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Abstract

Aiming clear formulations of the deduction theorem and precise
account of its restrictions, a study concerning the rules introducing
connectives relative to its behavior is conducted. Special attention is
devoted to operators, such as quantifiers and modalities, dealing with
varying objects. Concepts and techniques able to cope with the sub-
tleties of tracing those objects are introduced. As a result, a classifica-
tion of calculi in terms of robustness to applications of the deduction
theorem is given.

1 Introduction

The material implication, no matter of having always being one of the most
disputed connectives along all the history of Logic, is almost universally
present in the myriad of logics nowadays available. In addition to this pop-
ularity, it plays a unique role, in most of the logics it occurs, because it
has a direct connection to the very core of the particular relation of logical
consequence that the logic intends to define. In fact, it works as a formu-
lation for that notion, expressed in terms of the internal logical formalism.
The relation between this internal notion of entailment it represents and the
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notion of logical consequence the logical calculus as a hole express is usually
formulated through the so-called deduction theorem, which establishes the
ways and conditions for their interplay. In general, the way the implica-
tion is introduced in a particular calculus is related to the way the rules for
quantifiers and other connectives alike, such as modalities, are introduced.

In spite of being such a pervasive connective and a so important one,
it can be verified that frequently it is not treated in a way so careful as it
deserves, bringing about imprecision in the enunciation of rules and misap-
plications of theorems related to its definition. The aim of the authors in
this paper is precisely the one of clearing out the issue, by making explicit
all the elements and relations involved in the formulations of the rules for
the introduction of some key connectives that have the power to interfere in
the correct enunciation of the deduction theorem applicable in a particular
calculus. Among these connectives there are quantifiers and other operators
of the kind, such as modalities, whose occurrence in a formula may require
some sort of tracing of the varying objects that they, whether explicitly or
implicitly, may involve, and that may affect the behavior of the terms oc-
curring in the deduction theorem. This concept of a varying object, which
generalizes the one of a variable, together with two basic relations, named
here as dependency and supporting, to be introduced later in the paper, are
the key elements in our strategy to make explicit the mutual relations among
the rules introducing those connectives and the way they affect the correct
enunciation and applications of the deduction theorem. The treatment given
here for the subject is conducted in the style of generalized logic, meaning
the introducing of concepts, theorems and procedures with no special re-
gards for particular systems but, instead of it, using them to characterize
classes of logics with respect to properties related to these concepts. It turns
out, from this strategy, the results being applicable to large classes of logics,
whether known or yet to develop. The concepts here presented had been
already applied by the authors in the formulations and generalized proofs of
metatheorems for some non classical calculi in [2] and [3].

It can be observed by a careful examination of the classical logic books
that two distinct choices for the introduction of implication and quantifiers
have been made standard:
1st) The rule for introducing the implication has no restrictions, but there

are constraints for introducing the universal quantifier and other op-
erators of the kind. A calculus adopting this strategy is called closed
in our context. It is more often used in calculi presented in natural
deduction and sequent calculus style. Examples of closed calculi may
be found in [1], [10], [4], [5] and [8]. However, this closed option may
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be very cumbersome when used to calculi presented in axiomatic style
having varying objects other than variables, such as in modal logics.

2nd) The introduction of implication is done with restrictions, but the
introduction of the universal quantifier and other analogous operators
is unconditional. This strategy is more often adopted for axiomatic
formulations. From here on, this kind of calculi are called open.
Examples may be found in [6], [7] and [9].

It is important to notice that these alternative strategies are not incom-
patible and have been adopted as variants for the definition of the same logic,
classical logic, for instance. However, the resulting calculi are not strictly
equivalent. They are equivalent just in the sense of having the same logical
theorems but not in the stronger sense of implementing the same deduction
relation. For instance, in an open formalization for the classical logic we
have p(x) ` ∀x p(x), but the same does not hold for a closed formalization.

