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Abstract. A model to simulate the spreading of a disease on a network
is proposed. The SIS and SIR models, a social distancing factor and
network circulation restrictions are considered. We perform some exper-
iments that give us an idea of how a disease spreads on different network
topologies and social distancing factors.
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1 Introduction

Nowadays we are witnessing a pandemic. The health system and the economy of
the region affected by a disease can suffer serious damage without proposals to
control its spreading. So, control policies to lead this spreading are necessary. The
ideal is that public agents and society together act quickly applying suggested
policies as fast as they can to avoid that a disease reaches people and advances
on territory.

Follow the real numbers of infected people, recovered people, the real number
of occupied and empty beds in hospitals are important statistics in combat to
pandemic. Other important question is the possibility to estimate with quality
such numbers given some initial conditions. Hethcote [5] describes three funda-
mental epidemiological mathematical models which are used to follow the dy-
namic of a disease. The models classify people in groups and they depend on the
following scenario: 1. a person is subject to contract a disease even if he (she) was
already cured; 2. a person is subject to contract a disease, however, if he (she)
contracted it in the past and he (she) is now cured then he (she) cannot contract
the disease again; 3. a healthy person can be immune or can be vaccinated, thus
avoiding to contract a disease. In the first scenario, we have the model named
SIS. In this model people are classify as susceptible (those that are subject to
contract a disease) and infected (those with a disease). In the second scenario,
we have the SIR model. In this case, people are classify as susceptible, infected
and recovered (those that were infected and will not be infected anymore). The
class recovered can include dead people. In the third scenario, the SIRV model,
people are classify as susceptible, infected, recovered and vaccinated.

⋆ Supported by CNPq Proc. 423833/2018-9
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It is common to find ordinary differential equations models to simulate the
dynamic of a disease and to estimate the numbers of susceptible, infected, recov-
ered and vaccinated people (when it is the case) over time. A classic epidemio-
logical model which uses differential equations is the Kermack and McKendrick
model [6]. In their work, they consider the groups of people that are susceptible,
infected and recovered. The Linge and Langtangen’ book [7] have a section ded-
icated to the treatment of spreading disease through the numerical solution of
ordinary differential equations. Other models use cellular automata to study the
spatial effects of an epidemic. White, del Rey and Sánchez [9] introduced a cel-
lular automata model to simulate the epidemic spreading. Beauchemin, Samuel,
and Tuszynski [3] used cellular automata to study the influenza A spreading.
There are other works on this subject such as [1], [10] and [8].

This work follows the same direction of the models based on cellular au-
tomata. Here we study the disease effect in a network with different topologies.
We highlight two points whose turn more difficult the disease spreading by the
network: the circulation restrictions remaking a real network topology to a par-
ticular network topology, turning the network strongly structured; and the so-

cial distancing through the possibility of people answer positively requests from
public agent, media, academy, etc. We perform experiments on the SIR model
and illustrate its characteristic graphics on different network topologies and in
different social distancing levels.

To finish this section, we describe how this work is divided. In Section 2, we
start with the application of SIS model in a network. In Section 3, we describe
how we treat the social distancing in the model. In this work, we suppose that
a disease is spread by meeting between two people, a susceptible an another
infected. So, in Section 4, we add to the model the meeting between people.
Section 5 considers the SIR model in a network. We describe some network
topologies and analyze the experimental results in Section 6. The conclusions
are in Section 7.

