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Abstract—Retrieving audio signals by content in large
repositories require a stable and persistent representation
of the audio. Such a representation is called an Audio
Fingerprint (AFP). A robust AFP should be an invariant of
the audio signal and it should represent the signal despite
severe degradations it may suffer. The robustness of the
AFP is inversely proportional to the compute effort put
in obtaining the AFP from the audio, and hence impose
limits on the processing throughput.

On the other hand the Graphics Processing Unit (GPU)
provides high performance computing through the thread-
ing model. Its main characteristics are high computational
power, constant development and low cost.

In this work, we propose the use of massive parallel
algorithms implemented in the GPU to speedup the com-
puting of a robust AFP. This parallel system will be part of
a comprehensive system, which will allow to determinate
the audio fingerprints of several audio signals generated
simultaneously. Experimental results on the corresponding
speedup are presented.

I. INTRODUCTION

Audio identification consists in the ability to pair audio
signals of the same perceptual nature, this demands an
object representation stable and persistent to different
natural degradation of the objects. Such robust represen-
tation is called an Audio-Fingerprint (AFP). Two audio
signals are perceptually similar if they have the same
AFP. AFP’s are mature technologies used as software
commodities by a very large number of applications of
economic importance. Among other tasks, AFPs are used
in broadcast monitoring [1], signal identification [2], [3]
and automatic score following [4].

In designing AFPs for such use, there is a tension
between two competing goals. On the one hand a robust

featuregenerally implies a dense representation of the
audio, and correspondingly a robustfingerprintgenerally
implies a denser representations of a song. On the other
hand, a dense AFP imply more compute cycles to obtain
the representation.

In some applications an audio collection, represented
by their AFP, is queried against an unknown audio
sample. To avoid comparing with all the audio sample
in the collection it is possible to build a metric index to
satisfy proximity queries. There are some applications
where the situation is reversed and the audio collection
is given on-line and it need to be compared against a
single audio sample. An example application with this
behavior is the monitoring of radio broadcasting. The
goal is to listen to a large set of audio streams (the
broadcasting stations in a city) and wait for the appear-
ance of a particular audio stream, such as a commercial
advertising, in any one of the streams. In this case it is
not even possible to obtain all the AFP of all the audio
streams in real time using a single CPU. The Graphics
Processing Unit (GPU) represents a good alternative to
speedup the AFP process. GPU’s are portable, affordable
massive parallel devices, originally conceived to speed
up online rendering. In present days they can provide up
to 50 times the processing power, compared to the host
computer [5].

Since its inception, the GPU was used as a dedicated
device for speeding up graphics processing applications,
3D video gaming, rendering, etc. [6], [7]. The progress
of the GPU was faster than for CPU, probably due to
a smaller instruction set and single precision arithmetic
[8], [7]. The GPU is in many senses a portable super
computer. Certain type of tasks can be solved using
a massive parallel model, with a multi-core processor,



shared memory and hyper threading support.
The GPU programming evolved from hacking graph-

ics specific settings and programs to a more structured
C-like programming environment. The most successful
model is provided by theNvidia graphics card, with
a driver hiding the low-level details and differences
between different graphics card models. This model is
dubbed Compute Unified Device Architecture (CUDA)
with a GPU-CPU interface, thread synchronization, data
types, etc. [9], [10], [11].

The goal of this work is to improve the throughput for
online processing of a multi-stream source. The paper is
organized as follows: in sections II, III and IV, we review
the characteristics of an AFP, the entropy of a signal
and how to compare sounds. The section V compares
the CPU and GPU programming. In section VI , we
analyse the characteristic of GPU-CPU system parallel.
Finally, we show the experiments, obtained results and
conclusions.

II. CHARACTERISTICS OF ANAFP

A good AFP must include the following characteris-
tics:

• Robust to signal degradations such as noise mixing,
equalization, cropping and time shifting.

• Compact and determined with as little computa-
tional effort as possible.

• Scalable, that is, it should be able to operate with
very large databases, conditioned by a good index-
ing technique.

An audio-fingerprinting system consists ofFeature
extraction and Audio-fingerprint modelingmodules. In
the Feature extractionmodule, the perceptual features
of the audio signal are extracted and they are taken by
theAudio-fingerprint modelingmodule with the purpose
of building an AFP, that is adequate forInformation
Retrievalpurpose.

