap-
plication, which has its server nodes distributed in multiple
datacenters. Each of these datacenters is created as a cloud
computing platform and extra virtual machines can be created
in the cloud in order to increase the capacity available. In this
section the application which will be optimized is introduced
together with some of the requirements for the autonomic
control system which will optimize the application.

The collaborative application provides the capability for
multiple clients, whom are together in a session, to share
the same view of either video, images or presentations syn-
chronously. At the same time, the application provides the
capability of video/audio chat as well as text chat between
the participants in a session. Multiple exclusive sessions - one
user can only be in one session at any point in time - can exist
on the server, and the server provides delimitation between the
sessions. Each of the three shared views have slightly different
use cases in terms of synchronization:

1) Image sharing - this is the simplest of the three. Users
can either share a single picture, or a slideshow of
pictures. In the case of a single picture the application
ensures that all the users in a session can view the
picture. In the case of a slideshow, the application
ensures similarly that all the users view the same picture
at the same time. This means that as the slideshow
moves from one picture to the next all users’ pictures are
updated. At the same time, users can pause or restart the
slideshow, which has to be propagated to all the users
in the session. Users can also choose to skip a number
of pictures in which case all users will skip to the same
picture in the slideshow.

2) Video sharing - in the case of video sharing, users can
choose the video which they wish to share, in which case
all users queue the same video. Users can also choose to
skip to a certain point in time in a video, in which case
all users in the session will skip to the same point in
time in the video. Finally, users can pause/resume/stop
the video which is synchronized across all users. Sound
controls are not synchronized across all users.

3) Presentation sharing - users can also share presentations
or documents created in any document processor appli-
cation. In the case of both documents and presentations,
the application ensures that the all users view the same
page/slide and in the case of pages that do not fully fit in
the viewer area that all users view the same area of the
page. Zoom levels are however, not synchronized across
all users.

More on the specifics of the application can be found in

[4].

A. Autonomic Computing Problems

In terms of deployment the collaborative application which
is to be optimized is composed of two primary parts:

1) A client part which runs on the user’s machine, in the
browser as an Adobe Flash [1] application

2) A server part which is responsible for providing the
communication links between clients, as well as ensur-
ing that all the clients in a collaborative session are
synchronized to the same state. Since the clients are
Flash based applications, the server is allowing Real-
Time Messaging Protocol (RTMP) [2] connections from
the clients.

At its simplest, the system can be composed of a single
server and a number of clients. However, such a deployment
will obviously not scale as more users connect to the server
and will not provide any redundancy. A simple approach to the
scaling and redundancy problems would be to create a cluster
of servers, which using autonomic computing principles would
scale up/down as demand increases/decreases. Due to the fact
that the application provides video/audio chat latency becomes
extremely important however. As such, a better approach
would be to have multiple datacenters spread across different
locations, with each datacenter being able to scale up/down
based on demand. When a user connects to the system, the user
is connected to the datacenter which provides the best latency
for the user. This is done as the server implements geolocation
mechanisms. In most cases this is the datacenter closest to
the collborating users. For a non-collaborative system, such
a deployment would be sufficient, however as users join and
leave sessions a mechanism is added. This mechanism either
enables server-to-server communication or moves users from
one server to another in order to have most of the users in
sessions located on the same server. Both solutions present
extra problems for an autonomic computing solution.

If server-to-server communication is added, the autonomic
self-optimization function must take the extra load of this com-
munication in consideration. In previous work [7], a control
function for the number of servers was developed based solely
on the number of clients connecting to the server. However, if
server-to-server communication added, the number of clients
connecting is no longer sufficient to describe the state of the
system. Consider a system with three servers and three users
all in the same session. In such a case the users could be
connected in three ways:

1) All users connected to the same server - no server-to-
server communication needed, number of clients suffi-
cient to describe the state of the system

2) Two users connected to the same server, third user
connected to a different server - two one way server-to-
server links have to be created in order to pass messages
between the users.

connected
—

Media Server 2 Client 3

Client 3
to Client 1 & 2

Clients 1 & 2
to Client 3

connected __connected

Client 1 Media Server 1

Client 2

Fig. 1. Server-To-Server Communications

3) Each user connected to a different server - six one way
server-to-server links have to be created in order to pass
messages between the users.