2 The SIS model and the network

The SIS model supposes, for each time t, a set of infected people It and a
set of susceptible people St. The people set maintains constant N t = It ∪ St. A
susceptible person on time t can become infected on time t+1 and vice versa. We
know that a susceptible person becomes infected when he (she) has a contact with
the disease virus. However, in this work we concentrate the infections occurring
in the meeting of a susceptible person and an infected person. There is a virulence
rate v ∈ [0, 1] that represents the potential infection of a meeting. A recovered

rate of infected people from the time t to t+ 1, ε ∈ [0, 1], is also considered. In
this way, next it is given a simple model to estimate the number of susceptible
and infected people for each time t (here yet considering such numbers as real
numbers)

|It| = |It−1| − ε|It−1|+ v|Xt−1|,
|St| = |St−1| − v|Xt−1|+ ε|It−1|



Title Suppressed Due to Excessive Length 3

where Xt−1 is the set of people p ∈ St−1 that have a meeting with some infected
person. Note that |N t| = |It| + |St| = |It−1| − ε|It−1| + v|Xt−1| + |St−1| −
v|Xt−1|+ ε|It−1| = |N t−1|. Therefore, the model maintains the total number of
people constant over time. For a while, we allow |It| and |St| be real numbers.
Since this not reflect the reality of the world, in the following sections, we will
keep these numbers as integer numbers.

We use networks (or graphs) to represent the proximity concept among
people. Consider a network G = (V,E). The vertex set is formed by V =
{1, 2, . . . , n}. The edge set is formed by E = {{i, j} : i is adjacent to j}. The
set of vertices adjacent to vertex i is denoted by χ(i). A real value in interval
[0, 1] is associated to each vertex. We discuss the representation for these val-
ues in the end of this section. Additionally, a group of people is associated to
each vertex (people from the same neighborhood, same city, etc). They can be
susceptible or infected. A certain proportion from these people answer to so-
cial distancing. Two vertices are adjacents if the two people groups have some
proximity (neighborhoods or cities sharing a frontier). This network will be used
to simulate, for each time, the dynamic of susceptible and infected sets in each
vertex. The group of people in a vertex i and on time t is denoted by the set
N t

i = St
i ∪ Iti (the intersection St

i ∩ Iti is empty). The number of elements in the
sets St

i and Iti can vary over time, however, there is no removal in N t
i .

As previously described, each vertex has a real value, denoted by αt
i, and it

represents the social distancing factor of people in vertex i and time t. Although
we have a time associated to the problem, the graph structure is static. How-
ever, the number of susceptible, the number of infected people and the social
distancing factor can be changed over time. In the following, we describe how
the distancing factor is considered in the model.

3 The social distancing factor in the model

The social distancing factor partitions the sets of people in two: those people that
answer to social distancing and those that do not answer. The people that do
not answer the distancing could go out its vertex and could keep going through
the network. However, we will simplify the model supposing that a person can
go through adjacent vertices. So, or a person is in his (her) own vertex or in
some adjacent vertex.

Now we add to the model the social distancing factor. We denote by Ṡt
i ⊆ St

i

(S̈t
i ⊆ St

i ) the set of susceptible people in N t
i that answer (do not answer) to

social distancing. The set denoted by İti ⊆ Iti (Ïti ⊆ Iti ) is the set of infected
people that answer (do not answer) to social distancing. We will assume that
the social distancing factor of each vertex i on time t, αt

i, is applied equally
on the sets St

i e Iti , that is, |Ṡt
i | = ⌊αt

i|S
t
i |⌋, |S̈

t
i | = |St

i | − |Ṡt
i |, |İ

t
i | = ⌊αt

i|I
t
i |⌋

and |Ïti | = |Iti | − |İti | (the function ⌊x⌋ takes the integer part of x). Therefore,
we will have, for each time t, the set of people from N t

i that answer to social
distancing Ṅ t

i = Ṡt
i ∪ İti ; and the set of people from N t

i that do not answer to
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social distancing N̈ t
i = S̈t

i ∪ Ïti . Next section, we highlight how the model treats
the meeting between susceptible and infected people.

4 About the meetings

In our scenario, for each time t, some people that answer to social distancing
(⌊λṠ |Ṡ

t
i |⌋ and ⌊λİ |İ

t
i |⌋) can be infected. This happens due to situations that re-

quire a person having to go out home (he (she) goes to drugstore, supermarket,
etc). For the people that do not answer to social distancing, all the population
(S̈t

i ) can become infected (on his (her) own vertex or in some adjacent). There-
fore, for each vertex i, we can have people circling in i coming from the set N t

i

and from the set
⋃

j∈χ(i) N̈
t
j . Given such observation, it is important to us know

the total number of people that are circling in each vertex of the network and in
each time. This can be estimated by a tool that identifies the number of people
in regions such that parks, shopping malls, workplaces, residences, transit, etc.
Note that, it is not required the position where each person is but a commu-

nity mobility report, such as in [4], giving the total number of people located in
regions for each considered time.

Our experiments consider, for each time t, the following number of people
circling in vertex i (people from N t

i and from
⋃

j∈χ(i) N̈
t
j ):

a. Ṡt
i = ⌊λṠ |Ṡ

t
i |⌋ : susceptible people that answer to distancing (from Ṡt

i );

b. İt
i = ⌊λİ |İ

t
i |⌋ : infected people that answer to distancing (from İti );

c. S̈t
i =

⌊

|S̈t
i |

|χ(i)|+1

⌋

+ (|S̈t
i | mod (|χ(i)| + 1)) : susceptible people that do not

answer to distancing (from S̈t
i );

d. Ït
i =

⌊

|Ït
i |

|χ(i)|+1

⌋

+(|Ïti | mod (|χ(i)|+1)) : infected people that do not answer

to distancing (from Ïti );

e.
...
S

t
i =

∑

j∈χ(i)

⌊

|S̈t
j |

|χ(j)|+1

⌋

: susceptible people from adjacent vertices that do

not answer to distancing;

f.
...
I

t
i =

∑

j∈χ(i)

⌊

|Ït
j |

|χ(j)|+1

⌋

: infected people from adjacent vertices that do not

answer to distancing.

The values in items a and b represent the people that answer the distancing
but, for some unavoidable reason, they have to go out home. By items c and d

we know that people in i that do not answer the distancing are distributed in
own vertex and in adjacent vertices leaving, possibly, the own vertex with more
people (the rest of division remains on own vertex). The items e and f show to
us that each vertex receives from its adjacents an amount equally distributed.

Let us denote by Ṅ t
i = Ṡt

i + İt
i , by N̈ t

i = S̈t
i + Ït

i and by
...
N

t

i =
...
S

t
i +

...
I

t
i.

In the model presented in Section 2, we denote by Xt the set of suscep-
tible people that meeting an infected person on time t. Now, we consider the
distancing factor in the meetings. Denoted by Ẋt

i (Ẍt
i ) the set of people from
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p ∈ Ṡt
i (p ∈ S̈t

i ) that meeting an infected person in vertex i (in adjacent ver-
tices of i). The set of people p ∈ St

i that meeting infected people is denoted by
Xt

i = Ẋt
i ∪ Ẍt

i . Thereby, the model is updated to:

|Iti | = |It−1
i | − ε|It−1

i |+ v(|Ẋt−1
i |+ |Ẍt−1

i |)
|St

i | = |St−1
i | − v(|Ẋt−1

i |+ |Ẍt−1
i |) + ε|It−1

i |.

Next, we analyze the expected value of E[|Ẋt−1
i |] and E[|Ẍt−1

i |]. The probability
to occur an event Y is denoted by P{Y }.

The meetings of a person who answers to social distancing are restricted
to the vertex that he (she) belongs. Let Ẏ t

pi be an indicator random variable

which is equal to 1 if a susceptible person p ∈ Ṡt
i meets an infected person;

and it is equal to 0 otherwise. Thus, |Ẋt
i | =

∑Ṡt
i

p=1 Ẏ
t
pi for all vertex i and for

all time t. The meetings of a person who does not answer to distancing can
occur in his (her) own vertex or adjacent vertices. In a similar way, let Ÿ t

pi→i

(Ÿ t
pi→j) an indicator random variable which is equal to 1 if a susceptible person

p ∈ S̈t
i meets an infected person in vertex i (in vertex j ∈ χ(i)). So, |Ẍt

i | =

∑S̈t
i

p=1(Ÿ
t
pi→i) +

∑

j∈χ(i)(
∑

⌊

|S̈t
i
|

|χ(i)|+1

⌋

p=1 Ÿ t
pi→j).

