
-1- 

 

THE LOGIC OF EPISTEMIC INCONSISTENCY 

Tarcisio Pequeno     Arthur Buchsbaum1 
Departamento de Informática 

Pontifícia Universidade Católica 
Rua Marquês de São Vicente 225 

22453-900 – Rio de Janeiro – Brasil 

Abstract 

The notion of epistemic inconsistency, referring to contradictory views about a same situation, 
is introduced. These contradictions reflect not an anomalous behavior of the state of affairs but 
the incompleteness (or vagueness) of our knowledge about it. The association of this 
phenomenon with nonmonotonic reasoning is discussed. A logic, with a calculus and a 
semantics, aiming to make precise this notion and to enable reasoning on these inconsistent 
views, without triviality, is presented. 

1. INTRODUCTION 

Deductive reasoning, our praised paradigm for correct, impeccable, contradiction free thinking, 
unfortunately has its application restricted to (ideal) situations where complete knowledge about the 
facts and their relations is available. For more realistic settings, the ones in daily life and in many A.I. 
applications, reasoning methods allowing the use of super deductive inference rules, such as reasoning 
by default, for instance, are required. Strictly speaking, these inference rules are not sound. It might 
happen some situation in which the premises are true but not the conclusion. As a consequence of this 
lack of soundness contradiction may eventually be achieved. 

In [Pequeno 1990] it is argued that inconsistency is just a natural companion to nonmonotonic 
methods of reasoning and that paraconsistency (the property of a logic admitting non trivial 
inconsistent theories) should play a role in the formalization of these methods. The argument can be 
briefly stated as follows. 

Nonmonotonic reasoning is applied to situations in which the knowledge is necessarily incomplete, 
eventually inaccurate as well, and very often involving information giving evidence to contradictory 
conclusions. Unlike deduction, this kind of reasoning cannot be performed on local basis, without 
appealing to context. In the course of reasoning the arguments interfere with each other, generating 
conflicts and promoting the defeat of partial conclusions. 

Furthermore, there is no guarantee that every arising conflict can be resolved. It may perfectly happen 
that two opposite partial conclusions having equal rights to be achieved or, even if there is not such a 
perfect symmetry, it can happen anyway the available knowledge not enabling a clear decision in 
favor of one of the alternatives. Thus contradiction arises. In case of deduction this would carry out a 
revision of premises by the application of reductio ad absurdum. This is not the case here. There is no 
point in applying reductio ad absurdum to contradiction among defeasible conclusions. 

In [Pequeno 1990] it is suggested that these contradictory conclusions should be assimilated in a single 
theory and reasoned out just as any other. This would emphasize the need for a better understanding of 
this kind of situations in order to provide a purely logical analysis for them. In other words, to achieve 
these contradictions that emerge in the course of reasoning is just to give the right account for the 
situation. Obviously this could not be done in classical logic. A special logic, a paraconsistent one, 
would be required. 

                                                      
1 On leave from Universidade Federal do Ceará. 
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So, this is how nonmonotonic reasoning can lead to the adoption of paraconsistency. On the other 
hand, nonmonotonicity confers dynamics to paraconsistent reasoning. It allows incoming information 
eventually to remove contradictions and/or include new ones. 

The contamination of nonmonotonic reasoning with irresolvable contradiction is a well known 
phenomenon. Examples that illustrate it, such as Nixon’s diamond, have been recurrent in the 
literature on nonmonotonic logics. In spite of this recognition, there is an (understandable) resistance 
in assuming the inconsistent theories that these contradictions seem to imply. One approach to this 
problem has been simply to avoid the contradiction by dismissing both opposite conclusions. Another 
approach, taken by Reiter in his default logic, [Reiter 1980], has been to split contradictory 
conclusions into multiple extensions, each one internally consistent. We are more concerned here with 
the discussion of this second approach. 

