ﬂaPeSD

Achieving Enhanced Performance Combining
Checkpointing and Dynamic State Partitioning

Henrique Goulart

Joao Trombeta
Alvaro Franco
Odorico Mendizabal

Universidade Federal de Santa Catarina - UFSC

SBAC-PAD 2023

Summary

Introduction

Problem

Evaluation

Conclusion

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 2

Introduction

Distributed systems

* Distributed systems

Multiple process/systems running

Handling multiple requests simultaneously

Handling high volume of data

E.g.: replicated state machine running with 3 replicas

* Challenges
* A failure/fault happens in one process/worker

 Scalability requirement — peak usage

/proce_ss 3

NEW process

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 3

Introduction

Distributed systems

Add
* Distributed systems checkpoint/recovery
durability strategy

Multiple process/systems running

Handling multiple requests simultaneously

Handling high volume of data

-) o

E.g.: replicated state machine running with 3 replicas

* Challenges

/proce_ss 3

NEW process

* A failure/fault happens in one process/worker

e L[]

 Scalability requirement — peak usage

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 4

Introduction
Durability strategies - Checkpointing

* Checkpoint/recovery time

. client
* Periodically capture snapshots
checkpoint1 checkpoint2 checkpointN
* Challenges p1 , .

* 1/0 operation that is expensive 00 D 00 gogoog

N) —

| N f — ” S | —
. - .. . ﬂ tate N " a
« Checkpoint synchronization with requests state 0 state 3 % state 8 @ state A

At At At

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 5

Introduction
Durability strategies - Checkpointing

* Checkpoint/recovery

Process
* Periodically capture snapshots 4 State N
thread 1
. Sclr\e_duler rea
* Challenges Incoming Cmd Queue
* 1/0 operation that is expensive
CHECKPOINT
* Checkpoint synchronization with incoming requests PROCESSOR.
_ J

e

178

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 6

Introduction
Durability strategies - Checkpointing

* Checkpoint/recovery throughput/s

* Periodically capture snapshots 300 ‘\ process 1 (p1)
* Challenges 200

* 1/0 operation that is expensive 100

* Checkpoint synchronization with incoming requests 0 > Hivies

checkpointing
window

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 7

Introduction
Durability strategies - Checkpointing

* Checkpoint/recovery throughput/s
* Periodically capture snapshots 300 — r\ _~process 1 (p1)
Add State Partition /7 \
* Challenges 200
* 1/0 operation that is expensive 100
* Checkpoint synchronization with incoming requests 0 > time

checkpointing
window

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 8

Introduction
Enhancing checkpointing with state partitioning

* State partitioning % O

Pr‘OCQSS 1TB
* Each thread takes care of a portion of the state 4 State)
thread 1
* Increase the overall throughput o Queue
: : Exedut \
* Overhead of managing multiple threads Scheduler _9 xepute partition 1
T mopping CHECKPOINT
* Checkpointing in parallel Incoming S @ PROCESSOR
COMma\nols
* Checkpoint executes faster Thread 2
Crod Queue
* May have shorter checkpoint synchronization time B — = Execute partition 2
* Need to synchronize multiple-partition access CHECKPOINT
PROCESSOR x
N < Y,

O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 9

Introduction
Enhancing checkpointing with state partitioning

* State partitioning throughput/s
* Each thread takes care of a portion of the state 500
* Increase the overall throughput 400

partitioned state

* Overhead of managing multiple threads S —— ﬂ\ f r\.a single state
* Checkpointing in parallel 200
* Checkpoint executes faster 100
* May have shorter checkpoint synchronization time 0 o , time
e ** Need to synchronize multiple-partition access shorter
checkpointing o
window checkpointing

window

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 10

Introduction

' inti : i Checkpoint will take as |
Enhancing checkpointing with state partitioning ectﬁ‘e"lr;r;"e'st sa‘:t;?osng 2

