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Abstract

A logic formalizing ambiguity, which appears both in natural lan-
guage and in mathematical discourse, is presented, through a sequent
calculus and a semantics, together with some elementary results.

1 Introduction

There are almost an infinite number of situations in mathematics, logic and
everyday speech in which we have more than one object satisfying a given
property, and we would like to use a name to denote an arbitrary object of
this class.

So, in mathematics, for example, we denote a primitive of the function
defined by f(z) = 2z by [ 2z dz, although we know that there exists more
than one primitive for this function.

In syntax of formal logic, we usually define the expression dlz P by

Jdx P A VaVy (P A P(zly) — z = y),
whereon y is the first variable distinct of  which does not occur in P. It
would be more natural to consider the expression !z P as an ambiguous
reference for any formula of that form, whereon it is only requested that y
is distinct from x and it does not occur in P, dropping out the restriction
about the alphabetical position of y.

In everyday speech any noun preceded by an indefinite article is an am-
biguous reference for any object of the correspondent collection. For ex-
ample, the expression “a flower” is an ambiguous reference for any specific
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flower. So, the expression “a flower is beautiful” means, in a possible sense,

that any flower is beautiful.

Besides ambiguous descriptions, there is a kind of assertions saying that
a given object corresponds to some description.

In mathematics, by an abusive usage of the equality sign, we say that
the function defined by g(z) = 2 + 3 is a primitive of f(z) = 2z by writing
“[2zde =2+ 3.

In everyday speech, when we want to say that a rose is referenced by the
description “a flower”, we utter “a rose is a flower”.

So, we have isolated two key ideas concerning to ambiguous reference:
description and comprising. The symbols used in this text for description
and comprising are respectively “Y” and “)=".

Roughly speaking, according to our notation, we have:

e “[2xdz” is a shorthand for

Tg (g is a primitive of the function f(z) = 2z);

e we can say that the function g(z) = 22 + 3 is a primitive of f(z) = 2z by
writing “[ 2zdz = g7 or “[ 2zdx )= (2 4 3)dx”; the reader should note
the use of the sign “)="instead of the equality sign, as it is usually done,
in a wrong way;

e we can also say “a rose is a flower” by the expression

Yz (x is a flower) )= Tz (z is a rose).

A logic for dealing with these two ideas, enriching classical logic, is de-
fined here, from now on named Logic of Ambiguous Reference, shortly LAR.
We have defined a semantics and a sequent calculus for LAR, fitting to some
basic intuitions. We also present some basic results concerning semantics
and proof theory.

According to our intuition, such logic should take into account the fol-
lowing perspectives:

e a description “ Yz P” should comprise, under reasonable restrictions, ev-
ery term satisfying P, and only these terms;

e there should be a replacement rule for comprising, or, in a more formal

Pttt

L, Pzt) = P(x|t)

of LAR;

e LAR should work as close as possible to classical logic, since the above
conditions be respected;

e LAR should be a conservative extension of classical logic.

way, » under reasonable restrictions, should be a rule



Another remarkable quality of LAR is that it doesn’t adopt equality as
a primitive concept. Equality is instead a concept derived from comprising.
When we have two descriptions, each comprising the other, we say that they
are equicomprising or equivalent, and we will use the sign “=" for formalizing
this situation.

2 A Language for LAR

In this section some syntactical details related to the meaningful expressions
of LAR are provided. They are used everywhere in this paper, from results
and definitions related to semantics, to the rules and theorems related to
the sequent calculus of LAR.

2.1 Definition. A language for LAR has all the signs of a standard first
order language, without equality, having “—”, “A”, “V” and “=” as con-
nectives and “V” and “dJ” as quantifiers, plus the sign “YT” as a qualifier,
the adopted sign for ambiguous description, and the sign “)="as a special
binary predicate sign, the adopted sign for comprising.

2.2 Definition. Terms and formulas in LAR are all the terms and formulas

in a standard first order language', plus the following ones:

e if x is a variable and P is a formula, then Yz P is a term in LAR, also
called a description;

e if ¢t and ¢’ are terms in LAR, then ¢ }= ¢ is a formula in LAR.

Terms and formulas in LAR are also called designators in LAR.

