
Detecting Avoidance Behaviors Between Moving Object

Trajectories

Blind Review

(September, 2014)

Several algorithms have been proposed in the last few years for mining di�erent
mobility patterns from trajectories, such as �ocks, chasing, meeting, and con-
vergence. An interesting behavior that has not been much explored in trajectory
pattern mining is avoidance. In this paper we de�ne the avoidance behavior be-
tween moving object trajectories, providing a set of theoretical de�nitions to
precisely describe various kinds of avoidance, and propose an e�ective algorithm
for detecting avoidances. The proposed method is quantitatively evaluated on
a real-world dataset, and correctly detects with high precision the quasi total-
ity of the trajectory pairs that exhibit avoidance behaviors (F-measure up to
95%).

Keywords: Trajectory Avoidance Detection; Spatio-Temporal Analysis; Trajectory mining

.

1. Introduction and Motivation

Current advances in mobile technology such as GPS and smartphones have increased the
interest in mobility data analysis in several application domains such as security, smart
cities, transportation systems, urban planning, and biological studies. As a consequence,
several algorithms have been proposed for discovering various types of behaviors in tra-
jectory data such as the T-patterns (Giannotti et al. 2007), �ocks (Laube et al. 2005,
Wachowicz et al. 2011), meet (Gudmundsson and van Kreveld 2006), periodic move-
ments (Li et al. 2010, Trasarti et al. 2011), anomalous tra�c patterns (Pang et al. 2013),
chasing (de Lucca Siqueira and Bogorny 2011), etc. In (Dodge et al. 2008), a taxonomy
with di�erent types of trajectory behaviors is proposed, while a summary of the most well
known trajectory behaviors (also called patterns) is presented in (Parent et al. 2013).
In this paper we address the problem of trajectory avoidance detection. Here we dis-

tinguish two main classes of works about avoidance: collision avoidance and avoidance
detection. Collision avoidance is a well studied and established �eld with the main ob-
jective to suggest a new route (trajectory) to avoid collision. There is a vast literature
on this topic in areas such as robotics, vehicle simulation systems and vehicle embedded
systems, as detailed in the Related Works section. This paper focuses on the second class
of avoidance: the avoidance detection. In this domain the objective is to detect if a moving
object has avoided a static object (area), as shown in Figure 1(a), and a moving object
avoiding another one, as shown in Figure 1(b, c, and d).

1

2

Figure 1. Di�erent kinds of avoidance behaviors: avoidance with respect to a static ob-
ject (a), and avoidance between moving objects: individual (b), mutual (c), and individual
induced by a change in speed (d).

Static avoidance detection can be interesting for discovering suspicious behaviors as,
for instance, objects avoiding a surveillance camera, a police patrol, or speed controllers.
A �rst treatment of this type of avoidance is proposed in (Alvares et al. 2011).
Avoidance detection between moving objects is useful in several application domains.

For example, in security applications it may reveal suspicious behaviors among people,
such as criminals or terrorists that avoid policemen. In marine surveillance, ships with
illicit products or illegal immigrants may avoid cost guard boats. In computer games, the
avoidance behavior can be useful to detect, for instance, the avoided enemies, while in
soccer games it may be useful to analyze players avoiding markers. In zoological studies,
avoidance detection may reveal how preys avoid predators (e.g., at which distance, by
changing direction or changing speed). The discovery of this type of avoidance, however,
is more challenging than the avoidance of static objects, and the �rst questions that raise
are: what are the main features that characterize an avoidance between two trajectories?
Who is avoiding who? At what distance two objects initiate an avoidance?
In this paper we introduce a new method for trajectory avoidance detection, formalizing

the concept of trajectory avoidance behavior, to identify every instance of this behavioral
pattern in historical movement traces. Figure 1 shows three examples of avoidance behav-
ior addressed in this paper: Figure 1(b) shows an example of trajectory avoidance where
T1 avoids trajectory T2 by changing its direction. Figure 1(c) shows a mutual avoidance
behavior, where both T1 and T2 avoid each other by changing their direction. In Fig-
ure 1(d), although both trajectories have a spatial intersection relationship, T2 avoids T1

by slowing down the speed in order not to spatio-temporally intersect T1.
This speci�c problem has not received much attention in the literature. Li in (Li et al.