The splitting out of diverging default conclusions into multiple extensions has the effect of precluding 
the purely logical analysis of the whole situation. The contribution of extralogical mechanisms to deal 
with extensions, in order to perform reasoning, would be required. Furthermore, this approach has an 
undesired side effect which prevents default logic to avoid unintended extensions (and conclusions) in 
situations such as the famous "Yale shooting problem", discussed in [Hanks & McDermott 1987]. 

Consider the following example, taken from [Morris 1988]: 
− Animals usually cannot fly; 
− Winged animals are exception to this, they can fly; 
− Birds are animals; 
− Birds normally have wings. 

This can be axiomatized, using Reiter’s default, as follows: 

− ����������������
an(x) : ¬fly(x) ∧ ¬wing(x)

¬fly(x)  

− wing(x) → fly(x) 
− bird(x) → an(x) 

− ����������
bird(x) : wing(x)

wing(x)  

The following reasoning will then be possible: given that Tweety is a bird, it follows from (3) that it is 
an animal, and from this and rule (1) that it cannot fly. By modus tollens on (2), if it cannot fly it is not 
winged. With Reiter’s default logic this last conclusion prevents the application of the last default rule 
and therefore, from the single fact that the poor Tweety is a bird, it comes out this bizarre conclusion 
that it is wingless. 

What happened so wrong here? The splitting into two extensions: one in which Tweety is winged and 
another in which it is not, didn’t allow the reasoning to see that, by being a bird, therefore winged, 
Tweety constitutes an exception to rule (1), which makes this rule not being applicable. This 
information belonged to another extension and thus could not be seen from the unintended extension. 
Thus, the dissolving of conflicts by the splitting into extensions prevented the consideration of a 
relevant piece of evidence, causing the trouble of not handling properly the exception condition. 

In [Pequeno 1990] it is presented a logic, the Inconsistent Default Logic, IDL in short, which benefits 
from a tolerant disposition towards contradiction, being able to solve this problem. A general IDL 
default rule reads as follows: 

������A : B ; C
B?  

A is the antecedent of the rule and B its default condition. C is a proviso (its negation is an exception 
condition for the application of the rule). Finally, B? is the consequent. 

This rule is a modification of Reiter’s rule in accordance with the following considerations: 

A defeasible conclusion can never have the same epistemic status as an irrefutable one, obtained from 
deduction. Thus in IDL the former is distinguished from the latter by the use of an interrogation mark 
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(?) suffixing defeasible formulas. 

IDL implements the idea of accommodating conflicting views in a same extension. Therefore, in IDL 
the defeasible negation of a default condition, (¬B)? (we call it a weak contradiction), does not 
prevent the application of the default rule. In order to defeat a default application a strong 
contradiction ¬B is required. Nixon’s example, for instance, when treated in IDL, generates just one 
extension, containing “pacifist(Nixon)?” and “¬pacifist(Nixon)?”. 

The seminormal part of a default rule is frequently used to express an exception condition. In 
IDL, C is really taken as a proviso for the application of the rule, receiving a differentiated 
treatment. In order to defeat the application of an IDL default rule by its proviso, a weak 
contradiction, (¬C)?, suffices. 

We are now able to see how IDL works in Morris’s example. The same argument could be constructed 
as before up to the temporary conclusion “¬winged(Tweety)?”. But now this does not defeat the 
application of rule (4) and thus “winged(Tweety)?” is also achieved. This last conclusion, even being 
defeasible, is able to prevent the application of rule (1) (by means of its proviso). Therefore 
“¬fly(Tweety)?” is withdrawn together with “¬winged(Tweety)?”. So, with IDL, only the expected 
conclusions that by being a bird Tweety are winged and can fly are obtained. 

We leave to the reader to check it out that IDL would do equally well in the Yale shooting problem 
(lazy readers have the option to see it in [Pequeno 1990]). 

