
-1-

AUTOMATED DEDUCTION WITH NON CLASSICAL NEGATIONS

Arthur Buchsbaum Tarcisio Pequeno
Laboratório de Inteligência Artificial

Universidade Federal do Ceará

Departamento de Computação

Campus do PICI / Bloco 910

60455–760 – Fortaleza/CE – Brasil

Tels: 55 85 2671513 – 55 85 2264419

Fax: 55 85 2231333

Emails: arthur@lia.ufc.br – tarcisio@lia.ufc.br

Abstract

Three basic alternatives to classical negation, represented by the

paraconsistent calculus C1, the paracomplete calculus P1 and the non alethic

calculus N1, are treated. For each one of these calculi a tableau system is given.

A general sketch of the proof of soundness and completeness of these tableaux

against their correspondent calculi is provided.

1. Introduction

Two of the three basic principles taken by the founders of logic as self evident and

adopted ever since for the construction of standard logical systems are related to negation: the

non contradiction law and the law of excluded middle. This is a reason why most of non

standard logics, even when they are not directly concerned with revising negation, are going to

affect negation behavior by not endorsing some of its classical properties. This happens, for

instance, to relevant systems with respect to non contradiction to the extent that contradictory

theories in relevant logic may not be pathological and to admit models. It also happens to

intuitionistic logic with respect to excluded middle.

More concerned with negation, there are several non standard logics whose explicit

aim is exactly to question the universality and necessity of the above mentioned principles.

This is done at least up to the point of demonstrating the feasibility of constructing non trivial

logical systems relaxing those classical negation properties, in [5,8,7]. This kind of non

classical logics can be generally divided into three families: the paraconsistent logics, which

relax non contradiction, the paracomplete logics, relaxing excluded middle, and non alethic

logics, relaxing both.

Our concern here is the study of automated procedures for these three types of logical

systems. Since classical negation properties play a central and very special role for the

-2-

conception of automated deduction methods, interesting questions are immediately raised.

How refutational proof procedures are going to work for logics in which contradictory

theories are no longer unsatisfiable? How tableau expansion rules should be changed in order

to work for these logics? What are sound conditions for closure of tableau branches?

These questions are faced here in a very concrete fashion by the presentation of proof

procedures for representatives of each one of those logical families. Those kind of logical

systems have been intensely studied by da Costa and his collaborators.

We choose then as representative three of the most popular logics developed by his

group: the paraconsistent calculus C1, the paracomplete calculus P1, and the non alethic

calculus N1. For the sake of generality and simplicity, tableau-like procedures have been

adopted in this presentation.

2. Basic Elements of Tableau Systems

In order to generalize tableau method, making it applicable to non standard logics, its

basic elements are identified in [1]. These elements are:

• Initialization Function — it sets up a formula derived from the proposed theorem on the

root of the tableau, in order to prepare for the unsatisfiability test provided by tableau

procedure. Frequently it is just the negation of a given formula, but it could be some other

suitable transformation. This initial tableau starts the process of tableau development

which proceed by recurrent application of expansion rules.

• Expansion Rules — these rules are the core of tableau method. They promote branching

in the tableaux by performing analysis of the formulas occurring in them. This analysis

leads to irreducible forms (or literals), formulas which are not in the domain of any

expansion rule.

• Closure Conditions — these are special conditions that, when occurring in a branch of a

tableau, cause the closure of this branch. The goal of a tableau procedure is exactly to

close all the branches of the tableau, therefore proving the proposed theorem.

To define a particular tableau procedure is to define these three elements. All the

logics to be treated here have in common the fact that classical negation is definable in them.

This is not a special feature of this particular sample. It is a very widespread property (if not a

universal one) of this kind of logics that classical negation is either definable in, or belonging

to a conservative extension of them. To define classical negation is to express a connective

which satisfies all theorems that negation does in classical logic. This includes the axiom of

absurd, which is crucial to a refutational method. So, the initialization of the tableau will be

always done by a defined negation of the proposed theorem. In spite of this apparent

uniformity, it will be seen that this definition varies substantially from logic to logic.

Defined negation will also play a role for the closure criteria, but it does not solve

entirely our problem. To deal with a non standard logic is to deal with a peculiar set of

tautologies. So, the tableau expansion rules, the core of a system of tableaux, as we have said,

must be rebuilt in accordance to this new set.

