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Abstract

We present some problems of the Structural Anthropology area and we
discuss about their computational complexity. We use mixed graphs to
model the problems. Our interest is in developing algorithms to enumerate
structures that occur in determined kinship networks. These structures are
called rings. The rings of some people contain attributes as the rings with
nomination and formal friendship connections from the Krahô people; and
the chromatic rings from the Enawenê-Nawê people where each individual
has a color (the color from the group that the individual belongs). In these
cases, the rings of our interest have to obey a kind of pattern on the arcs
and colors on the vertices.

We also present a way to enumerate all rings of a kinship network without
any particularity.
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1. Introduction

A way to understand the social behavior of a people can be given through
the study of the exchanges which occur among their individuals. The indi-
vidual circulation between families creates ties among individuals that were
strangers to each other before the exchange (and by hypothesis). However,
once consolidated the exchange, the treatment among the members of these
families becomes different. Now, the individuals are not strangers anymore.
They are relatives.

The Anthropology area that study the kinship is an interesting area.
The parent relationships such as father, mother, son, and daughter, and the
affinity relationships such as husband and wife, are primitives that give us
the opportunity to understand the social behavior of a people. It is very
natural to represent the parent and affinity relationships using a combinato-
rial structure composed by a set of individuals (or vertices), and by sets of
connections between individuals (arcs and edges without orientation) where:

• an arc from a vertex u to a vertex v represents a connection of con-
sanguinity (or parent relationship), that is, u is father (or mother) of
v;

• an edge between vertices u and v represents a connection of affinity
between u and v, in other words, u and v are married.

The use of graphs in the representation of individuals and their connec-
tions has been used since (at least) Ore [1]. In Anthropology and Computa-
tion, such structure is called kinship network ([2] and [3]). The investigation
of combinatorial structures in mixed graphs (i.e., graphs composed by a set
of vertices, a set of arcs and a set of edges), analysis on kinship networks
and the development and implementation of graph algorithms are important
activities for who is interested in this area.

Consider a kinship network G. Some marriages of G can be deduced
even if there are no edges representing them. For example, we can say
that individuals u and v are affinal when there are arcs from u to w and
from v to w, where w is an other individual of the network. When we
say that marriages determine individuals, it is natural since an individual
is born by means of an affinity relationship. On the other hand, followers
of the Alliance Theory believe that the opposite is also a valid argument,
i.e., individuals determine marriages. There are cases in our own society
that we can contrast, and can be used to confirm that hypothesis. The
study of rules that determine how the people alliances occur, has its begin
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in the work of the anthropologist Lévi-Strauss [4]. In any society, there are
exchange rules that could enable or could not enable matrimonial alliances
among its individuals, and therefore, the circulation of their people and the
social life of them, would be products of the rules that encourage or turn
impossible the matrimonial alliances. In the book of Dumont [5], we can
see an example of a society where a man who cannot have sexual contact
with his close relatives such as his sister or mother (the incest forbidden),
he looks for an other man to be husband of his close relatives, receiving as
exchange, his wife.

Assuming that marriages are determined by individuals (not by some
random effect), structures caused by marriage rules can be considered in
the kinship study. For example, imagine the following rule: it is good to

a man to marry to the Mother’s Daughter’s Husband’s Mother’s Daughter,
MDHMD for short, (in other words, with the Sister’s Husband’s Sister,
ZHZ for short). A certain structure on the network starts to appear. The
Fig. 1 illustrates two occurrences MDHMD (or ZHZ). If the frequency of
this pattern in a network is high, then it is possible to conclude that the
corresponding society has a tendency to marry individuals following such
pattern. In the literature these patterns are called rings or matrimonial

circuits [6], [7], [3]. Note that a ring is the simplest structure capable to
connect members of distinct families. That is the reason we have interest in
these structures.

(a) (b) (c)

Figure 1: Triangles and circles represent male and female individuals, respectively. A part
of a kinship network in (a). Two occurrences of a pattern are illustrated in (b) and (c).

The construction of tools able to find rings in kinship networks is an
important contribution from the Computing to the Anthropology. However,
to find rings in networks is a NP-hard problem as we will see in Section 5.
Despite the difficulty of finding rings, anthropologists still need solutions for
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the problem. So, it is necessary to develop practical tools (and algorithms)
to solve them. We believe that the followings activities are fundamentals to
the area:

• development of tools to assist anthropologists in the analysis of kinship
networks;

• correlation of Anthropological problems and Computing problems;

• study and understand of the difficulty to find rings in particular net-
works; and

• development and implement algorithms to find/enumerate rings.