Unless stated otherwise, for some syntactic variables, with or without
primes and subscripts, there are established special usages: ¢ is a constant;
x,y,z are variables; f,g,h are function signs; p,q,r are predicate signs; t,u,v
are terms in LAR; P,Q,R,S,T are formulas in LAR, D,FE are designators in
LAR, I', ® are collections of formulas in LAR, and L is a language for LAR.

2.3 Definition. An occurrence of a variable in D is said bound in D if it
occurs inside a subdesignator of D of one of the forms Va P, 3z P or Yz P.
An occurrence of a variable in D is said free in D if it is not bound in D. A
variable is said free in D if it has at least a free occurrence in D.

2.4 Definition. An occurrence of a designator D in a designator D’ is said
real in D' if it doesn’t succeed “¥”, “F’or “Y 72 in D',

See [8], for example.
2Tt can happen if D is a variable.



2.5 Definition. A variable x is said to accept a term t in a designator D
if D has no subdesignator of one of the forms Vy P, 3y P or Ty P, in which
x has an occurrence in P free in D such that y is free in t.

2.6 Definition. A designator D is said to be in the scope of a variable x in
a designator D' if there is a subdesignator in D’ of one of the forms Vx P,
Jx P or Yz P, such that there is a real occurrence of D in P; otherwise D
is said to be out of the scope of x in D'.

2.7 Definition.

e D(x|t) denotes the designator obtained from D by substituting ¢ for each
free occurrence of x, and replacing consistently bound occurrences of vari-
ables in D for other ones don’t occurring in D when it is necessary;3

e FE(D||D’) denotes the designator obtained from FE by replacing all real
occurrences of D by D’.

2.8 Definition. A designator in LAR is said pure if it has no occurrence
of “Y” outside of the scope of “)}=".

2.9 Definition. An occurrence of a designator in a designator in LAR is
said a top occurrence if it’s real and it’s out of the scopes of “Y ”and “)="".

2.10 Definition. A variable x is said top in a designator D if all free
occurrences of z in D are top occurrences.

2.11 Definition. A formula having no top occurrence of some formula of
the form “wu =07 is said a basic formula.

3 A Semantics for LAR

3.1 Definition. A simple structure for L is a pair (A, o),whereon A is a
non empty set, called the universe of the structure, and o is a function,
called the sign assignment of the structure, whose domain is the collection
of constants, function signs and predicate signs in L, obeying the following
conditions:

e o(c) is an element of A;

e if n is the arity of f, o(f) is a function from A" to A;

e if n is the arity of p, o(p) is a subset of A™.

A LAR-structure for L is a simple structure for L.

3Tt avoids that free occurrences of variables in ¢ become bound in D(z|t).



3.2 Definition. Let 2 = (A, o) be a simple structure for L. A A-assignment
is a function from the collection of variables in L to A. A simple interpre-
tation for L is a pair (2, s), whereon s is a A-assignment, also called the
variable assignment of the interpretation. A LAR-interpretation for L is a
simple interpretation for L.

3.3 Definition. Let s be a A-assignment and d be an element of A. s(x|d)
denotes the A-assignment defined from s by

s(zld)(y) = {Z(y), %f Yy ?s distinct from x;
, if y is x.
If I = (A,o0,s) is a simple interpretation, then I(z|d) denotes the inter-
pretation (A, o, s(x|d)). Consider also defined s(x1,...,z,|d1,...,d,) and
I(I’l,.. . ,xn]dl,...,dn).

Next a semantics for LAR is provided. For expressing possible ambigu-
ity, each term is associated, by the function Ip defined below, with a set
of elements of the universe of discourse, in the same sense by which, for
example, in a natural language like English, the expression “an orange” is
associated with the set of all oranges, although, of course, “an orange” does
not mean the set of all oranges, but it is an ambiguous representation for
an arbitrary orange of this set. This set can be empty; in this case the
term is said to be wvacuous, there is, it’s a name for nothing. For example,
“Ya (z # x)” is a vacuous term, according to the usual meaning ascribed to
the sign “#£”, whereas “Ya (r € N A 2 > 2)” is instead an ambiguous term,
and “Yz (z € N Az is even A x is prime)” is a univocal term.

Let P be a basic formula such that z1, ..., z, are distinct variables top
in P, and consider P(z1,...,2y|t1,...,t,) the formula obtained from P by
simultaneous replacement of x1,...,x, by t1,...,t,.

