
A Reasoning Method for a Paraconsistent Logic

Arthur Buchsbaum
Departamento de Informática

Pontif́ıcia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente 225

22451-041 — Rio de Janeiro/RJ — Brazil
Email: arthur@inf.puc-rio.br

Tarcisio Pequeno
Laboratório de Inteligência Artificial

Universidade Federal do Ceará
Campus do Pici — Bloco 910

Caixa Postal 12.166
60021-970 — Fortaleza/CE — Brazil

Email: tarcisio@lia.ufc.br

June 17, 1992

Abstract

A proof method aiming to enable automation of reasoning in a para-
consistent logic, the calculus C∗

1 of da Costa, is presented. The method
is analytical, using a specially designed tableau system. Actually two
tableau systems were created. One, with a small number of rules in
order to be mathematically convenient, is used to prove the soundness
and the completeness of the method. The other one, which is equiv-
alent to the former, is a system of derived rules designed to enhance
computational efficiency. A prototype based on this second system was
effectively implemented.

1 Introduction

Our previous work on the problem of modelling and automatizing the rea-
soning required to produce a glimmer of intelligent behavior on machines has
revealed the role that paraconsistent issues should play on it. This kind of
reasoning is typically performed under conditions of incomplete and inaccu-
rate knowledge, requiring inferences taken on basis of evidences that are only

1

partial. Thus, conservative, deductive methods of reasoning will not suffice
and the use of creative, superdeductive rules of inference is demanded. These
rules, strictly speaking, are not generally sound, in the sense that situations
might happen in which the premises of one rule are true, but its conclusion
is not1.

The adoption of this kind of rule makes the reasoning nonmonotonic: the
addition of fresh information may eventually remove previous conclusions.
This feature is so prominent that it has given its name to a whole area of
investigation in Artificial Intelligence, and many systems of nonmonotonic
logic have been designed so far.

On the other hand, there is another consequence of this lack of soundness
which is frequently neglected in the literature on nonmonotonic logics: the
incoming of contradictions. Unlike deduction, this kind of reasoning cannot
be performed on local basis, without appealing to context. In the course
of reasoning the arguments interfere with each other, generating conflicts
and promoting the defeat of partial conclusions. Furthermore, there is no
guarantee that every arising conflict can be resolved. It may perfectly hap-
pen two opposite partial conclusions having equal rights to be achieved or,
even if there is not a perfect symmetry, it can happen anyway the available
knowledge not enabling a clear decision in favor of one of the alternatives.

In Pequeno [7] it is suggested that, in order to give the right account
for the situation and provide a logical analysis of the consequences of the
evidences available, these contradictions should be assimilated in a single
set of believes and reasoned out just as any other theory. This would re-
quire, of course, the employment of a paraconsistent logic, a logic able to
perform sensible reasoning from theories comprising contradictions. In Pe-
queno & Buchsbaum [8] it is presented a paraconsistent logic specially de-
signed for this purpose. It is called “logic of epistemic inconsistency”, LEI
for short.

The recognition of the import of paraconsistency for the automatization
of reasoning has been our main motivation for the study of proof methods
for paraconsistent logics suitable to computer implementation. We have
worked out reasoning methods by tableau for an assortment of paraconsistent
calculus, and even a generalized framework for tableaux has been designed
for the job [3]. A proof method for LEI is presented in [4].

The reasoning method presented here is a tableau system, sound and
complete for C∗

1 (see da Costa [5]). Considering that paraconsistent logic

1An example of this kind of rule is default reasoning, a style of reasoning in which a
conclusion is taken, when authorized by a “default rule”, if its negation cannot be inferred
(see Reiter [9]).

2

deviates from classical logic essentially in the way they see negation, we
decided to emphasize here the tableau system relative to the connective
structure of the logic. As a matter of fact, two tableau systems were devel-
oped. In section 3 the system SC∗

1, which is economic in rules, is presented
along with the sketches for the proofs of its soundness and completeness with
respect to the semantics of C∗

1. It was devised in the sake of mathematical
convenience, being not suitable for implementation. In section 4 the system
S′C∗

1, designed to enable better implementation, is described. Comparing
with SC∗

1, S
′C∗

1 has more rules that are, generally, more specialized and thus
prone to produce smaller trees than those resulting from the applications of
the rules in SC∗

1. The two systems are equivalent in the sense that they are
able to prove the same theorems. A prototype has been worked out, based
entirely in this second system.