We call epistemic inconsistency to inconsistencies in descriptions of a state of affairs reflecting not an 
inconsistency in the state of affairs itself but a lack in our knowledge about it. This term stands in 
opposition to ontological inconsistency, which refers to an inconsistent behavior of the reality itself 
(whatever this means) and has been used before, roughly with the same meaning as here, by  
[Rescher & Brandom 1980]. 

The Logic of Epistemic Inconsistency, LEI for short, has been designed aiming to make precise this 
notion. It is intended to reason out meaningfully contradictions resulting from reasoned out incomplete 
knowledge. Although to serve as the monotonic basis for IDL has been the main motivation for 
designing LEI, it has an independent existence and an interest in its own. The occurrence of 
inconsistencies arising from lack of knowledge is not restricted to nonmonotonic or inductive 
reasoning but, quite on the contrary, it is a very widespread phenomenon. It will be shown that some 
basic intuitions, reflected in the semantics of LEI, underlie many instances of it. 

On the other hand, the ability to reason out contradictions without triviality characterizes LEI as a 
paraconsistent logic. Its properties can be studied in comparison with other members of this family. 
For instance, LEI is stronger than many other paraconsistent logics and admits a recursive semantics 
(in the sense of the meaning of an expression being determined by the meanings of its components). 
Such semantics, reflecting our intuitions on the notion of epistemic inconsistency, is given in the text. 
The calculus for LEI has been shown to be sound and complete with respect to it. 

In the next sections the calculus for LEI will be presented followed by a discussion of the semantic 
intuitions assumed in its construction and by a precise formulation of its semantics. 

2. THE CALCULUS OF EPISTEMIC INCONSISTENCY 

The Calculus of Epistemic Inconsistency, CEI for short, is a paraconsistent calculus designed to cope 
with our intuitions about situations such as the ones described above. These intuitions are made 
precise in a semantics for the notion of epistemic inconsistency to be given later in this paper. Thus, 
this calculus is intended to reason out (meaningfully) the inconsistent theories arising on these 
situations. Its design aims to keep as many properties of classical logic as possible, without interfering 
with the properties required for the performance of this task. 

Briefly stated, a paraconsistent logic is a logic in which triviality does not follow generally from 
contradiction. In its design CEI fulfills the requirements established in [Jaskowski 1948] and  
[da Costa 1974] concerning this kind of logical systems. As a matter of fact, the calculus CEI behaves 
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classically for undoubting (monotonic, irrefutable) statements and paraconsistently for plausible 
(nonmonotonic, defeasible) ones. These two kinds of statements are distinguished in the language of 
the calculus by the use of an interrogation mark (?) suffixing the formulas of the last kind. When used 
in association with IDL, these marks are supplied by its default rules. 

The following conventions are adopted in the presentation of CEI: the Greek letters α,β,γ denote 
arbitrary formulas in the language L’ of the calculus, while the Roman capital letters A,B,C denote 
formulas in the language L without “?” (?-free formulas). “∼α” will be used as a short for 
“α → p ∧ ¬p”, where p is an arbitrary sentential letter ("~" will be shown to behave as classical 
negation in CEI). 

The axiomatics for CEI is the following: 
(i) α → β → α; 
(ii) (α → β) → (α → β → γ) → (α → γ); 

(iii) ������α   α → β
β ; 

(iv) α ∧ β → α; 
(v) α ∧ β → β; 
(vi) α → β → α ∧ β; 
(vii) α → α ∨ β; 
(viii) β → α ∨ β; 
(ix) (α → γ) → (β → γ) → (α ∨ β → γ); 
(x) ((α → β) → α) → α; 
(xi) (α → B) → (α → ¬B) → ¬α; 
(xii) ¬(α → β) ↔ α ∧ ¬β; 
(xiii) ¬(α ∧ β) ↔ ¬α ∨ ¬β; 
(xiv) ¬(α ∨ β) ↔ ¬α ∧ ¬β; 
(xv) ¬¬α ↔ α; 
(xvi) (α? → β?)? → (α? → β?); 
(xvii) (α? ∨ β?)? → (α? ∨ β?); 
(xviii) (¬α)? ↔ ¬(α?); 
(xix) α?; 
(xx) α?? → α; 

(xxi) ������α → β
α? → β?