Figure 1 shows the second use case.

If clients are moved between servers as they join/leave
sessions the autonomic computing system must be able to
deal with quick shifts in the number of clients connected to
a single datacenter. Consider the same example given before,
and assume that each of the three users connects to a different
server initially. Also assume that each of the servers is at
capacity. When the new session is created with the three users
in it, the server chosen to host the session suddenly sees a
spike in usage, while the other two servers suddenly become
idle. However, when the session ends the users are moved
back to the original servers, resulting in the two idle servers
suddenly hitting capacity, while the server which hosted the
session supporting more connections.

The approach of connecting clients to the best datacenter
introduces an extra problem - what to do when a new client
joins but the datacenter is at capacity. In such a case, the
autonomic system brings a new virtual machine up with a
new server which joins the existing cluster. While the virtual
machine is started the client can either be made to wait, or can
be connected to a different datacenter which still has capacity
opened. When the virtual machine has started, the client can
be moved to the originally chosen data center.

III. AUTONOMIC MANAGEMENT SYSTEM AS A SERVICE

The distributed autonomic computing system presented in
this paper is based on the autonomic architecture presented
in [8], where the base common unified architecture for au-
tonomic systems was introduced with the goal of breaking
the autonomic system into its base components. Based on this
architecture, a repository of components is created, with the
components working together to form an autonomic system.
Using this repository as a starting point and object composition
software patterns, an autonomic system is built by dynamically
combining the appropriate low level services provided by the
components. A system administrator, either a human user or an
automatic system, can select the correct components from the
repository and configure the components to work together such
that they form a managing system for an external resource. At

the same time, such an architecture allows components from
various vendors to interoperate, as the architecture provides
standard interfaces that must be exposed by different com-
ponents. Furthermore, this approach generates a system that
is capable of modifying its structure at runtime, by simply
replacing a component in the system with another component
which exposes similar services. The composability of the
system is achieved by enforcing that communications between
components are done only via the component interfaces, which
represent the service contract between components.

Figure 2 shows the high-level architecture of the autonomic
system, based on the eight components described in [8]. Each
of the eight components performs only one role, thus providing
high cohesion and low coupling. The architecture defines all
the eight components, however a control loop does not need
to be composed of all them, if it does not make sense logically
to use certain services. For example a control loop that uses
raw data for its analysis and decision services can use the data
directly from the sensors and is not required to use a filtering
service, and so on.

The architecture is composed from the following eight
components:

1) Sensors - The sensor performs the monitor function
in the control loop. Its single goal is to gather raw
data from the managed resource. The sensor does not
process the data gathered, and only makes it available
to the next component in the system. As such the sensor
must interface with the underlying resource, retrieve the
necessary data and format the data to the required output.

2) Filters - The filter’s role is to take data coming from
sensors and modify it based on the requirements of other
components. The filter communicates with the sensors in
order to retrieve data available in the sensors, processes
this data based on some internal structure and makes the
data available to other components in the control loop.

3) Coordinator - The coordinator is the brain of the au-
tonomic system. Its function is too coordinate the exe-
cution of the other components in order to achieve the
final goal of the autonomic system. It is responsible for
gathering data from the filters and using this data and
its own internal logic to decide the order in which to
execute the other components.

4) Model - The model acts as the knowledge base of the
system. It is used in order to both predict the future
state of the system if no changes are made as well as
to predict the changes that would be needed to maintain
the desired system outputs. A valid and stable model is
paramount for an autonomic system. The model must
be able to represent the state of the system accurately
enough for decisions to be made regarding changes in
the system.