It is important to emphasize the following. Methods to find combinato-
rial structures in kinship networks and methods to analyze such structures
have been developed in the last years [8], [9], [10], [7], [11] and [12]. This
article follows the same goal. In specific, we try to clarify the procedure
developed for us to obtain rings in kinship networks. This procedure, in our
point of view, it was fundamental to consolidate our tool in the enumeration
of rings. We did some tests in 8 empirical kinship networks and we note that
our procedure works experimentally very well. Still in this text, we present
some anthropological problems and their computational complexity.

Kinship Machine (or Máquina do Parentesco in Portuguese, MaqPar for
short) is the name of a tool that we have been working on. This tool was
initially developed by Silva and Poz [7] and implemented in a query language
to relational database. In the last years, we have tried to transform MaqPar
in a tool faster and multiplatform.

The notation used in this text is described in Section 2. In Section 3, we
describe a way to enumerate rings in kinship networks. It is implemented in
our tool. Some preliminary results are presented in Section 4. In Sections
5, 6 and 7, we present some challenging problems that we have interest in
solution produced by good algorithms. The conclusions are in Section 8.

2. Notation

Our notation is based on works from [7] and [3]. A kinship network
is composed by a set of vertices (individuals), a set of arcs (consanguinity
connections) and a set of edges (affinity connections). In terms of Graph
Theory, a kinship network is a mixed graph.

An oriented cycle is a digraph where each vertex has in-degree and out-
degree equal to 1. A cycle in a mixed graph is a subgraph where each
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vertex has degree equal to 2 (we are counting enter arcs, out arcs, and
edges). There is no oriented cycle in kinship networks as it is not possible
an individual be his/her own proper ancestor, however, there would be exist
cycles. A parental triangle is a cycle induced by three vertices: an individual
and his/her parents. The vertices and arcs of an parental triangle formed a
parental triad (see Fig. 2). Finally, a ring is a cycle without parental triad.

(a) (b)

Figure 2: (a) A parental triangle and (b) a parental triad.

Actually, the rings found by MaqPar have at most three4 affinity con-
nections, and they are classify as the following:

• consanguinity marriages (or A1C1);

• consanguinity relinking marriages (or A2C1, A2C2); and

• affinal relinking marriages (or A3C1, A3C2, A3C3).

The notation AkCl (with k and l being positive integer numbers, and
k ≥ l) denotes a ring with k affinity connections and l ancestors with disjoint
consanguinity lines to individuals which are married (not necessary to each
other). The highlight structures in Fig. 1 (b) and (c) are examples of A2C2
rings. In Fig. 3 are illustrated A1C1, A2C1 and A3C3 rings. In Fig. 3 (b),
it is illustrated an A2C1 ring with 2 affinity connections (u− v and w − v)
and 1 common ancestor to u and w (namely s1) with disjoint consanguinity
lines to individuals u and w. In Fig. 3 (c), it is illustrated an A3C3 ring with
3 affinity connections (v − u, w − z and x− y) and 3 common ancestors of
individuals (s1, s2 and s3) with disjoint consanguinity lines to the individuals
u and w, z and y, and x and v.

In a ring, the common ancestors with disjoint consanguinity line are also
called junctions [12]. In general terms, a vertex s is a junction of a pair of
vertices {u, v}, if there are internally vertex-disjoint directed paths from s
to u and from s to v.

4The tool can be easily adopted to find rings with any number of affinity connections.
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Figure 3: (a) A1C1, (b) A2C1, and (c) A3C3. The vertices with label u, v, x, y, w and z

are in affinity connections. The vertices with label si are common ancestors with disjoint
consanguinity lines to married individuals.

Up to now, our main result was a fast algorithms to find junctions in
acyclic digraphs [13], [14]. An digraph is acyclic if it has no oriented cycles.
Note that it is the case of kinship networks when we look at to the digraph
induced by the arcs of the network. In this way, we can use such algorithms
to the cases treated here. In fact, they already were incorporated to MaqPar
which actually enumerates all AkCk rings for k = 1, 2, 3.

We finish this section describing a notation to directed paths (or dipaths)
and rings in kinship networks. Let D be a kinship network. Consider two
individuals u and v in D. A dipath from u to v is denoted as a tuple
P = (u = w0, w1, . . . , wk = v) where wi → wi+1 is an arc in D for i =
0, 1, . . . , k−1. The inverse dipath of P is denoted by

←−
P . The concatenation

of two dipaths P and Q is denoted by PQ. In this case, if P finishes with a
determined vertex w, then Q must begin with the same vertex w. We allow
the concatenation

←−
P Q whether P and Q start with the same vertex.

The set of junctions of u and v is denoted by Juv. Fixed a vertex s, we
allways have s in Jsv if there is a dipath from s to v. It means that s is a
junction of pairs s and v for which there is a dipath from s to v. If there
are internally vertex-disjoint dipaths from s to v, then s is in Jvv . Lastly,
the set of all dipaths from u to v is denoted by Puv. Considering Fig. 4
as an example, we can find the set of all junctions of vertices label in the
figure as u and v: Juv = {s1, s3, s8}. The sets formed by all dipaths from
s1 to u and from s1 to v are, respectively, Ps1u = {(s1, s3, s6, s8, u)} and
Ps1v = {(s1, s3, s6, s8, v), (s1, s3, s7, v), (s1, s4, s7, v)}.