; 

(xxii) ������
α

∼((∼α)?)
. 

In the postulates above (iii), (xxi) and (xxii) are inference rules. The rule (iii) also holds as an 
implication, that is, α ∧ (α → β) → β is a theorem of CEI. The same is not true for the other two rules. 
That is why a single bar is used for (iii) and a doubled bar for the others. The same convention will be 
adopted for derived rules in CEI, in order to indicate whether the use of these rules affects eventual 
applications of the deduction theorem. 

Special attention must be paid to the Roman letter B at axiom (xi). This is a key axiom for the 
attainment of the selective paraconsistency of CEI. It restricts the axiom of absurdity to undoubting 
formulas (formulas without “?”). 

For the construction of this calculus, some guidelines were assumed. For instance, the following 
schemes were definitely rejected: 

− α? → α (or even ��α?
α ), 

− α? → (∼α)? → β (or ������α?   (∼α)?
β? ). 

By the first schema, defeasible knowledge would lead to irrefutable knowledge and, by the second, 
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defeasible inconsistency would lead to (defeasible) trivialization. The implicative forms of the rules 
(xxi) and (xxii), for instance, would carry out α? → α, while the rule α?, (α → β)? / β?, although it 
may seem reasonable, entails α?, (∼α)? / β? in CEI. So, the distribution of “?” over the implication is 
not allowed. The same happens for α?, β? / (α ∧ β)?. In fact, these two rules can be shown to be 
equivalent in CEI. 

The rule (xxi), used in conjunction with modus ponens rule, (iii), enables the derivation of β? from 
α → β and α?. This kind of reasoning is one of the main mechanisms for propagation of “?” along 
inferences. Recall the example on birds and animals in the previous section. From the first default rule 
and the fact that Tweety is an animal, it follows “¬fly(Tweety)?” (With IDL reasoning this would be 
defeated later but anyway the argument is illustrative on how rule (xxi) works.) The statement (2) in 
the example is instantiated as 

wing (Tweety) → fly(Tweety) 

Taking the contrapositive and applying rule (xxi) we get 

¬fly(Tweety)? → ¬wing(Tweety)?. 

This allows the application of modus ponens to get “¬wing(Tweety)?”. The rule (xxii) states that we 
can’t simultaneously be sure about α and consider that its classical negation is plausible, that is, all 
theory based on CEI having as theorems α and (~α)? is trivial. A particular case of this rule states that 
an irrefutable statement A should defeat its plausible negation (¬A)?. This is done in IDL by the 
machinery of its default rules. Suppose that to the original statements of the Nixon’s diamond example 
it is added that “anyone who promotes a war is definitely not a pacifist”, together with the information 
that Nixon promoted the Vietnam War. This would lead to a categorical “¬pacifist(Nixon)”, and it 
should defeat “pacifist(Nixon)?”, otherwise the set of believes would become a trivial theory. 

Let’s give a look in the properties of CEI. Some theorems are in order. The first result states that the 
calculus CEI is in fact a classical calculus when restricted to undoubting formulas. 

Theorem 1: All classical theorems hold to formulas of the language L (without “?”) in CEI. 

A corollary of this theorem is that the negation “¬” behaves classically as regards formulas of L: 
�� (A → B) → (A → ¬B) → ¬A; 
�� ¬¬A → A. 

Theorem 2: The defined symbol “~” has indeed the properties of classical negation in CEI: 
�� (α → β) → (α → ∼β) → ∼α; 
�� ∼∼α → α. 

Theorem 3: Ali elimination and introduction rules for ∧ and ∨ hold in CEI. 