2 Paraconsistent Logic

In a paraconsistent logic, otherwise classical logic, from the fact that A
and ¬A are deducible it does not follow that any formula B is deducible as
well. Indeed, this property is one of the three properties stated by da Costa
to be satisfied by a logic in order to be called paraconsistent. The other two
da Costa’s principles are:
• The noncontradiction law, which, according to da Costa, can be expressed

by the fact that ¬(A ∧ ¬A) is a logical theorem for any formula A in the
language, should not be valid.

• All theorems of classical logic which do not interfere with the two prop-
erties mentioned before should be maintained.
The first two properties require the weakening of the classical axiomatics,

while the third one states that this weakening should not be greater than it
is really necessary.

The noncontradiction law in classical logic is supported, in many formu-
lations, by the following axiom:

(A → B) → (
(A → ¬B) → ¬A

)
.

The paraconsistency is attained in C∗
1 exactly by restricting this axiom to

those formulas B for which the noncontradiction property ¬(B ∧ ¬B) is
explicitly affirmed. Thus the axiom of the absurd in C∗

1 becomes

¬(B ∧ ¬B) →
(
(A → B) → (

(A → ¬B) → ¬A
))

.

3

The calculus C∗
1 is constituted by taking the classical axioms (as in

Kleene [6]), with the axiom of the absurd modified as above. Furthermore,

A ∨ ¬A and ¬¬A → A

are added as axioms, since they are no longer theorems. Additional ax-
ioms, intended to preserve noncontradiction property under composition of
formulas, are also provided:

A◦ ∧B◦ → (A → B)◦,
A◦ ∧B◦ → (A ∧B)◦,
A◦ ∧B◦ → (A ∨B)◦,
∀xA◦ → (∀xA)◦,
∀xA◦ → (∃xA)◦.

We adopted here an abbreviation that is quite usual in the literature on
paraconsistent logic: A◦ for ¬(A ∧ ¬A).

There is still another axiom, which is a theorem of classical quantifica-
tional logic, but in C∗

1 it is independent to the other axioms just given:

A ↔ A′,

where A and A′ stand for identical formulas, except for congruence and
presence of vacuous quantifiers.

The calculus above meets da Costa’s requirements. For instance, all the
rules of natural deduction, with exception to the ¬−introduction rule, are
valid. The calculus C∗

1 can be regarded as giving an axiomatization for the
negation that makes it weaker than the classical negation as much as needed
to avoid trivialization in the presence of contradiction.

3 SC∗
1: A Tableau System for C∗

1

A tableau system is a method of proof by refutation which consists in a
generation of a tree (tableau), originated from an initial tableau. This initial
tableau is normally a node constituted by the negation of the theorem to
be demonstrated (strong, classical negation in case of calculus C∗

1). Step by
step, after the choice of a node still not used up, the growing of the tree
proceeds from all descendant leaves of this node, located in open branches,
by the application of a tableau expansion rule (in general cases, an expansion
rule depends not only on the formula in the leaf, but on its whole ascending
branch). The proliferation of branches is sustained by a closure operation, by

4

which a branch is closed according to the occurrence of a certain condition.
The goal of the procedure is to close all branches, thereby proving the given
theorem. Semantically, the closure of all branches of the tableau establishes
the unsatisfiability of the formula in its root.

The tableau method is said to be analytical, since it proceeds by a gradual
decomposition of the given formula, in opposition to conventional methods
of automated proof by resolution. In the tableau method we deal directly
with the given formulas, without appealing, for example, to normalization
into clauses. In order to define a tableau system three elements must be
provided: a collection of expansion rules, henceforward named simply rules,
a branch closure criterion, and an initialization function, that produces an
initial tableau from the formula to be verified.