Therefore, the first thing an audio-fingerprinting sys-
tem has to do is to extract features from the signal.
Most AFP systems however, extract signal features in the
frequency domain using a variety of linear transforms
such as the Discrete Cosine Transform, the Discrete
Fourier Transform, the Modulation Frequency Transform
[12] and some Discrete Wavelet Transforms like Haar’s
and Walsh-Hadamard’s [13].

Looking for more relevant features of audio signals
a variety of perceptual features have been assessed
such as the Mel-frequency Cepstral coefficients (MFCC)
[14]; Loudness [15]; the Joint Acoustic and Modulation
Frequency (JAMF) [12], [16]; the Spectral Flatness Mea-
sure (SFM) [17]; the Spectral Crest Factor (SCF) [17];

tonality [18] and chroma values [19]; among others[20].
[21] proposes to compute the audio entropy for every
signal second.

Finally the features obtained fromFeature extraction
module are modeled in a way that best serves the purpose
of the application for which the audio fingerprints have
been designed. Examples of existing audio models are:
Trajectories[2]; Statistics[22]; Codebooks[23]; Strings
[24]; Hidden Markov Models (HMM)[25], [26]; Gaus-
sian Mixture Models (GMM)[27], [28].

The technique described here differs to these ap-
proaches in that it does not reply on specific domain
knowledge, and is therefore more widely applicable.

III. A RELEVANT PERCEPTUAL FEATURE: SIGNAL

ENTROPY

The entropy of a signal is a measure of the amount of
information the signal carries. IfX is a random variable
representing the signal, and we want a unique value to
identify it, then Shannon’s entropy is a good candidate.
Small perturbations on the sample values ofX produce
smaller perturbations on the measured entropy. If the
sample values ofX are denoted by{xi} then entropy is
defined as

H(X) = −
∑

i

p(xi)ln(p(xi)),

wherep(xi) is the probability for the signalX to take
valuexi.

Since the audio signal is additive, we will fix our
attention to the modulation (the change) of the entropy
over time. If we compute the entropy values in a sliding
window of the signal, the sequence of values encode the
changes of the audio entropy over time. If the volume
(the energy) of the audio is increased or decreased, the
corresponding entropy curve is also shifted preserving
the relative changes.

Adjusting shifts to match signals is an easy task, the
vertical shift disappears if we take the derivative of the
signal, or even more if only the sign of the derivative is
retained. Unfortunately, other interesting distortions,like
re-recording, are not profile invariant. A similar effect is
observed when the signal is equalized.

The Time-domain Entropy Signature (TES) is a se-
quence of binary values, one per each frame, indicating
the sign of the derivative of the entropy profile. This
AFP was compared with Haitsma et al AFP [2] in
[21] obtaining good results for low pass filtering, lossy
compression and volume changes. For re-recording or
equalization the results were not as good. In this work,
the entropy calculation is undertaken in the frequency
domain, with logarithmic bands used to offset the effect
of equalization and other distortions.



A. The Multiband Spectral Entropy Signature

The distortion observed in the time domain for re-
recording or equalization can be reverted if we divide
the signal in subbands using for example the logarithmic
Bark scale of 24 critical bands. After the band division, if
we compute the entropy profile of each suband separately
the corresponding bands will have vertical shifts only,
even for distortions like equalization or re-recording.
Thru this process, we obtain the Multiband Spectral
Entropy Signature (MBSES)

This is illustrated in figure 1 where only some of the
24 bands are shown to avoid overcrowding the figure.
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Fig. 1. Entropy profiles for individual bands in the Bark scale.

B. Binary Encoding the Signature

For each frame we keep only an indication of whether
the spectral entropy is increasing or not for each band.
Equation (1) states how the bit corresponding to bandb

and framen of the AFP is determined using the entropy
values of framesn and n − 1. The same property of
compactness noted in TES is retained in the spectral
version. Only 3 bytes (i.e., 24 bits) are needed for each
frame of audio signal.

F (n, b) =

{

1 if [hb(n)− hb(n− 1)] > 0
0 Otherwise

(1)

IV. COMPARING AUDIO SIGNAL

So far we have a binary array for each song or audio in
the collection. The Hamming distance between two same
sized excerpts accounts for the perceptual similarity
between them. The smaller the Hamming distance the
higher the perceptual similarity, as it was discussed
above. If we want to know if an excerpt occur in some
song in the collection we need to scan, in principle,

all the collection to find the alignment with the smaller
Hamming distance.