The following two theorems give an idea on CEI reasoning by showing samples of classical theorems 
which are kept and other which no longer hold in CEI, besides examples that illustrate its behavior. 

Theorem 4: Among others, the following schemas are theorems or rules of CEI: 
• α ∨ ¬α; 
• ∼α → ¬α; 
• α → β ↔ ∼α ∨ β; 
• α → β → ¬α ∨ β; 
• (α ∨ β)? ↔ α? ∨ β?; 
• (¬α)? ↔ ¬(α?); 

• (α? →β?) → (α → β)?; 
• (α → β?) → (α → β)?; 
• α // (α → β)? → β?; 
• (α ∧ β)? → α? ∧ β?; 
• α // β? → ((α ∧ β))?; 
• ¬(α ∧ ¬α). 

Notice that the thesis ¬(α ∧ ¬α), which express the non-contradiction law (although in terms of a 
weak negation), is a theorem in CEI. Amazingly this does not prevent CEI of being paraconsistent, in 
spite of the condition of ¬(α ∧ ¬α) not being a theorem has been stated in [da Costa 1974] as one 
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requirement a paraconsistent calculi should fulfill. As a matter of fact, it is not a necessary requirement 
for the attainment of paraconsistency and, therefore, to avoid this theorem is against the aim of 
keeping as much classical theorems as possible. Furthermore CEI is not the only paraconsistent 
calculus in which ¬(α ∧ ¬α) holds. This also happens to many relevant systems and to all 
paraconsistent calculi in [Buchsbaum & Pequeno 1991]. 

Theorem 5: Among others, the following schemas are not theorems or rules of CEI: 
• (α → β) → (α → ¬β) → ¬α; 
• ¬α → ∼α; 
• ¬α ∨ β → (α → β); 
• ¬α, α∨β / β; 
• → β / ¬β → ¬α; 
• α? (¬α)? / β?; 

• α? / α; 
• α?, (α → β)? // β?; 
• (α → β)? / α → β?; 
• α? ∧ β? / (α ∧ β)?;  
• β? / α → (α ∧ β)?. 

This last theorem is useful in showing arguments that are not allowed. For instance, suppose we have 
A? and (A → B)?. From the last we have (¬A ∨ B)? and then (¬A)? ∨ B?, or even ¬(A?) ∨ B?; but 
from this we cannot have A? → B?, and then, by applying modus ponens, B?. On the other hand, by 
considering directly A? and ¬(A?) ∨ B?, also B? does not follow. 

Another important remark is that CEI reasoning does not mix up different extensions, as it should be 
expected. In a sense it is not adjunctive as regarding defeasible formulas. From α? and β? we don’t 
have (α ∧ β)?, although having α? ∧ β?. This property has a very significative effect on the reasoning. 
Suppose the following example: 

− ���������
fly(x)? : fast(x)

fast(x)?
  

− �������������
¬fly(x)? : cautious(x)

cautious(x)?
  

− fast(x) ∧ cautious(x) → perfect-traveler(x)  

From this last statement it can be derived (by rule xxi) 
(fast(x) ∧ cautious(x))? → perfect-traveler(x)?, 

but it would not be fair from “fly(Tweety)?” and “¬fly(Tweety)?” to conclude that Tweety is a perfect 
traveler and this is in fact not allowed in CEI. In other words, we have that may be Tweety is fast and 
may be Tweety is cautious, but not that may be Tweety is fast and cautious. 

Every thing has a price to be paid for. The precautions against mixing up defeasible conclusions have 
a drawback, which ultimately comes from our decision of not distinguishing or talking about 
extensions. There are many situations in which effectively we want to combine defeasible conclusions, 
which would be in a same extension. 

For instance, suppose we get from a default that “has-hoof(Incitatus)?” and “quadruped(Incitatus)?”, 
and that we also have 

has-hoof(x) ∧ quadruped(x) → equine(x). 