5) Estimator - The estimator acts as the predictor of the
control loop. Its goal is to use the modeled data and
any new measured data in order to estimate the future
state of the system. Like the model, the estimator can
use various approaches to determine the future state like

machine learning methods or control theoretic methods.
Since the decision of making modifications to the system
is based on estimated data, the estimator must provide
stable estimates in the face of changing environments.

6) Decision Maker - The decision maker is the component
which generates a change plan, if one is needed. Based
on a request coming from the coordinator, which asks
for a decision to be made regarding necessary changes
in the system, the decision maker uses the model’s data,
its own internal logic as well as preset knowledge in
the form of QoS and SLA levels in order to generate a
decision which maintains the managed resources’ SLA
and QoS.

7) Actuator - The actuator is equivalent the execution part
of the control loop. It is responsible for executing a
change plan created by the decision maker. This can in-
clude scheduling actions for a later date, communicating
with various components of the resource and requesting
changes, as well as executing workflows. The actuator
also ensures that in the case of a failure in the execution,
the action is rescheduled for a later time if possible.

8) Adaptor - The adaptor is necessary in order to ensure
that the control loop performs correctly. Its responsibility
is to adapt the rest of the autonomic system to changes in
the managed resource. Unlike the model which changes
based on measured data and estimated data, the adaptor
makes changes based on structural changes to the man-
aged resource. The adaptor can also be used to make
structural changes to the control loop if there are changes
in the environment.

On top of this architecture, a framework was built which
provides messaging, reliability, and validation mechanisms to
the autonomic components. Through the use of this frame-
work, which is developed as an extension to the capabilities
provided by the WSDM standard, and of the autonomic repos-
itory which was also built, an autonomic system can be created
as a combination of services provided by the components.
These services can be discovered via the repository, with
different services residing on separate machines, and they can
be composed to form the autonomic managing system via the
cloud.

IV. AUTONOMIC MANAGEMENT SYSTEM FOR
DISTRIBUTED COLLABORATIVE SYSTEMS

Using the architecture and framework in section III a
solution is developed for the self-optimization of the system
described in section II. The goal of self-optimization is to
optimize the number of virtual machines running in each of
the datacenters, such that resources are used efficiently. In such
an optimization problem, two conflicting issues are balanced.
On one hand, the desire is to use as few virtual machines as
possible in order to minimize the energy costs and upkeep for
the servers. On the other hand the response time and latency
of the servers must be within desired values in order not to
impact the application’s clients. As such, the problem is one
of minimizing the number of servers used, while at the same

MonitoredEntity

H

actuate

ModifiedObjectData————— B>

Adapter

adapt ‘

monitor <« DecisionData——

DecisionData

Actuator

y

Coordinator

DecisionMaker
(Regulator)

EstimatedData——p»>|

< EstimatedData
Sensors
MeasuredData ModelData
v
MeasuredData FilterManager Model Estimator

Fig. 2. Autonomic Control Loop

time maintaining the desired response time and latency. One
extra problem rises due to the long time it takes to create new
servers. While the desire is to minimize the response time and
utilization, actions to remove or add servers do not happen
unless they are absolutely needed. For example, if removing a
server improves the utilization maintaining the same response
time or latency, but the improvement in utilization is small no
action is taken in order not to disturb the system.

While this is similar to the classical problem of self-
optimization, the system previously described requires extra
mechanisms to ensure that not only are the datacenters op-
timized locally, but that they are also optimized globally. In
order to achieve this, a two layered system was developed,
where two layers of control loops execute in parallel. At
the lower level, each datacenter has its own control loop
which is responsible for locally optimizing the datacenter.
This control loop starts and stops virtual machines as needed
based on user demand in order to provide the required latency
and response times. However, this is not sufficient to ensure
global optimization of all the datacenters. Since each of the
low level control loops only monitors the local servers and
virtual machines it is impossible to know the usage of other
datacenters, which in turn makes it impossible to predict
possible spikes in demand due to sessions being created across
datacenters. Two possible solutions can be used to ensure that
the system is optimized globally.