The expected value of |Ẋt
i | is

E[|Ẋt
i |] = E[

Ṡt
i

∑

p=1

Ẏ t
pi] =

Ṡt
i

∑

p=1

E[Ẏ t
pi] =

Ṡt
i

∑

p=1

P{Ẏ t
pi} = Ṡt

iP{Ẏ
t
pi}.

Similarly, we have

E[|Ẍt
i |] = S̈t

iP{Ÿ
t
pi→i}+

∑

j∈χ(i)

⌊

|S̈t
i |

|χ(i)|+ 1

⌋

P{Ÿ t
pi→j}.

Therefore, we need to calculate the probability to occur a meeting between a
susceptible person p ∈ Ṡt

i and an infected person (P{Ẏ t
pi}) and the probabilities

to occur a meeting between a susceptible person p ∈ S̈t
i and an infected person

(P{Ÿ t
pi→i} and P{Ÿ t

pi→j}). Before that, we rewrite the model in function of the
expected value of susceptible and infected people over time. It is important to
note that we can work with lower and upper bounds for the expected values.
These bounds can always be integer numbers (as long as they are initially integer
number). Given |It−1

i | and |St−1
i |, and given constants ε and v, the model is:

E[|Iti |] = E[|It−1
i | − ε|It−1

i |+ v(|Ẋt−1
i |+ |Ẍt−1

i |)]
= |It−1

i | − ε|It−1
i |+ v(E[|Ẋt−1

i |] + E[|Ẍt−1
i |])

≥ |It−1
i | − ⌈ε|It−1

i |⌉+ ⌊v(E[|Ẋt−1
i |] + E[|Ẍt−1

i |])⌋
= |Iti |,

E[|St
i |] = E[|St−1

i | − v(|Ẋt−1
i |+ |Ẍt−1

i |) + ε|It−1
i |]

= |St−1
i | − v(E[|Ẋt−1

i |] + E[|Ẍt−1
i |]) + ε|It−1

i |
≤ |St−1

i | − ⌊v(E[|Ẋt−1
i |] + E[|Ẍt−1

i |])⌋+ ⌈ε|It−1
i |⌉

= |St
i |.
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The previous model uses floor and ceiling functions. Observe that, if |It−1
i |

and |St−1
i | are integer numbers then |Iti | and |St

i | are also integers. Moreover,
the expected value of infected (susceptible) people of vertex i and on time t is
at least (at most) |Iti | (|S

t
i |). Now, we describe the probabilities.

The Probabilities P{Ẏ t
pi}, P{Ÿ

t
pi→i} and P{Ÿ t

pi→j}. Fixed a time t, we know

that the number of infected in any vertex i is İt
i + Ït

i +
...
I

t
i; and we know that

the total number of possible meetings (without repetition) between two people
(one being susceptible) is

Ṅ t
i + N̈ t

i +
...
N

t

i − 1.

Therefore, the probability of a susceptible people to be infected in any vertex is

P{Ẏ t
pi} =

İt
i + Ït

i +
...
I

t
i

Ṅ t
i + N̈ t

i +
...
N

t

i − 1
.

Since the last probability holds for any vertex, we have the same result to

P{Ÿ t
pi→i} =

İt
i + Ït

i +
...
I

t
i

Ṅ t
i + N̈ t

i +
...
N

t

i − 1
, for all vertex i; and

P{Ÿ t
pi→j} =

İt
j + Ït

j +
...
I

t
j

Ṅ t
j + N̈ t

j +
...
N

t

j − 1
, for all j ∈ χ(i).

Next, we extend this proposal for SIR model.

5 The SIR model

In SIR model we have, a set of susceptible people St
i , a set of infected people Iti

and a set of recovered people Rt
i, for each vertex i and each time t. Once again,

the total people number N t
i = St

i ∪ Iti ∪ Rt
i is maintained constant over time.