Note that the dipaths P = (s1, s3, s6, s8, u) and Q = (s1, s4, s7, v) are
internally vertex-disjoint, that is, the single common vertex to P and Q
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Figure 4: An hypothetical kinship network, with no edges (marriages) and no distinction
between the gender of the individuals.

is s1. This show that s1 is a junction of vertices u and v. In a similar
way, we can show that the vertices s3 and s8 are also junctions of u and
v. Finally, note that, if vertices u and v are married to each other, then
←−
P Q is an A1C1 ring. In our example, the ring is denoted as the following
←−
P Q = (u, s8, s6, s3, s1, s4, s7, v). The representation of the marriage of u
and v is implicit. The MaqPar considers such notation in the enumeration
of the rings. Next section, we described in details, a way to obtain AkCk
rings of a network. It is implemented in MaqPar.

3. A way to enumerate all AkCk rings

In this section we describe a procedure that enumerates all AkCk rings.
It is currently implemented in our tool.

Throughout this section, consider a kinship network D, and a set of pair
of vertices F which is formed by

• all marriages (u, v), when we are treating the case of finding all A1C1
rings; or

• all pairs of vertices u and v, married but not to each other, when we
are treating the case of finding all AkCk (k ≥ 2) rings.

Next we describe the three main steps of the procedure of finding all
AkCk’s:

1. Find the sets of all junctions of all pairs of vertices in F ;
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2. Build an sorted set with k fixed marriages C = {(u1, v1), . . . , (uk, vk)};
and

3. Use a procedure which finds all rings such that C (the k fixed marriages
in the previous step) occurs in the ordering given in C.

We describe bellow each cited step.

3.1. Step 1

To find the sets of all junctions of pairs in F , we use an algorithm that,
given a vertex s in the network D, it partitions a set of vertices denoted
by Vs in such a way that two vertices u and v are in different sets in the

partition if and only if s is a junction of u and v. Vs is the set of vertices v
such that there exist a dipath from s to v.

In each set of the partition we can have many vertices of D. However,
each set will have a unique representative. We describe such algorithm in the
following. Along the years, we were making its description better as in [13]
and [14]. Nevertheless, we observe another way to describe such algorithm
that we presented here. Up to now, it is its simplest description.

It is given a kinship network D and a vertex s in D. Let Vs be the set
of vertices v such that there exist a dipath from s to v in D. First, we do a
topological ordering of the vertices in Vs considering the subgraph induced
by its arcs. Therefore, we can put the vertices of Vs in an horizontal line
in such a way that the arcs are all directed from the left to the right (it is
always possible to do such topological ordering in kinship networks because
the graph induced by its arcs is acyclic). Create a set of the partition As.
Add the vertex s in As and make s be its representative. Next, repeat the
following steps for each vertex v (6= s) on the topological ordering:

a. if v is child of s or if v has parents in different sets of the partition,
then create a new set of the partition Av, add v in Av, and make v be
its representative;

b. otherwise, that is, if v is not child of s and all parents of v are in a
single set of the partition, say Az, then add v in Az.

We can use induction over the topological order to argue that the algo-
rithm above is correct. Consider what the algorithm do in part a. If v is
child of s, then v should stay in Av (6= As) since we have that s is a junction
of s and v (s is in Jsv). The result is obtained when we create Av and make
v be its representative. If v is child of vertices p1 and p2 and they are in
diferent sets, say p1 in Au and p2 in Aw, then by induction s is in Jp1p2 . So,
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there are internally vertex-disjoint dipaths P from s to p1 and Q from s to
p2. By the topological order, v is not in P neither Q. Let x be a vertex
in Au. Then, s is in Jxv since P and Q concatenated with arc p2 → v are
vertices-disjoint dipaths. In a similar way, we can show that s is in Jxv when
x is in Aw. Now, let x is in Ay (6= Au and 6= Aw). By induction, there are
vertex-disjoint dipaths P from s to x and Q from s to p2 (for example).
Thus, the dipaths P and Q concatenated with the arc p2 → v are vertex-
disjoint dipaths, and so s is in Jxv. Therefore, we can create a new set Av

and add v to Av as its representative to obtain the result.
Now consider what the algorithm do in part b. Suppose that the parents

of v, say p1, p2, . . . , pk, are all in a set Az. Let x in Az (x can be one of the
parents of v). By induction, s is not in Jxpi (i = 1, 2, . . . , k). Thereby, for
any pair x and pi we have that any pair of dipaths from s to x and from s to
pi contains at least a commum vertex. This show that s is not in Jxv. Now,
let x in Au (6= Az). By induction, s is in Jxpi (i = 1, 2, . . . , k). Therefore,
there are vertex-disjoint dipaths P from s to x and Q from s to pi. Since v
cannot occur in P and in Q (by the topological order) we have that P and
Q concatenated with the arc pi → v are vertex-disjoint dipaths. Thus, s is
in Jvx. Therefore, add v in Az produces the result.