The sequential scan with the MBSES does not scale
well. As a formative experiment, we used off-the-shelf
desktop hardware to scan a database of pre-computed
MBSES. The database comprised of approximately ten
thousand songs from a wide range of genres (from
country to classic). With these signatures pre-loaded into
memory, we are able to scan roughly 17 hours of audio
per second when using audio excerpt of 5 seconds, and
10 hours of audio per second with a 10 second excerpt.
Nevertheless, to scale to collections with millions of
songs—as is the case with iTunes for instance, with
an ever growing set of users—a more efficient indexing
method is needed. This motivates the use of a general
index to speed up searches.

A. Probabilistic Pairing Pseudo Metric

Lets assume we have abase distanced(x, y)1 to
compare similar sized audio samplesx and y of sizes
m and n respectively withm ∼ n. It can be the case
the base distance requirem = n, as for example the
Hamming distance. If the case of theedit distance, sizes
m andn need to be just comparable.

The probabilistic pairing pseudo metric(PPPM)
D(x, y) is a generalization of the base distanced(x, y)
defined as follows: Ifn < m:

D(x, y) = min
x(i,i+n)

d(x(i, i + n), y(1, n)) ∀ 1 < i < m

(2)
Otherwise:

D(x, y) = D(y, x)

In other words we use a sliding window of the smaller
object over the larger one and use the minimum as the
value of the distance.

The function defined in Equation 2 does not strictly
satisfy the triangle inequality, although it does satisfy
it with high probability since the case where it is not
satisfied is rarely found.

V. GPU AND CPU PROCESSING

A single PC with one or multiple cores cannot be
compared in performance with CUDA, because hundreds
of thousands of threads can be attended simultaneously.
Our proposal is to used CUDA to boost the throughput in
audio processing. One possible application is to monitor

1d(x, y) is a distance between bit vectors, to fix ideas we can think
in the Hamming distance between bit vectors



simultaneously, with a single PC, the hundreds of radio
broadcastings in a large city, or to listen for hundreds
of simultaneous queries for query by content in audio
databases. Audio databases and audio monitoring are
specially suited for the massive parallel model provided
by CUDA.

A GPU can be considered as a multicore processor
allowing a large number of fine grained threads [29].
The GPU is different from other parallel architectures in
the flexible local resource assignment, either memory or
register, for the threads. Each stream multiprocessor can
execute a variable number of threads, it is a programming
decision the resource assignment. Performance can be
boosted by optimizing the assignment of resources.

The whole model consist in a traditional CPU based
station and one or more coprocessors, the massive par-
allel compute devices. Each coprocessor apply the same
model of Simple Instruction Multiple Data (SIMD). All
computing units execute the same code (not necessarily
synchronized) over the different set of data. The threads
share the same global memory.

CUDA is a computing environment allowing software
developers to create isolated programming components.
Each component solve a problem in a dedicated GPU
device applying massive parallel data processing. CUDA
provides a programming model facilitating application
development on the GPU.

A CUDA program is a C/C++ extended with a set
of instructions. This instructions specify parallel code
and data structures to be executed in the device. Those
computing units are namedkernels. A kernel describe the
work of a single thread and can be executed by hundreds
of them. There are some restrictions on the kernels, they
cannot execute recursive calls, static variables cannot
be declared and the number of arguments cannot be
variable.

A complete CUDA program have different phases to
be executed either on the CPU or the GPU. When the
phase have low or null parallelism it is assigned to the
CPU. If the phase is massively parallel it is implemented
as a kernel and executed over the GPU.

At the beginning and end of a program the host make a
transfer from/to the global data or the GPU data space.
Threads are organized in a three level hierarchy:Grid
the top level consisting in a block of threads,Block mid
level consisting in a group of threads stablished by the
software developer, and the lower levelThreadswhich
can synchronize the task and share data inside the same
block. The number of grids, blocks and threads affect the
performance of the tasks, each application have an opti-
mal selection for these parameters. As a rule of thumb
these parameters are determined by experimentation.

VI. PARALLEL MULTI -MBSES

Figure 2 illustrate the parallel architecture for the
digital signature dubbedMBSESp. As said before the
problem is particularly well suited for massive parallel
processing.
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Fig. 2. Architecture ofMBSESp

Multi signal processing is sketched inMulti-
MBSESp, where additionally to parallel processing of a
single signal, multiple signals can be processed at once,
each one of them performing the same task with different
data. Figure 3 illustrates.
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Fig. 3. Multi signalMBSESp system

In both schemaMBSESp and Multi-MBSESp the
massive parallel architecture can be applied. Several
parameters need to be adjusted. In this work we discuss
three crucial parts of the processing, computing: the Han-
ning window, the fast Fourier transform and computing
the signature entropy based on histograms.