In the presentation of our tableau system we shall use another abbrevi-
ation: ∼A to ¬A ∧ A◦. The symbol “∼ ” is named strong negation and
it has all properties of classical negation. The abbreviations introduced so
far, A◦ and ∼A, are so convenient that they were adopted even in the im-
plemented version of the reasoning system, which is able to handle formulas
that include them. The tableau system for C∗

1 (SC∗
1) is initialized with the

strong negation of the proposed theorem. The closure criterium of branches
for SC∗

1 says that a branch is closed if it contains a complementary pair of
formulas A and ∼A′, whereon A and A′ are identical, except for congruence
and presence of vacuous quantifiers.

The rules of SC∗
1 follow below. The name of each rule tells the kind of

formulas to which it can be applied. The sign “#” stands for whatever one
of the signs “→”, “∧” or “∨”, and the sign “Q” represents a quantifier (“∀”
or “∃”). Concerning the rules for quantifiers, let L be the initial language
of SC∗

1 (where axioms and theorems to be proved from them can be formu-
lated), α the formula from which the initial tableau considered is defined, Lα

the language with the same logical symbols of L whose non logical symbols
are those of α, L′α the language obtained from Lα by adding an infinite de-
numerable number of new constants, t the first closed term of L′α such that
the appointed formula does not occur in the branch considered, and finally
c the first constant of L′α which does not occur in the branch considered.

Rule A → B
A → B
©©©©

HHHH
∼A B

Rule A ∧B
A ∧B
|
A
|
B

Rule A ∨B
A ∨B
©©©©

HHHH
A B

5

Rule ∼(A → B)
∼(A → B)

|
A
|
∼B

Rule ∼(A ∧B)
∼(A ∧B)

©©©©
HHHH

∼A ∼B

Rule ∼(A ∨B)
∼(A ∨B)

|
∼A
|
∼B

Rule ¬(A#B)
¬(A#B)

∼(A#B) ∼A◦ ∼B◦

Rule ¬¬A
¬¬A
©©©©

HHHH
∼¬A ∼A◦

Rule ∼¬A
∼¬A
|
A

Rule ∀xA
∀xA
|

A(x|t)
|

∀xA

Rule ∃xA
∃xA
|

A(x|c)

Rule ∼∀xA
∼∀xA
|

∼A(x|c)

Rule ∼∃xA
∼∃xA
|

∼A(x|t)
|

∀x∼A

Rule ¬QxA

¬QxA
©©©©

HHHH
∼QxA ∼A◦(x|c)

We call satisfiable a tableau having at least a satisfiable branch (a branch
in which all the formulas attached to it are simultaneously satisfiable). About
each one of the rules given above, it can be demonstrated that, if A is a
satisfiable formula, then so is some branch of an application of a rule to A.
It can be shown that, if T is a satisfiable tableau, the tableau resulting from
the expansion of T by the application of one of the rules above is satisfiable
as well. Therefore, if A is satisfiable, any tableau for A is satisfiable too.
It follows that the existence of an unsatisfiable tableau for A implies the
unsatisfiability of A. From the fact that a confutation (a tableau whose
all branches are closed) in SC∗

1 is unsatisfiable, the soundness of SC∗
1 with

respect to the semantics of C∗
1 can be concluded: if there is a confutation

for ∼A in SC∗
1, A is logically valid in C∗

1 and thus a theorem of C∗
1 .

6

The argument to establish the completeness of SC∗
1 runs along the fol-

lowing lines. We can show that if a developing complete sequence of tableaux
obtained by a depth first search does not contain a confutation, then it con-
tains a tableau with an open exhausted branch (an open branch whereon the
only formulas not used are atomic, negations of atomic formulas, or strong
negations of atomic formulas), or it tends to an infinite limit tree containing
an infinite exhausted branch. As any open exhausted branch is satisfiable,
we conclude that the formula in the root node is satisfiable. So, if A is
unsatisfiable, then the developing complete sequence of tableaux obtained
from the initial tableau for A and from a depth-first search must contain a
confutation. SC∗

1 is therefore complete, in the sense that for any formula A,
if A is valid, and hence a theorem of C∗

1, then there exists a confutation
for ∼A.

Our method is a procedure to find this existing confutation. Detailed
proofs can be found in Buchsbaum [1].

