
On-Line Computer Graphics Notes

CLIPPING

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

1 Overview

The primary use of clipping in computer graphics is to remove objects, lines or line segments that are

outside the viewing volume. The viewing transformation is insensitive to the position of points relative to

the viewing volume – especially those points behind the viewer – and it is necessary to remove these points

before generating the view. Clipping can be done either in three-dimensional space, or in image space. The

algorithms are nearly identical.

In this paper, we concentrate on clipping methods for polygons, clipping them against planes. We first

develop an “inside/outside” test for points against a plane. This test is used to construct a clipping algorithm

for line segments, and the line-segment clipping is used to develop the polygon-clipping algorithm. These

methods are then applied to generate an algorithm that clips polygons in the viewing operation.

2 Inside/Outside Tests for Points Against a Plane

Given a plane defined by the normal vector~n and the pointP.

�

�

��

This plane separates three-dimensional space into two half-spaces: one in the direction of the normal vector,

which we will call the “in” side of the plane; and another in the opposite direction of the normal vector,

which we will call the “out” side. If we have a pointQ in the plane then the vector< Q − P > is

perpendicular to the normal vector~n, that is

< Q−P > ·~n = 0

For an arbitrary pointQ in three-dimensional space, this dot product satisfies

< Q−P > ·~n = | < Q−P > ||~n| cos θ

whereθ is the angle between the vectors~n and< Q − P >. So if the pointQ is on the “in” side of the

plane, the angleθ must satisfy0 ≤ θ < π
2 , andcos θ must be positive. Since the dot product is positive

if and only if cos θ is positive, this says that the point is on the “in” side of the plane if and only if the dot

product is positive. This case is illustrated in the figure below, where the figure has been drawn with the

eyepoint on the surface of the plane.

�

�

�

�����

�
	��

��������

Alternatively if the pointQ is on the “out” side of the plane, then the angle between the vectors~n and

< Q − P > satisfiesπ2 < θ ≤ π, andcos θ is negative. It follows that the point is on the “out” side of the

plane if and only if the dot product is negative.

These facts can be combined to form an inside/outside test for points against a plane:

• A point Q is defined to be on the “in” side of the plane (the side of the plane to which the normal

2

vector points) if

< Q−P > ·~n > 0

• A point Q is defined to be on the “out” side of the plane if

< Q−P > ·~n < 0

• A point Q is “on” the plane if

< Q−P > ·~n = 0

We note that the third case< Q−P > ·~n = 0 happens infrequently when using floating point arithmetic

on computer systems. Normally this must be approximated by

| < Q−P > ·~n| < ε

whereε is a predetermined (small) constant.

3 Clipping Line Segments Against a Plane

The inside/outside test forms the basis for clipping line segments against a plane. LetP be a plane defined

by the normal vector~n and the pointP and letQ1Q2 be the line segment defined by the two pointsQ1 and

Q2, as is shown in the following figure

3

���

�����

�
	

�

��

�

�

��

���������

Let d1 = < Q1 − P > ·~n andd2 = < Q2 − P > ·~n. We can determine how the line segment is clipped

by examining four cases:

1. Both pointsQ1 andQ2 are on the “in” side on the plane – that is, the line segment is completely “in”.

2. Both pointsQ1 andQ2 are on the “out” side on the plane – that is, the line segment is completely

“out”.

3. Q1 is on the “in” side of the plane andQ2 is on the “out” side – in which case the line segment crosses

the plane. (This is the case for the figure above.)

4. Q2 is on the “in” side of the plane andQ1 is on the “out” side – so again, the line segment crosses the

plane.

We analyze these cases one at a time. Clearly the side of the plane on whichQ1 lies is determined by

the sign ofd1, and similarly, the sign ofd2 determines the side of the plane on whichQ2 lies.

• Case I– d1 >= 0 andd2 > 0, or d1 > 0 andd2 >= 0.

In this case the line segmentQ1Q2 is on the “in” side of the plane.

• Case II – d1 <= 0 andd2 < 0, or d1 < 0 andd2 <= 0.

In this case the line segment is on the “out” side of the plane.