In this case, a susceptible person on time t can be infected on time t + 1. An
infected person on time t can be recovered on time t + 1. A recovered person
does not become infected again. Now, given |It−1

i |, |St−1
i | and |Rt−1

i |, and given
the constants ε and v, the model can be write as:

|Iti | = |It−1
i | − ε|It−1

i |+ v(|Ẋt−1
i |+ |Ẍt−1

i |),
|St

i | = |St−1
i | − v(|Ẋt−1

i |+ |Ẍt−1
i |),

|Rt
i| = |Rt−1

i |+ ε|It−1
i |,

where Ẋt−1
i (Ẍt−1

i ) is the set of susceptible and distancing people (without
distancing) of vertex i that meeting an infected person. The expected value of
the number of infected people (E[|Iti |]) is equal to that given in the previous
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section. For the remaining expected value sets we have

E[|St
i |] = E[|St−1

i | − v(|Ẋt−1
i |+ |Ẍt−1

i |)]
= |St−1

i | − v(E[|Ẋt−1
i |] + E[|Ẍt−1

i |)]
≤ |St−1

i | − ⌊v(E[|Ẋt−1
i |] + E[|Ẍt−1

i |)]⌋
= |St

i |,
E[|Rt

i|] = E[|Rt−1
i |+ ε|It−1

i |]
= |Rt−1

i |+ ε|It−1
i |

≤ |Rt−1
i |+ ⌈ε|It−1

i |⌉
= |Rt

i|.

Once again, if |It−1
i |, |St−1

i | and |Rt−1
i | are integer number then |Iti |, |S

t
i |

and |Rt
i| will also be. Observe that the expected value of infected (susceptible,

recovered) people of vertex i and on time t is at least (at most, at most) |Iti |
(|St

i |, |R
t−1
i |).

In our experiments of model SIR, the social distancing factor is applied on sets
St
i , I

t
i e R

t
i of the following way: |Ṡt

i | = ⌊αt
i|S

t
i |⌋, |S̈

t
i | = |St

i |−|Ṡt
i |, |İ

t
i | = ⌊αt

i|I
t
i |⌋,

|Ïti | = |Iti | − |İti | and |Ṙt
i| = ⌊αt

i|R
t
i|⌋, |R̈

t
i| = |Rt

i| − |Ṙt
i|. The set of people that

answer to distancing is Ṅ t
i = Ṡt

i ∪ İti ∪ Ṙt
i and the set of people that do not

answer is Ṅ t
i = S̈t

i ∪ Ïti ∪ R̈t
i.

For the people that circulate in vertex i, all items of Section 4 still hold (items
a – f ). Additionally, the following number of people also circulate in vertex i

g. Ṙt
i = ⌊λṘ|Ṙ

t
i|⌋ : recovered people that answer to social distancing (from Ṙt

i);

h. R̈t
i =

⌊

|R̈t
i|

|χ(i)|+1

⌋

+ (|R̈t
i| mod (|χ(i)| + 1)) : recovered people that do not

answer to social distancing (from R̈t
i);

i.
...
R

t

i =
∑

j∈χ(i)

⌊

|R̈t
j |

|χ(j)|+1

⌋

: recovered people that do not answer to distancing.

Now, we denote the total of people circling in vertex i by Ṅ t
i +N̈ t

i +
...
N

t

i where

Ṅ t
i = Ṡt

i + İt
i + Ṙt

i , N̈
t
i = S̈t

i + Ït
i + R̈t

i and
...
N

t

i =
...
S

t
i +

...
I

t
i +

...
R

t

i. The meetings
of a susceptible person and an infected and the probabilities of these events still
hold. Next, we describe the results obtained for some network topologies.