2013) has made the �rst attempt to address trajectory avoidance detection looking for
attraction and avoidance relationships between pairs of trajectories. In general terms,
this work considers the frequency of meetings to de�ne and avoidance. When a pair of
objects frequently moves close to each other, an attraction relationship is characterized,
and when the pair rarely moves close to each other, and avoidance is detected. As a result,
this method measures the degree of attraction or avoidance between two trajectories.
We claim that an avoidance between trajectories, as the examples shown in Figure 1

is characterized by a change of movement behavior. Therefore, we de�ne an avoidance
behavior making a forecast of the possible movement of two trajectories and compare this
forecast with the real movement, in order to detect a change of behavior. In summary,
we make the following contributions in this paper: (i) we introduce a framework which
de�nes the avoidance between pairs of trajectories considering changes of behavior in

3

speed or direction, so to cover the three types of avoidance shown in Figure 1(b, c, d); (ii)
we present an algorithm which is able to automatically detect every avoidance between
two trajectories, and to work on real-world trajectories collected at di�erent sampling
rates; (iii) we propose a criteria to classify any avoidance as weak, mutual or individual,
on the basis of factual evidence related to changes in behavior of the involved trajectories;
and (iv) we present a fusion detector for analyzing the avoidance with di�erent sets of
parameters and fuse the results in a unique output.
The rest of the paper is organized as follows: Section 2 presents the related work.

Section 3 introduces some basic de�nitions. Section 4 illustrates the new de�nitions for
avoidance detection while Section 5 proposes an algorithm to compute avoidance behavior.
Section 6 describes experiments on real trajectories, while Section 7 concludes the paper
and suggests directions of future research.

2. Related Work

As mentioned before, we can distinguish two main classes of works about avoidance: col-
lision avoidance and avoidance detection. Collision avoidance deals with models, systems,
and practices designed to prevent vehicles such as cars, ships, and airplanes from colliding
with other vehicles. Therefore, the focus relies on detecting a future collision, and change
(or suggest a change) of the current route of one or more of the involved vehicles to avoid
a collision.
There is a vast literature in these domains for collision avoidance. Just a few examples

of works on collision avoidance in vehicle systems include: for cars (Kim et al. 2007),
(Xausa et al. 2012), (Hafner et al. 2013), (Nedevschi et al. 2009), for ships (Liu and Shi
2005),(Mou et al. 2010), and for aircrafts (Shandy and Valasek 2001),(Richards and How
2002) and (Pechoucek and Sislak 2009).
In (Kim et al. 2007) the proposal is to minimize the safety distance error and to regulate

the relative speed between two vehicles, so to avoid rear-end collision, using hierarchical
longitudinal control. Xausa in (Xausa et al. 2012) proposes a method for computing a
car trajectory towards a safe �nal state, as soon as an obstacle is detected by a sensor
(e.g. radar or lidar). Two scenarios are considered: a car that is overtaking a stationary
object and a car that is overtaking when a car is approaching from the opposite direction.
The solution is based on the car model with two control variables (steering velocity and
braking force), state variables (speed, yaw angle, yaw angle rate, the center of gravity and
direction) and a state dynamics de�ned by a system of di�erential equations. The work is
done in a simulation basis. Hafner in (Hafner et al. 2013) presents experimental results for
an active control intersection collision avoidance system implemented on modi�ed Lexus
test vehicles. The system utilizes vehicle-to-vehicle dedicated short-range communications
to share safety critical state information. Safety is achieved in potential collision scenarios
by controlling the velocities of both vehicles with automatic brake and throttle commands.
Another approach for car collision avoidance considers pedestrians (Nedevschi et al.

2009), where the use of stereo cameras on board of vehicles supports the detection of
pedestrians with the aim of avoiding collisions between cars and pedestrians.
In the domain of ships, for instance, Liu (Liu and Shi 2005) proposed a fuzzy-neural

inference network that learns a set of examples from a set of rules de�ned by the Inter-
national Regulations for Preventing Collisions at Sea. Based on the learned examples,
the method suggests direction changes of the ship to avoid a possible collision. The main
input data are the ships direction and speed, the distance between them, and the type of