• Case III – d1 > 0 andd2 < 0

4

In this case,Q1 lies on the “in” side of the plane, andQ2 lies on the “out” side of the plane (the case

shown in the illustration). Calculate the intersectionI of the line and the plane by first noting thatI is

a point on the lineQ1Q2, and can be represented in the form

I = Q1 + t < Q2 − Q1 >

To determinet, we first subtract the identity

P = P + t < P − P >

from both sides of the equation forI, giving

< I−P >=< Q1 −P > +t(< Q2 −P > − < Q1 −P >)

SinceI anP are both in the plane,< I − P > is a vector perpendicular to~n. So dotting both sides

with the normal vector~n gives

0 =< I−P > ·~n

=< Q1 −P > ·~n+ t(< Q2 −P > ·~n− < Q1 −P > ·~n)

= d1 + t(d2 − d1)

and solving fort, we see that

t =
d1

d1 − d2

Once we have calculatedI, we can say that the line segmentQ1I lies on the “in” side of the plane and

the line segmentIQ2 lies on the “out” side of the plane.

• Case IV– d1 < 0 andd2 > 0

In this case,Q1 lies on the “out” side of the plane, andQ2 lies on the “in” side of the plane. Calculate

the intersectionI of the line and the plane by

I = Q1 + t(Q2 − Q1)

5

and with calculations similar to those above, we obtain

t =
d1

d1 − d2

Once we have calculatedI, we can state that the line segmentQ1I lies on the “out” side of the plane

and the line segmentIQ2 lies on the “in” side of the plane.

There is one additional case that should be considered. This happens whend1 = 0 andd2 = 0. In this

case, the line segmentQ1Q2 lies “in” the plane.

If we examine this closely, we see that the quantities

t =
d1

d1 − d2

make sense. When we write the equationI = Q1 + t < Q2 −Q1 >, I lies on the line betweenQ1 andQ2

when0 ≤ t ≤ 1, and indeed the valuesd1
d1−d2

are numbers between zero and one. For example, in case III

we have thatd1 > 0 andd2 < 0, so the denominator of the fraction is greater than the numerator. In case IV,

d1 < 0 andd2 > 0, so the denominator of the fraction is less than the numerator in value, but the signs on

both are negative and the denominator is greater in absolute value, again implying that the result is between

zero and one.

4 Clipping a Convex Polygon

We can utilize the inside/outside test and the line-clipping algorithm to develop an algorithm for clipping a

convex polygon. If we consider the vertices of the polygon one-at-a-time and keep track of when the edges

of the polygon cross the plane, the algorithm is actually quite simple.

To implement this polygon clipping algorithm, we usually keep a list of points, commonly called the

“in” list, which holds the resulting clipped polygon. The algorithm then iterates through the vertices of the

polygon, and has the following steps:

• A vertex is on the “in” side of the plane is retained in the “in” list.

6

• A vertex is on the “out” side of the plane is discarded.

• If a vertexP is on the “in” side of the plane, and the previous vertex in our iteration was on the “out”

side, the point-of-intersectionI of the edge and the plane is calculated and placed on the “in” list. The

vertexP is then placed on the “in” list.

• If a vertex is on the “out” side of the plane, and the previous vertex in our iteration was on the “in”

side, the point-of-intersectionI of the edge and the plane is calculated and placed on the “in” list. The

vertex is discarded.

This algorithm can be implemented with a single loop through the points of the polygon. The only problem

is that the edges are defined by two points, and so we must retain two dot products to make our comparisons.

The algorithm is illustrated in the following pseudo-code algorithm.

Clipping Algorithm

Given a plane defined by~n andP

Given verticesQ0,Q1, ...,Qn−1

Let pdot = 0

Let idot = ~n· < Q0 −P >

for eachvertexi

Let dot = ~n· < Qi −P >

if dot ∗ pdot < 0 then

calculateI = Qi−1 + t(Qi −Qi−1) with t = pdot
pdot−dot

insert I into the “in” list

end if

if dot > 0 then

insert Qi into the “in” list

end if

Let pdot = dot

end for

If pdot ∗ idot < 0 then

calculateI = Qn−1 + t(Q0 −Qn−1) with t = pdot
pdot−idot

insert I into the “in” list

end if

If Q0,Q1, ...,Qn−1 are then vertices of a polygon, we must insure that the last edge of the polygon,

Qn−1Q0, is checked. This is the reason for the last four statements of the algorithm. We must test to see

7

if the last line segment (the one betweenQn−1 andQ0 crosses the plane, and if so, insert the intersection

point into the in list.