The first solution is to have the low level control loops
communicate among themselves and exchange information
regarding each datacenter’s state in order to create a global
model of the entire system. The advantage of such an approach
is that the autonomic system scales itself as more datacenters
are added, but at the cost of extra communications - which can
lead to slower autonomic decisions - and the cost of replicating
the same information across all the low level control loops.

Fig. 3.

Control Loop Cross Communication

Figure 3 shows how such a system works in the case of four
low level control loops.

The second solution is to have a high level control loop
which gathers data from the low level control loops, and whose
decisions are passed back to the low level control loops in
order to guide the decisions of these loops towards a global
optimum. This is similar to the work done in [3] where a high-
level controller makes decisions which can not be determined
locally at the low levels. The disadvantage of such a system
is its ability to scale - as more datacenters are added, the high
level control loop has more data to gather and more data to
process. At the same time however, the low level control loops
can be maintained fairly simple and there is no data replication
as the global state is maintained by the high level control
loop. Figure 4 shows the hierarchical system, with four low
level control loops and a high level control loop. The data and

High Level Control

data

=S

Fig. 4. Hierarchical Control Loops

control sequences from low level to high level and high level to
low level do not necessarily follow a request-response pattern.
It is possible that the high level control loop gathers multiple
data points from the low level ones before needing to make
modifications to the low level control loops. Modifications to
the low level control loops are done through the use of the
adaptors; the high level control loop sends a control message
to the adaptor, which in turn modifies the low level control
loop.

The autonomic system described in this paper uses the
second solution - two-layered control loops in order to self-
optimize. The two layers will split the responsibilities in order
to reach the global optimum as follows.

A. Low-level control loop

Each of the datacenters have its own low-level control
loop, which attempts to optimize the virtual machines in the
datacenter. The control loop gathers data from the virtual
machines in the datacenter, as well as from the servers running
on top of the virtual machines in order to determine the
number of clients currently connected to the servers, the CPU
utilization of the servers, as well as the bandwidth used for
video/audio streaming in the datacenter. The data is aggregated
across the servers by simple average, since it is assumed that
all the servers in one datacenter are similar. Based on this
gathered data, and on any guidance coming from the high-
level control loop, the datacenter autonomic system predicts
future usage of the datacenter’s resources through the use
of a Kalman Filter, similar to the work done in [6]. Once
the prediction is done, the autonomic system determines if a
breach of SLA will happen due to current and future usages,
and resource availability. If such a breach is predicted, the
system computes the number of virtual machines which can
prevent it and ensures the deployment of the virtual machines.

latency ——=
— response time —

- arrival rate Server 1

Virtual Machine 1

CPU utilization ——=

latency

- arrival rate —={ Server N

f—fresponse time—=

latency ——=
— response time —

- arrival rate Server 1

Virtual Machine 2

CPU utilization ——=

latency

- arrival rate —= Server N

—tresponse time——=

Fig. 5. Low Level Control Loop Model

Data gathered regarding usage, clients and number of virtual
machines is passed to the high-level control loop. Figure 5
shows the black box model of the low level control loop. Each
of the servers has as input function the arrival rate of new
users. This in turn acts on the latency and response time of
each of the servers and on the global CPU utilization of the
Virtual Machine hardware the servers are running on.

B. High-level control loop

The high-level control loop performs a number of actions
in order to ensure that all the datacenters are optimal and that
clients experience good performance. First of all, the high-
level control loop acts as an access control point. When a client
first attempts to open a connection to the application’s servers,
the connection is done by the high-level control loop. Since the
high-level control loop has a view of the entire system - where
datacenters are located, how much usage each datacenter has,
how many free resources each datacenter has - it is the most
appropriate decision making point as to where to redirect the
client. The decision of where to redirect the client is done
based on two criteria as described before: latency between
client and datacenters and usage of each datacenter. If the
best datacenter in terms of latency is at capacity, the high-
level control loop instructs the control loop in charge of the
datacenter to start a new virtual machine and redirects the
client to another datacenter while the virtual machine starts.
Once the low-level control loop notifies the high-level one that
the resource has started and is ready to accept connections, the
client is transparently transfered to the new server. A problem
can appear at transfer time if the client has already been moved
to a different server due to a session which contains other
users. In such a situation, the question is what to do with
the new server - stop it in order to conserve power or keep
it running in case the user leaves the session. Currently, the
server is kept running for a short amount of time and if no
need for it appears, the high-level control loop allows the low-
level control loop to free the resource. The decision of actually