Some well known formulations of the deduction theorem, in the con-
text of open calculi, presented in axiomatic style, that can be found in the
literature, present some undesirable features, such as:
• explicit use of the concept of demonstration, instead of an idea of a higher

level dealing with syntactic consequence;
• lack of an adequate tracing to accompany the use of varying objects

in rules of generalization, making it difficult further applications of the
deduction theorem, in a context, after the first time it has been applied.
Furthermore, we consider it essential, for a deeper understanding of this

matter, to conduct a survey, followed by a careful study, of the basic prop-
erties of the consequence relations involved. We have discovered in this
study two relevant relations of consequence, with different tracing systems
for varying objects, here called dependence and supporting. Under certain
special conditions, to be precisely stated later, these relations can be proved
to be equivalent, enabling the use of the most convenient properties of both
of them.

Below we will give two examples of formulations of the deduction theo-
rem, commonly found in the literature, that suffer from the above-mentioned
ills:
• “For the predicate calculus (or the full number-theoretic formal system),

if Γ, A ` B with the free variables held constant for the last assumption
formula A, then Γ ` A → B.” According to [6], p. 97.

• “Assume that Γ, A ` B, where, in the deduction, no application of Gen to
a wf which depends upon A has as its quantified variable a free variable
of A. Then Γ ` A → B.” According to [7], p. 63.
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In this study, we have found formulations for the deduction theorem that
overcome these problems in a generalization that covers a broad spectrum
of logics.

2 Variation, Dependence and Supporting

From now on, we will consider C an axiomatic calculus, α,β,γ formulas in C,
and Γ,Φ,ζ collections of formulas in C; the same conventions continue to be
valid if the cited signals are used with primes and/or subscripts.

2.1 Pre-Definition. For each application of a rule of inference r in C, we
consider as previously known the varying objects of this application in C.
If r is a rule in C, whose applications do not have varying objects, we say
that r is a constant rule in C; otherwise we say that r is a varying rule in
C. We say that o is a varying object in C if there is an application of a rule
in C such that o is a varying object of this application. We also consider
as previously known when a varying object o is free in a given formula α.
The following additional conditions are to be fulfilled:
• the number of varying objects of each application of a rule in C is finite;
• each varying object of an application of a rule is not free in the conse-

quence of this application.

2.2 Examples. In practice, we find the following varying objects:
• variables used in universal quantification: “x” is the varying object of

the application ∀x α
α of the rule of universal generalization, which occurs

in many quantificational logics;
• the hidden variable used for introducing connectives associated with modal-

ities such as necessity; such variable can be indicated by the sign itself
introduced by the rule: “¤” is the varying object of the rule ¤α

α , which
occurs in many modal logics.

2.3 Definition. Let D = α1, . . . , αn be a demonstration in C. We say that
αi is relevant to αj in D (i, j ∈ {1, . . . , n}) if one of the following conditions
is fulfilled:
• i = j and αj is justified in D as a premise;
• αj is justified in D as a consequence of an application β1,...,βp

αj
of a rule

in C and there exists a hypothesis βk (k ∈ {1, . . . , p}) of this application
such that αi is relevant to βk in D.
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2.4 Definition. We say that a demonstration D in C depends on a collec-
tion V of varying objects if V contains the collection of varying objects o of
applications of rules in D having a hypothesis in which o is free such that
there is a formula, justified as a premise in D, whereon o is free too, relevant
to this hypothesis in D. If there is a demonstration in C of α from Γ such
that it depends on V, we say that α depends on V from Γ in C, and we
note this by Γ C

V
α . If V = {o1, . . . ,on} and n ≥ 1, we also note this by

Γ C

o1,...,on
α. If V = ∅ , we say that D is an unvarying demonstration in C.

If α depends on ∅ from Γ in C, we say that it is an unvarying consequence
of Γ in C.