This algorithm is guaranteed to work with convex polygons only – non-convex polygons can cause the

algorithm to produce some false edges.

5 Clipping to a Convex Polyhedra

The three-dimensional analog of a polygon is a polyhedron (e.g., a cube, a truncated pyramid, a dodecahe-

dron). A convex polyhedron can be defined by a finite set of bounding planesP0,P1, ...,Pm and we can

clip against the polyhedron by clipping against each plane in turn and using the output polygon of one step

as the input polygon to the next. If, at any step, the output polygon is empty, then the process terminates.

We must define the planes so that the normal vectors point toward the inside of the polyhedron.

6 Clipping to the Viewing Pyramid

The viewing pyramid is a convex polyhedron – as is the image-space cube. The algorithm for clipping a

single convex polygon against a plane can be utilized to clip a polygon against multiple planes of these

regions. We simply clip against the planes one at a time, taking the output polygon of one clipping step as

the input polygon to the next step.

8

��
��

� �
���

��
�	
�
��

�

��

��

The planes that bound the truncated viewing pyramid are defined by the following:

1. the top plane, defined by

normal vector− < 0,− cos
(α

2

)
,− sin

(α
2

)
>

point−(0, 0, 0)

2. the left plane, defined by

normal vector− < cos
(α

2

)
, 0,− sin

(α
2

)
>

point−(0, 0, 0)

3. the bottom plane, defined by

normal vector− < 0, cos
(α

2

)
,− sin

(α
2

)
>

point−(0, 0, 0)

9

4. the right plane, defined by

normal vector− < − cos
(α

2

)
, 0,− sin

(α
2

)
>

point−(0, 0, 0)

5. the near plane defined by

normal vector− < 0, 0,−1 >

point−(0, 0,−n)

6. the far plane defined by

normal vector− < 0, 0, 1 >

point−(0, 0,−f)

Given a polygon, the polygon is clipped against each plane in turn utilizing the result of one clipping oper-

ation as the input to the next. Clipping is terminated if all points are clipped out at any one stage.

7 Clipping against the Image Space Cube

It is useful to see how the clipping operation simplifies when we clip against the image space cube. Consider

the figure below, where we represent the top face of the image space cube.

�

��

�

����

��	

�

�

10

The top plane is defined by the pointP = (0, 1, 0) and the normal vector~n =< 0,−1, 0 >. If we

consider the pointQ = (x, y, z), the in/out test tells us thatQ is in if

< Q−P > ·~n > 0

That is,

0 << Q−P > ·~n

=< (x, y, z)− (0, 1, 0) > · < 0,−1, 0 >

=< (x, y − 1, z) > · < 0,−1, 0 >

= 1− y

or equivalently thatQ is “in” when y < 1 – which in retrospect, is obvious.

But the dot product that corresponds to the “in” test for the top plane is justy− 1 for any point(x, y, z).

Similarly, the dot product for the other planes are as follows:

• x− 1 for the plane defined by point(1, 0, 0) and the normal vector< −1, 0, 0 >,

• z − 1 for the plane defined by point(0, 0, 1) and the normal vector< 0, 0,−1 >,

• x+ 1 for the plane defined by point(−1, 0, 0) and the normal vector< 1, 0, 0 >,

• y + 1 for the plane defined by point(0,−1, 0) and the normal vector< 0, 1, 0 >,

• z + 1 for the plane defined by point(0, 0,−1) and the normal vector< 0, 0,−1 >,

and so the “inside/outside” test for clipping in these cases contain dot products that do not require multiplies

– which makes the algorithm very efficient.