As we said before, we can find in [13] and [14] different ways to proof
that the partition built by the cited algorithm has the desired property.
However, the way presented here is the simplest one. It is also important
to note that such partition is build in O(n+m) time where n is the size of
the set of vertices and m is the size of the set of arcs of the input kinship
network.

To finish step 1, considering each pair of vertices u and v, we add s in
Juv whether u and v are in different sets of the partition. We repeat all the
previous procedure for each vertex x in D, building in this way, the sets of
all junctions of all pairs of vertices in F .

3.2. Step 2

In this step, we will talk about the number of possibles sorted sets with
k marriages. If t is the total number of marriages in the network, then the
number is t× (t− 1)× (t− 2)× . . .× (t− k+1) since we have t possibilities
for the first marriage in the sorted set, t − 1 possibilities for the second
marriage, (and each possible second marriage choice can be combined with
each possible first marriage choice), and so on, up to the k-th marriage.
In a similar way, we can choose k marriages from t, and then consider all
rearrangement of the k marriages chosen. Next step is applied for each k
sorted marriage set.
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3.3. Step 3

In this step, we assume a k sorted marriage set C = {(u1, v1), . . . , (uk, vk)}.
Moreover, we know the sets of all junctions of all pairs in F (given by step
1). Let us suppose that k > 1. Therefore, the pairs of vertices (in C) ui
and uj, ui and vj, and vi and vj (i 6= j) are in F . Fixed the ordering of
k marriages given by the set C = {(u1, v1), . . . , (uk, vk)}, note that finding
all rings which contain such marriages (in that order) imply to verify the
presence of junctions between vertices of consecutive marriages in C. For
example, to find all A3C3 which contain the marriages (u1, v1), (u2, v2) and
(u3, v3), in this order, we have to verify the junctions of 8 possibles pairs of
vertices. Fig. 5 illustrates all these cases.

Still considering the previous example (to find all A3C3 rings), and now
fixed a possible way to combine pairs of vertices in 3 marriages in the sorted
set C = {(u1, v1), (u2, v2) and (u3, v3)}, the procedure in step 3 realizes the
following (considering that the way chosen to combine pairs was {v1, v2},
{u2, u3} and {u1, v3}, the same way of the second ring in Fig. 5):

a. for each junction s of v1 and v2, find all internally vertex-disjoint
dipaths from s to v1 and from s to v2. Denote such dipaths by
P 1
sv1

, P 2
sv1

. . . , P
nv1
sv1 and Q1

sv2
, Q2

sv2
. . . , Q

nv2
sv2 .

b. for each junction s of u2 and u3, find all internally vertex-disjoint
dipaths from s to u2 and from s to u3. Denote such dipaths by
P 1
su2

, P 2
su2

. . . , P
nu2
su2

and Q1
su3

, Q2
su3

. . . , Q
nu3
su3

.

c. for each junction s of u1 and v3, find all internally vertex-disjoint
dipaths from s to u1 and from s to v3. Denote such dipaths by
P 1
su1

, P 2
su1

. . . , P
nu1

su1
and Q1

sv3
, Q2

sv3
. . . , Q

nv3

sv3 .

d. for each possible choice of 3 dipaths P i
sv1

, P i′

su2
, P i′′

su1
and 3 dipaths

Qj
sv2 , Q

j′

su3
, Qj′′

sv3 , if the intersection among the chosen dipaths is empty,
then they form an A3C3 ring. Therefore, store it.

In general, considering a sorted set of k marriages, the number of com-
binations of pairs of this set is T (k) = 1, case k = 1; T (k) = 2, case k = 2;

T (k) = 2(4
k−1

2 ), case k ≥ 3 and odd; or T (k) = 4
k

2 , case k ≥ 4 and even.
This happens because for each 2 consecutive marriages, there are 4 ways to
combine the vertices in these marriages. If k is odd (≥ 3), then the last
marriage closes a ring with 2 more different ways. Therefore, T (k) = 2k for
k ≥ 3.

Let the depth of a kinship network be the number of vertices of the
biggest dipath. If the depth of a kinship network is small, then the time
spend to find the dipaths in itens a, b, c described above and the time
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Figure 5: The 8 ways to combine pairs of vertices in 3 marriages in the order (u1, v1),
(u2, v2) and (u3, v3).

spend in item d are tolerated. Next section, we describe our experience
applying steps 1, 2 and 3 in eight real kinship networks. We also describe
some practical aspects of our research and some preliminary results.