Thus, we would like to be able to conclude “equine(Incitatus)?”, but unfortunately this is not allowed 
for the feature just discussed. 

A way out of this trouble would be to anticipate these valid combinations and, to remain safe, combine 
them through the default rules from which they come from. For instance, besides 

���������α : has-hoof(x)
has-hoof(x)?

 and ����������
β : quadruped(x)
quadruped(x)?

 

it would be added their combination: 

��������������������
α ∧ β : has-hoof(x) ∧ quadruped(x)

(has-hoof(x) ∧ quadruped(x))?
 

Now, “equine(Incitatus)?” can be inferred. Certainly this is not very elegant, but it is anyway effective 
in solving this problem. 
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Aiming at the construction of a theory of definition for CEI, a new abbreviation, the strong 
implication, is introduced: α � β is short for (α → β) ∧ (¬β → ¬α), as well as its corresponding 
double implication: α ⇔ β is short for (α � β) ∧ (β � α). 

A replacement theorem for CEI, which would enable the eliminability of defined terms, can then be 
proved. 

Theorem 6: (replacement) Let α’ be a formula obtained from α by substituting β’ for some 
occurrences (not necessarily all) of β. Then Γ�� β ⇔ β’ entails Γ�� α ⇔ α’. 

The concept of a formula being closed is introduced now. It refers to a formula having all its 
components under the scope of an interrogation mark (taking “~” as in the language). A theorem 
assures that additional “?” suffixing this kind of formulas are irrelevant. 

We say that a formula is closed if it has one of the forms α?, ¬β, ~β or β # γ, where β and γ are closed 
formulas and #  ∈ {→,∧,∨}. 

Theorem 7: If α is a closed formula, then �� α ⇔ α?. 

This concept plays a role in a version of the deduction theorem which holds for CEI. 

Theorem 8: (restricted deduction) If there is a deduction of β from Γ,α, then Γ�� α → β, unless α is 
not closed and the rules (xxi) or (xxii) are used after the first time α occurs justified by being a 
premise. 

3. SEMANTICS 

The basic intuition to be captured by the semantics of LEI is the truthfulness relative to multiple 
observations of a same phenomenon, taken under different conditions, when the information about 
these conditions (or even on how the observations can be affected by them) is not available. It might 
happen, for instance, an experiment where a variation of conditions out of control (some variation is 
always the case in any experiment) is enough to affect the experiment to a level detectable by the 
instruments. 

We are facing again a situation of insufficient knowledge leading to disagreement. It parallels our 
initial motivation about multiple extensions generated by a default theory when lack of knowledge 
does not enable the control of the selection among alternatives equally plausible. 

A semantic framework reflecting the above scenario can be constructed as follows. A valuation V for 
an atomic proposition p is composed by a non-empty collection C of classical valuations for p (each 
one may be thought as expressing the opinion of an observer about p). There are two extreme 
alternatives for the definition of the truth value of p – a credulous and a skeptical one. By the 
credulous alternative p is taken as true if, for some classical valuation v belonging to C, v(p) is true. 
This alternative leads to a paraconsistent semantics, which we call semantics of maximization. This is 
the kind of semantics adopted in LEI. 

By the other alternative p would be true only if it is true for all v in C. This could lead to a 
paracomplete semantics (semantics of minimization). A paracomplete logic is a logic in which the 
thesis expressing the excluded middle principle (α ∨ ¬α) is not valid. 

A combination of these two alternatives would lead to a non-alethic semantics. A non-alethic logic is a 
logic both paraconsistent and paracomplete. All these alternatives have been explored for the 
construction of semantic systems and their corresponding calculi in [Buchsbaum & Pequeno 1991]. 