* State partitioning
e Each thread takes care of a portion of the state

* Increase the overall throughput

* Overhead of managing multiple threads

Par’ti‘cion 1
poxr'ti‘tion 2

* Checkpointing in parallel

* Checkpoint executes faster

* May have shorter checkpoint synchronization time . >

* ** Need to synchronize multiple-partition access Qlf\erPo'in't w‘mdow

tTime

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 11

Introduction
Enhancing checkpointing with state partitioning

8] ¥

* State partitioning Partition p, Partition p,
e Each thread takes care of a portion of the state IIIZI
Queue q; Queue q,
* Increase the overall throughput ri: write(x, 1)| |r5: write(w, 1)

ry: swap(x, y)| |rs: swapl(y, 2)
ry: swap(y, z) | |rs: write(z, 2)
re: write(x, 2)| |[ry: write(w, 2)

* Overhead of managing multiple threads

* Checkpointing in parallel

* Checkpoint might execute faster

* May have shorter checkpoint synchronization time

* ** Need to synchronize multiple-partition access r I Iy e
L —— He— +—— -
A A
3 My ‘,'/ I ry

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 12

Problem statement

* The challenges/problems found:
e Synchronizing multi-partition operations is expensive

* Unbalanced states may impact negatively the total checkpoint time

 What if:

* We run a repartition algorithm while checkpoint is running?

* Balanced state partitions?
* Fewer synchronizations between partitions?

* Would be a good idea?

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 13

Problem statement

repartition?
* The challenges/problems found: throughput/s o
300 1 (o1
* Synchronizing multi-partition operations is expensive _— l\ . -r\’process (p1)
200
* Unbalanced states may impact negatively the total checkpoint time
100
0 3 , time
* What if: .
checkpointing
window
* We run a repartition algorithm while checkpoint is running?
client , .
* Balanced state partitions? checkpointf checkpoint2
repartition1 repartition2

e Fewer synchronizations?

pj : @
* Would be a good idea? 0 EID A0 D—D—Dﬁ@

i —
state 0 state 3

00000
State 8

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 14

Problem statement

e How? partition1 partitionN
8 9
* A graph representation 4 @

Each Key is a vertex

Each Edge is an access between 2 vertices @ _______ @ 2
Key weight = # accesses 73

Edge weight = # access 2 keys

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 15

Problem statement

* Objective: Fewer cross-
partition accesses

* Balanced state partitions partition1 partitionN
8
* Fewer multi-partition operation/synchronization = @9

O - ON"
7 @ @

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 16

Problem optimization
Phase 1: finds a balanced partition

* Phase 1:

An integer variable "Y", which means the slack to pack all

vertices into partitions

{ 1, if vertex i belongs to partition p,

0, otherwise. Constraint(2): each partitionis
not too "heavy" since we want to

"K" partitions minimize "Y"

Set of k partitions P = {p1, ..., pk} min Uy

ci for vertex i = weight for vertex SUh]Eﬂt to: ZPE P Jj-ip —]-7 Vi < V {:1)

L - f

wij for edge ij = weight for edge EiE | Cj -Eij':: £ m T i, W}'} € P {:2)
rip € {0,1},Vie Vand Vpe P (3)
y e L, (4)

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 17

Problem optimization

Phase 2: Finds a minimum cut considering the balanced partitions given

* Phase 2: : :
Constraints 7, 8, and 9: find the edges
* Finds a minimum cut considering the balanced partitions inside partitions
given

« a set of k partitions P = {py,...,px} and C' = > . ¢;.

min o wa(1 — » Zid
1, if edge i — j has the both vertices 7 and j in . ‘ Zi_jeEﬁ E(.ZPEE Lw}
L partition p subject to: > _pxip=1VieV (5)
ijp — ,

0, otherwise. Zigv citip < M,Vp e P (6)

Zijp E %(:ﬁip -I—IEjp) — i,ﬁ"i{’ﬂ —] = E,
Vpe P (9)
rip €{0,1},Vi eV and Vp e P (10)
Zijp € {U, l}ﬂf = [:11)

[]
0. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 18

Evaluation
Prototype architecture

Process

* State partitioned
P 4 State 0
thread 1 Y
* Checkpoint partitioned e Gueve Y
. - Scheduler \('.. — = Bxeaute partition 1
* Scheduler with a graph partition + mapping A T
. Inc:Oun:l\q = _ PROCESSOR) AN
mapping commands
thread 2
.. . Cwmd Queue
* Repartitioning thread
p g B ((b——}EXﬁCu’te par‘ti‘tion 2
i iti CHECKPOINT |~ —
* Checkpoint & repartitionare o ROGESROR
THREAD
synced _ J