stopping the server is done by the low-level control loop.

Second of all, the high-level control loop attempts to predict
global use patterns across all the datacenters. This means that
the high-level control loop must be able to predict how users
will move from one server to another due to session setup and
tear down. Due to server start times, it is not sufficient to create
the new servers when the session is created. The servers must
be already available to transfer all the users in one session to
the same datacenter, and preferably the same server. The high-
level control loop use either machine learning [?], or statistical
rules to try to determine sessions sizes and session locations.
These two options can be selected by the system administrator
as a function of his/her confidence in such systems.

A simpler solution than having the servers standing by for
possible sessions is to create the new servers when the sessions
require them and while the servers are created use server to
server communication to enable the sessions. Once the servers
are started, the sessions and the users are transfered to the
appropriate new servers. The advantage of this approach is
that the servers are only running when needed and there is
no waste of servers running without clients. The disadvantage
is that until the new servers are started all the clients of the
servers which intercommunicate will suffer a degradation in
quality.

Finally, the high-level control loop is responsible for moni-
toring the execution of the low-level control loops in order to
ensure that all the low-level control loops behave as expected
and that high-level SLA goals are met. For example, in order
to optimize its own behaviour the high-level control loop
monitors the time it takes to deploy new servers in each
of the datacenters. Based on this monitored value, the high-
level control loop attempts to determine if any of the low-
level control loops is experiencing problems deploying new
servers. A timeout value is set, and if the datacenter has
not successfully deployed a new server, then the request is
aborted and another datacenter required to deploy a new server.
At the same time, the deploy time of the new server is
used in order to optimize the location where new servers are
deployed. Datacenters with low deployment times are used
over datacenters with high deployment times. Figure 6 shows
the black box model of the low level control loop. For each
of the various clouds arrival of new clients, creation of new
sessions and deployment of new servers impact session sizes,
deployment times of new servers and number of servers in the
cloud.

V. RESULTS

In order to develop and test the autonomic system described
previously, a test bed was designed and implemented. While
all the servers are currently located in the same geographic
place, VLANSs were created in separately addressable networks
in order to separate servers into different on-the-cloud clus-
ters representing different datacenters. Each of the hardware
servers in the cluster which supports virtual machines run
Eucalyptus [5]. On top of Eucalyptus, each server runs Debian

Clients Session Size
i — Servers ——— P>
_ Sessions
Deployment Time
Servers ploy >
~ . .
Clients Session Size
i Servers —— P>
_ Sessions
Deployment Time
Servers ploy >
—~ . .
Clients Session Size
i — Servers ——— P>
_ Sessions
Deployment Time
Servers ploy >

Fig. 6. High Level Control Loop Model

Router 3

—T

Router 2 ' “ ‘ Router 4

e~
I .[—‘i

9

Router 1

Switch

1

Server1 Server 5

[
-

Server 2 Server 4

Server 3

Fig. 7. Physical Topology

Linux and the open source Red5 server is used for enabling
the RTMP communication between clients.

One of the machines in each VLAN is responsible also for
executing the low-level control loop for that *datacenter’, while
the high-level control loop executes on a machine outside
the VLANSs. Figure 7 shows the physical topology of the
infrastructure which was used to simulate various deployment
scenarios and run tests on how the autonomic system behaves.
The test bed uses two groupd of five servers connected via a
switch to one of five routers in order to obtain the logical
deployment shown in figure 8. Finally figure 9 displays how
routing is done within the network and the various clouds.