4. Practical aspects and experimental results

We start this section talking a bit more about exchange rules when the
exchange is represented by a marriage between individuals. The marriages
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of some societies are conducted by a positive marriage rules. An example
is the following positive rule: “a man always marry to a mother’s brother’s
daughter”. This provides a certain structure to the corresponding kinship
network. In the Alliance Theory, the positive marriage rules create elemen-

tary structures and its representation on a kinship network is given by a
subnetwork. The composition of elementary structures provides us a struc-
tured kinship network and, consequently, a structured social relationship
among individuals.

Other societies make marriages impossible among individuals by nega-

tive marriage rules. For example, a negative rule could be “a man must

not marry to a mother’s brother’s daughter”, the opposite of the previous
positive marriage rule. In this case, a man has many possibilities to marry,
and it leaves the corresponding kinship network less structured. However,
marriages still exist among individuals. Is there any hidden rule? Is it
possible to find any “structure” in societies where the marriages rules are
negatives? If so, once again, we will have now a (semi-)structured kinship
network, and therefore a (semi-)structured social life people. The answer of
the previous questions are given by a kin data analysis. We are going to
focus on the ring analysis in kinship networks.

In any network, the simplest structure which represents the individual
exchange among different families is the ring. Note that any elementary
structure in a network has to contain a ring. Therefore, an important task is
to develop fast methods to find rings in networks. Moreover, a fixed marriage
could appear in different rings. For example, two married individuals u and
v could be linked by dipaths from two different commom ancestors. The set
of all rings that have fixed marriages on them is called as implex [7]. Given
a fixed marriage set M , we denote by ApCq M -implex the set of ApCq rings
containing the marriages M and the size of M is p (|M | = p). We have p = q
when there is no commom individual as an individual in some marriage in
M . We have seen in practice that p and q is less than or equal to 3. See
Figure 6 for an example of A2C1 M -implex where M = {u− v,w − v}.

An implex is an attempt to understant the exchange among different
families in societies where the marriages are conducted by negative rules.
However, in this work, we concentrate the computational experiments in
statistical measures of some kinship networks.

During our experiments, we worked with 8 empirical kinship networks:
Arara, Xavante, Irantxe-Myky, Zoró, Enawenê-Nawê, Deni, Arapium and
Krahô. Table 1 informs for each those kinship network the number of vertices
(or individuals) n, the number of arcs (or the consanguinity connections)
m, the number of edges (or affinity connections) t, and the size of a longest
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Figure 6: An A2C1 M -implex where M = {u− v, w − v}.

dipath l. We did not found publications related to the Zoró network. We
refer it by initials unp (unpublished).

Table 1: Empirical kinship networks

Networks References n m t l

Arara [15] 105 197 48 5
Xavante [16] 459 713 254 6
Irantxe-Myky [17] 618 1003 177 6
Zoró unp 755 1224 201 6
Enawenê-Nawê [18] 789 1368 170 6
Arapium [19] 1214 1792 291 6
Deni [20] 875 1589 333 7
Krahô [21] 1031 1793 379 8

We will concentrate in the efficiency of the methods that enumerate all
rings from the empirical kinship networks. Unfortunately, we can show that
rings enumeration can take an exponential time with respect to the network
size, since there could be an exponential number of rings to enumerate.
Despite that, our method was able to enumerate the rings and implexes
from the networks cited5.

Figure 7 draws a boxplot6 for each empirical network as data representing
the time spent to output an A1C1 ring during a total tool running time.

5For Deni and Krahô networks, the enumeration of A3C3 rings was stoped after reach-
ing 3.000.000 rings (see Table 3).

6All boxplot whiskers are 1.5×IQR (Interquartile range).
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The time spent to decide that a marriage do not be in any A1C1 ring
was contabilized. Beyond that, we can observe good results which can be
explain by the small size of a longest dipath for all networks analysed (see
last column in Table 1). Therefore, restricted to network with small longest
dipaths, the task to output A1C1 rings could be done quickly (Step 3 from
subsection 3.3 applied to A1C1 rings).

In Figure 8 each data represents the time spent to list an A1C1 implex.
Remember that an implex is the set of all rings for a fixed marriage set M
[7]. In this case, given marriage set M , we measuared only the time spent to
list a non-empty M -implex. We decide did not present the time for empty

M -implex, however, we point out Figure 7 once again to confirm that this
time is small.

Tables 2 and 3 shows, for each empirical network, the number of rings and
different implexes founded. We have to remark that 79% of marriages from
Arara network are consanguinity marriages (A1C1 case). These percentage
drop to 21% for Irantxe-Myky marriages, 48% for Deni marriages and 27%
for Krahô marriages. For the other networks, less than 15% of marriages
are consanguinity marriages. Two marriages in Arara network have 60% of
chance to be a consanguinity relinking marriage (A2C2 case). The chance
drop to 18% to Deni network and to 9.5% to Krahô Deni. For the other
networks, these chance drop to less than 6%. Three marriages in Arara
network have 30% chance to be an affinal relinking marriage (A3C3 case).

