Demonstração por balde:

Σ é um alfabeto com m símbolos.
$|\Sigma| = m$. $\Sigma = \{1, 2, 3, \ldots, m\}$.

$x_1 x_2 x_3$ \quad $y_1 y_2$

$x = ABC$ \quad $y = A D$

$x < y$

$x_1 x_2 x_3$ \quad $y_1 y_2 y_3$

$x < y$

Problema: Dadas n palavras $X^1, X^2, X^3, \ldots, X^n$ sobre o alfabeto $\Sigma = \{1, 2, \ldots, m\}$, ordene as palavras de acordo com o ordem lexicográfica.
Caso 1: todos os polinômios possuem um número mínimo de símbolos \[\Sigma l = m \]

* m holds
* polinomios \(x^i \): adicione \(x^i \) ao chão correspondente
* polinomios pela ordem pares ordenar os polinomios

\[\begin{align*}
X^1 &= 3 \\
X^2 &= 1 \\
X^3 &= 4 \\
X^9 &= 1
\end{align*} \]

\[\Sigma = \{1, 2, 3, 4\} \]

\[\Sigma l = 4 \]

\[\begin{pmatrix}
1 & x^2 \\
2 & x^3 \\
3 & x^1 \\
4 & x^3
\end{pmatrix} \]

\[\begin{pmatrix}
x^2, x^9, x^1, x^3 \\
1, 1, 3, 4
\end{pmatrix} \]
Caso 2: Todos os palavras X_1, \ldots, X^n possuem k símbolos. $\Sigma = \{1, 2, 3, 4, 7\}$.

Exemplo:

$$123, 124, 223, 324, 321, 223, 124, 324, 123, 321$$

\Rightarrow

321, 223, 123, 124, 324

$321, 223, 123, 124, 324$
Cria conjuntos \(\{ (j, z_j), 1 \leq j \leq K, \text{ satisfeita condicional de que} \text{elemento do par, e depois 1º elemento.} \)

Ex.: 124, 223, 321, 123, 324

\(\{ (3, 4), (2, 2), (1, 1), (3, 3), (1, 2), (3, 1), (1, 3) \} \)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,1)</td>
<td>(2,2)</td>
<td>(1,1)</td>
<td>(3,3)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(2,2)</td>
<td>(1,1)</td>
<td>(3,3)</td>
</tr>
<tr>
<td>(3,4)</td>
<td>(3,4)</td>
<td>(3,4)</td>
<td>(3,4)</td>
</tr>
</tbody>
</table>

Abaixo, boldo:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1), (1,2), (1,3)</td>
<td>(2,2)</td>
<td>(3,3), (3,4)</td>
<td>(3,4)</td>
</tr>
</tbody>
</table>

Abaixo, boldo:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1), (1,2), (1,3)</td>
<td>(2,2)</td>
<td>(3,3), (3,4)</td>
</tr>
</tbody>
</table>

Abaixo, boldo:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1), (1,2), (1,3)</td>
<td>(2,2)</td>
<td>(3,3), (3,4)</td>
</tr>
</tbody>
</table>

Analisando:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1), (1,2), (1,3)</td>
<td>(2,2)</td>
<td>(3,3), (3,4)</td>
</tr>
</tbody>
</table>

Não há solução na i-ésimo iteração do Bucket Sort.
Conseguem: As pessoas podem usar n arbitrário de símbolos.

1. Crie pares \((d_i, x^i)\), onde \(d_i = |x^i|\)
2. Ordene tais pares pelo 1er elemento de par (Bucket Sort)
3. Crie pares \((j, x^j)\)
4. Ordene pelo 2nd elemento de par e depois pelo 1er (Bucket Sort)

5. Elimine números repetidos do bucket depois
6. Crie um array \(S\) com infelizes \(|S| = n\)
7. Repita o seguinte:
312, 312, 12, 4, 123
(3, 321), (3, 312), (2, 12), (1, 4), (3, 123)

\[
\begin{align*}
&1 \rightarrow (1, 4) \\
&2 \rightarrow (2, 12) \\
&3 \rightarrow (3, 321), (3, 312), (3, 123)
\end{align*}
\]

\[
\begin{align*}
&3, 1), (2, 2), (1, 3); (3, 2), (2, 1), (1, 3)
&(2, 2), (1, 1); (1, 4); (3, 3), (2, 2) (1, 1)
\end{align*}
\]
bolde

\[\begin{align*}
1 & \rightarrow (1,1), (1,3), (1,4) \\
2 & \rightarrow (2,1), (2,2), (2,3) \\
3 & \rightarrow (3,1), (3,2), (3,3)
\end{align*} \]

E' utilizzata per identificare bolde in regia.

\[w = (3,321, (3,312), (3,123) \]

\[\begin{align*}
1 & \rightarrow (3,321) \\
2 & \rightarrow (3,312) \\
3 & \rightarrow (3,132)
\end{align*} \]

\[w = (2,12), (3,321), (3,312), (3,132) \]

\[w = (1,4), (2,312), (3,313) \]

\[S \]

\[\begin{align*}
1 & \rightarrow (2,12) \\
2 & \rightarrow (3,312), (3,313), (3,321) \\
4 & \rightarrow (1,4)
\end{align*} \]

12, 312, 313, 321, 4