11

8 Clipping in Projective Space

If we are careful, we can also clip in projective space. Here line segments are represented in the same form

as in three-dimensional coordinates – that is,

Q = Q1 + t < Q2 −Q1 >

represents a line in projective space, whereQ1 = (x1, y1, z1, w1) andQ2 = (x2, y2, z2, w2) are points in

four-dimensional projective space. To find the three-dimensional line that corresponds to this four-space

line, we project the line onto thew = 1 plane, dividing by thew coordinate. This is illustrated in the figure

below, where the twow coordinates are assumed positive.

��

���� ���� ��

	�

�

���

���

In this case, a line in projective space simply projects to a line in three-dimensional space. However if one

of thew coordinates, sayw2, is negative then the line projected back into three dimensional space “passes

through infinity” as is shown in the next illustration.

12

��

���� ���� ��

	�

�

���

���

The viewing transform produces this second case frequently, for when a polygon is behind the viewer, the

viewing transform produces points with a negativew coordinate. So these lines are produced whenever a

polygon has vertices both in front of, and behind the viewer.

But we can still clip in projective space. Consider the following illustration, where the line lies on both

sides of thew = 0 space.
��

�����

�	�

��

 ��

We can find the intersection of this line with thew = 0 space by calculating the intersection pointI,

where

I = Q1 + t < Q2 −Q1 >

13

and sinceI is in thew = 0 space, we must have that thew coordinate ofI is zero, that is

0 = w1 + t(w2 − w1)

and this implies that

t =
w1

w1 − w2
(1)

So, we can calculate the intersection of a line in projective space with thew = 0 space, and clip.

A second example is given by the following figure. Here we have the spacew = y and a line crossing

this space.

��

�����

�	�

��

��

���������������
� �"!

#�$�%�&�'�(�)�%
* +-,/.

Here we can again calculate the intersectionI of the line with the space by

I = Q1 + t < Q2 −Q1 >

and sinceI is in the spacew = y, we have

w1 + t(w2 − w1) = y1 + t(y2 − y1)

14

which can be solved fort, giving

t =
w1 − y1

(w1 − y1)− (w2 − y2)
(2)

Since we can calculate the intersection, we can clip polygons against this space.

9 Clipping in the Viewing Operation

In the viewing operation, the camera transformation transforms points from world space to image space. To

implement this transformation we implemented a viewing transformation that produces points in projective

space such that, when we project the point back to three-dimensional space, we obtain points in the image-

space cube.

The problem, of course, is this projection. The viewing transform can produce points with a negative

w coordinate – for when a polygon is behind the viewer, the viewing transform produces points with a

negativew coordinate. These points, when projected produce the line segments that “pass through infinity”

in three-dimensional space – highly undesirable in computer graphics renderings. So the problem when

clipping in the viewing operation is that the points must remain in projective space, but we must still clip on

the image-space cube in three-dimensional space.

But we have all the machinery now: We have shown how to clip line segments when our planes and

points are in three-dimensional space and have shown how to clip against the image-space cube; and we

have also seen that we can (at least in a few cases) clip in projective space. So how do we combine these

operations and clip line segments against the image-space cube when our points are in projective space? It’s

not too difficult.

Let’s reexamine the case where we clipped on the top plane of the image space cube, but lets consider a

point that has been projected back from projective space.

15

��
����

���

�	

�
��
�������
��

����������� ��"!

Here, our three-dimensional “inside/outside” test tells us that the points(xw ,
y
w ,

z
w) is “in” if

0 < ~n· < (
x

w
,
y

w
,
z

w
)− (0, 1, 0) >

or

0 << 0,−1, 0 > · < x

w
,
y

w
− 1,

z

w
>

= 1− y

w

which states, in the case thatw is positive, that the point is “in” only if

w > y orw − y > 0

Now consider a line that crosses the planey = 1 and assume that this line has the two endpoints

Q1 =
(
x1

w1
,
y1

w1
,
z1

w1

)
andQ2 =

(
x2

w2
,
y2

w2
,
z2

w2

)
both of which have been projected back from projective space.

16

��

�

���

���

	
��
�

Any point

Q =
(x
w
,
y

w
,
z

w

)
that projects to the plane at the top of the image-space cube has the property thaty = w, and so clipping the

line segment is equivalent to clipping the projective-space line segment defined by the two points

QP
1 = (x1, y1, z1, w1) andQP

2 = (x2, y2, z2, w2)

against the spacew = y in projective space.