Table 2: Number of rings (R), implexes (I) and rings by implex (A1C1 and A2C2 cases)

A1C1 A2C2
Networks R I R/I R I R/I

Arara 163 38 4.29 14.645 1.357 10.79
Xavante 56 26 2.15 7.455 1.482 5.03
Irantxe-Myky 120 38 3.16 6.390 1.541 4.15
Zoró 57 26 2.19 2.976 863 3.45
Enawenê-Nawê 16 8 2 2.539 606 4.19
Arapium 78 29 2.69 1.902 464 4.10
Deni 918 159 5.77 320.155 20.199 15.85
Krahô 812 102 7.96 353.542 13.628 25.94

Figures 9 and 10 show, respectively, the time spent to list A2C2 and
A3C3 implexes. As in the case of A1C1 implexes (Figure 8), the data in
Figures 9 and 10 represent the time spent to list a non-empty A2C2 and
A3C3 M -implex for all corresponding set M . In these figures, note an
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Table 3: Number of rings (R), implexes (I) and rings by implex (A3C3 case)

A3C3
Networks R I R/I

Arara 936.176 50.014 18.72
Xavante 599.585 68.394 8.77
Irantxe-Myky 293.374 44.268 6.63
Zoró 146.758 25.755 5.70
Enawenê-Nawê 144.387 19.112 7.55
Arapium 31.712 5.768 5.50
Deni ≥ 3.000.000 27.586 108.75
Krahô ≥ 3.000.000 104.804 28.62

interesting inversion in the boxplot for Deni e Krahô networks. Almost 75%
of the A2C2 implexes from Deni are below the median A2C2 implex from
Krahô (See Figure 9). However, 75% of the A3C3 implexes from Krahô are
below the median A3C3 implex from Deni (see Figure 10). We explain these
behavior as the following: the mean of A2C2 rings by implex are 15.85 (for
Deni) and 25.94 (for Krahô), whereas the mean of A3C3 rings by implex are
108.75 (for Deni) and 28.62 (for Krahô). So, listing an A2C2 implex (resp.
A3C3 implex) for Deni (resp. Krahô) could be done faster than listing an
A2C2 implex (resp. A3C3 implex) for Krahô (resp. Deni).

To finish this section, we would like to describe the following observa-
tion. Consider monogamic networks where each individual or does not have
parent; or has two parents. Let us name them as 0/2 monogamic networks.
In these networks, an AkCk ring has (fakes rings??)

5. Finding rings, finding one ring and its complexity

Previously, we described a way to enumerate all AkCk rings. Now we
will show that we can find all AkCl (k 6= l) through of any algorithm that
find all AkCk. Let R be an AkCl ring and k ≥ l, and suppose that C is
the sorted marriage set in R. So, we can see in Fig. 14 that the number
of common vertices on the edges in C is equal to k − l. For example, the
number of common vertices on the edges in an A3C2 is 1, whereas in an
A3C3 is 0 (see Fig. 14). Next, we will show that an algorithm A which finds
all AkCk ring over an sorted marriage set (note that the number of edges
and the number of junctions are equal) can be used to find all AkCl ring
(k 6= l) over a new sorted marriage set C ′.
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Figure 7: Time to output an A1C1 rings. The line indicates the mean.
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Figure 8: Time to list A1C1 implexes for Xavante, Irantxe-Myky, Zoró, Enawenê-Nawê
and Arapium. The triangles indicate the mean.
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Figure 9: Time to list A2C2 implexes for Xavante, Irantxe-Myky, Zoró, Enawenê-Nawê
and Arapium. The triangles indicate the mean.
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Figure 10: Time to list A3C3 implexes for Xavante, Irantxe-Myky, Zoró, Enawenê-Nawê
and Arapium. The triangles indicate the average time.
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Figure 14: An A3C2 and A3C3.

We start defining a children triad which is a digraph formed by three
vertices s, u and v, and two arcs s→ u and s→ v. We denote such digraph
by CT (s, u, v). Given a kinship network H and a sorted marriage set C with
k marriages and p shared vertices by edges in C (p ≥ 1), we construct a new
kinship network H ′, a new sorted set C ′, and apply an algorithm which finds
all AkCk rings on H ′ and C ′ such that:

any AkCk ring over C ′ in H ′, corresponds to an AkCl ring over

C in the original kinship network H.