The true values of LAR are victory (or true) and defeat (or false), rep-
resented here by 1 and 0.

The function Ig, defined below, is a LAR-valuation, that is, it is the
function which assigns a true value for each formula, whereas the function
In, which also assigns a true value for each formula, is an auxiliary one,
used for defining Ig in a simultaneous recursive way.

We say that dy, ..., d, satisfy P(x1,...,x,) (according to a given simple
interpretation I) if I(x1,...,x,|d1,...,dy)s(P) = 1.

If, according to Ip, each of the terms ¢1,...,t, denotes at least one ob-
ject, then Ig assigns wictory to P(xi,...,xnlt1,...,t,) if, and only if, for
each di,...,d,, such that di,...,d, are respectively elements of the uni-
verse of discourse denoted (ambiguously) by t1,...,t,, di1,...,d, satisfy P.



If some of these terms denotes no object, according to Ip, and P is an
atomic formula, then P(z1,...,zy|t1,...,t,) is evaluated as a (vacuous)
victory according to Ig.

Iy presents, in a sense, a complementary behavior. If each of the
terms ti,...,t, denotes at least one object, then Iy assigns wictory to
P(x1,...,zplt1, ..., t,) if, and only if, for all objects dy,...,d, denoted by
t1,...,tn, di,...,d, don’t satisfy P. If some of these terms denotes no ob-
ject, and P is an atomic formula, then P(zy,...,x,|t1,...,t,) is evaluated
as a (vacuous) victory according to I .

This kind of semantics was inspired by our previous work about paracon-
sistent and/or paracomplete logics [1, 9] and, recently, by some ideas about
game based semantics [2, 7]. The letter “S” in “Ig” comes from the word
“subject”, whereas the letter “N” in “In” comes from the word “nature”.
The basic idea is relative to an imaginary game between the subject, who
wants to prove that a given formula is true, and the nature, who wants to
prove that the negation of this formula is true.

3.4 Definition. Let I = (A,0,s) be a LAR-interpretation for L. The
following clauses specify the functions Ip, Ig and Iy, whereon Ip is said
the LAR-denotation for L defined by I, and Ig is said the LAR-valuation
for L defined by I:

e Ip is a function from the collection of terms in L to P(A);

. IS, Iy are functions from L to {0,1};

e Ip(c) ={o(0)};

 Ip(x) = {s(z)};

b D( (tlv'-'7 ))_{U( )(dl’adn)’dl EID(t1)7"'7dn€ID(tn)};

e Ip(TzP) = {de A | I(x]d)s(P) = 1};

o Is(p(t1,...,t,)) = 1iff for each dy € Ip(t1),..., for each d,, € Ip(t,),
<d1a"'7 > (p)

o In(p(ty,...,t

n)) = 1 iff for each d; € Ip(t1),..., for each d,, € Ip(ty,),
(-, dn) & 0(0):
Is(t =t)=1if In(t =t') =0iff Ip(t) D Ip(t);
Is(=P) = In(P);
IN(=P) = Is(P);
Is(P — Q) = max{In(P), Is(Q)};
IN(P — Q) = min{Is(P), In(P)};
Is(P A Q) = min{ls(P), Is(Q)};
IN(P A Q) = max{In(P), IN(Q)};
Is(P V Q) = max{Is(P), Is(Q)};
In(P Vv Q) = min{Iy(P),IN(Q)};



Is(Vx P) = min{I(z|d)s(P) | d € A};

In(Va P) = max{I(z|d)n(P) | d € A};
Is(3x P) = max{I(z|d)s(P) | d € A};
In(3z P) = min{I(z|d)n(P) | d € A}.

This semantics reflects a non alethic logic (a logic that is both paracon-
sistent and paracomplete), there is, a logic in which both P and =P can be
true (both the subject and the nature can win; it is shared by all paracon-
sistent logics), or in which both P and =P can be false (both the subject
and the nature can lose; it is shared by all paracomplete logics). Classical
references for this kind of logics can be found in [3, 5, 4]. Besides being
non alethic, LAR is also a non reflexive logic, that is, it is a logic in which
“P — P” can be false.