A separate machine is responsible for simulating client
requests. In order to test various locations for clients, when
making a connection clients will also send a location infor-

192.168.36.0/24
VLAN 36

Fa1/0 /,

EI .34.0/24 VLAN 734
.4.0/24 VLAN 400

Fig. 8. Logical Topology

" MPLSand LOP
are enabled on all

‘
i\ IS-IS uses LoO's

| IP Address as RID
.

oy
ipedl

& Area 49.A333 / Fal/O"
_R§ \
1 Fa1/0 \Et0/1
VO 1
1 ~ - 7/
7/ N Et0/0 VRF CLOUD

EO/1 N e
N1 A

RD 172.31.6.6:600

~ - -~ .j‘i/\
- Et0/2 =5
VRF CLOUD /Fal/o‘* - I_':}_‘i/
RD 172.31.3.3:300 1 \ RS-
] N | | Fal/o)
/ > 7 \
\ 7
\ P AN
~ o _ - ()
- o _
VRF CLOUD -~ -
RD 172.31.4.4:400 VRF CLOUD

RD 172.31.5.5:500

Fig. 9. Logical Topology Routing

mation which will be used to decide which server to use for
the client.

VI. CONCLUSIONS

This paper introduced an approach for developing auto-
nomic systems for collaborative distributed systems where the
distribution is of the type on-the-cloud. The paper first pre-
sented challenges caused by the collaborative and distributed
nature of the system under control, and examined different
approaches through which those challenges can be overcome.
The proposed autonomic computing approach focuses on a
two layered control loop where the low-level controllers act
on the distributed datacenters and the high-level control loop
ensures that the decisions made by the low-level controllers are
globally optimal. Furthermore, the high-level control loop can
act as an admission control system for the clients’ requests.

While the subject approached in this paper is wide, there are
other researches taking place right now focussed on a number
of issues such as:

o Design, implementation, and performance testing regard-
ing the model for the high-level control loop;

e Design and implementation of various deployment sce-
narios in order to evaluate and measure the performance
of the control loops;

e Design and implementation of appropriate admission
control algorithms in the high-level control loop

VII. ACKNOWLEDGMENTS

The authors would like to thank the IBM Centre for Ad-
vanced Studies (CAS) for their support of this research and
for the technical help.

REFERENCES

[1] Adobe. Adobe Flash Player. [Accessed: September 2010].

[2] Adobe. Real-Time Messaging Protocol (RTMP) Specification 1.0.
[Accessed: September 2010].

[3] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic manage-
ment of non-functional concerns in distributed & parallel application
programming. In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1 —12, May 2009.

[4] R. Dagher, C. Gadea, B. Ionescu, D. Ionescu, and R. Tropper. A SIP
based P2P architecture for social networking multimedia. pages 187
—-193, oct. 2008.

[5] EucalyptusSystems. Eucalyptus Cloud Computing. [Accessed: Septem-
ber 2010].

[6] E. Gelenbe. Autonomic adaptation in distributed systems and networks
preliminary version. 2009.

[71 M. Litoiu, M. Mihaescu, D. Ionescu, and B. Solomon. Scalable adaptive
web services. In SDSOA ’08: Proceedings of the 2nd international
workshop on Systems development in SOA environments, pages 47-52,
New York, NY, USA, 2008. ACM.

[8] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai. Composition of
adaptive web services. In SEAMS ’'10: Proceedings of the 2010
International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pages 1-10, 2010. To be published.

[9] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu. Towards a
real-time reference architecture for autonomic systems. In SEAMS
’07: Proceedings of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 1-10, 2007.

[10] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu. Model-driven
engineering for autonomic provisioned systems. In COMPSAC ’'08:
Proceedings of the 2008 32nd Annual IEEE International Computer
Software and Applications Conference, pages 1110-1115, Washington,
DC, USA, 2008. IEEE Computer Society.