6 SIR model experiments

In this section we describe the experiments performed on different network

topologies. For us, network topology is the way how the network connections
are organized and how they define a structure (if any). Our motivation for this
experimental analysis is that the topologies analyzed and real topologies (i.e. for-
mat connections of neighborhoods, cities, etc) can have similarity. For a case of
extreme necessity, some topology could by applied in practice (and in emergency
way), changing temporarily the usual network connections.
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0

0 0

0

0 0

Fig. 1. The cyclical, star, wheel, complete, line and grid topologies.

The topologies analyzed were the following: cyclical, star, wheel, complete,
line and grid. All this topologies are planar networks unless the complete topol-
ogy. We illustrate each one of them in Fig. 1.

Next we illustrate some characteristic graphics for the SIR model (t × n

where t represents a day from 0 up to 200 and n represents the number of
susceptible, infected or recovered people). The graphics in Fig. 2 correspond to
the total number of susceptible, infected and recovered people on the wheel, star,
grid, cyclical and complete topologies. The first scenario did not consider social
distancing (αt

i = 0 for all i and all t). Each topology has 100 vertices and each
vertex i has N t

i = 3000 people. Initially, the number of infected are 400 for all
topologies (in vertex labeled 0 in Fig. 1). When this is not the case, we explicitly
describe for which topology this value was changed. All other people are initially
susceptible and there is no recovered people. The daily recovered rate and the
daily virulence rate are respectively ε = 29

200 and v = 91
200 . Such rates have been

recently used and they are related to the COVID-19 disease (see, for example,
in [2]). The line topology results were similar to cyclical topology: low number
of infected people and almost constant over time. The curves of susceptible and
recovered people for the line case were less steep. The characteristic curves to SIR
model did not appear for the complete topology (400 infected). In this case, the
number of people circling each vertex was not enough to increase the expected
value of infected people. However, increasing the initially infected number to 500
for complete topology, the infection spreads (in Fig. 2 bottom middle graphic).

The social distancing was considered for the experiments illustrated in Fig.2
(bottom right graphic) and Fig. 3. The people that do answer to social distancing
but still circulate in their vertex (for some unavoidable reason) are λṠ = 2

5 ,
λİ = 1

10 and λṘ = 3
5 . The constants ε and v are the same as previous. Moreover,

the social distancing considered over time was constant in αt
i =

2
5 for all i and

all t (40% of people do answer to social distancing). Once again, each vertex
has 3000 people and a single vertex has 400 infected people. The distancing in
these conditions was enough to control the infection spreading on star, wheel and
complete topologies. For the complete topology and when the initially number
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Wheel, Star, Grid, Cyclical and Two Complete
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Fig. 2. Graphics without social distancing unless the bottom right graphic.

of infected people is 1000, we obtain the bottom right graphic in Fig. 2. For the
cyclical (right graphic in Fig. 3) and line (not shown), the curve for infected
people was lower than the same topologies without social distancing. For the
grid topology (left in Fig. 3), the curve was lower and smoother (compare to the
top right graphic in Fig. 2).

Grid e Cyclical
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Fig. 3. Social distancing in 40% over time. On the right, the curves continue its tra-
jectory although the interruption on time 200.

The graphics in Fig. 4 illustrate a periodical social distancing case applied to
grid and complete topology (the last, initially 1000 infected people). In the begin
of the period, there is no social distancing factor. Over time, the social distancing
factor gradually increases until to reach the peak (day five) with distancing factor
in 70%. After, the distancing factor starts to gradually decrease until to cancel
the factor (day ten). This behavior repeats over time.
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Grid and Complete
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Fig. 4. Social distancing given by a periodical function (sine module function). The
function period is ten days. The peak occurs on day five and corresponds to factor
social distancing equal to 70%

7 Conclusion

In this paper we proposed SIS and SIR models considering social distancing fac-
tor and circulation restrictions on different network topologies. These parameters
can be used to control the number of infected people. The topologies analyzed
were cyclical, star, wheel, complete, line and grid. Our experiments showed that
if people circulation is allowed around a region on cyclical and line topologies,
then the number of infected people is controlled.
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