N

D

1TB

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 19

Evaluation

* Base values using Round-robin

* METIS repartitioning algorithm

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 20

Evaluation
Workload

Workload Write % Range Scan % Characteristic # requests Has edges

94mi requests in

YCSB-A 50% 50% -% Single-variable . N
8mi unique keys
Single-variable 110mi requestsin
- o (o) _0
YCSB-D 5% >% % (MOST RECENT) 10mi unique keys N
YCSB-E 0% 5% 95% Multi-variable ™! requestsin Y

10mi unique keys

*lgnored YCSB-B and YCSB-C workloads as we anticipated that they wouldn't produce very interesting results, mostly because they have similar distribution
as workload YCSB-A but 95% and 100% of read respectively.

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 21

Evaluation
Metrics

* Throughput over time

* Makespan:

* Total elapsed time to execute all operations

* Request distribution among partitions
* Cross-border requests
* Checkpoint times and sizes

* Checkpoint vs repartition times

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 22

Evaluation

Throughput — YCSB-A (50% Write, 50% Read, Single Key)

* Throughput:

8p-ckp-metis 1p-ckp ——
* Green: no checkpoint at all 8p-ckp no-ckp
gﬂﬂk I I I I I]
* Blue: single/1 partition checkpoint 800k — _— M4\1 o
— | |
* Red: 8 partitions checkpoint (round robin) 5 ook B L : F‘}\ | '.'\' \]
¢ 600k . 3 o) AREE
* Orange: 8 partitions checkpoint (METIS) E‘ & 00k J‘| ¥ I"’l, i
3 400k A Y A
* Results: £ 1 | ﬂl
3’ 300k | | ||
* Parallel version performing better despite the = 200k |‘L. || || |
: I \-
threads-overhead (short periods of no-throughput) 100k "k I'. | I"',I
0 L]]] | | | \
0 20 40 60 80 100 120 140
Time (s)
[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 23

Evaluation
Access Distribution— YCSB-A (50% Write, 50% Read, Single Key)

e Access Distribution:

) 8p-ckp-metis Tp-ckp NS
¢ Green: no checkpoint at all 8p-ckp m— no-ckp
16M
* Blue: single/1 partition checkpoint ! ! | ! | |
14M |- s
* Red: 8 partitions checkpoint (round robin) o 19M L |
¥
* Orange: 8 partitions checkpoint (METIS) E 10M -
>
o 8M
e Results: 3 M I _
g
e METIS distributing well the requests e 4AM | .
among the partitions, better than Round- M - 7
robin 0
0 1 2 3 4 5 6 7
* Partition 7 with less data Partition

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 24

Evaluation
Makespan— YCSB-A (50% Write, 50% Read, Single Key)

* Makespan (how long to complete):

¢ Green: no checkpoint at all 450 —
. . . 400 | Bp-ckp M
* Blue: single/1 partition checkpoint IE-EEE —
350 no-ckp
* Red: 8 partitions checkpoint (round robin)
300 F .
* Orange: 8 partitions checkpoint (METIS) “g beo L |
* Results: g 200 i
. . . . - IED
e METIS version has similar elapsed-time as
100 |- .
Round-robin version despite the costs of
50 | .
running the algo
0

* Better distribution compensates the cost

for execution and checkpointing

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 25

Evaluation

Throughput — YCSB-D (5% Write, 95% Read, Single Key, Reads on Most Recent Inserted Keys)

* Throughput:

8p-ckp-metis Tp-ckp ——
 Green: no checkpoint at all - 8p-ckp no-ckp
: | —— | =
e f | |
* Blue: single/1 partition checkpoint M ‘n ;ﬁ| | | -
— || | |
0 |
* Red: 8 partitions checkpoint (round robin) g 1M ' | | ||]
g 1M ‘~ |II |'|I || |
* Orange: 8 partitions checkpoint (METIS) E’Ué- g *-| o ‘l
= 800k | | | -
5 | | |
* Results: £ 600k |- | | -
=
. . £ 00k |- | | | _—_
 Like the YCSB-A (previously presented) = | |
200k | || || | | L
| L | || 1 L .| l |
0
0 20 40 60 80 100 120 140

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 26

Evaluation
Access distribution— YCSB-D (5% Write, 95% Read, Single Key, Reads on Most Recent Inserted Keys)

e Access Distribution:

8p-ckp-metis 1p-ckp N
8p-ckp IS no-ckp
18M T T T 1 T | T

e Green: no checkpoint at all

* Blue: single/1 partition checkpoint
14M .

* Red: 8 partitions checkpoint (round robin) 1]
* Orange: 8 partitions checkpoint (METIS) 1 h
* Results: i
* METIS failed to balance the partitions. 2M —
0
0 1 2 3 4 5

* Cause: novelty of most of the request's key

Requests executed
o O N
= £ £ £
N I

.
=
|

* Round-robin has a tiny variation, distributing very Partition

well the data among the partitions

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 27

Evaluation
Makespan— YCSB-D (5% Write, 95% Read, Single Key, Reads on Most Recent Inserted Keys)

* Makespan (how long to complete): 300
8p-ckp-metis
* Green: no checkpoint at all 8p-ckp —
250 1p-ckp NN |
* Blue: single/1 partition checkpoint no-ckp
. . . 200 -
* Red: 8 partitions checkpoint (round robin) 7
@
£
* Orange: 8 partitions checkpoint (METIS) S 150 | _
@
2
* Results: = oL -
* METIS version has a noticeable cost —
higher than the round-robin version 0 |
0

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 28

Evaluation
Throughput — YCSB-E (5% Write, 95% Read Scan up to 8 keys)

° Throughput: 8p-ckp-metis 1p-ckp ——
8p-ckp —— no-ckp
e Green: no checkpoint at all 160k T | T ! ! |

140k S . S S N . o . S S —
* Blue: single/1 partition checkpoint

* Red: 8 partitions checkpoint (round robin) ‘&Jz"
2 100k | =
Lol

* Orange: 8 partitions checkpoint (METIS) %’ 80k -
3
£ 60k -

* Results: S op e o |

R [

e METIS performing way better 20k | || |

o 0 | f | ’l
* Cause: fewer cross-partition access 0 20 120 140

Time (s)

O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 29

Evaluation

Cross-border access— YCSB-E (5% Write, 95% Read Scan up to 8 keys)

* Cross-border:

partition (independently of the partition id)

8p-ckp-metis 1p-ckp I
e Green: no checkpoint at all 8p-ckp I— no-ckp
4.5M | : | |
* Blue: single/1 partition checkpoint 4.0M +
- . _ 3.5M
* Red: 8 partitions checkpoint (round robin) T aom |-
S 3
* Orange: 8 partitions checkpoint (METIS) X 25M |
2 20om}|
5
* Results: g 1SMp
1.0M
* METIS able to move scan operations to the same 500.0k L I I I I
0.0
2 3

Mum. of partitions accessed

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 30

Evaluation

Access distribution— YCSB-E (5% Write, 95% Read Scan up to 8 keys)

e Access Distribution:

8p-ckp-metis 1p-ckp NN
8p-ckp no-ckp

e Green: no checkpoint at all

900k
800k

Blue: single/1 partition checkpoint

I I I

700k
Red: 8 partitions checkpoint (round robin) 600k
500k

Orange: 8 partitions checkpoint (METIS) 400k | .
300k
* Results: 200k

100k [-
e METIS distributing well the requests 0

0 1 2 3 4 5 6 7

among the partitions, better than Round-

Requests executed

Partition
robin

e Partition 4 with less data

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 31

Evaluation
Makespan— YCSB-E (5% Write, 95% Read Scan up to 8 keys)

* Makespan:

* Green: no checkpoint at all 250 — :
P-C p—r‘I'IEtIS
8p-ckp —
* Blue: single/1 partition checkpoint o0 1E-§kﬁ —
' no-ckp '
* Red: 8 partitions checkpoint (round robin)
* Orange: 8 partitions checkpoint (METIS) g PO |
* Results: g 0of |
* METIS performing way better N]
0

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 32

Evaluation
Checkpoint elapsed time

* Checkpoint elapsed time:

| 8p-ckp-metis 8p-ckp NN
* Red: 8 partitions checkpoint (round robin) 25 | | T
* Orange: 8 partitions checkpoint (METIS) 20 | -
° | P 15 -
Results E
E
* Average elapsed time for each workload checkpoint a 10
* Both versions have similar time 5
* Running METIS/Repartition has an extra cost but it's 0 .
compensated by requests and checkpointing A b E
Workload

processing well the partitions

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 33

Evaluation
Checkpoint elapsed time

* Checkpoint elapsed time for YCSB-A:

| Repartition W Checkpoint

e Dark Purple: repartition elapsed time 25 T | | | | |
e Light Purple: checkpointing elapsed time 20
* Result c 1
* Repartition takes shorter time than checkpointing a 1o 7
* Repartition does not affect dramatically or make the 5 I -
checkpoint waits for it to finish . I I
25 67 108 148 191 232

Checkpoint starts at (s)

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 34

Conclusion

It's possible to have balanced state partitions when history can be used

Balanced state partitions contributes to the total checkpointing elapsed time

Having keys of multi-variable operations in the same partition reduces the synchronization

Use underutilized CPU for repartition while checkpointing is doing I/0 is OK

Benefits of repartition compensates the costs, mainly for multi-variable operations:

e Costs for other workloads are marginally higher without adding much benefits

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 35

Thanks

= Thanks to the partial research funding provided by FAPESC and PROPESQ

S0
fapesc

Fundacao de Amparo a
Pesquisa e Inovacao do
Estado de Santa Catarina

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

Pro-Reitoria de Pesquisa e Inovacao
PROPESQ

[]
® La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 36

ﬂaPeSD

Achieving Enhanced Performance Combining
Checkpointing and Dynamic State Partitioning

Henrique Goulart

Joao Trombeta
Alvaro Franco
Odorico Mendizabal

Universidade Federal de Santa Catarina - UFSC

SBAC-PAD 2023

Evaluation
Checkpoint elapsed time

* Checkpoint elapsed time for YCSB-A:

| Repartition MEEEE Checkpoint

e Dark Purple: repartition elapsed time

. . . .
* Light Purple: checkpointing elapsed time 6]
5 |]
e Using 1KB value 4 |
2, |
3 N
1 N
0
9 24 40 55 7

1 87

Duration (s)
I |

Checkpoint starts at (s)

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 38

Problem optimization
Phase 1: finds a balanced partition

* Phase 1:

* Aninteger variable "Y", which means the slack to pack all
vertices into partitions
{ 1, if vertex i belongs to partition p,

0, otherwise.
Constraint(1): each vertexis

« "K" partitions in one partition

- Set of k partitions P = {p1, .., pk} min

+ ¢l for vertex | = weight for vertex subject to: » pxip =1, Vi€V (1)

« wij for edge ij = weight for edge Eiev Cikip < % +y,Vp e P {:2)
rip € {0,1},Vie Vand Vpe P (3)
y e LT, (4)

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 39

Problem optimization
Phase 1: finds a balanced partition

* Phase 1:

An integer variable "Y", which means the slack to pack all

vertices into partitions

{ 1, if vertex i belongs to partition p,

0, otherwise. Constraint(2): each partitionis
not too "heavy" since we want to

"K" partitions minimize "Y"

Set of k partitions P = {p1, ..., pk} min Uy

ci for vertex i = weight for vertex SUh]Eﬂt to: ZPE P Jj-ip —]-7 Vi < V {:1)

L - f

wij for edge ij = weight for edge EiE | Cj -Eij':: £ m T i, W}'} € P {:2)
rip € {0,1},Vie Vand Vpe P (3)
y e L, (4)

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 40

Problem optimization
Phase 1: finds a balanced partition

* Phase 1:

* Aninteger variable "Y", which means the slack to pack all

vertices into partitions

1, if vertex i belongs to partition p,
Lip = :
P 0, otherwise.