4 S′C∗
1: A Tableau System for Implementation

In this section we present a tableau system derived from SC∗
1, designed

to improve efficiency of implementation. The basic idea is to provide S′C∗
1

with a greater number of more specialized rules. The generated trees tend to
contain less nodes then those from SC∗

1. The closure criterium of S′C∗
1 was

also modified: a branch is closed if it contains either a complementary pair
of formulas A and ∼A′, or any formula of one of the forms ∼(

(A ∧ ¬A′)◦
)
,

∼(A◦◦), or ∼(
(∼A)◦

)
, whereon A and A′ are identical except for congruence.

The new rules of S′C∗
1 are given below.

Rule A◦
A◦

©©©©
HHHH

∼A ∼¬A

Rule ∼A◦
∼A◦
|
A
|
¬A

Rule ¬A◦
¬A◦
|

∼A◦

Rule ∼∼A
∼∼A
|
A

Rule ¬∼A
¬∼A
|
A

Rule A ↔ B
A ↔ B
©©©©

HHHH
A ∼A
| |
B ∼B

7

Rule ∼(A ↔ B)
∼(A ↔ B)

©©©©
HHHH

A ∼A
| |

∼B B

Rule ¬(A ↔ B)
¬(A ↔ B)

∼(A ↔ B) ¬(A → B) ¬(B → A)

S′C∗
1 is a conservative extension of SC∗

1. Its additional rules can be
regarded as derived rules from those in SC∗

1. They can be shown equivalent
in the sense that a formula can generate a confutation in S′C∗

1 if and only
if it can generate a confutation in SC∗

1. Proofs, again, may be found in
Buchsbaum [1].

5 Conclusions

At this point, further development can take two different lines. From one
side, the general method could be explored on its applicability to other sys-
tems of non classical logic. Actually reasoning methods to several other para-
consistent and paracomplete logics have already been designed (see Buchs-
baum & Pequeno [2]), and a general framework for non classical tableaux
have been provided in Buchsbaum & Pequeno [3].

Another line of development would be the improvement of the prototype
as a prover. The main function of the prototype, as it was constructed, is to
demonstrate the feasibility of the method and to be useful as a laboratory
tool for forthcoming work. Its architecture was designed in order to enhance
the construction of different prototypes by changing the existing rules or
including new rules. In order to become a practical useful reasoning tool,
it should be equipped with suitable strategies to improve efficiency and an
adequate interface to make it more friendly.

References

[1] Arthur Buchsbaum. Um método automático de prova para a lógica
paraconsistente. Master’s thesis, Pontif́ıcia Universidade Católica do
Rio de Janeiro, 1988.

[2] Arthur Buchsbaum and Tarcisio Pequeno. Racioćınio automático em
lógicas paraconsistentes e/ou paracompletas. In 6oSimpósio Brasileiro
em Inteligência Artificial, pages 1–15, 1989.

8

[3] Arthur Buchsbaum and Tarcisio Pequeno. O método dos tableaux
generalizado e sua aplicação ao racioćınio automático em lógicas não
clássicas. O que nos faz pensar — Cadernos do Departamento de
Filosofia da PUC-Rio, 3:81–96, September 1990.

[4] Marcelo Correa, Arthur Buchsbaum, and Tarcisio Pequeno. Racioćınio
automático com conhecimento incompleto e inconsistente I: Um sistema
de tableaux para LEI. In Proceedings of the 9th Brazilian Symposium
of Artificial Intelligence, pages 281–296, 1992.

[5] Newton C. A. da Costa. On the theory of inconsistent formal systems.
Notre Dame Journal of Formal Logic, 15:497–510, 1974.

[6] Stephen Cole Kleene. Introduction to Metamathematics. Wolters-
Noordhoff, North Holland and American Elsevier, 1974.

[7] Tarcisio Pequeno. A logic for inconsistent nonmonotonic reasoning.
Technical Report 6, Department of Computing, Imperial College, Lon-
don, 1990.

[8] Tarcisio Pequeno and Arthur Buchsbaum. The logic of epistemic in-
consistency. In Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning, pages 453–460.
Morgan Kaufmann, 1991.

[9] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

9