2.5 Theorem. A formula α depends on V from Γ in C if, and only if, at
least one of the following conditions is fulfilled:
• α is an axiom of C;
• α ∈ Γ;
• there is an application α

α1,...,αn of a rule in C such that
Γ C

V
α1, . . . , Γ C

V
αn and, for every varying object o of this applica-

tion such that o /∈ V and for every αi (1 ≤ i ≤ n), if o is free in αi, then
there is Γ′ ⊆ Γ, such that o is not free in Γ′ and Γ′ C

V
αi.

If V = ∅, we can replace the third clause by the following condition:
• there exists an application α

α1,...,αn of a rule in C such that
Γ C

∅
α1, . . . , Γ C

∅
αn and, for every varying object o of this applica-

tion and for every αi (1 6 i 6 n), if o is free in αi, then there exists
Γ′ ⊆ Γ such that o is not free in Γ′ and Γ′ C

∅
αi.

2.6 Examples. In an open axiomatic calculus with the rules of universal
generalization and of necessity, we have the following examples of depen-
dence:
• p(x, y)

x,y ∀x∀y p(x, y);

• px
x,¤ ¤∀x px.

2.7 Theorem. The following properties are valid for the relation “ C
V ”:

(i) if there is a demonstration D in C of α from Γ whose collection of
varying objects of applications of rules of C in D is V, then Γ C

V
α;

(ii) if Γ C
V

α, then Γ C α;
(iii) if Γ C α, then there is a collection V of varying objects such that

Γ C
V

α;

(iv) C α iff C

∅
α;

(v) if Γ C
V

α and V j V ′, then Γ C
V ′

α;
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(vi) if Γ C
V

α and Γ j Γ′, then Γ′ C
V

α;

(vii) if Γ C
V

α, then there is V ′ j V such that V ′ is finite and Γ C
V ′

α;
(viii) if Γ C

V
α, then there is Γ′ j Γ such that Γ′ is finite and Γ′ C

V
α;

(ix) if Γ C
V

α and, for each o ∈ W, o is not free in Γ, then Γ C

V−W
α;

(x) if




∗ Γ C

V
α,

∗ for each o ∈ W, there exists Γ′ ⊆ Γ such that o is not free
in Γ′ and Γ′ C

V
α,

then Γ C

V−W
α.

2.8 Example. The following assertions are not valid for the relation “ C
V ”:

• if Γ C
V

α1, . . . , Γ C
V

αn, {α1, . . . , αn} C
W

β, then Γ C

V1 ∪···∪Vn ∪W
β;

• if





∗ Γ C
V

α1, . . . , Γ C
V

αp,
∗ {α1, . . . , αp} C

o1,...,on
β,

∗ for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , p}, if oi /∈ V
and oi is free in αj , then there exists Γ′ ⊆ Γ such that
oi is not free in Γ′ and Γ′ C

V
αj ,

then Γ C
V

β.

Proof. Let C be a calculus whose axioms are given by the schemas
“α → α ∨ β” and “∀xα→ α(x|t)”, and whose rules of inference are β

α, α→β

and ∀x α
α , such that the first is a constant rule and the second is a varying

rule in which the varying object of each application is the corresponding
quantified variable.

We have that

{
{∀y Q(y, z), Q(y, z)→Ry} C

∅
Ry

Ry C

∅ ∀z (Ry ∨ Sz)
, however it is not true

that {∀y Q(y, z)→ Ry} C

∅ ∀z (Ry ∨ Sz), from which we have a counterex-
ample for the first proposition.

Likewise, we have that

{
{∀y Q(y, z), Q(y, z)→Ry} C

∅
Ry

Ry C

y ∀y∀z (Ry ∨ Sz)
, nevertheless

it is not true that {∀y Q(y, z), Q(y, z)→Ry} C

∅ ∀y∀z (Ry∨Sz), from which
we have a counterexample for the second proposition.

2.9 Definition. We say that a demonstration D in C is supported by a col-
lection V of varying objects if V contains the collection of varying objects of
applications of rules in D such that, for each conclusion of such applications,
there exists a premise relevant to it in D. If there exists a demonstration in
C of α from Γ such that D is supported by V, we say that α is supported by
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V from Γ in C, and we note this by Γ C
V

α. If V = {o1, . . . ,on} and n ≤ 1,
we also note Γ C

V
α by Γ C

o1,...,on
α. If V = ∅, we say that D is a stable

demonstration in C. If α is supported by ∅ from Γ in C, we say that α is a
stable consequence of Γ in C.

2.10 Theorem. If V is a collection of varying objects in C, then α is
supported by V from Γ in C if, and only if, at least one of the following
clauses is fulfilled:
• α is an axiom of C;
• α ∈ Γ;
• there exists an application α

α1,...,αn of a rule in C such that
Γ C

V
α1, . . . ,Γ C

V
αn and, if there is a varying object o of this ap-

plication such that o /∈ V, then C α1, . . . , C αn.

2.11 Example. In an open axiomatic calculus with the rules of generaliza-
tion and necessity, we have the following example of supporting:
• ♦px

¤,y ¤∀y ♦px.

2.12 Theorem. The following properties are valid for the relation “ C
V ”:

(i) if there exists a demonstration D in C of α from Γ whose collection of
varying objects of applications of rules of C in D is V, then Γ C

V
α;

(ii) if Γ C α, then there is a collection V of varying objects such that
Γ C

V
α;

(iii) C α iff C

∅
α;

(iv) if Γ C
V

α and V ⊆ V ′, then Γ C
V ′

α;

(v) if Γ C
V

α and Γ ⊆ Γ′, then Γ′ C
V

α;

(vi) if Γ C
V

α, then there exists V ′ ⊆ V such that V ′ is finite and Γ C
V ′

α;

(vii) if Γ C
V

α, then there exists Γ′ ⊆ Γ such that Γ′ is finite and Γ′ C
V

α;

(viii) if Γ C

V1
α1, . . . , Γ C

Vn
αn, {α1, . . . , αn} C

W
β,

then Γ C

V1 ∪···∪Vn ∪W
β.

2.13 Theorem. The following proposition describes a way of expansion for
the relation “ C

V ” in a generic calculus.

• If Γ C

V1
α1, . . . , Γ C

Vn
αn, {α1, . . . , αn} C

W
β, then Γ C

V1∪···∪Vn∪W
β.

2.14 Theorem. If Γ C
V

α, then Γ C
V

α.
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Proof. If α is an axiom of C or α ∈ Γ, there is nothing to prove.
Let us suppose then there is an application α

α1,...,αn of a rule of C fulfilling
the conditions of theorem 2.10. By induction hypothesis, we have that
Γ C

V
α1, . . . ,Γ C

V
αn. Given a varying object o of this application such that

o /∈ V, we have C α1, . . . , C αn, and hence C α, which is, according to
theorem 2.7, a sufficient condition for concluding that Γ C

V
α.

3 Special Axiomatic Calculi

3.1 Definition. A calculus C is said to be partial stable if the following
conditions are valid:
• each varying rule of C is unary, its domain is the collection of all formulas

in C, and each of its applications has exactly one varying object;
• for each application α

α′ of a varying rule in C, if its varying object is not
free in α′, then α′ C

∅
α;

• for each application α
α1,...,αn of a constant rule in C, if α′1, . . . , α

′
n are

respectively conclusions of applications of a varying rule over α1, . . . , αn,
using the same varying object, then α′1, . . . , α

′
n C

∅
α′.

3.2 Theorem. If C is partial stable and Γ C

∅
α, then, for each application

α′
α of a varying rule in C such that its varying object is not free in Γ, Γ C

∅
α′.

Proof. It’s similar to the proof of theorem 3.12.

3.3 Theorem. If C is partial stable, then Γ C

∅
α iff Γ C

∅
α.

Proof. It’s similar to the proof of theorem 3.13.

3.4 Theorem. If C is partial stable, then “ C

∅ ” has the following additional
property:

• if





∗ Γ C

∅
α1, . . . , Γ C

∅
αp,

∗ {α1, . . . , αp} C

o1,...,on
β,

∗ for every i ∈ {1, . . . , n} and for every j ∈ {1, . . . , p}, if oi is free
in αj , then there exists Γ′ ⊆ Γ such that oi is not free in Γ′ and
Γ′ C

∅
αj ,

then Γ C

∅
β.

Proof. It is similar to the proof of theorem 3.14.
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3.5 Corollary. If C is partial stable, then the following additional proper-
ties are valid for the relation “ C

∅ ”:

• Γ C

∅
α1, . . . ,Γ C

∅
αp, {α1, . . . , αp} C

∅
β, then Γ C

∅
β;

• if





∗ Γ C

∅
α1, . . . ,Γ C

∅
αp,

∗ {α1, . . . , αp} C

o1,...,on
β,

∗ for every i ∈ {1, . . . , n} and for every j ∈ {1, . . . , p}, if oi is free
in αj , then there exists Γ′ ⊆ Γ such that oi is not free in Γ′ and
Γ′ C

∅
αj ,

then Γ C

∅
β.

Proof. It suffices to use theorem 3.3, the eighth proposition of theorem 2.12
and theorem 3.4.

3.6 Definition. A calculus C is said to be partial strong if the following
clauses are satisfied:
• C α→ α;

• β C

∅
α→ β;

• α, α→ β C

∅
β;

• for each application β

β1,...,βn of a constant rule in C,

{α→ β1, . . . , α→ βn} C

∅
α→ β.

3.7 Theorem. The following propositions are equivalent:
• C is a partial strong calculus;
• for any Γ and α, whereon Γ is a collection of formulas in C and α is a

formula in C, Γ ∪ {α} C

∅
β iff Γ C

∅
α→ β.

Proof. It is similar to the proof of theorem 3.17.

3.8 Scholium. If the first, second and fourth clauses of definition 3.6 are
valid, then Γ ∪ {α} C

∅
β implies that Γ C

∅
α→ β.

3.9 Definition. A calculus is said to be partial strong stable if it is partial
strong and partial stable.

3.10 Corollary.
• If C is a partial strong stable calculus, then Γ∪ {α} C

∅
β iff Γ C

∅
α→ β.

Proof. It suffices to use theorems 3.3 and 3.7.
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3.11 Definition. A partial stable calculus C is said to be stable if it has
the following additional property:
• for each application α

β
of a varying rule in C, whereon o is its varying

object, if α′ and β′ are respectively conclusions of applications of a varying
rule in C over α and over β using a varying object distinct from o, then
β′ C

o
α′.

3.12 Theorem. If C is stable and Γ C
V

α, then, for each application
α′
α of

a varying rule in C such that its varying object is not free in Γ, Γ C
V

α′.

Proof. Let
α′
α be an application of a varying rule in C, whose varying object,

denoted by o from now on, is not free in Γ.
If α is an axiom of C, then C α, so C α′, therefore Γ C

V
α′.

If α ∈ Γ, then o is not free in α, so, as C is stable, α C

∅
α′, therefore

Γ C
V

α′.
If there is an application of a constant rule α

α1,...,αn in C
such that Γ C

V
α1, . . . ,Γ C

V
αn, we have, by induction hypothesis, that

Γ C
V

α′1, . . . , Γ C
V

α′n, whereon α′1, . . . , α
′
n are respectively consequences

of α1, . . . , αn by the same rule in which α′ is a consequence of α, using the
same varying object o. As C is stable, it follows that α′1, . . . , α

′
n C

∅
α′,

therefore Γ C
V

α′.

Let us suppose now that there exists an application α
β

of a varying rule in C,
whose varying object is o’, such that Γ C

V
β. Consider β′ as consequence of

β by the same rule in which α′ is consequence of α, using the same varying
object o. By induction hypothesis, Γ C

V
β′. If o′ ∈ V and o′ = o, then

o ∈ V, hence, from the hypothesis Γ C
V

α, we have that Γ C
V

α′. If o′ ∈ V
and o′ 6= o, then, as C is stable, β′ C

o′
α′, therefore Γ C

V
α′. If o′ /∈ V, then

C α, hence C α′, therefore Γ C
V

α′.

3.13 Theorem. If C is stable, then Γ C
V

α iff Γ C
V

α.

Proof. By theorem 2.14, we have that Γ C
V

α implies Γ C
V

α, so it remains
to prove the converse.
Let us suppose that Γ C

V
α.

Let D be a demonstration of α from Γ depending on V, β be the first
occurrence of a formula in D justified as a consequence of an application

of a varying rule β

β′
such that its varying object does not belong to V and
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some premise is relevant to β′ in D, and o be the varying object of this
application.
If o is not free in β′, then, as C is stable, we have that β′ C

∅
β, hence, as

the considered occurrence of β′ precedes β′ in D, we have that Γ C
V

β′, and
therefore, by transitivity of “ C

V ”, Γ C
V

β.
If o is free in β′, then, as o /∈ V, there exists Γ′ ⊆ Γ such that o is not free in
Γ′ and Γ′ C

V
β′, hence, as C is stable and in accordance with theorem 3.12,

Γ′ C
V

β, therefore Γ C
V

β.
In any case, there is a demonstration Dβ in C of β from Γ supported by V.
Replacing the considered occurrence of β in D by Dβ, we obtain, given D,
a demonstration in C of α from Γ, in which the number of applications of
varying rules, whose varying objects do not belong to V and whose hypothe-
ses have premises relevant to them in the new demonstration, has decreased
one unit. Repeating the same process a finite number of times, we obtain a
demonstration in C of α from Γ supported by V, or rather Γ C

V
α.

3.14 Theorem. If C is stable, then “ C
V ” has the following additional

property:

• if





∗ Γ C
V

α1, . . . ,Γ C
V

αp,
∗ {α1, . . . , αp} C

o1,...,on
β,

∗ for every i ∈ {1, . . . , n} and for every j ∈ {1, . . . , p}, if oi /∈ V
and oi is free in αj , then there exists Γ′ ⊆ Γ such that oi is not
free in Γ′ and Γ′ C

V
αj ,

then Γ C
V

β.

Proof. Let D1, . . . ,Dp be respectively demonstrations in C of α1, . . . , αp

from Γ supported by V, and let E be a demonstration in C of β from
{α1, . . . , αp} supported by {o1, . . . ,on}. Concatenating D1, . . . ,Dp, E , we
obtain a demonstration D of β in C from Γ.
Let γ be the first occurrence of a formula in D justified as a consequence

of an application γ
γ′

of a varying rule, such that its varying object does not
belong to V and some element of Γ is relevant to γ′ in D. As D1, . . . ,Dp are
demonstrations supported by V, we have that the considered occurrence of γ′

appears in E , and hence, considering o the varying object of the application,
we get o ∈ {o1, . . . ,on}.
Let ϑ and ζ be defined by

ϑ = {αj | j ∈ {1, . . . , p} and o is free in αj},
ζ = {αj | j ∈ {1, . . . , p} and o is not free in αj}.
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It is easy to verify that there exists a finite Γ′, such that Γ′ ⊆ Γ, o is not
free in Γ′ and, for every δ ∈ ϑ, Γ′ C

V
δ. Therefore, by the construction of ζ,

Γ′ ∪ ζ C
V

α1, . . . , Γ′ ∪ ζ C
V

αp, and o is not free in Γ′ ∪ ζ.
As the considered occurrence of γ′ precedes γ in D, we have that
{α1, . . . , αp} C

V
γ′, and hence, by transitivity of “ C

V ”, we get Γ′ ∪ ζ C
V

γ′,
and therefore, by theorem 3.12, Γ′ ∪ ζ C

V
γ.

For every δ ∈ Γ′ ∪ ζ, we have that Γ C
V

δ, and hence, once again due to
transitivity of “ C

V ”, Γ C
V

γ. Or rather, there exists a demonstration Dγ

in C of γ from Γ supported by V. Replacing the considered occurrence of
γ in D by Dγ , we have a new demonstration D′ in C of β from Γ, in which
the number of applications of varying rules, whose varying objects do not
belong to V and each hypothesis has some premise relevant to it in D′, has
decreased one unit. Repeating the same process a finite number of times,
we obtain a demonstration in C of β from Γ supported by V, or rather,
Γ C

V
β.

3.15 Corollary. If C is stable, then the following additional properties are
valid for the relation “ C

V ”:

• if Γ C

V1
α1, . . . , Γ C

Vp
αp, {α1, . . . , αp} C

W
β, then Γ C

V1∪···∪Vp∪W
β;

• if





∗ Γ C
V

α1, . . . , Γ C
V

αp,
∗ {α1, . . . , αp} C

o1,...,on
β,

∗ for every i ∈ {1, . . . , n} and for every j ∈ {1, . . . , p}, if oi /∈ V and
oi is free in αj , then exists Γ′ ⊆ Γ such that oi is not free in Γ′

and Γ′ C
V

αj ,
then Γ C

V
β.

Proof. It suffices to use theorem 3.13, the eight proposition of theorem 2.12
and theorem 3.14.

3.16 Definition. A partial strong calculus C is said to be strong if it has
the following additional property:
• for each application β

β1,...,βn of a varying rule of C whose collection of
varying objects is V, if no element of V is free in α, then
{α→ β1, . . . , α→ βn} C

V
α→ β.

3.17 Theorem. The following propositions are equivalent:
(i) C is a strong calculus;
(ii) for any Γ, α and V, whereon Γ is a collection of formulas in C, α is

a formula in C and each o ∈ V is not free in α,
Γ ∪ {α} C

V
β iff Γ C

V
α→ β.

12



(i) implies (ii). Let us suppose that C is a strong calculus and that each
o ∈ V is not free in α.
If Γ C

V
α→ β, then, due to clause (iii) of definition 3.6, Γ ∪ {α} C

V
β.

Suppose now that Γ ∪ {α} C
V

β.
If β is an axiom of C, then C β, hence, according to clause (ii) of defini-
tion 3.6, Γ C α→ β, therefore Γ C

V
α→ β.

If β ∈ Γ, then Γ C
V

β, hence, according to clause (ii) of definition 3.6,
Γ C

V
α→ β.

If β = α, then, according to clause (i) of definition 3.6, Γ C α→α, therefore
Γ C

V
α→ β.

If there is an application β

β1,...,βn of a rule of C such that Γ ∪ {α} C
V

β1, . . . , Γ ∪ {α} C
V

βn, we have, by induction hypothesis, that

Γ C
V

α→ β1, . . . ,Γ C
V

α→ βn.

If there is a varying object of this application that does not belong to V,
then, according to theorem 2.10, C β, hence, once again by clause (ii)
of definition 3.6, C α → β, therefore C

V
α → β. If every varying object

of this application belongs to V, then, as C is strong, we conclude that
Γ C

V
α→ β.

(ii) implies (i). Let us suppose that for any Γ, α and V, whereon Γ is a
collection of formulas in C, α is a formula in C and each o ∈ V is not free
in α, Γ ∪ {α} C

V
β iff Γ C

V
α→ β.

As α C α, we have that C α→ α.

As {β, α} C

∅
β, we get β C

∅
α→ β.

As α→ β C

∅
α→ β, we have that {α, α→ β} C

∅
β.