3.5 Definition. A term ¢ is said vacuous with respect to a simple interpre-
tation [ if Ip(t) is the empty set, existential if Ip(t) is non empty, univocal
if Ip(t) is a singleton, and ambiguous if Ip(t) has at least two members.

3.6 Example. Consider p(x) a basic atomic formula in which z is top, and I

a simple interpretation.

e If ¢t is vacuous with respect to I, then both p(z|t) and —p(x|t) are true
according to Ig, so confirming the paraconsistency of LAR. For example,
both the formula “Yz (z # x) is even” and its negation are true.

e If t is ambiguous according to I such that there are d; and ds belonging
to Ip(t) for which I(z|d1)s(p(z)) = 1 and I(x|d2)s(p(z)) = 0, then both
“p(x|t)” and “—p(z|t)” are false according to Ig, so confirming the para-
completeness of LAR. It also happens in this case that “p(z|t) — p(x|t)”
is false, so confirming the non reflexiveness of LAR. For example, the
formula “Ya (r =1V x = 2) is even” is false together with its negation,
and

Yr(r=1Vz=2)iseven —» Yz (x =1V x =2)is even
is false too.

3.7 Definition. LAR-satisfiability, LAR-validity and LAR-consequence are

defined in the same way it is done in classical logic. For example, LAR-

consequence is defined by the following clause:

e P is a LAR-consequence of T if every LAR-valuation satisfying I" also
satisfies P; we denote it here by I' = P.



Next a basic semantic result concerning instantiation is provided.

3.8 Theorem. Let I be a simple interpretation for L.
« Ip(u(a]t)) = I(z|t")p(w);
« Is(P(a]t) = I(z[t!)s(P);
x In(P(x|t)) = I(z|t!)y(P), whereon t! is
the unique element of the singleton Ip(t).
(i) If z is top in u, then Ip(u(z[t)) 2 | I(z|d)p(w).
delIp(t)
Is(P(x[t)) < min{I(z|d)s(P) | d € Ip(t)};
In(P(z|t)) < min{l(z|d)n(P) | d € Ip(t)}.

(i) If t is a pure term, then

(iii) If z is top in P, then {

. x is top in u
(iv) If ’ .
x has only one free occurrence in u,

then Ip(u(z|t) = | J I(x|d)p(u).
delp(t)
x is top in P,
(v) If ¢ z has only one free occurrence in P,

Ip(t) # 0,

0 {Is(P(w!t)> = min{I(z|d)s(P) | d € Ip(t)};
In(P(z|t)) = min{I(z|d)x(P) | d € Ip(t)}.

then Ip(u(zl|t)) = 0.
i (ulalt)
x P is a basic atomic formula or a negation
of a basic atomic formula,
x P has at least one top occurrence of x,
x Ip(t) =10,
then Is(P(x|t)) = In(P(x|t)) = 1.

(vi) 1 {a: has a top occurrence in u,
vi

(vii) If

4 A Sequent Calculus for LAR

In this section LAR is characterized as a sequent calculus. Some basic
syntactic results concerned with this sequent calculus are also provided.

4.1 Definition. We define when variables are free in a designator in an
analogous way by which it is done in a standard first order language, taking
in account that “Y” is a variable binding term operator (or a qualifier).



4.2 Definition. From now on, together with the known defined signs

[43 7
<

and “#”, we also adopt the following ones (consider z and y the first two
variables which are not free in ¢):

t=t =ttt At =t

vac(t) = =3z (t )= x); “vac(t)” is read “t is vacuous”;

ex(t) = 3z (t )= a); “ex(t)” is read “t is existential”;

un(t) =Vavy (t =a At )=y — x=y); “un(t)” is read “t is univocal”;
amb(t) = JzIy (t =z At )=y —x#y);

“amb(t)” is read “t is ambiguous”.

Below we give the sequent rules of LAR, which characterize syntactically

this logic.
4.3 Definition (Structural Rules).
r+p
Antecedent le: If T C TV, th :
ntecedent Rule - ,tenF,}_P

Assumption Rule: If P €T', then I' - P.
r'epP ILPFQ
I'-qQ

Chain Rule:

4.4 Definition (Connective Rules).

Modus Ponens: If P is a pure formula, then P,P — Q F Q.

IPF

Deduction Rule: If P is a pure formula, then FI—,P—?Q .