A. The Hanning Window

Computing the Hanning window is an inner product,
and hence is suitable for massive parallel processing. All
the threads will perform the same operation and the final
algorithm is a pure data parallel procedure with no cross-
talk between threads. The usual consideration should be
applied, if the number of threads is smaller than the data
size, then each thread will take care of a subset of the
vector.

B. Fast Fourier Transform

In the CUDA repository there is a library for parallel
computing the FFT, this routine is called the CUFFT. We
implemented the FFT from scratch based on the original
algorithm of Cooley and Tukey [30]. The inverse and
direct FFT can be computed changing a single parameter.
The sample is divided in two subsets of size half the
original size, using the Danielson Lanczos theorem. This
process is repeated recursively or iteratively until the set
is of cardinality two.

We fixed 512 threads to be executed in parallel,
computing the bit-reverse vector in a first stage and in
a second stage we properly computed the FFT. For the
bit-reverse, each even index element in the first part of
the vector is swapped with a corresponding even index
element in the second part of the vector. Each swap is
computed by a different thread. For a vector of sizeN

we need N
4 threads. IfN is larger than the number

of available threadsT , then each thread will swap
N

4

T

elements.

1 2 3 70 654

1 2 3 70 654

1 2 3 70 654

1 2 3 70 654

thread 0 thread 1 thread 2 thread 3

thread 0 thread 2

thread 1 thread 3

thread 0 thread 2

thread 1
thread 3

Iteration=1      N=8

Iteration=2

Iteration=3

Final Result

Fig. 4. GPU based FFT computation

The second phase is where the FFT computation
takes place properly. Since it is not possible to apply
recursive calls, the solution is iterative. Each thread, in
each iteration, makes the proper computation with the
corresponding pair. If the number of threads is smaller
than the vector size each thread will take care of a

fraction of the data. In figure 8(b) the procedure is
sketched for each iteration.

C. Entropy Signature

Computing the entropy of a signal requires some
estimation of the Probability Density Function (PDF).
Such estimation may be accomplished using parametric
methods, non parametric methods and histograms. Para-
metric methods [31] are advisable when the distribution
is known a priori and the amount of data involved is not
large. In non parametric methods, no assumptions are
made about what distribution the PDF belongs to, the
PDF is shaped by the data which is in turn smoothed by
some kernel. Non-parametric methods are computation-
ally expensive and so not frequently used for realtime
pattern recognition applications. The histogram is the
method of choice, it is a simple and fast approach to
estimate entropy. In this case, the confidence of the
histogram method is ensured by the fact that thousands of
audio samples will be used to compute the histogram.The
probability pi for value vi to be a sample read from
the audio stream is computed using Laplace‘s formula
pi =

fi
N

, wherefi is the number of times that valuevi
occurs in the sequencex = x1, x2, .., xN , N is the frame
size.

The Bark scale defines 25 critical bands, the first 24
corresponding to the bands of hearing. The last band,
the 25th band, is discarded since only the youngest and
healthiest ears are able to perceive it. For any given band
b, the elements of the time-domain frame of the signal
(after computing the FFT) corresponding tob are used to
build two histograms, one for the real parts and another
one for the imaginary parts of these elements. The his-
tograms are used to estimate the probability distribution
functions. The entropy for real and imaginary parts are
computed separately and operated together to obtain the
i-component of TES. Figure 5 illustrates.
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Fig. 5. Entropy computation



Shared memory per block 16KB
Registers per block 8KB

Max. number of threads per block 512
Max. sizes of each dimension of a block 512 x 512 x 64
Max. sizes of each dimension of a grid 65535 x 65535 x 1

Fig. 6. Common Characteristics among Three GPU

In the next paragraph, we describe the necessary steps
to compute the entropy signature with histograms on
GPU.

1) Histogram: Computing the histograms is tricky
and involve many tasks, the first is the discretization of
the current signal frame, the continuous values have to be
converted to discrete values. This task implies obtaining
the max and min (M m) over all frame component (real
and imaginary parts).M m employs the max number
of threads, 512, to obtain the max and min value of a
subset of the frame. Each thread works over the same
number of data points. After that, half of the threads
are dedicated to calculate themax and the other half
compute themin. Once acquiredmin andmax, every
signal elements are transformed to a value between them.
This task is similar to computing the Hanning window,
the threads will perform the same operation over a subset
of frame data, without communication among them. We
use 8 bits to represent each data element of the frame,
hence each discrete data element will take one value
between 0 and 255. The second task is to properly
compute the histogram. In this process, the distribution
of the computation between multiple execution threads
is made by subdividing the frame data between them,
processing of the subset by each dedicated execution
thread, and storing the result into a certain number of
sub-histograms. Finally all the sub-histograms need to
be merged into a single histogram. Between each inner
step it is necessary to synchronize the threads.