The semantics for LEI is given by the definition of a valuation function V, in terms of auxiliary 
functions vmax and vmin, recursively defined for each classical valuation v belonging to C. Roughly 
speaking, this semantics corresponds to the adoption of the first alternative as regards defeasible 
formulas (formulas suffixed by “?”) and the second alternative to undoubting (?-free) formulas. In 
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other words, V(A?) is true if A is true for some classical valuation v in C (A is true for someone), 
while V(A) is true iff it is true for all classical valuations v in C (A is true for everyone). The latter 
intends to capture the idea that the set of (monotonic) theorems of Γ corresponds to the intersection of 
all possible extensions (completements) of Γ. 

Definition: Let C be a non-empty collection of classical valuations. For each v ∈ C, let vmax and 
vmin be functions from L’ to {0,1} and let V be a function from L’ to {0,1} too, such as the following 
conditions are satisfied: 
• V(α) = l iff for all v ∈ C, vmax(α) = 1; 
• vmax(p) = vmin(p) = v(p); 
• vmax(¬α) = l iff vmin(α) = 0; 
• vmin(¬α) = l iff vmax(α) = 0; 
• vmax(α?) = l iff for some v’ ∈ C, v’max(α) = 1; 
• vmin(α?) = l iff for all v’ ∈ C, v’min(α) = 1; 
• vmax(α → β) = l iff vmax(α) = O or vmax(β) = 1; 
• vmin(α → β) = l iff vmax(α) = O or vmin(β) = 1; 
• vmax(α ∧ β) = l iff vmax(α) = l and vmax(β) = 1; 
• vmin(α ∧ β) = l iff vmin(α) = l and vmin(β) = 1; 
• vmax(α ∨ β) = l iff vmax(α) = l or vmax(β) = 1; 
• vmin(α ∨ β) = l iff vmin(α) = l or vmin(β) = 1. 

For any formula α in the language of CEI, the truth value of α is given by V(α). 

Notice that, although the second alternative has apparently been adopted in our semantics for classical 
formulas, this does not lead to paracompleteness here, because V is defined in a way to make α ∨ ¬α 
valid. 

The next is the key theorem in this section, stating the soundness and the completeness of the calculus 
with respect to the given semantics. 

Theorem 9: (soundness and completeness) Γ�� α iff Γ�� α. 

The following theorem assures that the interpretation for classical formulas (?-free formulas) given in 
LEI is in accordance with the classical propositional semantics. It states that, under reasonable 
conditions, the ?-free logical consequences of a set of formulas in LEI are the same as the classical 
logical consequences of the ?-free formulas in this set. The reasonable conditions refer to having in the 
set only ?-free formulas or formulas containing an “?” suffixing a ?-free formula (avoiding arbitrary 
mixing up of interrogation marks). These are the kind of formulas generated naturally by a default 
theory consisting of classical formulas and IDL default rules. 

A collection of formulas of LEI is said normal if it is non trivial and all of its formulas have one of the forms 
A or A?. 

Theorem 10: Let Γ’ be a normal collection of formulas in L’ (L + “?”) and Γ the set of ?-free 
formulas in Γ’. Then 

Γ’���
LEI

 A iff Γ�� A, 
where “�� ” stands for the classical propositional logical consequence. 

4. CONCLUSIONS 

Our aim in this paper ha been to demonstrate that the idea of assuming all conclusions supplied by 
reasoning on incomplete knowledge, in spite of expressing inconsistent views, can be taken seriously. 
We are able to devise two possible objections to be raised against this idea. The first is a conceptual 
objection based on the argument that contradiction is indicative of error occurrence and therefore the 
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efforts should be directed towards the correction of these errors and not in propagate them. It could be 
added that an inconsistent description is a description of nothing. The second is a technical objection 
based on the belief that, in any reasonable logic, inconsistent theories are trivial (everything is a 
theorem). We think that the logic presented here is evidence enough to remove the later objection. A 
logic able to perform reasoning in the presence of contradiction, without trivializing, being at the same 
time strong enough to make this reasoning useful, is perfectly possible. We would like to further 
discuss the first objection. 