PAQF P

PAQFQ.

A-Introduction Rule: P,Q+ P A Q.

r=-PvaQ@ ILPFR LerR
'R

A-Elimination Rule: {

Proof by Cases Rule:

PFHPVQ;
QFPVAQ.

Non Contradiction Rule:

V-Introduction Rule: {

I,P-Q T,PF-Q
TF-P

x If P and @) are pure formulas, then

~—P+ P;

Double Negation Rule:
PF =P



P—->QF-PVQ;
“PVQFP—Q;
(P~ Q)F PA-Q;
PA=-QF (P — Q).

Material Implication Rule:

-(PVQ)F-PA-Q;
=P A=QF=(PVQ);
-(PANQ)F—-PV-Q;
PV -QF-(PAQ).

De Morgan Rule:

4.5 Definition (Quantifier Rules).
e V-Elimination Rule: If ¢ is a pure term, then Vo P - P(z|t).

r-p
e Generalization Rule: if z is not free in I', then Trvap
r,pP H

e Witness Rule: if y is not free in I' U {3z P, @}, then I:,EI(:?I?;/)I—C;? .
e J-Introduction Rule: if ¢ is a pure term, then P(z|t) - 3z P.

—dz P+ Vz —P;
e Alternation Rule: vzoP ik ~dr b

-V P+ 3z -P;

dx—-P F —Vx P.

4.6 Definition (Comprising Rules).
e Transitivity Rule: ¢ )= u,u }=vF ¢ )= w.

o Extension Rule:
+ If 2 is not free in ¢,¢, then Va (t =o — ' =a) Ht/ =t

Globalization Rule:

x is not free in t,

« If ¢ z is top in P,
x has only one free occurrence in P,
then ex(t),Vz (¢t )=z — P) - P(z|t).
Replacement Rule:
k 11 ULy eyt Eun b f(t, . tn) E f(ur, .., u);
k 11 ULy ety = Upy (B, ) Eop(ug, .o uy);
k 11 = ULy ety = Up, P(t1, .o tn) B op(un, .. Uy).
Unity Rule: If ¢,t' are pure terms, then ¢t =t -t }=t.
10



Vacuity Rule:

I P is a basic atomic formula or a negation of a basic atomic formula,
*
P has at least one top occurrence of x,

then vac(t) - P(x|t).
Function Rule:

u 1S a pure term
x If { P ’ then

r1i,...,T, are not free in u,ty,...,t,,

Ff(tl,...,tn)):U

<
Hxl...ﬂzvn(tl)::Ul/\.../\tn):xn/\u:f(xl,...,;rn)).
Yz P )=tk P(z|t);
P(z|t) Yz P =t.

Next some basic results about the sequent calculus for LAR are provided.

Description Rule: If £ is a pure term, then {

4.7 Theorem. Replacing in terms and formulas, with no occurrence of “Y”,
the sign “)}="for the sign “=", they behave in LAR as in classical equational
logic.

Next two more kinds of implication are defined. The first one has modus

ponens property and a corresponding deduction theorem, whereas the second
one both modus ponens and modus tollens properties. For each one of these
implications, it is also defined a corresponding equivalence.

4.8 Definition.

P—-Q=7"TxQ =YzxP,

whereon z is the first variable not free in {P,Q};
PeQ=(P—Q)AQ—P)
P=Q=(P—>Q) A (~Q——P)
P&Q=(P=Q) N (Q=P).

4.9 Theorem.

P,P—QFQ;
if IV"PHQ, then ' P — Q;
PP=QFQ;
-Q,P=QF —-P.

4.10 Theorem.

FVz (P — Q)< YTxQ =Tz P,
FVx (P« Q)< YeQ =Yz P.

11



4.11 Theorem (Replacement Rule for Comprising).
u has only top occurrences in P,
u is out of the scope in P of any variable free in I" and in {¢,t'},
'ttt
en Ft .
I, P(ul[t) & P(ul[#)

th

4.12 Example. In the above theorem, the condition that u has only top
occurrences in P is essential. Consider I a simple interpretation having N
as its domain, which assigns to “<” its traditional meaning. Then

To (Yz(z=2Va=3)<3)<2
and
Yr(x=2Vz=3) =Tz(x=2)
are true, but “Yz (Tz (z =2) < 3) <27 is false, according to I.
4.13 Theorem (Replacement Rule for Equivalence).
. {r P& P
Q@ is out of the scope in R of any variable free in I and in {P, P'},
then I' - R(Q||P) & R(Q||P").
. {F FP s P,
@ is out of the scope in ¢ of any variable free in I and in {P, P'},
then I' - ¢(Q||P) = t(Q|| P).

