
� COMMON LISP HINTS �

� Common LISP Hints�

Note� This tutorial introduction to Common Lisp was written for the CMU environment� so some of the
details of running lisp toward the end may di�er from site to site�

Further Information� The best LISP textbook I know of is�
Guy L� Steele Jr�� Common LISP� the Language� Digital Press� �����
The �rst edition is easier to read	 the second describes a more recent standard�
The di�erences
between the two standards shouldn�t a�ect casual programmers��

A book by Dave Touretsky has also been recommended to me� although I haven�t read it� so I can�t
say anything about it�

��� Symbols

A symbol is just a string of characters� There are restrictions on what you can include in a symbol and what
the �rst character can be� but as long as you stick to letters� digits� and hyphens� you�ll be safe�
Except
that if you use only digits and possibly an initial hyphen� LISP will think you typed an integer rather than
a symbol�� Some examples of symbols�

a

b

c�

foo

bar

baaz�quux�garply

Some things you can do with symbols follow�
Things after a �� prompt are what you type to the LISP
interpreter� while other things are what the LISP interpreter prints back to you� The �� is LISP�s comment
character� everything from a �� to the end of line is ignored��

� �setq a �� �store a number as the value of a symbol

�

� a �take the value of a symbol

�

� �let ��a ��� a� �bind the value of a symbol temporarily to �

�

� a �the value returns to � once the let is finished

�

� �� a �� �use the value of a symbol as an argument to a function

��

� b �try to take the value of a symbol which has no value

Error	 Attempt to take the value of the unbound symbol B

There are two special symbols� t and nil� The value of t is de�ned always to be t� and the value of nil
is de�ned always to be nil� LISP uses t and nil to represent true and false� An example of this use is in
the if statement� described more fully later�

� �if t � ��

�

� �if nil � ��

�

�This tutorial was written by Geo�rey J� Gordon� February �� ���� and modi�ed by Bruno Haible

� COMMON LISP HINTS �

� �if
 � ��

�

The last example is odd but correct� nil means false� and anything else means true�
Unless we have a
reason to do otherwise� we use t to mean true� just for the sake of clarity��

Symbols like t and nil are called self�evaluating symbols� because they evaluate to themselves� There
is a whole class of self�evaluating symbols called keywords	 any symbol whose name starts with a colon is a
keyword�
See below for some uses for keywords�� Some examples�

� 	this�is�a�keyword

	THIS�IS�A�KEYWORD

� 	so�is�this

	SO�IS�THIS

� 	me�too

	ME�TOO

��� Numbers

An integer is a string of digits optionally preceded by � or �� A real number looks like an integer� except
that it has a decimal point and optionally can be written in scienti�c notation� A rational looks like two
integers with a � between them� LISP supports complex numbers� which are written �c�r i�
where r is the
real part and i is the imaginary part�� A number is any of the above� Here are some numbers�

�

�

��

��

���
��

����e���

�c�����e��� ����

The standard arithmetic functions are all available� �� �� �� �� floor� ceiling� mod� sin� cos� tan� sqrt�
exp� expt� and so forth� All of them accept any kind of number as an argument� �� �� �� and � return a
number according to type contagion� an integer plus a rational is a rational� a rational plus a real is a real�
and a real plus a complex is a complex� Here are some examples�

� �� � ��
� �type contagion

���

� �exp �� �e

�������

� �exp �� �e�e�e

��������

� �expt �
��� �exponent with a base other than e

������
��

� �� � � �� � � ���� �the fns ���� accept multiple arguments

There is no limit to the absolute value of an integer except the memory size of your computer� Be
warned that computations with bignums
as large integers are called� can be slow�
So can computations
with rationals� especially compared to the corresponding computations with small integers or �oats��

� COMMON LISP HINTS �

��� Conses

A cons is just a two��eld record� The �elds are called car and cdr� for historical reasons�
On the �rst
machine where LISP was implemented� there were two instructions car and cdr which stood for contents of

address register and contents of decrement register� Conses were implemented using these two registers��
Conses are easy to use�

� �cons
 �� �Allocate a cons� Set the car to
 and the cdr to ��

�
 � ��

� �cons �cons
 �� ��

��
 � �� � ��

� �car �cons
 ���

� �cdr �cons
 ���

�

��� Lists

You can build many structures out of conses� Perhaps the simplest is a linked list� the car of each cons
points to one of the elements of the list� and the cdr points either to another cons or to nil� You can create
such a linked list with the list fuction�

� �list
 � ��

�
 � ��

Notice that LISP prints linked lists a special way� it omits some of the periods and parentheses� The rule
is� if the cdr of a cons is nil� LISP doesn�t bother to print the period or the nil	 and if the cdr of consA is
cons B� then LISP doesn�t bother to print the period for cons A or the parentheses for cons B� So�

� �cons
 nil�

�
�

� �cons
 �cons � ���

�
 � � ��

� �cons
 �cons � �cons � nil���

�
 � ��

The last example is exactly equivalent to the call �list
 � ��� Note that nil now means the list with
no elements� the cdr of �a b�� a list with � elements� is �b�� a list with � element	 and the cdr of �b�� a list
with � element� is nil� which therefore must be a list with no elements�

The car and cdr of nil are de�ned to be nil�
If you store your list in a variable� you can make it act like a stack�

� �setq a nil�

NIL

� �push
 a�

�
�

� �push � a�

��
�

� �pop a�

�

� a

�
�

� �pop a�

� COMMON LISP HINTS �

� �pop a�

NIL

� a

NIL

��� Functions

You saw one example of a function above� Here are some more�

� �� �
 � �� �this function takes any number of arguments

��

� �� �� �
� �� ��
 �� ��� �isn�t prefix notation fun�

��

� �defun foo �x y� �� x y ��� �defining a function

FOO

� �foo � �� �calling a function

��

� �defun fact �x� �a recursive function

�if �� x ��

�� x �fact �� x ����

�

� �

FACT

� �fact ��

���

� �defun a �x� �if �� x �� t �b �� x��� �mutually recursive func�

A

� �defun b �x� �if �� x �� �a �� x ��� �a �� x �����

B

� �a ��

T

� �defun bar �x� �a function with multiple statements in

�setq x �� x ��� �its body �� it will return the value

�setq x �� x ��� �returned by its final statement

�� x
�

�

BAR

� �bar ��

��

When we de�ned foo� we gave it two arguments� x and y� Now when we call foo� we are required to
provide exactly two arguments� the �rst will become the value of x for the duration of the call to foo� and
the second will become the value of y for the duration of the call� In LISP� most variables are lexically
scoped	 that is� if foo calls bar and bar tries to reference x� bar will not get foo�s value for x�

The process of assigning a symbol a value for the duration of some lexical scope is called binding�
You can specify optional arguments for your functions� Any argument after the symbol �optional is

optional�

� �defun bar �x �optional y� �if y x ���

BAR

� �defun baaz ��optional �x �� �z ���� �� x z��

� COMMON LISP HINTS �

BAAZ

� �bar ��

�

� �bar � t�

�

� �baaz ��

��

� �baaz � ��

��

� �baaz�

��

It is legal to call the function bar with either one or two arguments� If it is called with one argument� x
will be bound to the value of that argument and y will be bound to nil	 if it is called with two arguments�
x and y will be bound to the values of the �rst and second argument� respectively�

The function baaz has two optional arguments� It speci�es a default value for each of them� if the caller
speci�es only one argument� z will be bound to �� instead of to nil� and if the caller speci�es no arguments�
x will be bound to � and z to ���

You can make your function accept any number of arguments by ending its argument list with an �rest

parameter� LISP will collect all arguments not otherwise accounted for into a list and bind the �rest

parameter to that list� So�

� �defun foo �x �rest y� y�

FOO

� �foo ��

NIL

� �foo
 � ��

�� ��

Finally� you can give your function another kind of optional argument called a keyword argument� The
caller can give these arguments in any order� because they�re labelled with keywords�

� �defun foo ��key x y� �cons x y��

FOO

� �foo 	x � 	y ��

�� � ��

� �foo 	y � 	x ��

�� � ��

� �foo 	y ��

�NIL � ��

� �foo�

�NIL�

An �key parameter can have a default value too�

� �defun foo ��key �x ��� x�

FOO

� �foo 	x �

� �foo�

�

� COMMON LISP HINTS �

��� Printing

Some functions can cause output� The simplest one is print� which prints its argument and then returns it�

� �print ��

�

�

The �rst � above was printed� the second was returned�
If you want more complicated output� you will need to use format� Here�s an example�

� �format t �An atom	 �S��and a list	 �S��and an integer	 �D���

nil �list �� ��

An atom	 NIL

and a list	 ���

and an integer	 �

The �rst argument to format is either t� nil� or a stream� t speci�es output to the terminal� nil means
not to print anything but to return a string containing the output instead� Streams are general places for
output to go� they can specify a �le� or the terminal� or another program� This handout will not describe
streams in any further detail�

The second argument is a formatting template� which is a string optionally containing formatting direc�
tives�

All remaining arguments may be referred to by the formatting directives� LISP will replace the directives
with some appropriate characters based on the arguments to which they refer and then print the resulting
string�

Format always returns nil unless its �rst argument is nil� in which case it prints nothing and returns a
string�

There are three di�erent directives in the above example� �S� �D� and ��� The �rst one accepts any LISP
object and is replaced by a printed representation of that object
the same representation which is produced
by print�� The second one accepts only integers� The third one doesn�t refer to an argument	 it is always
replaced by a carriage return�

Another useful directive is ��� which is replaced by a single ��
Refer to a LISP manual for
many� many� additional formatting directives�

��� Forms and the Top�Level Loop

The things which you type to the LISP interpreter are called forms	 the LISP interpreter repeatedly reads
a form� evaluates it� and prints the result� This procedure is called the read�eval�print loop�

Some forms will cause errors� After an error� LISP will put you into the debugger so you can try to �gure
out what caused the error� LISP debuggers are all di�erent	 but most will respond to the command help or
	help by giving some form of help�

In general� a form is either an atom
for example� a symbol� an integer� or a string� or a list� If the form
is an atom� LISP evaluates it immediately� Symbols evaluate to their value	 integers and strings evaluate
to themselves� If the form is a list� LISP treats its �rst element as the name of a function	 it evaluates
the remaining elements recursively� and then calls the function with the values of the remaining elements as
arguments�

For example� if LISP sees the form �� �
�� it treats � as the name of a function� It then evaluates � to
get � and � to get �	 �nally it calls � with � and � as the arguments� The � function returns �� which LISP
prints�

The top�level loop provides some other conveniences	 one particularly convenient convenience is the ability
to talk about the results of previously typed forms� LISP always saves its most recent three results	 it stores
them as the values of the symbols �� ��� and ���� For example�

� COMMON LISP HINTS �

� �

�

�

� �

�

� ���

�

� ���

� ���

�

� ��

� �

��	 Special forms

There are a number of special forms which look like function calls but aren�t� These include control constructs
such as if statements and do loops	 assignments like setq� setf�push� and pop	 de�nitions such as defun
and defstruct	 and binding constructs such as let�
Not all of these special forms have been mentioned
yet� See below��

One useful special form is the quote form� quote prevents its argument from being evaluated� For
example�

� �setq a ��

�

� a

�

� �quote a�

A

� �a ��a is an abbreviation for �quote a�

A

Another similar special form is the function form� function causes its argument to be interpreted as a
function rather than being evaluated� For example�

� �setq � ��

�

� �

�

� ��

�

� �function ��

��Function � � �x�fbef�de�

� ��� ���� is an abbreviation for �function ��

��Function � � �x�fbef�de�

The function special form is useful when you want to pass a function as an argument to another function�
See below for some examples of functions which take functions as arguments�

� COMMON LISP HINTS �

��
 Binding

Binding is lexically scoped assignment� It happens to the variables in a function�s parameter list whenever
the function is called� the formal parameters are bound to the actual parameters for the duration of the
function call� You can bind variables anywhere in a program with the let special form� which looks like
this�

�let ��var� val��

�var� val��

���

�

body

�

let binds var� to val�� var� to val�� and so forth	 then it executes the statements in its body� The
body of a let follows exactly the same rules that a function body does� Some examples�

� �let ��a ��� �� a ���

� �let ��a ��

�b ��

�c ���

�setq c �� a b��

c

�

�

� �setq c
�

� �let ��c ��� c�

�

� c

Instead of �let ��a nil� �b nil�� ����� you can write �let �a b� �����
The val�� val�� etc� inside a let cannot reference the variables var�� var�� etc� that the let is binding�

For example�

� �let ��x ��

�y �� x ����

y

�

Error	 Attempt to take the value of the unbound symbol X

If the symbol x already has a global value� stranger happenings will result�

� �setq x �

� �let ��x ��

�y �� x ����

y

�

�

� COMMON LISP HINTS �

The let� special form is just like let except that it allows values to reference variables de�ned earlier
in the let�� For example�

� �setq x �

� �let� ��x ��

�y �� x ����

y

�

�

The form�

�let� ��x a�

�y b��

���

�

is equivalent to�

�let ��x a��

�let ��y b��

���

� �

���� Dynamic Scoping

The let and let� forms provide lexical scoping� which is what you expect if you�re used to programming
in C or Pascal� Dynamic scoping is what you get in BASIC� if you assign a value to a dynamically scoped
variable� every mention of that variable returns that value until you assign another value to the same variable�

In LISP� dynamically scoped variables are called special variables� You can declare a special variable
with the defvar special form� Here are some examples of lexically and dynamically scoped variables�

In this example� the function check�regular references a regular
ie� lexically scoped� variable� Since
check�regular is lexically outside of the let which binds regular� check�regular returns the variable�s
global value�

� �setq regular ��

�

� �defun check�regular �� regular�

CHECK�REGULAR

� �check�regular�

�

� �let ��regular ��� �check�regular��

�

In this example� the function check�special references a special
ie� dynamically scoped� variable� Since
the call to check�special is temporally inside of the let which binds �special�� check�special returns
the variable�s local value�

� �defvar �special� ��

�SPECIAL�

� �defun check�special �� �special��

CHECK�SPECIAL

� COMMON LISP HINTS ��

� �check�special�

�

� �let ���special� ��� �check�special��

�

By convention� the name of a special variable begins and ends with a �� Special variables are chie�y used
as global variables� since programmers usually expect lexical scoping for local variables and dynamic scoping
for global variables�

For more information on the di�erence between lexical and dynamic scoping� see Common LISP� the

Language�

���� Arrays

The function make�arraymakes an array� The aref function accesses its elements� All elements of an array
are initially set to nil� For example�

� �make�array ��� ���

��a��NIL NIL NIL� �NIL NIL NIL� �NIL NIL NIL��

� �aref � � ��

NIL

� �make�array
� ��D arrays don�t need the extra parens

��NIL NIL NIL NIL�

Array indices always start at ��
See below for how to set the elements of an array�

���� Strings

A string is a sequence of characters between double quotes� LISP represents a string as a variable�length
array of characters� You can write a string which contains a double quote by preceding the quote with a
backslash	 a double backslash stands for a single backslash� For example�

�abcd� has
 characters

���� has � character

���� has � character

Here are some functions for dealing with strings�

� �concatenate �string �abcd� �efg��

�abcdefg�

� �char �abc� ��

��b �LISP writes characters preceded by ��

� �aref �abc� ��

��b �remember� strings are really arrays

The concatenate function can actually work with any type of sequence�

� �concatenate �string ����a ��b� ����c��

�abc�

� �concatenate �list �abc� �de��

���a ��b ��c ��d ��e�

� �concatenate �vector ���� � �� ���� � ���

��� � � � � ��

� COMMON LISP HINTS ��

���� Structures

LISP structures are analogous to C structs or Pascal records� Here is an example�

� �defstruct foo

bar

baaz

quux

�

FOO

This example de�nes a data type called foo which is a structure containing � �elds� It also de�nes �
functions which operate on this data type� make�foo� foo�bar� foo�baaz� and foo�quux� The �rst one
makes a new object of type foo	 the others access the �elds of an object of type foo� Here is how to use
these functions�

� �make�foo�

�s�FOO 	BAR NIL 	BAAZ NIL 	QUUX NIL�

� �make�foo 	baaz ��

�s�FOO 	BAR NIL 	BAAZ � 	QUUX NIL�

� �foo�bar ��

NIL

� �foo�baaz ���

�

The make�foo function can take a keyword argument for each of the �elds a structure of type foo can
have� The �eld access functions each take one argument� a structure of type foo� and return the appropriate
�eld�

See below for how to set the �elds of a structure�

���� Setf

Certain forms in LISP naturally de�ne a memory location� For example� if the value of x is a structure of
typefoo� then �foo�bar x� de�nes the bar �eld of the value of x� Or� if the value of y is a one�dimensional
array� �aref y �� de�nes the third element of y�

The setf special form uses its �rst argument to de�ne a place in memory� evaluates its second argument�
and stores the resulting value in the resulting memory location� For example�

� �setq a �make�array ���

��NIL NIL NIL�

� �aref a ��

NIL

� �setf �aref a �� ��

�

� a

��NIL � NIL�

� �aref a ��

�

� �defstruct foo bar�

FOO

� �setq a �make�foo��

�s�FOO 	BAR NIL�

� �foo�bar a�

� COMMON LISP HINTS ��

NIL

� �setf �foo�bar a� ��

�

� a

�s�FOO 	BAR ��

� �foo�bar a�

�

setf is the only way to set the �elds of a structure or the elements of an array�
Here are some more examples of setf and related functions�

� �setf a �make�array ��� �setf on a variable is equivalent

��NIL� �to setq

� �push � �aref a ��� �push can act like setf

���

� �pop �aref a ��� �so can pop

�

� �setf �aref a �� ��

�

� �incf �aref a ��� �incf reads from a place� increments�

� �and writes back

� �aref a ��

�

���� Booleans and Conditionals

LISP uses the self�evaluating symbol nil to mean false� Anything other than nil means true� Unless we
have a reason not to� we usually use the self�evaluating symbol t to stand for true�

LISP provides a standard set of logical functions� for example and� or� and not� The and and or

connectives are short�circuiting� and will not evaluate any arguments to the right of the �rst one which
evaluates to nil� while or will not evaluate any arguments to the right of the �rst one which evaluates to t�

LISP also provides several special forms for conditional execution� The simplest of these is if� The �rst
argument of if determines whether the second or third argument will be executed�

� �if t � ��

�

� �if nil � ��

�

� �if
 � ��

�

If you need to put more than one statement in the then or else clause of an if statement� you can use
the progn special form� progn executes each statement in its body� then returns the value of the �nal one�

� �setq a �

� �setq b ��

�

� �setq c ��

�

� �if �� a ��

�progn

� COMMON LISP HINTS ��

�setq a �� b ��

�setq b �� c ����

�setq b
�

�

��

An if statement which lacks either a then or an else clause can be written using the when or unless
special form�

� �when t ��

�

� �when nil ��

NIL

� �unless t ��

NIL

� �unless nil ��

�

when and unless� unlike if� allow any number of statements in their bodies�
Eg� �when x a b c� is
equivalent to �if x �progn a b c����

� �when t

�setq a ��

�� a ��

�

��

More complicated conditionals can be de�ned using the cond special form� which is equivalent to an if
��� else if ��� � construction�

A cond consists of the symbol cond followed by a number of cond clauses� each of which is a list� The
�rst element of a cond clause is the condition	 the remaining elements
if any� are the action� The cond

form �nds the �rst clause whose condition evaluates to true
ie� doesn�t evaluate to nil�	 it then executes
the corresponding action and returns the resulting value� None of the remaining conditions are evaluated	
nor are any actions except the one corresponding to the selected condition� For example�

� �setq a ��

�

� �cond

��evenp a� a� �if a is even return a

��� a � �� a ��� �else if a is bigger than return a��

��� a �� �� a ��� �else if a is smaller than � return a��

�t �� �else return �

�

�

If the action in the selected cond clause is missing� cond returns what the condition evaluated to�

� �cond ��� �
���

Here�s a clever little recursive function which uses cond� You might be interested in trying to prove that
it terminates for all integers x at least ��
If you succeed� please publish the result��

� COMMON LISP HINTS ��

� �defun hotpo �x steps� �hotpo stands for Half Or Triple

�cond �Plus One

��� x �� steps�

��oddp x� �hotpo �� � �� x ��� �� � steps���

�t �hotpo �� x �� �� � steps���

� �

A

� �hotpo ��

��

The LISP case statement is like a C switch statement�

� �setq x �b�

B

� �case x

�a ��

��d e� �

��b f� ��

�otherwise ��

�

�

The otherwise clause at the end means that if x is not a� b� d� e� or f� the case statement will return ��

���� Iteration

The simplest iteration construct in LISP is loop� a loop construct repeatedly executes its body until it hits
a return special form� For example�

� �setq a
�

� �loop

�setq a �� a ���

�when �� a � �return a��

�

�

� �loop

�setq a �� a ���

�when �� a �� �return��

�

NIL

The next simplest is dolist� dolist binds a variable to the elements of a list in order and stops when
it hits the end of the list�

� �dolist �x ��a b c�� �print x��

A

B

C

NIL

dolist always returns nil� Note that the value of x in the above example was never nil� the NIL below
the C was the value that dolist returned� printed by the read�eval�print loop�

The most complicated iteration primitive is called do� A do statement looks like this�

� COMMON LISP HINTS ��

� �do ��x � �� x ���

�y � �� y ����

��� x �� y�

�print y�

�print �working�

�

�

WORKING

�

WORKING

WORKING

�

WORKING

��

WORKING

��

The �rst part of a do speci�es what variables to bind� what their initial values are� and how to update
them� The second part speci�es a termination condition and a return value� The last part is the body� A
do form binds its variables to their initial values like a let� then checks the termination condition� As long
as the condition is false� it executes the body repeatedly	 when the condition becomes true� it returns the
value of the return�value form�

The do� form is to do as let� is to let�

���� Non�local Exits

The return special form mentioned in the section on iteration is an example of a nonlocal return� Another
example is the return�from form� which returns a value from the surrounding function�

� �defun foo �x�

�return�from foo ��

x

�

FOO

� �foo ��

�

Actually� the return�from form can return from any named block �it�s just that functions are the only
blocks which are named by default� You can create a named block with the block special form�

� �block foo

�return�from foo �

�

�

The return special form can return from any block named nil� Loops are by default labelled nil� but
you can make your own nil�labelled blocks�

� �block nil

�return �

� COMMON LISP HINTS ��

�

�

Another form which causes a nonlocal exit is the error form�

� �error �This is an error��

Error	 This is an error

The error form applies format to its arguments� then places you in the debugger�

���	 Funcall� Apply� and Mapcar

Earlier I promised to give some functions which take functions as arguments� Here they are�

� �funcall ��� �
�

� �apply ��� �
 ���
��

�

� �mapcar ��not ��t nil t nil t nil��

�NIL T NIL T NIL T�

funcall calls its �rst argument on its remaining arguments�
apply is just like funcall� except that its �nal argument should be a list	 the elements of that list are

treated as if they were additional arguments to a funcall�
The �rst argument to mapcar must be a function of one argument	 mapcar applies this function to each

element of a list and collects the results in another list�
funcall and apply are chie�y useful when their �rst argument is a variable� For instance� a search

engine could take a heuristic function as a parameter and use funcall or apply to call that function on a
state description� The sorting functions described later use funcall to call their comparison functions�

mapcar� along with nameless functions
see below�� can replace many loops�

���
 Lambda

If you just want to create a temporary function and don�t want to bother giving it a name� lambda is what
you need�

� ���lambda �x� �� x ���

�LAMBDA �X� �� X ���

� �funcall � ��

�

The combination of lambda and mapcar can replace many loops� For example� the following two forms
are equivalent�

� �do ��x ��� � �
 �� �cdr x��

�y nil��

��null x� �reverse y��

�push �� �car x� �� y�

�

��
 � � �

� �mapcar ���lambda �x� �� x ��� ��� � �
 ���

��
 � � �

� COMMON LISP HINTS ��

���� Sorting

LISP provides two primitives for sorting� sort and stable�sort�

� �sort ��� � �
 �� ����

�� �
 � ��

� �sort ��� � �
 �� ����

�� �
 � ��

The �rst argument to sort is a list	 the second is a comparison function� The sort function does
not guarantee stability� if there are two elements a and b such that �and �not �� a b�� �not �� b

a���� sort may arrange them in either order� The stable�sort function is exactly like sort� except that
it guarantees that two equivalent elements appear in the sorted list in the same order that they appeared in
the original list�

Be careful� sort is allowed to destroy its argument� so if the original sequence is important to you� make
a copy with the copy�list or copy�seq function�

���� Equality

LISP has many di�erent ideas of equality� Numerical equality is denoted by �� Two symbols are eq if and
only if they are identical� Two copies of the same list are not eq� but they are equal�

� �eq �a �a�

T

� �eq �a �b�

NIL

� �� �
�

NIL

� �eq ��a b c� ��a b c��

NIL

� �equal ��a b c� ��a b c��

T

� �eql �a �a�

T

� �eql � ��

T

The eql predicate is equivalent to eq for symbols and to � for numbers�
The equal predicate is equivalent to eql for symbols and numbers� It is true for two conses if and only

if their cars are equal and their cdrs are equal� It is true for two structures if and only if the structures are
the same type and their corresponding �elds are equal�

���� Some Useful List Functions

These functions all manipulate lists�

� �append ��� � �� ��
 � ��� �concatenate lists

�� � �
 � ��

� �reverse ��� � ��� �reverse the elements of a list

�� � ��

� �member �a ��b d a c�� �set membership � returns the first

�A C� �tail whose car is the desired element

� �find �a ��b d a c�� �another way to do set membership

� COMMON LISP HINTS ��

A

� �find ��a b� ���a d� �a d e� �a b d e� ��� 	test ��subsetp�

�A B D E� �find is more flexible though

� �subsetp ��a b� ��a d e�� �set containment

NIL

� �intersection ��a b c� ��b�� �set intersection

�B�

� �union ��a� ��b�� �set union

�A B�

� �set�difference ��a b� ��a�� �set difference

�B�

subsetp� intersection� union� and set�difference all assume that each argument contains no dupli�
cate elements ��subsetp ��a a� ��a b b�� is allowed to fail� for example�

find� subsetp� intersection� union� and set�difference can all take a 	test keyword argument	 by
default� they all use eql�

���� Getting Started with Emacs

You can use Emacs to edit LISP code� most Emacses are set up to enter LISP mode automatically when
they �nd a �le which ends in �lisp� but if yours isn�t� you can type M�x lisp�mode�

You can run LISP under Emacs� too� make sure that there is a command in your path called lisp which
runs your favorite LISP� For example� you could type

ln �s �usr�local�bin�clisp ��bin�lisp

Then in Emacs type M�x run�lisp� You can send LISP code to the LISP you just started� and do all
sorts of other cool things	 for more information� type C�h m from any bu�er which is in LISP mode�

Actually� you don�t even need to make a link� Emacs has a variable called inferior�lisp�program	 so
if you add the line

�setq inferior�lisp�program ��usr�local�bin�clisp��

to your �emacs �le� Emacs will know where to �nd CLISP when you type M�x run�lisp�

