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Abstract. A nonmonotonic logic, the Logic of Plausible Reasoning, LPR, capable
of coping with the demands of what we call complex reasoning, is introduced. It is
argued that creative complex reasoning is the way of reasoning required in many
instances of scientific thought, professional practice and common life decision taking.
For managing the simultaneous consideration of multiple scenarios inherent in these
activities, two new modalities, weak and strong plausibility, are introduced as part
of the Logic of Plausible Deduction, LPD, a deductive logic specially designed
to serve as the monotonic support for LPR. Axiomatics and semantics for LPD,
together with a completeness proof, are provided. Once LPD has been given, LPR
may be defined via a concept of extension over LPD. Although the construction
of LPR extensions is first presented in standard style, for the sake of comparison
with existing nonmonotonic formalisms, alternative more elegant and intuitive ways
for constructing nonmonotonic LPR extensions are also given and proofs of their
equivalence are presented.

Keywords: ampliative reasoning, complex reasoning, nonmonotonic logic,
default logic, epistemic modalities, paraconsistency

1. Introduction

1.1. Relationship of logic and reasoning

Logic provides reasoning1 with a way of expression and a norm. De-
ductive logic does it to a very particular kind of reasoning, the most

1 It must be made crystal clear that we associate no psychologist connotations to
the term “reasoning”. Following a methodological tradition inaugurated by Frege,
which is in the root of the so called linguistic turn, even to words like “thought” it is
given a mathematical abstract sense. As Wittgenstein states it — “It is misleading
then to talk of thinking as of a ‘mental activity’. We may say that thinking is
essentially the activity of operating with signs” (cf. [26], p. 6). So is “reasoning”.
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praised one as far as philosophy, mathematics and sciences (hard sci-
ences) are concerned. Deductive reasoning has the nice property of
being conservative with respect to truth. It is able (or at least it is
intended to be able) to carry truth on all the way from premises, once
it is there, to conclusion. Being truthfulness such a precious good, a
reasoning that does not assure its integrity has not deserved respect
and serious concern from the tradition. That is why for so long, at
least until Hume [12], but even after him (deductive) logic and correct
reasoning, or even “rationality”, has been taken as synonymous.

However, real life reasoning, meaning a wide range of forms of in-
ference, covering from common sense to scientific reasoning, passing
through reasoning required for technical professional practice, such as
in law, economics, medicine and so on, is a complex, plural, multifaceted
matter. It is in such a broad spectrum that it is considered in the
present paper. Once reasoning is considered in those general terms its
relation to logic becomes much more problematic and much less strict
and clear. Questions then arise even whether it is at all possible to
establish insightful connections between logic and reasoning. And if so,
what those connections are? Or, better stating, what role is logic still
able to play as a tool for clarify and express reasoning? We intend to
answer to those questions in an effective way by presenting a logic able
to express reasoning understood in this large spectrum.

1.2. Logic beyond analytical reasoning

Of course, in order to do so, we have to consider logic in a lato sensu
as well, for if it is understood as deductive logic it has not too much
to say about the many forms of non deductive, superdeductive, induc-
tive, estimative, imprecise, hypothetical, evidential, plausible varieties
of reasoning practice. So, we take the word “logic” here as denoting a
certain class of mathematical systems for which classical logic provides
a reference and a model, but it is not its sole sample. What is kept
of classical logic is its mathematical style and a stockpile of tools and
results that are still valid or can be adapted to this extended formula-
tion. Within this spirit, the problem we face could be better stated as
the task of designing logics able to analyze, annotate and express some
relevant features of certain kinds of non deductive reasoning.

A similar project in relation to the justification of induction in the
construction of scientific theories has been worked out by a variety
of authors including Carl Hempel, Rudolf Carnap and Patrick Sup-
pes [11, 5, 25] among others. However, the preferred approach to the
induction problem has been a quantitative one, based on variations
of probability theory. More recently, in the field of artificial intelligence,
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qualitative approaches, with more resemblance to the discipline of logic,
the so called nonmonotonic logics, have been proposed to treat a form of
non deductive reasoning, sometimes called “common sense reasoning”.
We took this problem in AI as our initial motivation and starting point,
but we have evolved, along a ten years project, to consider the problem
of providing a mathematical qualitative modeling for non deductive
reasoning taken in greater generality, including some complex aspects
not usually treated in the AI literature, such as what Hempel has
called “the problem of inductive inconsistencies”, and the problem of
reasoning by considering the plausibility of multiple alternative scenar-
ios. What is presented in this paper is the result of this effort in the
form of a logic that we propose as a contribution to the understanding
of non deductive reasoning in many of its instances, including those
relevant for science, such as reasoning in the presence of competing
hypothesis or theories, and inference from uncertain or quasi universal
conjectures. Furthermore, we believe that the logic being proposed is
relevant for philosophy of language (concerning the pragmatics of lan-
guage); practical philosophy (concerning ethical judgment, rationality
and decision taking for action); economic analysis (taking into account
different plausible scenarios); and so on.

1.3. The complexities of real reasoning

The most preeminent feature when real, practical reasoning, let’s call
it this way, comes into play is its way of inference, which is not, strictly
speaking, truth preserving. Being truth something that one is much in
doubt to possess from the beginning, when practical, or even scientific
matters are in order, its strict preservation is not an absolute value for
this particular kind of reasoning. Besides, in order to preserve truth,
the inference power is restricted to such an extent that the logic would
become useless in many practical applications. What it is reasonable
to preserve, instead of certainty, is some sort of “degree of confidence”,
let’s say so, less or more high, depending on the nature of the problem
and the requires on accuracy in treating it. This “degree of confidence”
is designated by many names, such as probable, expectable, reasonable,
and the like. Here we adopted the adjective plausible to play this role.
Accordingly, it is said that the logic proposed in the body of the paper
is capable to express plausible reasoning.

However, in spite of inferential enlargement be an essential feature
of practical or scientific reasoning, it is not the only feature to provoke a
departure of reasoning from traditional logic. There is another equally
relevant but often neglected aspect. It consists of a phenomenon that
emerges while considering the following question — why so many times
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the reasoning seems to be impeccably logical although leading to very
stupid conclusions? The standard answer is — because one starts from
erroneous, may be stupid premises. But this does not tell the whole
story. Sometimes this may happen even when the premises also seem
very reasonable. Our diagnosis for this problem is lack of imagination.
It is the way of preference to prejudice, fanaticism, dogmatism, patri-
otism and other isms of the like. It is not solved by the mere change of
premises, which may just switch from one ism to another. The rather
radical, though appropriate, solution is to take into consideration all
looking reasonable premises — even if they, eventually, as they often
do, contradict each other — and then to reason them out altogether.
What emerges of this reasoning melting pot is an open mind consid-
eration of different plausible scenarios. This is a wise, imaginative and
effective way of reasoning, commonly used in technical, professional
and scientific practice, but hardly, if ever, treated through the use of
logic. The logic presented here accounts for the expression of multiple,
imaginative reasoning, which we call complex reasoning.

1.4. Scientific reasoning is ampliative complex reasoning

Perhaps, the greatest contribution of Hume to clarify the matters about
the acquisition of knowledge from observation and experimentation was
precisely to make the decisive remark about this epistemological fact:
scientific reasoning is not supported by logic, or, better stating, it is not
analytical reasoning. But, if scientific reasoning is not truth preserving
deductive reasoning, what type of reasoning is it? This was the problem
raised by Hume, and it is still open nowadays: the problem of char-
acterizing ampliative reasoning and of distinguishing it from fallacies
or even plain irrationality. “Why is rational to take non conservative
conclusions, from which so much of our knowledge depends on?”; “is
it rational to take these conclusions?”; “when is rational to take them
and when is not?” Those are questions open to answer.

Well, it is rational to take those conclusions in certain conditions.
The task of the ones that have dedicated themselves to this problem is
precisely to expose what constitutes these conditions. This is our task
here, but, before we go on, the usage we do of some terms must be
clarified. We call conservative inference deductive reasoning in general.
This lies in opposition to the term ampliative inference which denotes
all kind of non deductive inferences that are not just fallacies. Many au-
thors, in particular those concerned with the justification of induction
as part of the scientific method, consider all kinds of ampliative infer-
ence as induction. So the universe of inference is divided in two mutually
excluding parts: deductive and inductive, being inductive inferences
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thus simply defined as those inferences which are not deductive. For
the sake of clarity and more specificity, here we call those inferences
which are not deductive as forming the class of ampliative inferences,
and reserve the term induction to a special subclass of it. In what this
subclass consists of and what distinguishes it from other ampliative in-
ferences? The authors who discuss the role of induction in science agree
that an important feature of induction is that it is a kind of inference in
which the conclusion is a more primitive, or general, statement than the
data from which it is concluded. We call this an ascendant inference,
an inference going from the particular to the general or to more general
regularities anyway. But there are also inferences that are non deductive
and descendent, in the sense that they go from general statements to
more particular conclusions, as deduction does, being non deductive,
because departing from generalizations which cannot be just taken as
certainties, and creative, in opposition to the conservativeness of plain
deduction. This stems from the fact that the principles and generaliza-
tions they depart from are not precise statements but statements that
may admit exceptions, working in a scenario of incomplete knowledge.
So they also are ampliative inferences, but not ascending ones, and so,
we do not consider really appropriate to call them “inductions”.

A relevant question is: does this kind of inference plays a role for
scientific reasoning, as the other two certainly do? It certainly plays a
role, a preeminent one, for complex reasoning, but do they do the same
for scientific investigation?

We answer this question in the affirmative, and the present paper, as
far as it claims to present a contribution for systematization of reason-
ing which is relevant for science, is in a great deal a consequence of this
question being answered this way. In so doing, we do not stand alone.
Newton da Costa and contributors, for instance, have suggested in [6, 7]
the concept of pragmatic truth as playing a role in scientific practice;
to that concept naturally corresponds a way of reasoning which is am-
pliative. To be convinced on that point we have to distinguish between
scientific investigation — whose outcome may be a theory, or theories
— from scientific application, the use of a theory taken as established
in its principles. Moreover, we must have in mind that the spectrum of
theories in what is nowadays accepted as science, and their correspond-
ing investigative activity, which can be called scientific reasoning, is a
large and diverse one, a fact which is frequently neglected in discussions
about science and scientific reasoning. At one end of the spectrum we
find the canonical analytic reasoning of deductive sciences. Those are
the “hard” sciences, which rely primarily, if not completely, on math-
ematically axiomatized theories. Frequently, the analysis of scientific
theories in the literature of philosophy of science restricts itself to the
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consideration of this kind of theory. However, within the spectrum of
real science, they make more the exception than the rule, although they
undoubtedly have the strong appeal of serving as a paradigm, a utopia
every science should strive to achieve. This is the case of the so called
social sciences, such as sociology and economy, but it is also the case
of practical sciences, such as engineering and medicine, not to mention
law. It is as well the case of sciences in its early stages of construction,
such is cognitive science nowadays. So not all of scientific reasoning,
even descending reasoning, is deductive.

To the question on the rationality of performing ampliative infer-
ence, we certainly answer in the affirmative: it is rational to do it
in some circumstances. What is not rational, and this is well estab-
lished since Hume’s remark, is to take the conclusions so reached as
certainties, i.e., to given them the same status of deductive conclusions.
We avoid this misuse by taking them as just plausibilities, to be dis-
tinguished from deductive conclusions by marking them with epistemic
modality symbols, the question mark “?”, standing for weak plausibility,
and the exclamation mark “!” for strong (or strict) plausibility.

1.5. The role of exceptions

Our experience in dealing with ampliative reasoning expressed in terms
of rules subject to exceptions has teach us that the whole logistic of the
processes is very sensitive to the treatment it is given to exceptions.
We realized that the relationship of exceptions with the rule they belong
to is subtle, if not plainly tricky, and plays a decisive role in how infer-
ences should be done. Exceptions convey a sort of “meta-knowledge”
about the usage of rules. Furthermore, there is something paradoxical
in the relation of exceptions with the rules they refer. As a Minister
of the Brazilian Supreme Court once stated — “In face of exception,
the rule applies by not applying itself.” There is a scent of Russell’s
paradox in the air. In order to take care of such potential paradoxes
it must be realized that exceptions induce a hierarchy among rules.
The exceptions to a rule must be derived independently of it. A rule
stays in a higher position in relation to any other (rule) relevant to the
derivation of its exception. A rule cannot interfere (either to confirm
or deny) with the derivation of its own exception. Only after the issue
about whether the exception is the case (or not) the activation is settled
and the rule may come into play (by applying or un-applying, whether
the case may be). There is, thus, a certain parallel with typed set theory
here: the elements of a set must be given beforehand its construction,
a set cannot be a member of itself nor can two sets be a member of
each other reciprocally.
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This issue plays a central role in our approach. It is important to
characterize defective theories through the detection of cycles: rules
relevant to the derivation of each other exception or to their own
exception. A cyclic theory may have more than one or even none
extension (in some fortuitous cases, they might even have only one
extension as the normal, acyclic theories always do). But, even more
important, the hierarchy induced by the exceptions is relevant to the
generation of extensions, and, consequently, to the determination of
plausible scenarios. In the frequent event that the application of a rule
leads to the derivation of an exception to another rule, only a plausible
scenario emerges from the interplay of these rules: the one generated
by the first rule (the second rule being precluded by the derivation of
its exception). The alternative scenario where the application of the
second rule would block the derivation of its exception violates this
hierarchy, it is so prevented in LPR. Following [18] it is said that LPR
complies with the exceptions-first criterion.

This is an important feature distinguishing LPR from traditional
approaches to nonmonotonic reasoning in Artificial Intelligence, namely
Circumscription [16] and Default Logic [23]. As a matter of fact, to
this date, the authors do not know any formalism to nonmonotonic
reasoning which gives to the hierarchy among rules induced by their
exceptions the recognition and the importance it deserves.

1.6. Plan of the paper

In this paper two intertwined logics are presented, the Logic of Plausible
Deduction — LPD — and the Logic of Plausible Reasoning — LPR.
LPD is a deductive monotonic logic which formalizes reasoning with
multiple scenarios. An earlier version of this logic was presented in [21]
and [4]. In [19] it was presented the Inconsistent Default Logic (IDL),
from which LPR is, in a sense, its successor. In [20] there is a monotonic
basis for IDL, the Logic of Epistemic Inconsistency, from which LPD is
its successor. It generalizes the modal logic S5, since it works with two
collections of worlds instead of only one as in Kripke possible worlds
semantics [14]. The first collection comprehends the possible worlds,
and the second, a subcollection of the first, encompasses the plausible
worlds. This allows for the introduction of two new modalities besides
the traditional alethic ones for possibility (3) and necessity (2). The
newly introduced modalities denote the epistemic status of the plausible
statements, distinguishing them from the ones taken as certainties. P !,
strong or strict plausibility, means that the assertion P holds in all
plausible scenarios, whereas P?, weak plausibility or simply plausibility,
means that P holds in at least one plausible scenario. Since the col-
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lection of plausible worlds is a subset of the possible ones, plausibility
is stronger than possibility and the expected hierarchy holds in LPD:
2P entails P !, which entails P?, which entails 3P . In sections 2 and 3,
it is presented respectively a semantics and an axiomatics for LPD.
Meanwhile, the Logic of Plausible Reasoning, LPR, is presented here as
our proposed solution to the problem of expressing complex reasoning.
From the premises comprehending certain and inconclusive knowledge,
it constructs the alternative plausible scenarios. Once conjectural, plau-
sible but less than conclusive, knowledge is represented, the emergence
of alternative scenarios is a natural consequence. The plausible scenar-
ios are determined using the notion of extension, as it is defined in
section 4. Then, the alternative scenarios are reasoned out using the
logic specially designed for this purpose, LPD. The theorems, assigned
to the proper modalities, are, then, inferred. 2P for those holding in
all scenarios; P ! for those holding in all plausible scenarios; P? for
those holding in some plausible scenarios and 3P for those holding
in some scenarios. LPR is presented in section 4. Alternative ways of
determining scenarios are presented in section 5; we hope it helps to
clear up the concepts involved. Finally, in section 6 we present our
conclusions.

2. A Semantics for Plausible Deduction

In this section a semantics for the Logic of Plausible Deduction is pro-
vided. This is done by first introducing the concepts of LPD-structure
and LPD- interpretation. An LPD-structure consists of two collections
of classical structures, or worlds, over a same universe or domain. The
first collection is called the set of possible worlds, and the second,
which is a non empty subset of the first, is the set of plausible worlds.
An LPD-interpretation, associated with a given LPD-structure, picks
up a world and establishes an assignment of variables into the common
domain. Associated to a given LPD-interpretation Θ, two functions are
defined: the first one, ΘD, called the denotation defined by Θ, assigns
an object of the universe of the interpretation Θ to each given term;
the second one, ΘE, assigns a truth value to each given formula. The
function ΘE is called the evaluation function defined by Θ. Finally, from
the functions of the form ΘE, it is defined, for each LPD-structure H,
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the LPD-valuation HV. The truth values of LPD are 1 and 0, whereon
1 means true and 0 means false.

2.1 Definition. A language for LPD is a first order language, as it
is usually defined in standard textbooks, such as [1, 8, 9, 13, 17, 24],
adopting “→”, “¬”, “2” and “!” as primitive connectives, and “∀” as
the sole primitive quantifier.

2.2 Notation. From now on, unless declared otherwise, the following
conventions are adopted, related to the syntactic variables given below,
followed or not by primes and/or subscripts:
� L is a language for LPD;
� x, y, z are variables in any language for LPD;
� t, u are terms in L;
� P,Q, R, S are formulas of L;
� p, q, r are atomic sentences of L, whereon distinct letters

represent distinct sentences;2

� Γ, Φ are collections of formulas of L;
� ∆ is a non empty set.

An LPD-structure for L provides a non empty set called universe,
and, for each possible world, meanings for the constants, functions and
predicate signs in L into this universe. These meanings don’t vary, along
the possible worlds of the structure, for the constants and functions
signs in L, but can vary, along these possible worlds, for the predicate
signs.

2.3 Definition. A world w over ∆ for L is a function satisfying
the following conditions:
� if c is a constant in L, w(c) ∈ ∆;
� if f is an n-ary function sign in L, w(f) is a function from ∆n to ∆;
� if p is an n-ary predicate sign in L, w(p) is a subset of ∆n.
A collection W of worlds over ∆ for L is said rigid if the following
clause is fulfilled:
� for each w, w′ ∈ W and for each S, if S is a constant or a function

sign in L, w(S) = w′(S).

2.4 Definition. An LPD-structure for L is a triple H = 〈∆,W,W ′〉,
whereon ∆ is called the universe of H, and W,W ′ are non empty
rigid collections of worlds over ∆ for L, such that W ′ ⊆ W , whose
elements are called respectively possible worlds (in W ) and plausible
worlds (in W ′) of H.

2 See definition 2.14, where it is specified what we mean by “sentence”. Although
the notation specified in this item was formulated now, it will be used only in
section 4.
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An LPD-interpretation for L, besides providing a universe and mean-
ings for constants, functions and predicate signs in L into its universe,
as it is already done by its internal structure, gives a fixed world and
meanings for all variables in L. That is essential for providing meanings
for all terms and formulas in L, as a first step for specifying a semantics
for LPD.

2.5 Definition. An LPD-interpretation for L is a quintuple
Θ = 〈∆,W,W ′, w, s〉, whereon H = 〈∆,W,W ′〉 is an LPD-structure
for L, w ∈ W and s is a function from the set of all variables in L to ∆,
also called a ∆-assignment (for variables). It is said, in this case, that
Θ is an LPD-interpretation for L over (the LPD-structure) H (for L).

2.6 Definition. If s is a ∆-assignment for variables and d ∈ ∆, then
s(x|d) is the ∆-assignment for variables defined below:

� s(x|d)(y) =

{
s(y), if y 6= x;
d, if y = x.

2.7 Definition. If Θ = 〈∆,W,W ′, w, s〉 is an LPD-interpretation
for L, d ∈ ∆ and w′ ∈ W , then Θ(x|d) and Θ(w|w′) are the LPD-
interpretations for L specified below:
� Θ(x|d)  〈∆, W,W ′, w, s(x|d)〉;
� Θ(w|w′)  〈∆,W,W ′, w′, s〉.
2.8 Definition. Given an LPD-interpretation Θ = 〈∆,W,W ′, w, s〉
for L, the following clauses specify the functions ΘD and ΘE:
� ΘD is a function from the collection of terms in L to ∆, called

the denotation for L defined by Θ;
� ΘE is a function from L to {0,1}, called the evaluation for L defined

by Θ;
� ΘD(x) = s(x);
� if c is a constant in L, ΘD(c) = w(c);
� if f is an n-ary function sign in L,

then ΘD(f(t1, . . . , tn)) = w(f)(ΘD(t1), . . . , ΘD(tn));
� if p is an n-ary predicate sign in L,

then ΘE(p(t1, . . . , tn)) = 1 iff 〈ΘD(t1), . . . , ΘD(tn)〉 ∈ w(p);
� ΘE(¬P ) = 1 iff ΘE(P ) = 0;
� ΘE(P →Q) = 1 iff ΘE(P ) = 0 or ΘE(Q) = 1;
� ΘE(∀x P ) = min{Θ(x|d)E(P ) | d ∈ ∆ };
� ΘE(2P ) = min{Θ(w|w′)E(P ) | w′ ∈ W };
� ΘE(P !) = min{Θ(w|w′)E(P ) | w′ ∈ W ′ }.
2.9 Definition. Each LPD-structure H for L specifies a function
from L to {0, 1}, denoted by HV, called the LPD-valuation for L defined
by H:
� HV(P ) = min{ΘE(P ) | Θ is an LPD-interpretation for L over H }.
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2.10 Definition. Let H be an LPD-structure for L.
� H satisfies P  HV (P ) = 1;
� H satisfies Γ  H satisfies each formula of Γ;
� P is LPD-satisfiable  there is an LPD-structure for L which satis-

fies P ;
� P is LPD-unsatisfiable  no LPD-structure for L satisfies P ;
� P is LPD-valid  P is satisfied by each LPD-structure for L.
In an analogous way it is defined when a collection of formulas of L is
LPD-satisfiable or LPD-unsatisfiable.

2.11 Definition. We say that P is an LPD-semantical consequence
of Γ if each LPD-structure for L satisfying Γ also satisfies P . When it
happens, it is also noted by Γ

LPD
P .

2.12 Definition. A world w over ∆ for L is said to satisfy P if the
LPD-structure H = 〈∆, {w}, {w}〉 for L satisfies P . w is said to satisfy
a collection of formulas of L if it satisfies each formula of this collection.

The definitions above characterize the semantics of LPD as an open
logic3. In an open logic, the rules involving universal quantification
(either for variables or worlds) like generalization and necessity are
sound while only a restricted form of the deduction theorem holds
(see next section). Actually, in these logics, if an implication follows
from a collection of formulas, then its antecedent logically implies the
consequent under this collection of formulas, but not the other way
round. Thus we have the following relation:

2.13 Theorem.
� Γ

LPD
P →Q implies that Γ, P

LPD
Q,

but Γ, P
LPD

Q does not always imply that Γ
LPD

P →Q.

2.14 Definition. An occurrence of a variable x is said bound in P
if it occurs inside a subformula of P of the form ∀xQ, otherwise this
occurrence is said free in P . A variable is said free in a formula if it
has at least a free occurrence in this formula. A sentence is a formula
which does not contain any free variable.

2.15 Definition. Let P0 be a sentence of L chosen arbitrarily. The
following abbreviations are adopted:
� >  P0 → P0;
� ⊥  ¬(P0 → P0);
� P ∧Q  ¬(P →¬Q);
� P ∨Q  ¬P →Q;
� P ↔Q  (P →Q) ∧ (Q→ P );
� ∃x P  ¬∀x ¬P ;

3 The other option would be to define LPD-valuations based on LPD-
interpretations; this would make the semantics of LPD a closed logic. A general
study of open logics and some notes about differences between open and closed
logics is done in [2, 3].
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� 3P  ¬2¬P ;
� P?  ¬(

(¬P )!
)
.

2.16 Theorem. Given an LPD-interpretation Θ = 〈∆,W,W ′, w, s〉
for L, the semantics in LPD for the defined connectives and quantifiers
is given below:
� ΘE(>) = 1;
� ΘE(⊥) = 0;
� ΘE(P ∧Q) = min{ΘE(P ), ΘE(Q)};
� ΘE(P ∨Q) = max{ΘE(P ), ΘE(Q)};
� ΘE(P ↔Q) = 1 iff ΘE(P ) = ΘE(Q);
� ΘE(∃x P ) = max{Θ(x|d)E(P ) | d ∈ ∆};
� ΘE(3P ) = max{Θ(w|w′)E(P ) | w′ ∈ W};
� ΘE(P?) = max{Θ(w|w′)E(P ) | w′ ∈ W ′}.

As it is intended there is an epistemic hierarchy among the formulas
of LPD as follows:

2.17 Theorem.
� P

LPD
2P and 2P

LPD
P , but “P → 2P ” is not always valid

in LPD;
� 2P

LPD
P !

LPD
P?

LPD
3P .

It happens, however, that:

2.18 Theorem. The following propositions are not always true:
� 3P

LPD
P? ;

� P?
LPD

P ! ;

� P !
LPD

2P .

2.19 Notation. CL is the open version of classical logic.4

The following theorem states that LPD is a conservative extension
of CL.

2.20 Theorem. If Φ and P are respectively a collection of modality-
free formulas of L and a modality-free formula of L, then the following
proposition is valid:
� Φ

LPD
P if, and only if, Φ

CL
P .

2.21 Lemma. Let Γ be a collection of formulas of L of one of the forms
Q or Q?, such that Q is modality-free, whereon Γ has at least a formula
of the form Q?. Let P be a modality-free formula of L, and consider Γ
the collection {Q ∈ Γ | Q is modality-free }. The following propositions
are equivalent:

4 Open versions of classical logic are presented in [13, 17, 24], whereas closed
versions of classical logic are given in [1, 8, 9].
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(1) Γ
LPD

P?;

(2) there is a formula Q? ∈ Γ such that Γ ∪ {Q?}
LPD

P?;

(3) there is a formula Q? ∈ Γ such that Γ ∪ {Q}
CL

P .

Proof:.
We demonstrate that (1) implies (2), and give to the reader the task
of proving that (2) implies (3) and (3) implies (1).
Suppose that Γ

LPD
P?.

There exists a finite subset Γ′ ∪ {Q1?, . . . , Qn?} of Γ such that Γ′ ⊆ Γ
and Γ′ ∪ {Q1?, . . . , Qn?}

LPD
P?. If n = 0, then there is nothing more

to prove, so consider that n > 0.
Suppose that, for each i ∈ {1, . . . , n}, it is not the case that
Γ′ ∪ {Qi?} LPD

P?. Then, for each i ∈ {1, . . . , n}, there is an LPD-
structure Hi = 〈∆, Wi,W

′
i 〉 for L such that Hi satisfies Γ′ ∪ {Qi?}

and Hi does not satisfy P?. If H is an LPD-structure for L defined by
H = 〈∆,W1∪. . .∪Wn,W ′

1∪. . .∪W ′
n〉, then H satisfies Γ′∪{Q1?, . . . , Qn?}

but does not satisfies P?, which is absurd.
Therefore there is i ∈ {1, . . . , n} such that Γ′ ∪ {Qi?} LPD

P?.

LPD is a monotonic logic designed to perform reasoning in multiple
scenarios. Given the possible and plausible scenarios, a LPD-structure
H represents them in the collections of worlds W and W ′, respec-
tively. The plausible formula P? holding in H means that there is a
plausible scenario in which P holds. The strictly plausible formula P !
holding in H means that P holds in all plausible scenarios. Similarly for
2P and 3P , but now they hold in the possible scenarios. A question
remains: from where these scenarios emerge? What distinguish them
in possible and plausible scenarios? Our proposal to answering this
question is presented in section 4.

3. An Axiomatics for Plausible Deduction

Next an axiomatic calculus for LPD is defined. It will be done according
to the open style, that is, with no restriction for applications of inference
rules for introducing the universal quantifier or the necessity connec-
tive, but with restrictions for introducing implication. Open versions
of classical logic are presented in [13, 17, 24]. In [2, 3] it is given a
general method for introducing implication in open calculi. The other
method for dealing with introduction inference rules, the closed style,
presented for example in [1, 8, 9], is not used here, because it is not
useful for maintaining one of the guidelines taken into account when
modeling LPD, namely that this logic must have “P/P !” at least as a
derived rule, which does not happen in the correspondent closed version
of LPD.
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For getting easier applications of introduction of implication, it is
done a kind of tracing of the use of the rules for introducing the
universal quantifier or the necessity connective, simply by the use of
entities called varying objects, which correspond to variables in logics
without modalities. When there are modalities, it is necessary at least
one additional varying object for indicating a kind of variation along
worlds; here, for the sake of convention, it is used the sign “2”. The
tracing begins by associating to each application of an inference rule a
set of varying objects, eventually empty.

3.1 Definition. A varying object in LPD is a variable or the sign “2”.

The definition below, together with definition 2.14, specifies when a
given varying object is free in a formula inside LPD.

3.2 Definition. A formula P is said 2-closed if P has one of the forms
2Q, Q!, ¬R, R→S or ∀xR, whereon R and S are 2-closed; otherwise
it is said that 2 is free in P .

3.3 Definition. A formula is said to be modal if it has some occurrence
of the signs “2” or “!”; otherwise it is said to be modality-free.

3.4 Definition. P (x|t) is the formula obtained from P by substitut-
ing t for each free occurrence of x, and replacing consistently bound
occurrences of variables in P for other ones don’t occurring in P when
it is necessary.5

3.5 Definition. The calculus for LPD has the following postulates
(axiom schemes and inference rules), whereon, for each inference rule,
a varying object can be attached:
(1) P → (Q→ P );

(2) (P →Q)→
((

P → (Q→R)
)→ (P →R)

)
;

(3)
Q

P, P →Q , whereon no varying object is attached;

(4) (¬P →Q)→ (
(¬P →¬Q)→ P )

)
;

(5) ∀xP → P (x|t);
(6) ∀x (P →Q)→ (∀xP →∀xQ);
(7) P →∀xP , whereon x is not free in P ;

(8) ∀xP
P , whereon x is the attached varying object;

5 It avoids that occurrences of variables in t become bound in P (x|t). A detailed
definition of P (x|t), taking into account that all variables occurring in t must remain
free in P (x|t), can be found in [1, 8].

A*Logical*Expression*of*Reasoning.tex; 10/08/2007; 6:52; p.14



15

(9) 2P → P ;
(10) 2(P →Q)→ (2P →2Q);
(11) P →2P , whereon 2 is not free in P ;

(12) 2P
P , whereon 2 is the attached varying object;

(13) 2P → P !;
(14) P !↔ P , whereon 2 is not free in P ;
(15) (P !→ P )!;
(16) (P →Q)!→ (P !→Q!);
(17) ∀x (P !)→ (∀xP )! .

3.6 Definition. As it is usual, a syntactical consequence relation
“

LPD
” is defined, relating collections of formulas in LPD to formulas

in LPD. Beyond that, it is defined “
LPD
V ”, whereon V is a collection

of varying objects:
� A deduction D in LPD depends on a collection V (of varying objects)

if V contains the collection of varying objects o of all applications of
rules in D having a hypothesis in which o is free such that there is a
formula, justified as a premise in D, whereon o is free too, relevant
to this hypothesis in D.

� P is a syntactical consequence of Γ in LPD depending on V if there
is a deduction of P from Γ in LPD depending on V; it is noted
by Γ LPD

V
P .

3.7 Definition. A formula P is said to be a thesis of LPD if LPD P .

3.8 Definition. A collection Φ of formulas of L is said LPD-trivial if,
for each formula P of L, Φ LPD P .

3.9 Theorem. All signs “→”, “∧”, “∨”, “↔”, “¬”, “∀” and “∃” behave
in LPD like in open classical logic6. Below it is formulated a version
of the deduction theorem for LPD:

� If
{

Γ ∪ {P} LPD
V

Q,
no varying object of V is free in P ,

then Γ LPD
V

P →Q.

3.10 Theorem. The alethic modalities “2” and “3” behave in LPD
like they do in the open version of S5 logic, that is:
� 2P LPD

∅
P ;

� P LPD
2 2P ;

� P LPD

∅ 3P ;
� if Q is 2-closed, then 3P, P →Q LPD

2
Q.

6 As it is presented, for example, in [13, 17, 24]; in [2, 3] general concepts about
open calculi, varying objects and deduction theorems are analyzed, together with

the consequence relation “ V ” and other similar one.
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3.11 Theorem. The non alethic modalities “ ! ” and “ ? ” have respec-
tively the following introduction and elimination rules:
� P LPD

2
P ! ;

� if Q is 2-closed, then P?, P →Q LPD
2

Q.

3.12 Theorem. If LPD′ is an axiomatic calculus obtained from the
axiomatic calculus for LPD by adding the axiom scheme “P ! → P”,
then the following propositions are true:
�

LPD′ P → P?;
�

LPD′ P !↔2P ;
�

LPD′ P?↔3P ;

� Γ
LPD′
V

P if, and only if, Γ! LPD
V

P !, whereon Γ! = {P ! | P ∈ Γ }.
3.13 Theorem. The following propositions show the interrelation-
ship among necessity, skeptical plausibility, credulous plausibility and
possibility in LPD:
� LPD 2P → P ! ;
� “P !/2P ” is not a valid rule in LPD;

� LPD P !→ P? ;
� “P?/P ! ” is not a valid rule in LPD;

� LPD P?→3P ;
� “3P/P? ” is not a valid rule in LPD.

The semantical and syntactical consequence relations of LPD are
equivalent.

3.14 Theorem (correctness and completeness of LPD).
� Γ LPD P if, and only if, Γ

LPD
P .

Proof:.
An auxiliary three-sorted quantificational logic, LPD′, with no modal-
ities, with a semantics and an axiomatic calculus, is constructed.
A language L′ of LPD′ is constructed from a language L of LPD
according to the following conditions:
(1) each constant of L is still a constant of L′;
(2) each n-ary function sign of L is still an n-ary function sign of L′;
(3) all variables of L are still variables of L′, called normal variables

of L′, but there is one more extra variable v, ranging over all
possible worlds;

(4) for each predicate sign p of L, p is an n+1-ary predicate sign of L′;
(5) there are only two primitive connectives in L′: “→” and “¬”;
(6) there are three primitive quantifiers in L′: “∀”, “∀2” and “∀!”.
The terms and formulas in LPD′ are defined according to the following
clauses:
(1) each term of L is a term of L′;
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(2) the additional variable v of L′ is a term of L′;
(3) if p is an n-ary predicate sign of L and t1, . . . , tn are terms of L,

then p is an n + 1-ary predicate sign of L′, t1, . . . , tn, v are terms
of L′ and p(t1, . . . , tn, v) is a formula of L′;

(4) if P,Q are formulas of L′, then ¬P and P →Q are formulas of L′;
(5) if x is a normal variable of L′ and P is a formula of L′, then ∀x P

is a formula of L′;
(6) if P is a formula of L′, then ∀2v P and ∀!v P are formulas of L′.
A world over ∆ for L′ is just a world over ∆ for L. An LPD′-structure
for L′ is just an LPD-structure for L. An LPD′-interpretation Θ for L′
is a quadruple 〈∆,W,W ′, s〉, whereon 〈∆,W,W ′〉 is an LPD′-structure
for L′, and s is a function defined for all variables of L′, such that
s associates each normal variable to an element of ∆, and associates
the extra variable v to an element of W . Given an LPD′-interpretation
Θ = 〈∆,W,W ′, s〉 for L′, the functions ΘD and ΘE, called respectively
the denotation for L′ defined by Θ and the evaluation for L′ defined
by Θ, are specified in an analogous way as it was done in definition 2.8,
with the following differences:
(1) if p is an n + 1-ary predicate sign in L′, and t1, . . . , tn are terms in

L (so also in L′), then
ΘE(p(t1, . . . , tn, v)) = 1 iff 〈ΘD(t1), . . . ,ΘD(tn)〉 ∈ s(v)(p);

(2) ΘE(∀2v P ) = min{Θ(v|w)E(P ) | w ∈ W};
(3) ΘE(∀!v P ) = min{Θ(v|w)E(P ) | w ∈ W ′}.
An LPD′-valuation for L′ defined by an LPD′-structure H for L′ is
specified in a same way as it was done in definition 2.9, and finally
a semantics for LPD′ is specified in an identical way as it was done
in definition 2.10.
LPD′ is a three-sorted logic, in which, for a given LPD′-structure
H = 〈∆,W,W ′〉 for L′, the sorts are ∆, W and W ′, whereon a normal
variable ranges over ∆, whereas the only extra variable v ranges over the
collection W of possible worlds. The universal quantifier “∀!v” obliges
v to range only over W ′, the collection of plausible worlds of H.
For each pair of corresponding languages L and L′ for the logics LPD
and LPD′, let f be a function from L to L′, defined through the
following clauses:
(1) if p is an n-ary predicate sign in L, and t1, . . . , tn are terms in L,

then f(p(t1, . . . , tn)) = p(t1, . . . , tn, v);
(2) f(¬P ) = ¬f(P );
(3) f(P →Q) = f(P )→ f(Q);
(4) f(∀xP ) = ∀x f(P );
(5) f(2P ) = ∀2v f(P );
(6) f(P !) = ∀!v f(P ).
A calculus for LPD′ is defined just writing all postulates of the calculus
for LPD in a language for LPD′, taking into account the translation f .

A*Logical*Expression*of*Reasoning.tex; 10/08/2007; 6:52; p.17



18

It is not difficult to prove that, given a collection Γ of formulas of L
and a formula P of L, if Γ′ = {f(Q) | Q ∈ Γ} and P ′ = f(P ), then the
following propositions are valid:
� Γ LPD P if, and only if, Γ′

LPD′ P ′; (1)
� Γ

LPD
P if, and only if, Γ′

LPD′
P ′. (2)

It is easy to prove that the calculus for LPD′ is correct and complete
with respect to the semantics for LPD′, that is:
� Γ

LPD′ P if, and only if, Γ
LPD′

P . (3)
From propositions (1), (2) and (3), it follows finally that the calculus
for LPD is correct and complete with respect to LPD semantics:
� Γ LPD P if, and only if, Γ

LPD
P .

The following propositions state respectively syntactical versions of
theorem 2.20 and lemma 2.21.

3.15 Theorem. If Φ and P are respectively a collection of modality-
free formulas of L and a modality-free formula of L, then the following
proposition is valid:
� Φ LPD P if, and only if, Φ CL P .

Proof:. It follows directly from theorems 2.20 and 3.14.

3.16 Lemma. Let Γ be a collection of formulas of L of one of the
forms Q or Q?, such that Q is modality-free, whereon Γ has at least
a formula of the form Q?. Let P be a modality-free formula of L, and
consider Γ the collection {Q ∈ Γ | Q is modality-free}. The following
propositions are equivalent:
(1) Γ LPD P?;
(2) there is a formula Q? ∈ Γ such that Γ ∪ {Q?} LPD P?;
(3) there is a formula Q? ∈ Γ such that Γ ∪ {Q} CL P .

Proof:. It follows directly from lemma 2.21 and theorem 3.14.

4. The Logic of Plausible Reasoning

LPD is a logic to deal with deductive reasoning in a multiple scenar-
ios environment, the so called plausible scenarios. The key question
to be discussed now is how to construct these plausible scenarios.
How do they come into being in the scope of assumptions and facts
to be reasoned about? They come, naturally, from our imagination,
from our capacity (maybe a professionally trained skill) of producing
good guesses by hypothesizing, making conjectures, and devising mul-
tiple alternative states of affairs which deserve examination, as does
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one playing chess or analyzing possible investments in an economic en-
vironment, or elaborating scientific explications for experimental phe-
nomena. The role we believe a logic ought to play in such circumstances
is to provide the means to represent those conjectures and to enable
their inferential analysis.

In our formalization of reasoning we distinguish hard from soft
premises. Hard premises are taken for granted, admitted as true, at
least for the sake of providing a common ground for reasoning and
discourse. As Popper [22] more than once remarked it, it is not possible
to doubt of everything at the same time. These hard premises are made
out of facts and principles we are not inclined to doubt, and are there-
fore taken as assured knowledge. Soft premises are how hypotheses,
conjectures and guesses, the putative assertions that are in test and that
generate alternative scenarios, are represented. Alternative scenarios
are so produced because conjectures may, and often do, conflict with
each other. In the most flagrant case one can be the direct denial of the
other. In spite of it, we may wish to regard both as plausible for the
sake of analysis and further inquire. An important feature of reasoning,
which is contemplated in the formalization proposed here, is precisely
the accommodation of the conflicting conjectures composing alternative
scenarios into a same logical framework without carrying out a logical
catastrophe.

Hard premises are sufficient to determine possible worlds and sce-
narios, for a possible world is simply any model of them, whereas a
possible scenario is any of its consistent superset of propositions. Hence,
possible assertions are the ones consistent with the hard premises. But
how plausible worlds and scenarios are obtained? As we said, out of
conjectures. Some conjectures may be mutually compatible, meaning
that they can be simultaneously held without contradiction, i.e., they
may coexist in a same scenario. A (maximal) collection of compatible
conjectures gives rise to a plausible scenario; a plausible world is a world
that in addition to satisfy the hard premises also satisfies a plausible
scenario. The conflicting conjectures, on the other hand, are disposed
in different scenarios, reflecting the complexities of real reasoning. The
logic we propose is able to accommodate those scenarios in a same
unity, and so to analyze certain features about propositions that make
sense just against this framework. For instance, we may say that a
proposition is weakly plausible, or simply plausible if it is held in at least
one plausible scenario, while we call a proposition strictly plausible if
it is held in all plausible scenarios. An assertion is plausible not only
because it is consistent with the hard premises but because, in addiction
to this, there is a bulk of conjectures (positive reasons) supporting it.
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The presentation of the technical details of the ideas just described,
and how they are mathematically formulated and developed, follows.

The premises, forming what we could call an LPR-basis (LPR stands
for Logic of Plausible Reasoning), are presented in two sets. The first is
a set of first order formulas notating the hard premises and the second
is a set of soft premises, formulas in an extended notation, that we
call generalizations, which represent the conjectures. Generalizations
are, in fact, a fairly flexible way to represent conjectures, since they
allow a conjecture so presented to bear conditions limiting its scope of
application. In other words, they admit the annotation of exceptions
to, not so, general conjectures.

The premises of an LPR-basis are scrutinized in order of detecting
and grouping compatible generalizations. This is done with the help of
the notion of extension to be constructed from the data of the basis,
given in definition 4.18. (Later, in section 5, we present alternative
ways to reach an equivalent construction. We hope that this plurality
of styles may contribute to the clarification of this work.) Compatible
conjectures — extracted from the generalizations and always signalized
with a ? mark which indicates they are plausible formulas — are con-
joined and added to the extension. A plausible scenario (definition 4.32)
is a deductively closed set of modality-free formulas generated by the
hard premises together with the conjectures extracted from a maximal
collection of compatible generalizations. Strictly plausible sentences
(P !) are the ones derived from generalizations, which belong to all
plausible scenarios (the definition 4.31 of strongly triggered general-
ization captures this feature). Plausible worlds are, thus, the classical
models of the plausible scenarios. Therefore, plausible sentences are
held in some plausible scenarios and thus true in some plausible worlds,
whereas strictly plausible sentences are held in all plausible scenarios
and thus true in all plausible worlds. We insist that models for the hard
premises form the possible worlds, and hence any plausible world is also
a possible world. Possible sentences (3P ) are the ones consistent with
the hard premises, they hold in some possible scenarios (and worlds).
Necessary sentences (2P ) are logical consequences of the hard premises,
they hold in all possible scenarios (and worlds). The set of theorems
(provable sentences) of an LPR-theory is the deductive closure in LPD
of the theory formed by the hard premises, the possible sentences, the
plausible and the strictly plausible sentences.

Therefore, when all this logical treatment is performed with the
initial LPR-basis, we end up with a theory describing multiple scenarios
which can be treated, both semantic and syntactically, in the logic
LPD for plausible deduction presented in sections 2 and 3. The theory
in LPD formed from an LPR-basis is given by the definition 4.39, and
the LPD-structure satisfying it by the definition 4.43.

Technicalities are in order. They follow.
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4.1 Definition. A generalization (in L) is an expression of the form
“P −(Q” such that P, Q are modality-free formulas (of L)7; in such
expression P is called the conjecture and Q the restriction or exception
of this generalization. An instance of a generalization P −( Q (in L) is
an expression P ′−( Q′, whereon P ′, Q′ are consistent instances of P, Q
(in L)8.

4.2 Reading. The intended meaning of a generalization “P −( Q” is
that P represents a conjecture that holds under the condition that the
restriction Q does not. It is read as “generally P , unless Q”.

4.3 Definition. P −(  P −(⊥.

4.4 Definition. An LPR-basis (in L) is a pair τ = 〈T,G〉, whereon
T is a collection of modality-free formulas (of L) and G is a collection
of generalizations (in L).9 T and G represent respectively the hard
and soft premisses of the LPR-basis τ .

4.5 Definition. A collection of instances of generalizations of G in L is
said to be a rule in τ . A finite collection of instances of generalizations
of G in L is said to be a finite rule in τ .

4.6 Notation. Unless stated otherwise, from now on, in the remaining
of this paper:
� τ = 〈T,G〉 is an LPR-basis in L;
� the letter G followed by primes and/or subscripts denotes a rule in τ .

4.7 Definition. Given a rule G′ in τ , it is specified:
� Conj(G′)10  {P | there exists Q such that “P −(Q” belongs to G′};
� Rest(G′)11  {Q | there exists P such that “P −( Q” belongs to G′}.
4.8 Definition. If P is a formula and x1, . . . , xn are the variables free
in P , then:
� uc(P ), the universal closure of P , is the formula ∀x1 . . .∀xn P ;
� ec(P ), the existential closure of P , is the formula ∃x1 . . .∃xn P .

4.9 Definition. If Φ = {P1, . . . , Pn} is a finite collection of formulas
of L, then:
� ∧

Φ  uc(P1 ∧ . . . ∧ Pn);
� ∨

Φ  ec(P1 ∨ . . . ∨ Pn).

7 The notation established in 2.2, p. 9, continues to hold. A modality-free formula
is defined in 3.3, p. 14. It means that a formula does not contain the signs “2 ”
or “ ! ”.

8 That is, variables occurring both in P and Q are replaced by the same terms
(in L).

9 L is a fixed language for LPD whose alphabet has all constants, function and
predicate signs occurring both in T and in G, and in all possible conclusions one
wants to extract from an LPR-basis 〈T, G〉.

10 “Conj(G′)” is read “conjectures of G′ ”.
11 “Rest(G′)” is read “restrictions of G′ ”.
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4.10 Scholium. The following propositions are valid:
� ∧ ∅ = >;
� ∨ ∅ = ⊥.

4.11 Lemma. Let Φ be a finite collection of formulas. The following
propositions are valid:
� Γ ∪∧

Φ LPD P if, and only if, Γ ∪ Φ LPD P ;
� Γ ∪∧

Φ CL P if, and only if, Γ ∪ Φ CL P .12

4.12 Reading. Inside an LPR-basis τ = 〈T, G〉, there is a holistic way
for reading generalizations, since the behavior of each one of them
depends on itself and on all other ones. For each finite rule G′ in τ ,
G′ can be read “

∧
Conj(G′) is a conjecture in τ , unless

∨
Rest(G′) is

the case”.

Information which comes from rules is marked by an “?”. Since a
rule might be an infinite collection of instances of generalizations, the
information carried in its conjectures, and also in the restrictions it is
subject to, is extracted using finite subrules. We call them, respectively,
hypotheses and limits of the rule.

4.13 Definition.
� Hyp(G′)13  {(∧ Conj(G′′))? | G′′ is finite and G′′ ⊆ G′};
� Lim(G′)14  {(∨ Rest(G′′))? | G′′ is finite and G′′ ⊆ G′}.
4.14 Scholium. The following propositions are valid:
� Hyp(∅) = {>?};
� Lim(∅) = {⊥?}.

Next, it is defined the key concept of an extension in an LPR-
basis τ . Extensions are LPD-deductively closed sets of formulas that
complement the assured knowledge with conjectures extracted from the
generalizations. The generalizations are scrutinized as a whole in order
to check out whether to include them into the extension. The inclusion
of one generalization depends on the complete theory (derived from
hard premises and generalizations) since it must be verified that its
restriction cannot be derived in the extension. Moreover, they are not
taken one by one but in sets of instances of generalizations, or rules as
defined in 4.5, with two integrity constraint conditions: their hypotheses
must be consistent with the hard premises in T , and their limits must
not be derived in the extension. In more technical terms, we say that,

12 For the second proposition, we are also considering that Γ and Φ are collections
of modality-free formulas, and that P is a modality-free formula.

13 “Hyp(G′)” is read “hypotheses of G′ ”.
14 “Lim(G′)” is read “limits of G′ ”.
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for each rule G′ in τ , Hyp(G′) is included into an extension if none
of its limits is proved in it. The fixed point construction in definition
4.18 reflects the non local character of extensions15, therefore it is not
a constructive definition.

4.15 Definition.
� ThLPD(Φ)  {P | P is a formula of L and Φ LPD P};
� ThCL(Φ)  {P | P is a modality-free formula of L and Φ CL P},

whereon Φ is a collection of modality-free formulas of L.

4.16 Definition. Ψτ (Φ) and Ψτ (Φ) are respectively the least col-
lections of formulas of L and of rules in τ satisfying the following
conditions:
(1) T ⊆ Ψτ (Φ);
(2) if Ψτ (Φ) LPD P , then P ∈ Ψτ (Φ);
(3) if Lim(G′) ∩ ThLPD(Φ ∪ Hyp(G′)) = ∅, then Hyp(G′) ⊆ Ψτ (Φ)

and G′ ∈ Ψτ (Φ).

Notice that condition (3) checks whether the limits of a rule are not
proved in LPD from Φ and its own hypotheses.

4.17 Scholium. Ψτ (Φ) = {G′ | Lim(G′) ∩ ThLPD(Φ ∪Hyp(G′)) = ∅}.
4.18 Definition. A collection E of formulas of L is said an extension
in τ if Ψτ (E) = E; in this case the collection Ψτ (E) is denominated
the set of generating rules of E in τ .

4.19 Example. Let
T = ∅,
G = {flies(x)−( penguin(x) , feathered(x)−( chick(x) }.

T and G form an elementary LPR-basis telling about birds. As it cannot
be proved from τ that there is at least a penguin or that there is at
least a chick, we have that

E = ThLPD

({ (
∀x (

flies(x) ∧ feathered(x)
))

?
})

is the only extension in τ .

4.20 Example. Considerer another LPR-basis that is almost equal to
the one just given above, but with

T = {penguin(Tweety), chick(Woody) },
15 The term “extension” and the definition through fixed points follow the general

line of the original paper of Reiter on default logic [23]. In section 5, we present
some equivalent notions playing the same role as extensions which do not appeal
to fixed point constructions.
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whereon G remains as in the example above. Now, as it can be proved
from T that Tweety is a penguin, and that Woody is a chick, the
instances

flies(Tweety)−( penguin(Tweety)
and

feathered(Woody)−( chick(Woody)

are blocked, whereas the instances

flies(Woody)−( penguin(Woody)
and

feathered(Tweety)−( chick(Tweety)

can still be applied, so the only extension in τ equals

ThLPD

(
T ∪ { (

flies(Woody) ∧ feathered(Tweety)
)
?

})
.

4.21 Example. An extension in τ might change according to the lan-
guage being considered. For instance, consider an LPR-basis whereon

T = {penguin(Tweety)},
G = {flies(x)−( penguin(x)}.

If L is the language formed with the non-logical symbols which appear
in the basis (as it has been implicitly assumed in the examples above)
then E = ThLPD(T ) is the only extension. However, let the language of
τ includes a unary functional symbol “f” and infinitely many constant
symbols (“Tweety” and, for each i ≥ 1, “ci”), besides the predicate
symbols “flies” and “penguin”. Now, the extension in τ is given by

E = ThLPD

(
T ∪

{(∧
{flies(t1), . . . , flies(tn)}

)
?

∣∣∣ n ≥ 1
})

,

whereon each ti is any term distinct from “Tweety” and from each
variable. The terms ti cannot be a variable because the formulas added
to E are universally closed, and this will mean that every individual
flies, which is not true since we are not allowed to infer that Tweety
flies (as far as the theory of the example goes, we are not allowed to
infer that Tweety does not fly either). Both assertions “Tweety flies”
and “Tweety does not fly” are possible but not plausible assertions.
In the logic LPR, as we will see in definition 4.39, “3flies(Tweety)”
and “3¬flies(Tweety)” are theorems of the basis τ , however neither
“flies(Tweety)?” nor “¬flies(Tweety)?” are.
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The following theorems state some trivial results about limit cases.

4.22 Theorem. The following propositions are equivalent:
� Ψτ (Φ) 6= ∅;
� ∅ ∈ Ψτ (Φ);
� Φ is not LPD-trivial.

4.23 Theorem.
� If Ψτ (Φ) = ∅ or Ψτ(Φ) = {∅}, then Ψτ (Φ) = ThLPD(T ).

4.24 Theorem. The following propositions are equivalent:
� Ψτ (Φ) = ThLPD(T );
� for each G′ ∈ Ψτ (Φ), Hyp(G′) ⊆ ThLPD(T );
� Hyp(Ψτ (Φ)) ⊆ ThLPD(T ).

4.25 Definition. It is said that G1 is subsumed by G2 if there is
G0 such that G0 ⊆ G2 and G1 is obtained from G0 by instantiating
simultaneously, in a consistent way16, free variables by terms in L.
When G1 is subsumed by G2, it is noted by G1 ¹ G2, and it is said
that G1 is a subrule of G2. G1 is said to be equivalent to G2, and it is
noted by G′ ≈ G′′, if G1 ¹ G2 and G2 ¹ G1.

4.26 Definition. Let E be an extension in τ . G′ is said to be inside E
in τ if G′ ∈ Ψτ (E). If there is an extension E in τ such that G′ is inside
E in τ , it is said that G′ is compatible in τ , or that G′ is a collection
of (mutually) compatible generalizations in τ . G′ and G′′ are said to
be co-extensional in τ if they are inside a same extension in τ . If G′
and G′′ are co-extensional in τ but G′ ∪G′′ is not inside any extension
in τ , then we say that G′ conflicts with G′′ in τ , or that G′ and G′′
are conflicting in τ , or still that some generalizations inside G′ conflict
with some generalizations inside G′′ in τ .

4.27 Scholium.
� If E is an extension in τ , then Ψτ (E) = {G′ | G′ is inside E in τ }.
4.28 Lemma. The following propositions are valid:
� if G′ ∈ Ψτ (Φ) and G′′ ¹ G′, then G′′ ∈ Ψτ (Φ);
� if G′ is inside an extension E in τ , then each subrule of G′ is also

inside E in τ .

4.29 Definition. Let E be an extension in τ such that G′ is inside E
in τ . G′ is maximal inside E in τ if, for all G′′ inside E in τ such that
G′ ¹ G′′, G′ ≈ G′′.

16 That is, occurrences of the same variable, even occurring in distinct generaliza-
tions, must be replaced by the same terms.
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4.1. Well Behaved Theories

LPR was designed to produce only one extension for normal, well
written bases. The reason for that stems from the fact that LPR can
accommodate opposite conjectures into a same extension using the
operator “?” for plausibility. Naturally, the opposite conjectures are
part of different plausible scenarios. If there is none or more than one
LPR-extension, it is because the theory is defective in the sense that
either a generalization is involved in the derivation of its own restriction
or two generalizations are involved in each other restriction. Any of
these two situations characterize what we call a cycle, a self-defeating
and a mutual cycle, respectively. There is something subtle about the
use of information subject to exceptions. Exceptions convey a sort of
“meta-knowledge” about the usage of the corresponding information.
As such, it (the corresponding information) cannot interfere with the
derivation of its own exception. In our formalism, generalizations (in
fact, rules, as defined in 4.5) represent “information subject to ex-
ceptions”, where the restriction of a generalization (or the limits of
a rule) represent the exceptions to the information carried out by its
conjectures (hypotheses in case of rules). Therefore, in our approach,
the limits of the rules induce a hierarchy among them. The limits
of a rule must be derived independently of the corresponding hypothe-
ses. There is an analogy with set theory here: the elements of a set
must be given before a set is constructed. This is the reason why in
Zermelo-Fraenkel set theory the membership relation is irreflexive and
antisymmetric. This frequently neglected analysis about how to treat
exceptions in ampliative reasoning plays a central role in our approach.
It is important not only to characterize defective theories through the
detection of cycles, but, mainly, to how extensions are determined
in LPR. Following nomenclature adopted in [18], extensions in LPR
are said to comply with the exceptions-first criterion. In the frequent
event that the hypotheses of a rule lead to the derivation of a limit
of another rule, only a plausible scenario emerges of the interplay of
these rules: the one generated by the first rule (the second rule being
precluded by the derivation of its restriction). The alternative scenario
where the application of the second rule would block the derivation of
its restriction violates the above consideration and so it is prevented
in LPR. This is an important feature distinguishing LPR from the sem-
inal approaches to nonmonotonic reasoning in Artificial Intelligence,
namely Circumscription [16] and Default Logic [23]. As a matter of fact,
to this date, the authors do not know any formalism to nonmonotonic
reasoning which gives to the hierarchy among rules induced by their
exceptions the recognition and the importance it deserves.

In LPR, mutual cycles might give rise to multiple extensions and
self defeating cycles might cause a theory to have no extension. A well
behaved theory, one with no cycles, has always only one extension. We
investigate on defective theories in [15], whereon some results concern-
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ing well behaved theories are presented. The theory in example 4.35
has a mutual cycle, while the theories in examples 4.36, 4.37 and 4.38
present self-defeating cycles.

4.2. Plausible Scenarios

At this point we would like to say that plausible scenarios consist of
the formulas in T jointed with the conjectures taken from maximal
collections of compatible generalizations. This is indeed the case for
theories with only one extension, the well behaved theories. In this
case, each generalization in the generating set of an extension (jointly
with the hard premises in T ) gives rise to a plausible scenario. For
the sake of generality and uniformity of treatment, though we consider
theories with defective cycles and the generalizations which cause them
ill conceived, our definition of plausible scenarios works in the general
case where theories have more than one extension. Plausible scenarios
are, then, constructed taking into account only compatible collections
of generalizations appearing in all extensions, the triggered rules as
defined below.

4.30 Definition. G′ is said triggered in τ if G′ is inside E in τ , for each
extension E in τ . G′ is said maximal triggered in τ if G′ is triggered in
τ and, for each G′′ triggered in τ , if G′ ¹ G′′, then G′ ≈ G′′.

4.31 Definition. A generalization is said strongly triggered in τ if it
belongs to each G′ maximal triggered in τ .

Plausible scenarios are now defined in the general case, regardless
how well the theory is constructed.

4.32 Definition. A plausible scenario Σ in τ is a set of formulas such
that Σ = ThCL(T ∪Conj(G′)), whereon G′ is maximal triggered in τ .17

P holds in a plausible scenario Σ in τ if P ∈ Σ. A plausible world in τ
is any world satisfying a plausible scenario in τ .

Let us now present some examples to show how plausible scenarios
are constructed from an LPR-basis τ .

4.33 Example. Suppose we are willing to consider the following in-
formation:
� Swedish in general are not Catholic.
� Pilgrims to Lourdes in general are Catholic.
� Joseph is a Swedish who made a pilgrimage to Lourdes.
Which are the plausible scenarios?

17 The definition of extension guarantees that a plausible scenario is a consistent
set of modality-free formulas.
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The LPR-basis τ = 〈T,G〉 representing the information is given below:
T = { Swedish(Joseph),pilgrim(Joseph) };
G =

{ (
Swedish(x)→¬Catholic(x)

)−( ,
(
pilgrim(x)→ Catholic(x)

)−( }
.

The only extension for τ is ThLPD(T ∪ Φ), whereon

Φ =
{ (
∀x (

Swedish(x)→¬Catholic(x)
))

?,
(
∀x (

pilgrim(x)→ Catholic(x)
))

?
}
.

The two generalizations in G are incompatible and there are two plau-
sible scenarios:

S1 = ThCL

(
T ∪ { ∀x (

Swedish(x)→¬Catholic(x)
) })

;

S2 = ThCL

(
T ∪ { ∀x (

pilgrim(x)→ Catholic(x)
) })

.

In the first scenario it is conjectured that Joseph is not Catholic; in the
second, Joseph is Catholic. Both assertions are plausible.

4.34 Example. Exceptions-first criterion. Suppose we are willing to
consider the following information:
� Birds in general fly, unless they are penguins.
� Penguins in general do not fly.
� Tweety and Woody are birds.
� There is inconclusive evidence that Tweety is a penguin.
Which are the plausible scenarios?
The LPR-basis τ = 〈T,G〉 representing the information is given below:

T = { bird(Tweety), bird(Woody) };
G =

{ (
bird(x)→ flies(x)

)−( penguin(x) ,
(
penguin(x)→¬flies(x)

)−( ,

penguin(Tweety)−( }
.

The only extension for τ is ThLPD(T ∪ Γ), whereon Γ is{ (
∀x

(
penguin(Tweety) ∧ (

penguin(x)→¬flies(x)
)

∧ (
bird(Woody)→ flies(Woody)

)))
?

}
.

The only plausible scenario is ThCL(T ∪ Φ), whereon Φ is{
∀x

(
penguin(Tweety) ∧ (penguin(x)→¬flies(x)

)

∧ (
bird(Woody)→ flies(Woody)

)) }
.

In this sole scenario it is conjectured that Tweety is a penguin and it
does not fly, while Woody flies and it is not a penguin.
Notice that a scenario where Tweety is not a penguin and consequently
flies is counter-intuitive and it is not a plausible scenario in LPR. Why
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one would assume that Tweety is not a penguin if there is evidence that
he is? The only reason is if one considers that the evidence would come
from the interplay of the first two generalizations in the example. In
this case the conjecture of the first rule intervenes in the non derivation
of its own exception. This is exactly what the exceptions-first criterion
[18] precludes, and this explains why this is not an acceptable scenario
in LPR. The seminal nonmonotonic logics Circumscription [16] and
Default Logic [23] do not comply with the exceptions-first criterion,
and in the formalization of this example they would yield this alterna-
tive scenario. That is the reason why these logics derive “anomalous
extensions” in some representations of the frame problem [10]. At the
end of the eighties, this issue was in the core of a lively polemic among
Artificial Intelligence scientists on the adequacy of nonmonotonic log-
ics to formalize common sense reasoning. A detailed analysis of this
question was done by one of the authors in [18].

Some LPR-bases have more than one single extension.

4.35 Example. Let T = ∅ and G = { p−( q , q−( p }.
This basis has two extensions:

E1 = ThLPD({ p? })
and

E2 = ThLPD({ q? }).
This basis is defective in the sense that the two generalizations mutually
reject each other, one leading to the restriction of the other and vice-
versa; this characterizes a mutual cycle. In our view this is meaningless.
Accordingly to our approach, neither ThCL({ p }) nor ThCL({ q }) form
a plausible scenario. Plausible scenarios are made out of conjectures
present in all extensions.

Some LPR-bases have no extension.

4.36 Example. If T = ∅ and G = { p−( q , q−( r , r−( p }, then τ
has no extension. The resulting theory presents a self-defeating cycle
and again it is a defective one. The three generalizations form a cycle
blocking the use of any of them. These generalizations convey any
relevant information, or they simply reveal misconceptions from the
proponent of the basis?

Some LPR-bases have an extension whose set of generating rules is
reduced to {∅}.
4.37 Example. If T = ∅ and G = { p−( p }, then E = ThLPD(∅) is
the unique extension of τ , and ThCL(∅) is its corresponding plausible
scenario. Notice that Ψτ (E) = {∅}. Again, this basis is defective, for it
presents a generalization leading to its own restriction; this character-
izes a self-defeating cycle. The generalization “ p−( p ” is meaningless
and of no practical use.
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4.38 Example. If T = ∅ and G = { p−( q, p→ q−( }, then there is a
single extension E such that Ψτ (E) =

{ { p−( q }, { p→ q−( } }
. Again,

this basis is defective for it presents a generalization leading to its own
restriction.

The theory generated by an LPR-basis τ is defined next. Notice
that, if τ has at least one extension, the formulas in T are necessary,
the sentences consistent with T are possible, the plausible formulas
hold in some plausible scenario and the strictly plausible formulas hold
in all plausible scenarios.

4.39 Definition. The theory generated by an LPR-basis τ = 〈T,G〉,
denoted by Π(τ), is the least collection of formulas of L satisfying
the following conditions:
� T ⊆ Π(τ);18

� If Π(τ) LPD P , then P ∈ Π(τ);19

� If P is a modality-free sentence and T ∪ {P} is not LPD-trivial,
then 3P ∈ Π(τ);20

� If G′ is finite and triggered in τ , then (
∧

Conj(G′))? ∈ Π(τ);21

� If P −( Q is strongly triggered in τ , then P ! ∈ Π(τ).22

The elements of Π(τ) are also called theorems of τ .

4.40 Theorem. Π(τ) = ThLPD(T ∪ T1 ∪ T2 ∪ T3), whereon:
� T1 = {3P | P is a modality-free sentence

and T ∪ {P} is not LPD-trivial };
� T2 = { (

∧
Conj (G′))? | G′ is finite and triggered in τ };

� T3 = {P ! | there exists Q
such that P −( Q is strongly triggered in τ }.

4.41 Definition. τ LPR P  P ∈ Π(τ).

4.42 Scholium. The four modalities maintain in LPR a relationship
analogous to the one already expressed for LPD in theorem 3.13.

Now we are in a position to define an LPD-structure which allows
us to reason with the possible and plausible scenarios induced by the
hard and soft premises of a given LPR-theory.

18 That is, the hard premises are theorems of τ .
19 That is, the set of theorems of τ is deductively closed in LPD.
20 That is, 3P is a theorem of τ , for all modality-free sentences P consistent

with T in LPD.
21 There is a maximal triggered G′′ in τ such that G′ ¹ G′′ and

∧
Conj(G′) holds

in the plausible scenario ThCL(T ∪ Conj(G′′)).
22 That is, P belongs to all plausible scenarios.
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4.43 Definition. An LPD-structure H = 〈∆,W,W ′〉 for L is said to
satisfy an LPR-basis τ if the following conditions are fulfilled:
� H satisfies T ;23

� for each modality-free sentence P , if T ∪ {P} is non LPD-trivial,
then H satisfies 3P ;24

� each plausible scenario in τ is satisfied by some plausible world
w′ ∈ W ′;

� each plausible world w′ ∈ W ′ satisfies some plausible scenario in τ .

4.44 Definition. A formula P is said to be an LPR-semantical con-
sequence of an LPR-basis τ if each LPD-structure H satisfying τ also
satisfies P . When it happens, it is noted by τ

LPR
P .

Provability and semantical consequence have the same extension (in
set-theoretical terms) for LPR.

4.45 Theorem (Correctness and Completeness of LPR).
� τ LPR P iff τ

LPR
P .

Proof:. Just notice that an LPD-structure satisfies τ if, and only if,
it satisfies T ∪ T1 ∪ T2 ∪ T3, as defined in theorem 4.40, and that LPD
is correct and complete, according to theorem 3.14.

5. Alternative Notions for Extension

In section 4 the key concept of extension was defined as a fixed point
of an operator on sets of formulas. This construction via fixed points
was introduced by Reiter in his seminal paper presenting Default Logic
[23]. The concept of extension plays a central role in the formalization
of complex reasoning presented here since it configures the set of com-
patible and conflicting conjectures yielding the alternative scenarios. In
the sequel, some alternatives for the notion of extension are presented,
specially the concept of expansion. We hope that this plurality of styles
may contribute to a better understanding of this central concept.

5.1 Definition. A set of rules in τ is said to be a candidate in τ .

5.2 Notation. From now on, unless stated otherwise, the letter γ
followed or not by primes and/or subscripts denotes a candidate in τ .

23 That is, the formulas in T are satisfied by all possible worlds w ∈ W .
24 That is, P is satisfied in some possible world w ∈ W .
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5.3 Definition.
� Hyp(γ)25  { (

∧
Conj(G′′))? | G′′ is finite and there is G′ ∈ γ

such that G′′ ⊆ G′ };
� Lim(γ)26  { (

∨
Rest(G′′))? | G′′ is finite and there is G′ ∈ γ

such that G′′ ⊆ G′ }.
5.4 Scholium. The following propositions are valid:
� Hyp(γ) =

⋃

G′∈γ

Hyp(G′);

� Lim(γ) =
⋃

G′∈γ

Lim(G′).

5.5 Scholium. Hyp(∅) = Lim(∅) = ∅.27

5.6 Definition. It is said that G′ is subsumed by γ, and it is noted
by G′ ¹ γ, if, for each finite subset G1 of G′, there is G2 ∈ γ such that
G1 ¹ G2. It is said that γ is subsumed by γ′, and it is noted by γ ¹ γ′,
if, for each G′ ∈ γ, G′ ¹ γ′. γ is said to be equivalent to γ′ in τ , and it
is noted by γ ≈ γ′, if γ ¹ γ′ and γ′ ¹ γ.

5.7 Definition. Υτ (γ)  ThLPD(T ∪Hyp(γ)).
Υτ (γ) is denominated the set of theorems of γ in τ .

5.8 Lemma. Υτ (γ ∪ {G′}) = ThLPD(Υτ (γ) ∪Hyp(G′)).

5.9 Definition. A candidate γ in τ is said to be an expansion in τ if
the following condition is satisfied:
� for all G′, G′ ¹ γ iff Lim(G′) ∩Υτ (γ ∪ {G′}) = ∅.
5.10 Lemma. The following propositions are equivalent:
� γ is an expansion in τ ;
� γ ≈ {G′ | Lim(G′) ∩Υτ (γ ∪ {G′}) = ∅};
� γ ≈ {G′ | Lim(G′) ∩ ThLPD(Υτ (γ) ∪Hyp(G′)) = ∅}.
5.11 Lemma. If γ ≈ γ′, then Υτ (γ) = Υτ (γ′).

5.12 Lemma. If G′ ¹ γ, then Hyp(G′) ⊆ Υτ (γ).

5.13 Lemma. Ψτ (Φ) = Υτ (Ψτ (Φ)).

The next theorem is an immediate consequence of lemma 5.13.

5.14 Theorem.
� E is an extension in τ if, and only if, Υτ (Ψτ (E)) = E.

25 “Hyp(γ)” is read “hypotheses of γ”.
26 “Lim(γ)” is read “limits of γ”.
27 Some trouble can occur if the context is not taken into account with respect

to the use of the operators “Hyp” and “Lim”. If the empty set is considered a rule,
then Hyp(∅) = {>?} and Lim(∅) = {⊥?}, whereas Hyp(∅) = Lim(∅) = ∅, if the
empty set is a candidate.
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The following theorems state some correspondences between exten-
sions and expansions in an LPR-basis τ .

5.15 Theorem.
� If γ is an expansion in τ , then Υτ (γ) is an extension in τ .

Proof:.
(a) We want to show that Ψτ (Υτ (γ)) ⊆ Υτ (γ).
As Ψτ (Υτ (γ)) is the least set having properties (i), (ii) and (iii) of def-
inition 4.16, it is enough to show that Υτ (γ) satisfies these conditions.
As a matter of fact, conditions (i) and (ii) of definition 4.16 follow
directly from definition 5.7 of Υτ (γ), for any candidate γ.
If

Lim(G′) ∩ ThLPD(Υτ (γ) ∪Hyp(G′)) = ∅,
then, by lemma 5.10, G′ ¹ γ, therefore, by lemma 5.12,

Hyp(G′) ⊆ Υτ (γ).

(b) We want to show that Υτ (γ) ⊆ Ψτ (Υτ (γ)).
Note that, by definitions 4.16 and 5.7, it is enough to show that

Hyp(γ) =
⋃

G′∈γ

Hyp(G′) ⊆ Ψτ (Υτ (γ)).

If G′ ∈ γ, by lemma 5.10,
Lim(G′) ∩ ThLPD(Υτ (γ) ∪Hyp(G′)) = ∅,

then, by condition (iii) of definition 4.16,
Hyp(G′) ⊆ Ψτ (Υτ (γ)).

The converse of theorem 5.15 does not hold.

5.16 Example. Let T = ∅ and G = { p−(, q−(, p ∧ q−( }.
If γ =

{ { p−(, q−( } }
, then Υτ (γ) is an extension in τ , but γ is not

an expansion in τ .

5.17 Theorem.
� If E is an extension in τ , then Ψτ (E) is an expansion in τ .

Proof:.
According to scholium 4.17,

Ψτ (E) = {G′ | Lim(G′) ∩ ThLPD(E ∪Hyp(G′)) = ∅}.
But, by theorem 5.14, E = Υτ (Ψτ (E)), so

Ψτ (E) = {G′ | Lim(G′) ∩ ThLPD(Υτ (Ψτ (E)) ∪Hyp(G′)) = ∅},
therefore, by lemma 5.10, Ψτ (E) is an expansion in τ .

The converse of theorem 5.17 does not hold, however theorem 5.19
below is proven.
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5.18 Example. Let T = ∅ and G = { p−( q, q−( }.
If E = ThLPD({p?, q?}), then Ψτ (E) = { q−( } is an expansion in τ ,
but E is not an extension in τ .

5.19 Theorem. If Ψτ (E) is an expansion in τ , then Ψτ (E) is
an extension in τ .

Proof:. By theorem 5.15, Υτ (Ψτ (E)) is an extension in τ , hence,
by lemma 5.13, Ψτ (E) is an extension in τ .

5.20 Theorem. The following propositions are equivalent:
� E is an extension in τ ;
� there is an expansion γ in τ such that Υτ (γ) = E.

Proof:.
If E is an extension in τ , we have, by theorem 5.14, that Υτ (Ψ(E)) = E,
but Ψ(E) is an expansion, according to theorem 5.17.
If there is an expansion γ in τ such that Υτ (γ) = E, then, according
to theorem 5.15, E is an extension in τ .

A candidate γ is an expansion in τ if, and only if, γ is a fixed point
of the operator Ψτ ◦Υτ , up to equivalence of candidates.

5.21 Theorem.
� γ is an expansion in τ if, and only if, Ψτ (Υτ (γ)) ≈ γ.

Proof:.
According to scholium 4.17,

Ψτ (Υτ (γ)) = {G′ | Lim(G′) ∩ ThLPD(Υτ (γ) ∪Hyp(G′)) = ∅ }.
But, by lemma 5.10, γ is an expansion in τ if, and only if,

γ ≈ {G′ | Lim(G′) ∩ ThLPD(Υτ (γ) ∪Hyp(G′)) = ∅ }.
5.22 Theorem. The following propositions are equivalent:
� γ is an expansion in τ ;
� there is an extension E in τ such that Ψτ (E) ≈ γ.

Proof:.
If γ is an expansion in τ , then, by theorem 5.15, Υτ (γ) is an extension
in τ , but, by theorem 5.21, Ψτ (Υτ (γ)) ≈ γ.
Conversely, if there is an extension E in τ such that Ψτ (E) ≈ γ, then,
according to theorem 5.17, Ψτ (E) is an expansion in τ , therefore, by
definition 5.9 and lemma 5.11, γ is an expansion in τ .

5.23 Theorem. The following propositions are equivalent:
� T is LPD-trivial;
� τ has only one expansion that is equal to ∅.
5.24 Definition. A candidate γ in τ is said to be essential in τ if the
following condition is satisfied:
� for all G′, G′′ ∈ γ, G′ ¹ G′′ implies that G′ = G′′.
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All rules of an essential candidate are maximal.

5.25 Lemma.
� For each candidate γ in τ , there is an essential candidate γ′ in τ

such that γ ≈ γ′.

The following results apply for well behaved theories, the ones with
only one extension in τ , also called, hereafter, uni-extensional.

5.26 Theorem. If τ has only one extension and γ is an essential
expansion in τ , then the following propositions are valid:
� for each expansion γ′ in τ , γ ≈ γ′;
� if G′ ∈ γ, then T ∪ Conj(G′) is a plausible scenario in τ ;
� if P ∈ Conj(G′), for some G′ ∈ γ, then P? is a plausible formula

in τ28;
� if P ∈ Conj(G′), for all G′ ∈ γ, then P ! is a strictly plausible formula

in τ29;
� Π(τ) = ThLPD(T ∪ T1 ∪ T2 ∪ T3), whereon:
* T1 = {3P | P is a modality-free sentence

and T ∪ {P} is not LPD-trivial };
* T2 = { (

∧
Conj(G′))? | G′ is finite

and G′ is subset of some element of γ };
* T3 = {P ! | P ∈ Conj(G′), for all G′ ∈ γ }.
For general theories, a triggered collection of generalizations can be

defined as follows:

5.27 Theorem.
� G′ is triggered in τ if, and only if, G′ ¹ γ, for all expansions γ in τ .

At the same way as in section 4, plausible scenarios and the set of
theorems of τ can be characterized using expansions.

Next, we present yet another way for characterizing expansions in τ .

5.28 Definition. The following clauses specify some relations between
rules and candidates in τ :
� G′ rejects G′′ in τ  there is a finite G0 ⊆ G′′ such that

T ∪ Conj(G′) CL

∨
Rest(G0) or T ∪ Conj(G′′) CL

∨
Rest(G0);

� γ rejects G′ in τ  there exists G0 ∈ γ such that G0 rejects G′ in τ ,
or G′ rejects G′ in τ ;

� G′ rejects γ in τ  there exists G0 ∈ γ such that G′ rejects G0 in τ .

5.29 Scholium. The following propositions are equivalent:
� G′ rejects G′ in τ ;
� there is a finite G0 ⊆ G′ such that T ∪ Conj(G′) CL

∨
Rest(G0).

5.30 Scholium. The following propositions are equivalent:
� G′ rejects G′′ in τ ;
� there is a finite G0 ⊆ G′′ such that T ∪ Conj(G′) CL

∨
Rest(G0)

or G′′ rejects G′′ in τ .
28 That is, P? is theorem of τ .
29 That is, P ! is theorem of τ .
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5.31 Scholium. The following propositions are equivalent:
� γ rejects G′ in τ ;
� there is G0 ∈ γ and there is a finite G1 ⊆ G′ such that

T ∪ Conj(G0) CL

∨
Rest(G1) or T ∪ Conj(G′) CL

∨
Rest(G1).

5.32 Lemma. The following propositions are valid:

� if





G1 rejects G2 in τ ,
G1 ¹ G′

1,
G2 ¹ G′

2,
then G′

1 rejects G′
2 in τ ;

� if





γ rejects G′ in τ ,
γ ¹ γ′,
G′ ¹ G′′,

then γ′ rejects G′′ in τ ;

� if





G′ rejects γ in τ ,
G′ ¹ G′′,
γ ¹ γ′,

then G′′ rejects γ′ in τ .

5.33 Lemma. The following propositions are equivalent:
� Lim(G′) ∩Υτ (γ) 6= ∅;
� there is G0 ∈ γ and there is a finite G1 ⊆ G′ such that

T ∪ Conj(G0) CL

∨
Rest(G1).

Proof:.
Lim(G′) ∩Υτ (γ) 6= ∅
if, and only if (according to definitions 4.13 and 5.7),

there is a finite G1 ⊆ G′ such that T ∪Hyp(γ) LPD (
∨

Rest(G1))?

if, and only if (by lemma 3.16),

there is G0 ∈ γ and there is a finite G1 ⊆ G′ and there is a finite
G2 ⊆ G0 such that T ∪ (

∧
Conj(G2))? LPD (

∨
Rest(G1))?

if, and only if (again by lemma 3.16),

there is G0 ∈ γ and there is a finite G1 ⊆ G′ and there is a finite
G2 ⊆ G0 such that T ∪∧

Conj(G2) CL

∨
Rest(G1)

if, and only if (by lemma 4.11),

there is G0 ∈ γ and there is a finite G1 ⊆ G′ and there is a finite
G2 ⊆ G0 such that T ∪ Conj(G2) CL

∨
Rest(G1)

if, and only if (by compactness of axiomatic calculi),

there is G0 ∈ γ and there is a finite G1 ⊆ G′ such that
T ∪ Conj(G0) CL

∨
Rest(G1).

5.34 Lemma. The following propositions are equivalent:
� γ rejects G′ in τ ;
� Lim(G′) ∩Υτ (γ ∪ {G′}) 6= ∅.
Proof:.
γ rejects G′ in τ

if, and only if (according to scholium 5.31),
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there is G0 ∈ γ and there is a finite G1 ⊆ G′ such that
T ∪ Conj(G0) CL

∨
Rest(G1) or T ∪ Conj(G′) CL

∨
Rest(G1)

if, and only if (by lemma 5.33),

Lim(G′) ∩Υτ (γ) 6= ∅ or Lim(G′) ∩Υτ ({G′}) 6= ∅
if, and only if,

Lim(G′) ∩Υτ (γ ∪ {G′}) 6= ∅.
5.35 Theorem. The following propositions are equivalent:
� γ is an expansion in τ ;
� for each G′, G′ ¹ γ if, and only if, γ does not reject G′ in τ .

Proof:. It follows directly from definition 5.9 and lemma 5.34.

5.36 Definition. The following clauses define some qualities related
to candidates in τ :
� γ is sound in τ  for each G′ ∈ γ, γ does not reject G′ in τ ;
� γ is complete in τ  for each G′, if γ does not reject G′ in τ ,

then G′ ¹ γ;
� γ is full in τ  for each G′, if γ ∪ {G′} is sound in τ ,

then G′ ¹ γ;
� γ complies with the exceptions-first criterion in τ  for each G′,

if G′ rejects γ in τ , then γ rejects G′ in τ .

5.37 Lemma. The following propositions are equivalent:
� γ is sound in τ ;
� for each G′ ¹ γ, γ does not reject G′ in τ .

5.38 Lemma.
� If γ is sound in τ and G′ ¹ γ, then G′ does not reject γ in τ .

5.39 Lemma. The following propositions are equivalent:
� γ ∪ {G′} is sound in τ ;
� γ is sound in τ , γ does not reject G′ in τ and G′ does not reject γ

in τ .

5.40 Theorem. The following propositions are equivalent:
� γ is an expansion in τ ;
� γ is sound and complete in τ .

Proof:.
Suppose that γ is an expansion in τ .
If G′ ∈ γ, then G′ ¹ γ, so, by theorem 5.35, γ does not reject G′ in τ ,
therefore γ is sound in τ .
If γ does not reject G′ in τ , then, again by theorem 5.35, G′ ¹ γ,
therefore γ is complete in τ .
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Now suppose that γ is sound and complete in τ .
If G′ ¹ γ, then, considering that γ is sound in τ and lemma 5.37,
γ does not reject G′ in τ .
If γ does not reject G′ in τ , then, as γ is complete in τ , we have
that G′ ¹ γ.
Therefore, by theorem 5.35, γ is an expansion in τ .

5.41 Lemma. If γ is complete in τ , then γ is full in τ .

5.42 Example. Let T = ∅ and G = { p−( p, q−( }.
If γ =

{ { p−( p } }
, then γ is full in τ , but γ is not complete in τ ,

nor it is sound in τ .

5.43 Theorem. The following propositions are equivalent:
� γ is an expansion in τ ;
� γ is sound, full and complies with the exceptions-first criterion in τ .

Proof:.
Suppose that γ is an expansion in τ .
By theorem 5.40, we have that γ is sound and complete in τ , so, by
lemma 5.41, γ is full in τ . It remains to demonstrate that γ complies
with the exceptions-first criterion in τ .
If G′ rejects γ in τ , then, considering that γ is sound in τ
and lemma 5.38, G′ � γ, so, by theorem 5.35, γ rejects G′ in τ , therefore
γ complies with the exceptions-first criterion in τ .

Now suppose that γ is sound, full and complies with the exceptions-first
criterion in τ .
If G′ ¹ γ, then, considering that γ is sound in τ and lemma 5.37, we
have that γ does not reject G′ in τ .
If γ does not reject G′ in τ , then, as γ complies with the exceptions-first
criterion in τ , G′ does not reject γ in τ , hence, as γ is sound in τ , we
have by lemma 5.39 that γ ∪ {G′} is sound in τ , so, as γ is full in τ ,
G′ ¹ γ.
Therefore, according to theorem 5.35, γ is an expansion in τ .

5.44 Example (revision of example 4.33).
Consider the LPR-basis τ = 〈T, G〉 of example 4.33:

T = { bird(Tweety), bird(Woody) } ;

G =
{ (

bird(x)→ flies(x)
)−( penguin(x) ,

(
penguin(x)→¬flies(x)

)−( ,

penguin(Tweety)−( }
.

γ =
{{ (

bird(x)→ flies(x)
)−( penguin(x) ,

(
penguin(x)→¬flies(x)

)−( }}

is not an expansion in τ for it does not conform to the exceptions first
criterion. Note that “ penguin(Tweety)−( ” rejects γ, but γ does not
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reject it. We have that Υτ (γ), which equals ThLPD(T ∪ Φ), whereon

Φ =

{ (
∀x

((
bird(x)→ flies(x)

) ∧ (
penguin(x)→¬flies(x)

)))
?

}
,

is not an extension in τ , so the proposition “¬penguin(Tweety)? ”
is not plausible in τ .

6. Conclusions

In this paper we presented a logic to express reasoning. By this term
it is meant a wide variety of inferential practices, with two main char-
acteristics: it allows the derivation of conclusions that does not neces-
sarily preserve the truth of the premises. It embodies in the analysis
statements describing alternative scenarios, possibly even ones that
contradict each other. Those features play an essential role when real
life, practical, effective reasoning is concerned. The first feature, the
non conservativeness of truth, characterizes it as ampliative reasoning ;
the second, the consideration of alternative plausible possibilities as
premises submitted to analysis makes of it complex reasoning.

These characteristics present challenges to the systematization of
their treatment and technical problems to their logical formalization.
The work we faced on was precisely to offer a solution to meet these
challenges, and its result is here presented in the form of a logic able
to express relevant features of a large class of complex ampliative
reasoning, if we have hopefully been well succeeded.

In the process of developing this solution we made some choices and
took some methodological decisions. One of them was to compromise
with a qualitative logic-like approach. This has some clear advantages
in comparison to probabilistic treatment, for instance, but also some
drawbacks. Notice that we characterize as (weakly) plausible something
occurring in at least one scenario, but we have no means to distinguish-
ing among something occurring in just one scenario from some other
thing which occurs in all but one scenario. We don’t count, and that is
the price we pay. This does not mean, however, that what we get is not
relevant, for the consideration of some catastrophic possible occurrence
in the worst of the plausible scenarios is a matter of interest in any
sensible analysis. On the other hand, it may happen, and usually does
happen, that the competing conjectures allowing alternative scenarios
entail conclusions occurring in all scenarios. Those are occurrences of
strong plausibility, and they go beyond the ones that can be inferred
just by considering the assured knowledge. Those conclusions can be
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taken as pragmatic truths, points of consensus among concurrent con-
jectures or theories, which may be considered as certainties for practical
concern.

Another important feature of our work is this idea of treating con-
jectures rounding out knowledge which is taken for granted, and thus
being able to reason taking into account all alternative scenarios as
composing a same framework. Of course the logic does not help to
raise the right conjectures that give birth to the framework, for this
is an empirical task that cannot be performed by logic (unless it is a
logic of discovering, something the authors do not too much trust in),
but, once those conjectures are provided, LPR furnish the means to
construct the alternative possible and plausible scenarios, and to draw
the logical consequences upon them, in the same way classical logic
does from the premises provided.

Complex reasoning prevails everywhere. In all situations in which
knowledge needs to be rounded out with putative guesses and con-
jectures, complex reasoning comes into play. In each matter of con-
sideration there always are different points of view — hopefully not
too many — to account for. This is the case for practical reasoning
in everyday life, nonmonotonic reasoning in Artificial Intelligence, and
even scientific reasoning, to name just a few. Sometimes there are as-
sertions completely justified on their own, and yet, they clash when
put together. This happens when inconsistencies are found in Physics
whilst considering its frontiers, and it is apparent in the early stages of
development of scientific disciplines, such as the so called cognitive sci-
ences nowadays. It is also the case for ancient but complex disciplines.
Ethics, where moral dilemmas often flourish, is one example. Life is too
complex and there is no such a thing as “the truth” or “the right thing
to do”.

In advancing LPR, a logic constructed accordingly with strict math-
ematical methods, we hope we have climbed one step towards the
understanding and formalization of reasoning in all its richness of as-
pects.
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