4.14 Theorem (Replacement Rule for Equality).

Lplrrt=t
u is out of the scope in P of any variable free in I" and in {¢,¢'},

then T' - P(ul|t) & P(ullt)).

Lpfrrt=t
u is out of the scope in v of any variable free in I and in {¢,¢'},
then I' F v(ul|t) = v(u||t’).
4.15 Theorem (V-Elimination Rule for general terms).
If x has at most one free occurrence in P, then Vx P = P(x|t).

4.16 Theorem (3-Introduction Rule for general terms).
e If x has at most one free occurrence in P, then ex(t), P(z|t) - Jx P.

.17 Theorem (Congruent Descriptions Rule).
If y is not free in P, then - Yo P = Ty P(x|y).

o

4.18 Theorem (Context Rules).

12



e If x is top in @,
* Q(z|Tx P)FVa (P — Q);
then < % if x has exactly one free occurrence in @,
then Jz P,Vz (P — Q) - Q(z|Yz P).

4.19 Corollary.
T is top in @,
o If { x has exactly only one free occurrence in Q,

Q is a basic atomic formula or a negation of a basic atomic formula,

then Q(z|Tz P) - Vx (P — Q);
Ve (P — Q) F Q(z|YTx P).

5 Elimination of Descriptions

In this section it is provided a translation from LAR to Classical Equational
Logic (P — Pg), in which all occurrences of “ Y ”are eliminated and the
remaining occurrences of “)="can be interpreted as the equality sign.

5.1 Definition.
The following clauses specify the functions P —— Pg and P —— Py:

e if P has no occurrence of “ Y7, then Pg = Py = P;
e if P has one the forms R(z|Yz Q) or R(y|YTzQ),

x R is a basic atomic formula,
whereon < * “Yax @Q” is the first occurrence, from left to right,

of a description in P,
then

Ps =Vz (Qs — Rs),

x if ¢ x is top in R,
P Py =3z (Qs A Rn);

P is of the first form,
then {
x has only one free occurrence in R,

i P is of the second form y is top in R,
y is the first variable such that < y has only one free occurrence in R,

B y is free in Q,
then {PS ="y (Q(x]y)s - RS)7

Py =3y (Q(z|y)s A Rn);

13



.. |t is a non pure term,
x is the first variable that is not free in t,t’,

then (¢ )= ) = (' )= t) y =V (¢ )= )5 = (¢ }=2)5);
y t is a pure term,

Z1,...,Ty, are the first n variables that are not free in t1,...,¢,,t,
then

(Fltr, - sta) o t) g = (Ftr,. o tn) = ) =

Elxl...El:L‘n<(t1 ):xl)s AN (tn ):xn)s A (t):f(xl,...,mn))s);
if ¢ is a pure term, then (Yz P )= t)s = (Yz P )= t)N = Pg(x|t);

ot

.2 Theorem.

o P« Pg;
: - P« Py
e if P is a pure formula, then s
F P <> Py.

5.3 Corollary (Correctness and Completeness).
For LAR, '+ P if, and only if, T' E P.

5.4 Corollary.

o - ( )

o H(P—Q) < (Ps— Qs);

o F (P« Q)& (Ps+— Qs);

o F(P=Q) & (Ps— Qs) N (PN — Qn);
° F(P@Q)@(PSHQs)A(PNHQN).