The construction can be followed in Fig. 15. First, we denote the com-
mon vertices in C by u1 = v1, u2 = v2, . . . , up = vp. Now, we create a
children triad CT (s′i, u

′

i, v
′

i) for each vertex ui = vi (i = 1, . . . p). Finally, we
replace each vertex ui = vi by its corresponding children triad CT (s′i, u

′

i, v
′

i)
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as described in the following steps:

1. initialize H1 ← H and C1 ← C,

2. for each i = 1, . . . , p,

(a) replace the edges ui − x and y − vi in Ci by u′i − x and y − v′i,
respectively, and

(b) update H i+1 ← H i and Ci+1 ← Ci.

3. update H ′ ← H i and C ′ ← Ci.

It is simple to prove a correspondence of AkCl rings in H and AkCk
rings in H ′. Therefore, we can apply any algorithm that finds all AkCk ring
over H ′ and C ′ to obtain all AkCl rings over H and C.

u1 = v1 u2 = v2u2 = v2 u′

1

u′

1
u′

2

v′
1

v′
1

v′
2

s′
1

s′
1

s′
2

H = H1
H2

H3 = H′

Figure 15: Example of the correspondence between an A3C1 over H and C and A3C3
over H ′ and C′.

Now, we will proof that the problem of finding only one AkCk over a
given kinship network H and a sorted marriage set C is NP-hard. The
reduction is from the k vertex-disjoint dipath problem stated below (it is
NP-hard due to Even, Itai and Shamir [22]).

The k vertex-disjoint dipath problem: Given an acyclic digraph
D, and k ordered pairs of vertices (s1, t1), . . . , (sk, tk), decide
whether there are vertex-disjoint dipaths Pi from si to ti for
i = 1, . . . , k.
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Given an acyclic digraphD, and k ordered pairs of vertices (s1, t1), . . . , (sk, tk),
we construct a new acyclic digraph D′ which initially is a copy of D. After,
we add in D′ a new vertex t′i, and a new arc si → t′i for i = 1, . . . , k. We
add in D′ a sorted set of edges C = (w1, . . . , wk), where w1 = t1 − t′k and
wi = ti − t′i−1 for i = 2, . . . , k. These edges added in D′ makes it a mixed
graph. Now we show that there are vertex-disjoint dipaths Pi from si to ti
in D for i = 1, . . . , k if and only if there is a AkCk ring over D′ and C.

If Pi is a vertex-disjoint dipath in D from si to ti for i = 1, . . . , k, then
we can make P = {P1, Q1, . . . , Pk, Qk} where Qi is the arc si → t′i for
i = 1, . . . , k to obtain an AkCk ring over D′ and C (see Fig. 16).

t1

s1

t′
1

t2

s2

t′
2

t3

s3

tk

sk

t′
k

sk−1

t′
k−1

. . .

Figure 16: An AkCk ring over D′ and C.

Now, consider an AkCk ringR overD′ and C where P = {P1, Q1, . . . , Pk, Qk}
is the set of dipaths in R. By definition of ring, Pi and Qi start in a junc-
tion of vertices ti and t′i for i = 1, . . . , k. By the construction of D′, the
unique junction of vertices ti and t′i is si. Thus, the dipaths P1, . . . , Pk are
vertex-disjoint which link the pairs (s1, t1), . . . , (sk, tk) in D. �

6. Chromatic rings on vertices

The individuals of some societies belong to determined groups. For ex-
ample, each individual from Enawenê-Nawê people belongs to a clan (see
http://pib.socioambiental.org/en/povo/enawene-nawe/485). This par-
titioning of the individual set can be represented by a color for each clan
and, therefore, a color for each individual. In these cases, chromatic rings

start to occur. We say that a ring is p-chromatic when it has p colors, and
each consanguinity line, from junctions to individuals married, has a deter-
mined color. For example, in Fig. 17 (a), the A2C1 ring is 1-chromatic,
since it has 1 color and the consanguinity lines from junction s1 to vertices
u and w, and the vertex v, they have the same color; in Fig. 17 (b), the
A3C3 ring is 3-chromatic, since it has 3 colors and the consanguinity lines
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from s1 to u and w, from s2 to z and y, and from s3 to x and v they have
the same color (red, blue and green, respectively); lastly, in Fig. 17 (c), the
A3C3 ring is 2-chromatic.

s1

s1

s1

s2 s2

s3 s3u

u

u
v

v
v

x x

y y
w

w

w

z z

(a) (b) (c)

Figure 17: Chromatic rings.

The motivation to find chromatic rings in kinship networks comes by
the interest to analyze matrimonial rules from the individual groups point
of view. For example, in Fig. 17 (b), the individual v from green group,
when he/she marry to individual u from red group, he/she relinking the
alliances among groups green, blue and red. In Fig. 17 (a), the affinity
connections are restricted to a determined group.

In a formal way, we state some problems.

P.1: Given a kinship network D with all vertices colored and a sorted mar-
riage set C, find only one chromatic ring R over D and C.

P.2: Given a kinship network D with all vertices colored, a sorted marriage
set C and a list of colors L, find only one chromatic ring R over D and
C where R has only colors in L.