-3-

Non standard logics will also exhibit peculiar irreducible forms, i.e., peculiar sets of

literals. When a tableau system is based on a recursive semantics, i.e., a semantics in which

the truth value of any complex formula is entirely determined by the truth values of its atomic

components, the closure conditions may be expressed in terms of literals. This is not the case

for the logics treated here. No recursive semantics are known to date to these logics [6,8,7].

So, the closure conditions are expressed in terms of general formulas. Paraconsistent,

paracomplete and non alethic logics with recursive semantics are given in [2].

3. The Paraconsistent Calculus C1

A paraconsistent logic is a logic in which an inconsistent theory is not necessarily the

set of all formulas in the language. In other words, a logic in which the presence of a

contradiction does not trivialize a theory. Semantically, this means that in a paraconsistent

logic an inconsistent theory could have a model. A trivial theory, on the other hand, will be an

unsatisfiable one. Da Costa has sometimes, as in [5], translated this condition into a

requirement stating that ¬(A ∧ ¬A), which in a sense express internally the non contradiction

law, should not be a logical theorem. This is not in fact a necessary condition for the

attainment of paraconsistency, as it is attested in [2] and [9], but it is anyway respected by the

family Cn of paraconsistent calculi. C1 is the first member of this family. Its axiomatics is the

following:

A → (B → A);

(A → B) → (A → (B → C)) → (A → C);

A, A → B / B;

A ∧ B → A;

A ∧ B → B;

A → (B → A ∧ B);

A → A ∨ B;

B → A ∨ B;

(A → C) → (B → C) → (A ∨ B → C);

A ∨ ¬A;

¬¬A → A;

Bo → ((A → B) → ((A → ¬B) → ¬A));

Ao ∧ Bo → (A → B)o ∧ (A ∧ B)o ∧ (A ∨ B)o.

A° is shorthand for ¬(A ∧ ¬A).

In C1 the schemes ¬(A ∧ ¬A) and (A ∧ ¬A) → B are not theorems.

Classical negation can be defined in C1 by:

∼A ≡ ¬A ∧ A°

The connective “∼”, as defined above, holds all properties of classical negation in C1.

The following formulas are among the theorems of C1 that played an important role for

the design of rules for C1 tableaux:

├─
C1

¬A ↔ ∼A ∨ ∼A°;

├─
C1

A° ↔ ∼A ∨ ∼¬A;

├─
C1

¬¬A → A;

-4-

├─
C1

∼¬A → A;

├─
C1

¬∼A ↔ A;

├─
C1

¬A° ↔ ∼A°.

We present below a tableau system for C1 (this system has been presented before

in [3]). The tableau is initialized by the classical negation (∼) of the given formula.

The tableau expansion rules are the following (the symbol “#” is used to represent

anyone of the connectives “→”, “∧”, or “∨”):

The rules for ∼∼A, ¬∼A, ∼(A°) or ¬(A°) are given for the sake of computational

convenience, but are not essential for completeness of this tableau system with respect to C1.

According to these rules, literal forms in C1 are: p, ∼p and ¬p, where p is an atomic formula.

A branch is closed in this tableau if A and ∼A occurs in it. The presence of one of the

following formulas in a branch is sufficient condition for its closure: ∼((A ∧ ¬A)°), ∼(A°°)

or ∼((∼A)o). However, these additional criteria are not essential for completeness.

4. The Paracomplete Calculus P1

A paracomplete logic, as defined in [8], is a logic in which two formulas, A and ¬A,

can be both false. It fits our intuition about all kinds of epistemic attitudes such as knowledge,

perception, belief, etc. We don't know many things, thence sometimes we can't affirm or deny

a property of a given object that we don't perceive perfectly. The axiomatics of P1 is the

following:

A → (B → A);

(A → B) → (A → (B → C)) → (A → C);

A, A → B / B;

A ∧ B → A;

A ∧ B → B;

A → (B → A ∧ B);

A → A ∨ B;

B → A ∨ B;

(A → C) → (B → C) → (A ∨ B → C);

((A → B) → A) → A;

A → (¬A → B);

A → ¬¬A;

¬(A ∧ ¬A);

A* → ((A → B) → ((A → ¬B) → ¬A));

A* ∧ B* → (A → B)* ∧ (A ∧ B)* ∧ (A ∨ B)*.

A → B
∼A | B

A ∧ B
A
|
B

A ∨ B
A | B

∼(A ∧ B)
∼A | ∼B

∼(A → B)
A
|

∼B

∼(A ∨ B)
∼A

|
∼B

∼∼A
A

¬¬A
A

∼¬A
A

¬∼A
A

 A°
∼A | ∼¬A

∼(A°)
A
|

¬A

¬(A°)
A
|

¬A

 ¬(A # B)
∼(A # B) | ∼(A°) | ∼(B°)

-5-

A* is shorthand for A ∨ ¬A in P1. This schema is not a theorem in P1.

Classical negation can be introduced in P1 by the following definition:

∼A ≡ A → ¬A

The connective “∼”, as defined above, bears all properties of classical negation in P1.

The following theorems are among the ones which played a fundamental role in the

design of tableau rules for P1:

├─
P1

¬A ↔ ∼A ∧ A*;

├─
P1

 ∼¬A ↔ A ∨ ∼A*;

├─
P1

 ¬∼A ↔ A;

├─
P1

 ∼¬¬A → ∼A.

The initialization will be given again by the use of classical negation. Expansion rules

are the following:

The rules for ∼∼A, ¬∼A or ∼¬∼A are not essential for completeness. The literals in

this system are p, ∼p and ∼¬p, where p is an atomic formula.

A branch is closed in this tableau if it has two formulas of the forms A and ∼A, or a

formula of the form ∼¬(A ∧ ¬A) occurring in it.

5. The Non Alethic Calculus N1

A non alethic logic is a logic combining paraconsistent with paracomplete features, by

relaxing non contradiction and excluded middle at the same time. It has been defined in da

Costa [7], as a logic in which two contradictory formulas, A and ¬A, can be both true, or both

false.

The axiomatics of N1 is the following:

A → (B → A);

(A → B) → (A → (B → C)) → (A → C);

A, A → B / B;

A ∧ B → A;

A ∧ B → B;

A → (B → A ∧ B);

A → A ∨ B;

B → A ∨ B;

(A → C) → (B → C) → (A ∨ B → C);

((A → B) → A) → A;

A° → (A → ¬¬A) ∧ (A → (¬A → B));

A* → (¬¬A → A);

A → B
∼A | B

A ∧ B
A
|
B

A ∨ B
A | B

∼(A → B)
A
|

∼B

∼(A ∧ B)
∼A | ∼B

∼(A ∨ B)
∼A

|
∼B

∼∼A
A

¬∼A
A

∼¬∼A
∼A

∼¬¬A
∼A

¬A
∼A

 ¬(A # B)
A # B | ∼(A*) | ∼(B*)

-6-

A* ∧ B° → ((A → B) → ((A → ¬B) → ¬A));

A° ∧ B° → (A → B)° ∧ (A ∧ B)° ∧ (A ∨ B)° ∧ (¬A)°;

A* ∧ B* → (A → B)* ∧ (A ∧ B)* ∧ (A ∨ B)* ∧ (¬A)*;

A° ∨ A*.

The shorthands for A° in C1 and for A* in P1 are still adopted in N1.

The schemes ¬(A ∧ ¬A), (A ∧ ¬A) → B and A ∨ ¬A are not theorems in N1.

The classical negation can be defined in N1 by:

∼A ≡ A → (¬A ∧ A°)

The connective “∼”, as defined above, has all the properties of classical negation at N1.

The following theorems have been taken into account for the elaboration of rules for

N1 tableaux:

├─
N1

 ¬A ∧ A° → ∼A;

├─
N1

 ∼¬A ∧ A* → A;

├─
N1

 ¬∼A ↔ A;

├─
N1

 A° ↔ ∼A ∨ ∼¬A;

├─
N1

 ¬A° ↔ ∼A°.

Initialization is done again by classical negation. Expansion rules of the tableau for N1

are:

The rules for ∼∼A, ¬∼A, ∼¬∼A, A°, ¬(A°) or ∼¬(A°) are not essential for

completeness. The literals in this system are p, ∼p, ¬p, or ∼¬p, where p is an atomic formula.

An occurrence of A and ∼A in a branch is the condition for its closure.

6. Soundness and Completeness

A proof of the soundness and completeness of the given tableaux, against their

correspondent calculi, is sketched bellow. It is presented in terms of a uniform routine capable

to prove that a tableau system S
C
 is sound and complete with respect to C, being C one of the

calculi C1, P1 and N1.

The concept of trivial theory will play a key role in the proof. A trivial theory is a

theory which proves anything. It corresponds to the set of all well formed formulas in the

language where it is expressed. Semantically, a trivial theory would be one which does not

have a model. So, logical consequence becomes vacuously universal. For classical logic,

inconsistent and trivial theories are synonymous, but this is not generally the case for the

A → B
∼A | B

A ∧ B
A
|
B

A ∨ B
A | B

∼(A → B)
A
|

∼B

∼(A ∧ B)
∼A | ∼B

∼(A ∨ B)
∼A

|
∼B

∼∼A
A

 ¬¬A
∼¬A | A°

¬∼A
A

∼¬∼A
∼A

 ∼¬¬A
¬A | ∼A*

 A°
∼A | ∼¬A

 ∼¬(A°)
∼A | ∼¬A

∼(A°)
A
|

¬A

¬(A°)
A
|

¬A

 ¬(A # B)
∼(A # B) | ∼(A°) | ∼(B°)

 ¬(A # B)
∼(A # B) | ∼(A°) | ∼(B°)

-7-

logics presented here. So, the concept of trivialization will play the rule that the concept of

inconsistency plays for the classical case, both of them corresponding semantically to

unsatisfiability.

The following lemma establishes that the rules in SC are conservative, in the sense that

their application preserves trivialization.

Trivialization Lemma: Let Φ be a set of wff’s in C, and A a formula of Φ. Let ∆1,…,∆n be the

sets of formulas in the branches resulting from the application of a rule of SC to A.

If Φ ∪ ∆1,…,Φ ∪ ∆n are all trivial, then so is Φ.

Proof:

For each i = 1,...,n, let ∼∆i be the disjunction of classical negations (as defined for each

calculus) of the elements of ∆i.Since Φ ∪ ∆i is trivial,we have that

Φ├─
C

∼∆i,

and then

Φ├─
C
∧
i=1

n ∼∆i

(this can easily be verified for the given calculi).

We have that

∧
i=1

n ∼∆i├─
C

∼A,

but then

Φ├─
C

∼A (by transitivity),

and so Φ ∪ A is trivial. Since A ∈ Φ, it follows that Φ is trivial.

As an example, consider the rule for ∼¬(A # B) in SP1
. If Φ ∪ {A # B}, Φ ∪ {∼A*} and

Φ ∪ {∼B*} are trivial, then Φ├─
P1

∼(A # B), Φ├─
P1

A* and Φ├─
P1

B*, and thence

Φ├─
P1

∼(A # B) ∧ A* ∧ B*. But we have that ∼(A # B) ∧ A* ∧ B*├─
P1

¬(A # B), therefore

Φ├─
P1

¬(A # B), and so Φ ∪ {∼¬(A # B)} is trivial. Finally, if ∼¬(A # B) ∈ Φ, then

Φ is trivial.

•

For the next theorem we need a suitable definition of the degree of a tableau, in order

to perform induction on tableau development.

We say that (Ti)i∈I is a tableau development sequence in S
C
 if the following conditions

are satisfied:

• I = � or I = {0,...,n}, for some n ∈ �;

• T0 is the initial tableau for some collection of formulas;

• for all i ∈ I such that i + 1 ∈ I, Ti+1 is obtained from Ti by one application of some rule

of S
C
.

A natural number i0 is said to be the degree of a tableau T’ if there exists a tableau

development sequence (Ti)i∈I such that T’ = Ti0
. Observe that a tableau T’ cannot have two

distinct degrees, otherwise there would be two different quantities of marked nodes, which is

an absurd.

-8-

Soundness Theorem: If there is a confutation for Φ, then Φ is trivial.

Proof:

Let n be the degree of the existing confutation for Φ. We will show, by induction on n, that Φ

is trivial.

If n = 0, it means that the confutation has a single branch containing all the formulas of Φ.

Since it is closed, the proof reduces to the verification that the given closure conditions are in

fact trivialization conditions. In SP1
, for instance, that means to prove that A ∧ ∼A├─

P1

B and

that ∼¬(A ∧ ¬A)├─
P1

B , which is straightforward.

For an induction step, let RRRR be the rule applied to obtain the tableau of degree 1 at the

beginning of the development sequence generating the given confutation. Let r1,...,rp be the

branches resulting from this application, A the formula to which RRRR was applied, and finally

∆1,…,∆p the collections of formulas in r1,...,rp.

For each i = 1,...p, a confutation for Φ ∪ ∆i, with degree less than n, can be obtained by

incorporating the development following ri, in the confutation for Φ, to the initial tableau for

Φ ∪ ∆i. Thence, by the induction hipothesis, Φ ∪ ∆i is trivial. Therefore, by the trivialization

lemma, Φ is trivial.

•

Corollary (Soundness restated): If there is a confutation for Φ ∪ {∼A}, then Φ├─
C

A.

Proof:

If there is a confutation for Φ ∪ {∼A}, then, by the soundness theorem, Φ ∪ {∼A} is trivial,

therefore Φ├─
C

A.

•

To prove the completeness of S
C
 some lemmas and definitions are in order.

We say that two formulas are complementary if the presence of both of them in a

branch cause the branch to be closed. For reasonable tableau systems, as the ones presented

here, if two formulas A and A’ are complementary to a third one and there is a confutation to

Φ ∪ {A}, then there is a confutation to Φ ∪ {A’}.

Complementarity Lemma: Let Φ be a set of wff's of C, A a formula of Φ, and ∆1,…,∆n the

collections of formulas of the branches resulting from the applications of rules of SC to A and

to ∼A, in a tableau development sequence. If there are confutations for Φ ∪ {A} and for

Φ ∪ {∼A}, then, for all i = 1,...,n, there exists a confutation for Φ ∪ {∆i}.

Proof:

Let B be one of the formulas A or ∼A. Without loosing generality, we can consider ∆i coming

from an application of a rule of SC to B. Then a confutation T for Φ ∪ {∆i} can be obtained by

imitating the branch of the confutation for Φ ∪ {B}, whose collection of formulas is ∆i. The

unique way to use B in T would be to close the branches in which a formula B',

complementary of B, occurs. But, according to the observation done above, there is a

confutation T’ for Φ ∪ {B’}. Therefore, such branches can be closed the same way B'

occurring branches in T’ are closed.

•

-9-

Elimination Lemma: If there are confutations for Φ ∪ {A} and for Φ ∪ {∼A}, then there is a

confutation for Φ.

Proof:

It can be proved by recursion on the structure of a formula A.

If A is a literal, a confutation T for Φ can be constructed by following the existing confutation

for Φ ∪ {A}, except when A is employed. Since literals are irreducible forms (do not occur in

the domain of any rule), the only way to use A in T would be to close branches in which ∼A

occurs. But, since a confutation T' for Φ ∪ {∼A} is also available, such branches can be

closed the same way ∼A occurring branches in T' are closed.

For the induction step, consider the application of a rule to a formula A. By the

complementarity lemma, for all i = 1,...,n, there exists a confutation for Φ ∪ {∆i}. By this last

assertion, using the induction hipothesis, we can conclude that there is a confutation for Φ.

For example, consider SP1
. Let A be of the form ¬(B # C). If there are confutations for

Φ ∪ {¬(B # C)} and for Φ ∪ {∼¬(B # C)}, then, by the complementarity lemma, there are

confutations for Φ ∪ {(B # C)} and for Φ ∪ {∼(B # C)}, thence, by induction hipothesis,

there exists a confutation for Φ.

•

We are now able to prove a theorem stating that the employment of excluded middle

rules (em-rules) could be eliminated from tableau developments. An em-rule is a function,

applicable to all wff's, which maps any formula into a two branched tree with a branch

containing a formula and the other its classical negation.

Elimination Theorem: If there is a confutation for Φ employing em-rules, then there is a

confutation for Φ without using those rules.

Proof:

Let T be the existing confutation for Φ and k the highest level in which an em-rule occurs

in T:

Before this application, Ak was a leaf in a branch, say Ψ = {A0,...,Ak}. Since this is the last

point an em-rule is used, there are confutations for Ψ ∪ {B} and Ψ ∪ {∼B}, without the use

of such rules, and, by the elimination lemma, there is a confutation for Ψ, which is em-rule

free. This procedure could be repeated finitely many times, until an em-rule free confutation

for Φ is obtained.

•

The central result can now be easily demonstrated.

Completeness Theorem: If Φ├─
C

A, then there is a confutation for Φ ∪ {∼A}.

Proof:

The proof is done by induction on theorems of Φ in C.

For each logical axiom α of C, we must verify that there is a confutation for Φ ∪ {∼α}.

Obviously, for each φ ∈ Φ there is a confutation for Φ ∪ {∼φ}.

Ak

 B ∼B

-10-

Finally the induction step through modus ponens. Assume that there are confutations for

Φ ∪ {∼B} and for Φ ∪ {∼(B → C)}. A confutation for Φ ∪ {∼C} could be constructed in the

following way:

Since we have confutations for Φ ∪ {∼B} and for Φ ∪ {∼(B → C)}, the first and third

branches will eventually be closed. The branch in the middle is closed by ∼C, located in the

initial tableau.

By the elimination lemma, the em-rule employed for B → C and ∼(B → C) can be eliminated.

So, there is a confutation, without em-rules, for Φ ∪ {∼C}.

•

7. Commentaries and Conclusions

The logics studied here present three basic alternatives to negation. C1 has a

paraconsistent negation, a negation weaker than classical one and such that an inconsistent

theory, in terms of this negation, is not necessarily the set of all wff's. In other words, in C1 a

formula A and its negation could be simultaneously the case. The logic P1 is a kind of dual of

C1 by introducing a paracomplete negation, a negation such that A and ¬ A may

simultaneously not be the case. Finally, the non alethic negation of N1 accumulate both non

classical features of paraconsistency and paracompleteness.

The logics we choose here to illustrate how deviant negations may affect methods of

reasoning by tableau are a sort of first generation alternative negation calculi. They are

among the most traditional and representative calculi developed by da Costa to express his

ideas about alternative negations.

These three logics can be extended by definition to include a negation which behaves

classically. The tableaux for them have in fact been written in these extensions. So, in all of

them we have been allowed to use classical negation to initialize the test for unsatisfiability

provided by the method of tableaux, and to express conditions for the closure of branches. For

the logics treated here these conditions are the same of classical tableau, with the exception of

P1, for which an additional condition is required for completeness. Supplementary conditions

can be added for the two other calculi, but just for the sake of computational convenience.

This simplicity of closure conditions is not always the case for logics featuring non classical

negation. We designed a paraconsistent logic called LEI to formalize the notion of epistemic

inconsistency [9]. Although classical negation is definable in LEI, its tableau, given in [4], is

far more complex then the ones given here, inclusive with respect to closure conditions.

The logics presented here also have in common the fact that there are no recursive

semantics available to them. We have developed a collection of logics which we call

respectively LI (for logic for inconsistency), PCL (for paracomplete logic) and NALL (for non

alethic logic). These are a sort of second generation calculi. Although being respectively

paraconsistent, paracomplete and non alethic, they are, in a sense, stronger than da Costa's

ones. Recursive semantics have been provided for these calculi in [2]. Based on these

Φ ∪ {∼C}

B → C ∼(B → C)

∼B C

-11-

semantics, tableaux can be given for them. In those tableaux, closure conditions may be

completely expressed in terms of literals.

In order to enhance the credibility of the solutions given here, sketches of the

soundness and completeness proofs have been added. For the sake of space and simplicity we

aimed to present them in a general form applicable, under minor adaptations, to the three

given calculi.

References

[1] Buchsbaum, Arthur & Pequeno, Tarcisio, O Método dos Tableaux Generalizado e sua

Aplicação ao Raciocínio Automático em Lógicas Não Clássicas, “O que nos faz pensar” – n
o

3, pp. 81-96, September 1990.

[2] Buchsbaum, Arthur & Pequeno, Tarcisio, Uma Família de Lógicas Paraconsistentes e/ou

Paracompletas com Semânticas Recursivas, Monografias em Ciência da Computação nº 5/91,

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, 1991.

[3] Buchsbaum, Arthur & Pequeno, Tarcisio, A Reasoning Method for a Paraconsistent

Logic, Studia Logica 52/2, May 1993.

[4] Correa, Marcelo & Buchsbaum, Arthur & Pequeno, Tarcisio, Sensible Inconsistent

Reasoning: A Tableau System for LEI, Technical Notes of AAAI Fall Symposium on

Automated Deduction in Non-Standard Logics, October 1993.

[5] da Costa, Newton C. A., On the Theory of Inconsistent Formal Systems, Notre Dame

Journal of Formal Logic 15, pp. 497-510, 1974.

[6] da Costa, Newton C. A., A Semantical Analysis of the Calculi Cn, Notre Dame Journal of

Formal Logic 18, pp. 621-630, 1977.

[7] da Costa, Newton C. A., Logics that are both Paraconsistent and Paracomplete,

Rendiconti dell'Accademia Nazionale dei Linzei, vol. 83, pp. 29-32, 1989.

[8] da Costa, Newton C. A. & Marconi, Diego, A Note on Paracomplete Logic, Rendiconti

dell'Accademia Nazionale dei Linzei, vol. 80, pp. 504-509, 1986.

[9] Pequeno, Tarcisio & Buchsbaum, Arthur, The Logic of Epistemic Inconsistency,

Proceedings of the Second International Conference on Principles of Knowledge

Representation and Reasoning, Morgan Kaufmann, pp. 453-460, 1991.