5.5 Corollary (Modus Ponens (rewritten)). Py, P — Q F Q.

I'PyFQ

5.6 Corollary (Deduction Rule (rewritten)). TFP=Q
—

14



5.7 Corollary (Non Contradiction Rule (rewritten)).

LPFQ [P E-Qs
* [F —Ps ’

I'PFQN I'PF-Q
* IF—Pg ’

IPyvFQ [Py F—=Qs
* T+ P ’

I'Pyv QN I, Py F—Q
* T+ P ‘
5.8 Definition. Let P be a basic formula, Yxq1 Pi,..., Tz, P, be all top
occurrences of descriptions in P. For each ¢ = 1,...,n, let p; be the number
of variables free in Yz; P; such that Ya;P; is in their scope in P, and let
Yis---»Yp, be these variables in alphabetical order. The following formulas
are specified from P:

e vac(P) = A Q;, whereon Q; = Vyi .. .Vy]’;i vac(Yx; P;);
i=1

e ex(P) = [\1 R;, whereon R; =Yy} ... Vy. ex(Tx; P;);

n . .
e un(P) = A S;, whereon S; = Vyj ... Vy, un(Yx;F;);
i=1
n . .
e amb(P) = A T;, whereon T; = Vyj ... Vy, amb(Yz;F;);
i=1

e ‘“vac(P)” isread “all top descriptions in P are vacuous”, or simply “P is vac-
uous”;

e ‘“ex(P)” is read “all top descriptions in P are existential”, or simply “P
is existential”;

e “un(P)” isread “all top descriptions in P are univocal”, or simply “P is uni-
vocal”;

e “amb(P)” is read “all top descriptions in P are ambiguous”, or simply
“P is ambiguous”.

The next result provides simpler equivalent forms for Py and Py, given
a formula P satisfying some reasonable restrictions.

5.9 Theorem (Easy Elimination of Descriptions).

Let P be a basic formula of the form Q(z1,...,2,|Yz1 P1,..., Yz, P,), ob-
tained from @ by instantiating x1,...,x,  simultaneously
by Yaq Py, ..., Yx, P,, satisfying the following conditions:

e () is a pure formula;

e I1,...,x, are distinct variables top in Q;
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e for i # j, no x; is free in some Pj;

e cach x; has only one free occurrence in Q;

e each description Yz;P; is not in the scope in P of some variable free in
this description;

o fori=1,...,n, I'-3dx; P,

Then the following propositions are valid:

e ' Pg & Vry...Va, ((Pl)S VANIRAN (Pn)S — Q),

e 'FPyeVry.. Ve, (PLA... NP, = Q);

e I'FPye3ry... 3z, (P)sA-.. A(P)s AQ).

For the following five corollaries, consider that P is a basic formula.

5.10 Corollary (Uniqueness Rule). {zzgii :: ]P; z i?

5.11 Corollary (Existence Rule). ex(P), Pg - Py.

5.12 Corollary (Non Ambiguity Rule). —amb(P), Py F Ps.

5.13 Corollary (Modus Ponens (clean version)). ex(P),P,P — Q F Q.

I',—amb(P),P+ Q

5.14 Corollary (Deduction Rule (clean version)). TFP—0
-

5.15 Definition.

o ~P = (Fs);

e P°=~(P A~-P);
e P= PV -P.

Observe, by a simple reasoning, that - P* < (P — P).

According to the following lemma, the sign “~” works as classical nega-
tion.
I~PFQ I,~PF ~Q

r+p
5.17 Theorem (Non Contradiction Rule (first clean version)).
I+ p* r+Q° IPHQ IPF-Q
'+ -P

5.18 Lemma. If P is a basic formula, then
e ex(P)F P°;
e —amb(P)F P*.

5.16 Lemma.

5.19 Corollary (Non Contradiction Rule (second clean version)).
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e If P is a basic formula,
a I'F —amb(P) I'Fex(Q) I'PFQ I''PF-Q
I'--P
Sometimes it is not possible to prove “P — @Q” in some environment by

using some of the results given above. Taking into account this possibility,
another version of a deduction rule is provided below.

the

5.20 Theorem (Deduction Rule (practical version)).
e Let P be a basic formula of the form Q(z1,...,x,|Yx1P1,..., Y2, By),
obtained from @ satisfying the same conditions of theorem 5.9.

It C,(P)sA... N (P)sNQFR,
Z1,...,Ty are not free in I' U {R},

then ' P — R.

6 A comparison between the qualifier “T” and
other ones

There are some approaches for qualifiers in scientific literature. Maybe the
most known are Russell’s and Hilbert’s [11, 12, 10, 6].

In Russell [11] it is described a version of definite article. Russell intro-

duces the symbol “t” in a contextual way:

o Qx| P)=3x(PAQAVy(P(zly) —»y=u1)).