VII. E XPERIMENTAL RESULTS

For a comparative analysis we selected a sequential
CPU implementation of the algorithms, the fastest ma-
chine available for experiments has the following char-
acteristics: Intel core 2 Duo E8400, with 3GB of RAM.
We used three different GPU models for comparison.
The 8500 GT, 9500 GT and 9500 GS. They had the
following common characteristics (see table in Figure
6).

With the following differences (see table in Figure 7).

GeForce 8500 GT 9500 GT 9500M GS
Global Memory 512MB 256MB 512MB
Multiprocessors 2 4 4
Central Clock 450 MHz 500 MHz 475 MHz

Fig. 7. Differences among Three GPU

The results shown for the speedup are the average
over several runs. Figures 8(a), 8(b) and 8(c) show the
speedup for the Hanning window computation, the FFT
and Histogram for differents frame sizes. In all the cases
we used the maximum number of available threads. We
can observe a significant improve respect to sequential
process, independent of GPUs characteristics.

(a) Hanning

(b) fft

(c) Histogram

Fig. 8. Speedup of Hanning, FFT and Histograms computation

We compared our implementation with the state GPU
based library CUFFT, available in the CUDA showroom.



We used the CUFFT as a black box. Our implementation
surpass the efficiency of the state of the art. Figure 9
shows the comparison to four frame size.

Fig. 9. FFT vs CUFFT

In all cases our implementation was faster than
CUFFT, which is the state of the art.

Finally, we analyzed the overall speedup. At the
moment of writing this note, theMBSESp is mixed
implementation, we used a CPU/GPU model, the first
three tasks were resolved over GPU (finalMBSES)
, the last task was computed in the CPU. When the
third task ends, the data had to be moved from the
GPU to the main CPU memory. Although, data transfers
impose a severe restriction on the performance, the
results are good. Figure 10 shows the overall speedup
when frame size is 16KB, this size is equivalent to a
frame duration of 370ms. In the conclusions and future
work section we discuss the expected speedup in a pure
GPU implementation when no data transfers are made
for intermediate results.

Fig. 10. Overall Time ofMBSESp

Figure 11 displays the sequential and parallel GPU
times of nine different audio signals. The selected signals
have diverse durations (in seconds, they are are indicated
in the label:Sig −#second). The frame size is 16KB.
We can observe a significant improvement with respect
to the overall time of computing the audio signature
implemented on three different GPU boards.

Fig. 11. Sequential vs parallel GPU times of nine signals

The signal is processed in frames of 370 ms, this
frame size ensures an adequate time support for entropy
computation according to our experiments. The frame
sizes normally used in audio-fingerprinting ranges from
10 ms to 500 ms according to [20]. The frame size used
in [2], [3] is precisely 370 ms.

CONCLUSIONS ANDFUTURE WORK

In this work, we sketched the basic characteristics of
the MBSESp system. This system describe the Multi-
band Spectral Entropy Signature (MBSES) following
the CUDA programming model. We presented results
supporting about a 2.5 speedup to compute a single
frame, this accounts for the overall time needed to
transfer a single frame to the GPU RAM, computing the
FFT and the entropy and transferring the result to the
CPU. If the whole audio signal can be accommodate in
the GPU RAM then the time to compute a single frame
will be in the same order of magnitude of computing all
the frames signatures for the audio without transferring
partial results to the GPU. In a conservative estimation
if an audio signal of 1462 frames of 16Kb length (a
standard song) can be computed in 4165,63 milliseconds
in the sequential model, the corresponding GPU imple-
mentation will use 0,055 accounting to a speedup of 4
to 5 orders of magnitude (considering the memory and
bus and thread arbitration).

Of independent interest is our FFT implementation
that is faster than the CUDA implementation of the
FFT (CUFFT), a more thorough comparison to detect
the weak points of the CUFFT is needed to recommend
our implementation over the CUFFT. The FFT is widely
used in many areas of application and we believe our
implementation can be of interest to practitioners. We
are also implementing a massive parallel version of
the metric indexes suitable for audio indexing. We are
aiming a pure GPU implementation of the system.
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