* "k" partitions

 Set of k partitions P ={p1, ..., pk} min Yy Constraint (3 and 4):
4 . Xip is binary
* ci for vertex i = weight for vertex SUh]Eﬂt to: Z? y is aninteger {: 1)
* wij for edge ij = weight for edge Eg‘ TR 5 . {:2)
rip € {0,1},Vie Vand Vpe P (3)
(4)

y e Zr,

[]
O. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 41

Problem optimization

Phase 2: Finds a minimum cut considering the balanced partitions given

* Phase 2: :
Constraints5 and 6: ensure balanced
* Finds a minimum cut considering the balanced partitions partitions
given

« a set of k partitions P = {py,...,px} and C' = > . ¢;.

min o wa(1 — » Zid
1, if edge i — j has the both vertices 7 and j in . ‘ Zi_jeEﬁ E(.ZPEE Lw}
L partition p subject to: > _pxip=1VieV (5)
ijp — ,

0, otherwise. Zigv citip < M,Vp e P (6)

Zijp E %(:ﬁip -I—IEjp) — i,ﬁ"i{’ﬂ —] = E,
Vpe P (9)
rip €{0,1},Vi eV and Vp e P (10)
Zijp € {U, l}ﬂf = [:11)

[]
0. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 42

Problem optimization

Phase 2: Finds a minimum cut considering the balanced partitions given

* Phase 2: : :
Constraints 7, 8, and 9: find the edges
* Finds a minimum cut considering the balanced partitions inside partitions
given

« a set of k partitions P = {py,...,px} and C' = > . ¢;.

min o wa(1 — » Zid
1, if edge i — j has the both vertices 7 and j in . ‘ Zi_jeEﬁ E(.ZPEE Lw}
L partition p subject to: > _pxip=1VieV (5)
ijp — ,

0, otherwise. Zigv citip < M,Vp e P (6)

Zijp E %(:ﬁip -I—IEjp) — i,ﬁ"i{’ﬂ —] = E,
Vpe P (9)
rip €{0,1},Vi eV and Vp e P (10)
Zijp € {U, l}ﬂf = [:11)

[]
0. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 43

Problem optlmlzatlon

* Phase 2: Constraints 10 and 11: mean that the

. . L " variablesxip and
* Finds a minimum cut considering the balanced partitions P

Zijp are binaries

given

« a set of k partitions P = {py,...,px} and C' = > . ¢;.

min o wa(1 — » Zid
1, if edge i — j has the both vertices 7 and j in . ‘ Zi_jeEﬁ E(.ZPEE Lw}
L partition p subject to: > _pxip=1VieV (5)
ijp — ,

0, otherwise. Zigv citip < M,Vp e P (6)

Zijp E %(:ﬁip -I—IEjp) — i,ﬁ"i{’ﬂ —] = E,
Vpe P (9)
rip €{0,1},Vi eV and Vp e P (10)
Zijp € {U, l}ﬂf = [:11)

0. La PeSD Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning — SPAC-PAD 2023 44

	Slide 1: Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning
	Slide 2: Summary
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Introduction
	Slide 11: Introduction
	Slide 12: Introduction
	Slide 13: Problem statement
	Slide 14: Problem statement
	Slide 15: Problem statement
	Slide 16: Problem statement
	Slide 17: Problem optimization
	Slide 18: Problem optimization
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation
	Slide 22: Evaluation
	Slide 23: Evaluation
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Evaluation
	Slide 27: Evaluation
	Slide 28: Evaluation
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Evaluation
	Slide 32: Evaluation
	Slide 33: Evaluation
	Slide 34: Evaluation
	Slide 35: Conclusion
	Slide 36: Thanks
	Slide 37: Achieving Enhanced Performance Combining Checkpointing and Dynamic State Partitioning
	Slide 38: Evaluation
	Slide 39: Problem optimization
	Slide 40: Problem optimization
	Slide 41: Problem optimization
	Slide 42: Problem optimization
	Slide 43: Problem optimization
	Slide 44: Problem optimization