But we have done this in the sections above! We can calculate the intersectionIP by

IP = QP
1 + t(QP

2 −QP
1)

wheret is the value

t =
w1 − y1

(w1 − y1)− (w2 − y2)

and then the pointIP projected back to image space is the intersection of the lineQ1Q2.

17

��

�����

��

	�
 �

������
���

���

�

One should notice that thet used to calculate the intersection in homogeneous space is not the same as

if the t were calculated in three-dimensional space. In the above figure, we can see that thet in projective

space is close to one-half, but the intersection in three-dimensional space is not close to the midpoint.

Now we can do the whole job. We can utilize the clipping method for simple planes in projective space

to clip against the image space cube.

1. In order to first remove the points with a negativew coordinate we clip our projective coordinates

against thew = 0 space. If we have a point(x, y, z, w), we use the distance measurew, and if given

two points(x1, y1, z1, w1) and(x2, y2, z2, w2), we use the ratio

w1

w1 − w2

to calculate the intersection with the space.

2. To remove those points beyond the top plane of the image-space cube, we clip our projective coordi-

nates against thew = y space. If we have a point(x, y, z, w), we use the distance measurey−w, and

if given two points(x1, y1, z1, w1) and(x2, y2, z2, w2), we use the ratio

w1 − y1

(w1 − y1)− (w2 − y2)

to calculate the intersection with the space.

18

3. To remove those points beyond the bottom plane of the image-space cube, we clip our projective

coordinates against thew = −y space. If we have a point(x, y, z, w), we use the distance measure

y + w, and if given two points(x1, y1, z1, w1) and(x2, y2, z2, w2), we use the ratio

w1 + y1

(w1 + y1)− (w2 + y2)

to calculate the intersection with the space.

4. To remove those points beyond the left plane of the image-space cube, we clip our projective coordi-

nates against thew = −x space. If we have a point(x, y, z, w), we use the distance measurex+ w,

and if given two points(x1, y1, z1, w1) and(x2, y2, z2, w2), we use the ratio

w1 + x1

(w1 + x1)− (w2 + x2)

to calculate the intersection with the space.

5. To remove those points beyond the right plane in our image-space cube, we clip our projective coor-

dinates against thew = x space. If we have a point(x, y, z, w), we use the distance measurex− w,

and if given two points(x1, y1, z1, w1) and(x2, y2, z2, w2), we use the ratio

w1 − x1

(w1 − x1)− (w2 − x2)

to calculate the intersection with the space.

6. To remove those points beyond the front plane of the image-space cube (which corresponds to clip-

ping on the near plane), we clip our projective coordinates against thew = z space. If we have a

point (x, y, z, w), we use the distance measurez − w, and if given two points(x1, y1, z1, w1) and

(x2, y2, z2, w2), we use the ratio
w1 − z1

(w1 − z1)− (w2 − z2)

to calculate the intersection with the space.

7. To remove those points beyond the back plane of our image-space cube (which corresponds to clip-

ping on the far plane), we clip our projective coordinates against thew = −z space. If we have a

point (x, y, z, w), we use the distance measurez + w, and if given two points(x1, y1, z1, w1) and

19

(x2, y2, z2, w2), we use the ratio
w1 + z1

(w1 + z1)− (w2 + z2)

to calculate the intersection with the space.

A polygon is clipped against each plane in turn, utilizing the output of one clipping operation as the input to

the next. Clipping is terminated if all points are clipped out at any one stage.

It should be noted that we do not necessarily clip against the front and back planes of the image-space

cube, as there are frequently applications in which we will wish to see the points outside of the area enclosed

by these planes.

One final important fact.

If we examine the viewing transformation, we note that the points behind the viewer get transformed to

points with a negativew coordinate. We have already seen that these points cause line segments to “pass

through infinity” in homogeneous space. This could cause these line segments to appear to wrap around

the screen, which is undesirable in our pictures. The reason for our first clip (of the seven total clips) is to

eliminate these problem points by first clipping so that no points will have a negativew coordinate.

All contents copyright (c) 1996, 1997, 1998, 1999
Computer Science Department, University of California, Davis
All rights reserved.

20