P.3: Given a kinship network D with all vertices colored, a sorted marriage
set C and an positive integer number p, find only one p-chromatic ring
R over D and C.

Up to now, we do not know any tool that finds chromatic rings in kinship
networks. The construction of tools able to find such rings is one of the
challenges of this area since all these problems are NP-hard. The reduction
is from the problem previously shown to be hard. To see this result, we just
color all vertices of a given network with a unique color. So, a solution to
problems P.1, P.2 and P.3 is also a solution to the previously one.
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7. Chromatic rings on arcs and edges

Usually, a kinship network is formed by connections of affinity and con-
sanguinity. However, some people relates individuals by other ways. One
example of this is the connections of nomination and formal friendship from
Krahô people (http://pib.socioambiental.org/en/povo/kraho/443). When
an individual u nominates another individual v, then we have a connection

of nomination between individuals u and v. The nomination of an indi-
vidual u implies in the connection of formal friendship between u and other
individuals with particular names. Summarizing, new connections are added
to the kinship network obeying the following rules:

• the connections of nomination are directed, that is, there exists an arc
in the network from u to v, whether the individual u nominates the
individual v;

• the connections of formal friendship are represented by edges. A new
edge is created in the network between u and v, whether individuals
u and v are formal friends to each other.

Moreover, as well as the letters F, M, S, D, H, and W are associated to
connections of consanguinity and affinity7, the letters K, T, I, U, O and P
are associated to connection of nomination and formal friendship (proposed
in [23]).

• Connections of nomination:

– K (Keti in Krahô language) to male nominator;

– T (Tii) to female nominator;

– I (Itanpú) to male nominated; and

– U (Itanpú) to female nominated;

• Connections of formal friendship:

– O (Hõpin) to male formal friend; and

– P (Pintxwoi) to female formal friend.

7Consanguinity: F (Father), M (Mother), S (Son) and D (Daughter); Affinity: H
(Husband) and W (Wife).
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The connections of nomination do not cause an oriented cycle in the net-
work since an individual of a determined generation nominates individuals
of posterior generation (and never previous generation). Like before, a ring
in these networks is a cycle without parental triad. The motivation to find
rings in these networks comes from the interest to analyze the influence of
the news connections on the social behavior of this people.

It is important to observe that kinship networks only composed by con-
nections of consanguinity and affinity, there is no rings with two arcs entering
a vertex since, in that case, the absence of parental triad implies in the ab-
sence of vertices of in-degree equal to 2. However, in the networks with these
news connections, vertices with in-degree equal to 2 can occur in rings. See
the ring in Fig. 18 that illustrate a case.

S

S

F

K

M

M

H

I

D

u
x

Figure 18: A ring KSIFMMSDH (reading clockwise starting and finishing in vertex u).
Note that the ring has a vertex with in-degree equal to 2 (the vertex x with consecutive
connections I and F).

To represent the different connections in Krahô network, we can assign
colors to its arcs and edges. For example, the consanguinity connections
can be blue, the nomination connections can be yellow, the affinity connec-
tions can be red and the formal friendship connections can be green color.
Somehow, the rings in these cases are also chromatic on the arcs and edges.
Formally, we can state the following problem.

P.4: Given a kinship network D with colors on the arcs and edges, a sorted
marriage set C and a color c, find a ring over D and C whose number
of arcs with color c is at least 1.

Once again, we can reduce the problem of finding one ring in kinship
networks to P.4 problem. So, it also is a NP-hard problem. What we have
to do is only colored all arcs and edges with a single color.
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We believe that the development of algorithms to enumerate chromatic
rings in networks with colors in arcs and edges is an important contribution
to the Structural Anthropology area. The retrieval of such rings implies in
finding rings with vertices with in-degree equal to 2. It does not occur when
the arcs and edges represent only consanguinity and affinity. Moreover, a
solution to the rings with new connections, as the new connections from the
Krahô people, can provide to the network analyst new ways to evaluate, to
verify and to justify the social behavior and social organization of a people.

8. Conclusion

In this text we presented a way to enumerate AkCk rings in kinship
networks. The preprocessing of the network and the decomposition of the
task in three steps were fundamental to the successful of the enumeration.
The steps are: 1. Find the sets of all junctions of all pairs of vertices; 2. Build
a sorted marriage set with k fixed marriages C = {(u1, v1), . . . , (uk, vk)};
and 3. Use a procedure that enumerates AkCk rings involving the k fixed
marriages and in the order which they appear in the set. To enumerate
all the rings of a network, we have to repeat step 3 for all possible sorted
marriage set with k marriages.

We also present some problems that we believe to be interesting as to
the Anthropology as to the Computing: finding chromatic rings with colors
on vertices, edges and arcs. We showed that all these problems are NP-hard.
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