Contradiction is effectively a test for error. If a contradiction is deduced from a set of premises, this 
implies the inconsistency of this set. Semantically this means that no model can exist in which all of 
them are true. Thus it is a positive indication that these premises make a bad description of a given 
piece of a world. A similar practice is adopted in the methodology of the exact sciences. 
Contradictions among conclusions of a scientific theory, or among previsions of a theory and 
empirical observations, demand a revision of the hypothesis of the theory. To stay free of contradiction 
is one of the main methodological prescriptions of standard scientific practice. 

The situation is quite diverse when common sense or artificial intelligence applications are considered. 
Then the inaccuracy of the knowledge is recognized in advance, and so the occurrence of 
contradictions does not provide such strong indication. It may demand an effort to get more precise 
information, but this refinement cannot be done beyond the limits of the knowledge available at a 
given time. In spite of it, reasoning must be done and decisions taken. 

This kind of situation reveals that the role of reasoning is not exactly to come up with conclusions to 
be assumed as true in situations satisfying the premises. This picture fits well deductive reasoning and 
it is as prevalent as a paradigm for thinking that it is often taken as a general expression for reasoning. 

Actually, the role of reasoning is to perform an analysis of the epistemic relations within the 
knowledge. It is to compose and judge evidences, to resolve conflicts (when possible) and to come up 
with relations between evidences and possible conclusions. These conclusions, in opposition to 
deductive ones, can never be detached from the premises in support of them. As has been pointed out, 
situations that satisfy the premises may not satisfy the conclusions. So, this kind of conclusions, more 
than a statement about the state of affairs, is a statement about our knowledge on the state of affairs. A 
contradiction then means simply that there are evidences in support of A as well there are also 
evidences supporting ¬A. There is nothing so striking about it. After words it is not even a 
contradiction. What can be a little striking is to take these conclusions altogether as a set of believes. 
This is precisely what is done here, but with the precautions of distinguishing this kind of belief and of 
treating them with a suitable logic. That is why we make a point in insisting about marking defeasible 
conclusions. 

Perhaps the main point in these objections could be summarized in the observation that taking 
decisions on basis of the assumption that contradictory statements are true sounds nonsense and might 
even be dangerous. Although being correct, the observation misses the point. First of all because this is 
more a statement about the pragmatics of the situation, about the use to be done with a piece of 
information, than an epistemic one. In the second place because, as it has been argued, defeasible 
conclusions are not really intended just to be assumed as true. We certainly agree that an inference of 
A? ∧ ¬A? may add extra warning in the consideration of this kind of conclusion and this is reflected 
in the way the given calculus treats it. 

It is worthwhile at this point to make a clear statement about the position we defend. We are not 
affirming here (at least not yet) that this is the only correct way to perform reasoning on such 
situations. The position we assume is a bit weaker. We just advocate, providing technical support, that 
this is a possible and legal way to do the things. On top of that, there is also a feeling that there are 
effectively situations in which this is really the appropriate approach to be taken. Another important 
point made here is the idea of providing a purely logical analysis of the reasoning, at least up to the 
point nonmonotonicity is itself accepted as logical. Our idea about default reasoning is to have it 
entirely performed by default rules extending a monotonic basis. LEI is offered here as a candidate for 
such a basis, but other alternatives could be the case. For instance, a paracomplete logic could be 
adopted if the situation requires a more cautious disposition. 
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The exploration of this kind of alternative is one of the directions for future research that we devise. 
As a first step in this direction, the authors have developed a whole family of non classical calculi 
coping with variations on a common semantic framework. These calculi and a study of their properties 
are presented in [Buchsbaum & Pequeno 1991]. We are also working out first order extensions for LEI 
and for all those calculi. Another point to deserve attention is to provide a semantics for the whole 
logic, encompassing its nonmonotonic part. 
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