Finally, let β

β1,...,βn be an application of a rule of C whose collection of
varying objects is V, and α a formula in C where no element of V is free.
We have that

{α→ β1, . . . , α→ βn, α} C

∅
β1, . . . , {α→ β1, . . . , α→ βn, α} C

∅
βn,

hence, as {β1, . . . , βn} C
V

β,

{α→ β1, . . . , α→ βn, α} C
V

β,

therefore
{α→ β1, . . . , α→ βn} C

V
α→ β.

13



3.18 Scholium. If the first, second and fourth clauses of definition 3.6, to-
gether with the only clause of definition 3.16, are valid, then
Γ ∪ {α} C

V
β implies that Γ C

V
α→ β.

3.19 Definition. A calculus is said to be strong stable if it is strong and
stable.

3.20 Theorem. If C is a strong stable calculus and each o ∈ V is not free
in α, then Γ ∪ {α} C

V
β iff Γ C

V
α→ β.

Proof. It suffices to use theorems 3.17 and 3.13.

3.21 Definition. We note by C[Γ] the calculus obtained from C with the
addition of Γ as a postulate. If Γ is a singleton of the form {α}, then we
also note C[Γ] by C[α].

3.22 Theorem. The following assertions are valid for C[Γ]:
• Γ′ ∪ Γ C α iff Γ′

C[Γ]
α;

• Γ′ ∪ Γ C

∅
α iff Γ′

C[Γ]

∅
α;

• if Γ′ ∪ Γ C
V

α, then Γ′
C[Γ]

V
α;

• if Γ′
C[Γ]

V
α, then there exists W ⊇ V such that Γ′ ∪ Γ C

W
α;

• if Γ′ ∪ Γ C
V

α, then Γ′
C[Γ]

V
α;

• if Γ′
C[Γ]

V
α, then there exists W ⊇ V such that Γ′ ∪ Γ C

W
α;

• if C is partial stable, then C[Γ] is partial stable;
• if C is partial strong, then C[Γ] is partial strong;
• if C is partial strong stable, then C[Γ] is partial strong stable;
• if C is stable, then C[Γ] is stable;
• if C is strong, then C[Γ] is strong;
• if C is strong stable, then C[Γ] is strong stable.

3.23 Corollary. C[Γ] has the following properties with respect to intro-
duction of implication:
• if C is partial strong, then Γ′ ∪ {α}

C[Γ]

∅
β iff Γ′

C[Γ]

∅
α→ β;

• if C is partial strong stable, then Γ′ ∪ {α}
C[Γ]

∅
β iff Γ′

C[Γ]

∅
α→ β;

• if C is strong and each o ∈ V is not free in α, then
Γ′ ∪ {α}

C[Γ]

V
β iff Γ′

C[Γ]

V
α→ β;

• if C is strong stable and each o ∈ V is not free in α, then
Γ′ ∪ {α}

C[Γ]

V
β iff Γ′

C[Γ]

V
α→ β.

14



4 Conclusions

We have found optimized formulations for the deduction theorem for a broad
class of open axiomatic calculi, which overcome all the problems that we
pointed out in the beginning, within every spectrum of possible restrictions
in their deductive functioning — from the partial stable and partial strong
to the strong stable calculi.

The weakest formulation of the deduction theorem belongs among the
partial strong stable calculi. An example of a calculus of this type can be
seen in [2], p. 133, which is a translation to a first order language of the
Logic of Skeptical Deduction, defined in the same work, in Chapter 5. This
calculus was essential for the proof of completeness of an axiomatic calculus
with respect to the semantics of this logic.

The strongest formulation of the same theorem belongs among the strong
stable calculi, which constitute the great majority of open axiomatic calculi,
concerning the material implication, found in the literature.

Our initial motivation was the search for a conceptual basis for an ab-
stract proof of completeness regarding generic calculi, which was done in [2],
pp. 72–88. A concise exposition of this proof will be the subject of a future
paper.
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Semântica e Axiomática. PhD thesis, Pontif́ıcia Universidade Católica
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