Russell’s approach doesn’t consider “iz P” as a name at all, but the whole
expression “Q(z|wx P)” only as an abbreviation. Although it can be con-
venient for doing mathematics, this approach introduces a sign with no
recognized linguistic status, that is, expressions like “wx P” don’t have any
linguistic value by their own, although they are in fact used.

Other approaches, like ours, consider descriptions as “tx P”, “ex P” and
“Tx P” as names. According to them, “wx P” denotes the only object z
satisfying P, whereas “ex P” denotes a fixed object x satisfying P, chosen
from the collection of all objects satisfying P.

The main problem for “” is what to ascribe to “wx P” when there is
no object or more than one object x satisfying P, whereas the analogous
problem for “e” is what to assign to “ex P” when there is no object = satisfy-
ing P. All known approaches to these situations assign to these descriptions
some object of the domain, but their main sin is their lack of uniformity in
dealing with this kind of circumstance.

Our approach, on the contrary, has no special clause for dealing with
the circumstance in which there is no object z satisfying P. “Yz P” is
associated, according to the semantics of LAR, to the collection of all objects
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x satisfying P. It is implicit in LAR semantics that “ Yz P” is an ambiguous
name when there is more than one object = satisfying P; there is no choice
in this case (as it is done for the “¢” approach), that is, “YTa P” is a name
for each object z satisfying P, with no preference or choice by a particular
object over another one. If there is only one such object x satisfying P,
“Tax P” becomes a definite name for this object. Finally, if there is no
object x satisfying P, then “YTx P” is a name for nothing, that is, it is a
VACUOUS NAME.

Given a term ¢ containing descriptions, the traditional approaches don’t
inform us easily if this term is a vacuous name or not. It can be true,
in some context, for example, that ¢ = (), but we don’t know, only by
examining this expression, if “()” was obtained as a result of some reasoning
or computation, or if “()” is being used as a label for a vacuous name. Our
approach instead has a direct way for saying that a name is vacuous, simply
by writing “vac(t)”. It is equally easy to say that this name is ezistential,
ambiguous, or univocal, as it was already shown above.

It is also possible to define in LAR a kind of definite article, as it is
shown below:

o P =Tx(PAVy(P(zly) —y=n1x)).
For this “1”, according to the definition above, “ux P” is a name for nothing,
if there is no object x or if there is more than one object x satisfying P.

There is another important failure related to the “¢” approach, which

will be shown in the following example.

6.1 Example. We know that, in category theory, two objects a,b of the
same category can have more than one product, but we represent a product
of a and b by “a x b”. We also know that a x b and b x a are isomorphic
objects, which we denote by “a x b~ b x a”, there is, each product of a and
b is isomorphic to each product of b and a. If we define categorial product
by using “e€”, then, as the collections of all products of ¢ and b and of all
products of b and a are the same, then the expression “a x b =~ b x a” means
only that, for each x being a product of a and b (or of b and a), x ~ x, which
is very poor for the original intended meaning. If we use instead “ Y ”for
defining categorial product, then the expression “a x b =~ b x a” has the
intended meaning.

7 Conclusions

Our way in doing semantics presents a new paradigm, by dealing explicitly
with ambiguity and vacuity, otherwise to most semantics. Even modal logics,
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with non rigid designators semantics, don’t deal essentially with ambiguity,
because in the same world there are no variations of reference.

We believe traditional mathematics lacks a logical basis managing am-
biguity and vacuity. They appear in mathematics in many places, from set
theory to mathematical analysis and number systems. Many propositions
of theorems could be very simplified, and maybe this expansion of language
could open fresh roads for new discoveries.

In natural language most phrases use ambiguous names for referencing
objects, so T-descriptions appear to be a natural way for modelling these
situations.

We don’t claim that LAR is a kind of “final” or “perfect” logic for dealing
with ambiguity or with the problems just pointed out, but that it is a new
departure point, from which it is necessary a possibly long path for reaching
something very useful. While conceiving this logic, we have realized that
there are also existential descriptions, and that descriptions, being universal
or existential, can be linked or not. For modelling a reasonable logic taking
into account these new ideas, expressing in a natural way deep intuitions,
all rush is enemy of perfection.
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