4

water area (sea, coast, limit water). The model only considers cases where an encounter
situation is already detected. The output is the set of actions to avoid the collision.
In the aircraft domain, for instance, Richards (Richards and How 2002) considers a set

of aircrafts where each one has a known destination, and its trajectory will be a strait
line from the current point to its destination. The speed of the aircrafts is known and
constant, and it is assumed that the aircrafts �y in layers. The contribution of the paper
is a linear model to modify the aircraft routes in order to avoid a collision when two or
more aircrafts become close to each other. The model considers real dynamics constraints
to be more realistic.
Another domain where collision-avoidance is well studied is in robotics. In this do-

main, when the robot is calculating its route (its possible trajectory) it should con-
sider the known obstacles an avoid them. After, when the robot is moving, following the
planned route, if it detects an obstacle it should deviate the obstacle executing a collision-
avoidance. Some works include (Khatib 1986), (Borenstein and Koren 1991),(Khansari-
Zadeh and Billard 2012), (Sun et al. 2014). Khansari-Zadeh in (Khansari-Zadeh and
Billard 2012), for instance, uses a dynamical system-based approach to deviate the robot
from the obstacles. Sun in (Sun et al. 2014) proposed a behaviour-based multi-robot
collision avoidance to e�ciently coordinate the simultaneous navigation of large robot
teams. The proposed solution is based on the subsumption architecture (Brooks 1986)
with simple behaviours such as FollowingWayPoint, Avoid, WaitKeepDistance and Dock,
each one represented by a �nite-state automaton.
In summary, the main goal of the previous works on collision-avoidance is to de�ne a

set of actions to prevent a collision for a speci�c moving object type (e.g. car, airplane,
robot). These works take into account both the physical properties and the type of the
moving object.
In what concerns avoidance detection, which is the focus of this paper, the objective

is to determine if a moving object has avoided another moving object. Note that these
two classes of works are completely di�erent. While the former intends to change the
route of a moving object considering several physical properties of the moving object
(e.g. mass, center of gravity, steering angle), the later aims to discover if a past trajectory
has deviated from another trajectory, considering only the trajectory points.
In avoidance detection, to the best of our knowledge, there are basically two works:

(Alvares et al. 2011) and (Li et al. 2013). The former discovers moving objects that avoid
static objects, and does not search for avoidances between moving objects. The latter
is closer to our work, in that it looks for avoidance behaviors between moving objects.
Still, as mentioned before, (Li et al. 2013) searches for general avoidance and attracting
relationships based on frequency of meetings. She proposes a statistical approach based on
permutation test: for each pair of moving objects the method outputs a value ranging in
the interval [0, 1] which expresses a global estimate of the level of attraction or avoidance
between them.
Our work has a di�erent objective, namely identifying each single occurrence of avoid-

ance behavior between moving objects. Moreover, we distinguish various kinds of avoid-
ances trying to determine who is avoiding who. More precisely, an avoidance occurrence
is de�ned as a situation in which two objects are moving towards the same area, but
either one or both change behavior whenever they come close enough to be aware of each
other.

5

3. Preliminaries

Moving objects are entities having a time variant position, uniquely determined at each
time instant. A trajectory is a continuous part of the movement of an object (Renso et al.
2013). For the sake of simplicity, in the following we will restrict to the 2D Euclidean
space, but note that the generalization to higher dimensional spaces is straightforward.

Definition 3.1 (Movement and trajectory): The movement of an object o is a
continuous function Mo : R+ → R2 from the real positive numbers, representing time
instants, to 2D space. Given an object o and a time interval [tBegin, tEnd], a trajectory
T is the restriction of the movement Mo of the object to the given time interval. The
spatio-temporal position of the object at tBegin (resp. tEnd) is called the Begin (resp.
End) of the trajectory.

Often, in mobility applications, trajectories are only partially known, usually at speci�c
time instants that correspond to position update actions, called trajectory points.

Definition 3.2 (Trajectory point): A trajectory point, or trajectory sample, of a
trajectory T is a tuple (x, y, t), where T (t) = (x, y) is the object position at time t (called
the timestamp of the trajectory point).

The set of known positions of a moving object during the de�nition interval of a tra-
jectory is named trajectory track, or trajectory sampling.

Definition 3.3 (Trajectory track): Given a temporally ordered sequence 〈t1, . . . , tn〉
of timestamps, the track of a trajectory T for the given timestamps is the temporally
ordered sequence of trajectory points 〈p1, . . . , pn〉, where pi = (xi, yi, ti) and (xi, yi) =
T (ti).

A �nite sequence of trajectory points can be paired with a �nite sequence of interpola-
tion functions that describe, in an analytical and continuous, way the movement of the
object between each pair of consecutive trajectory points in the sequence. This sequence
of pairs of trajectory points and interpolation functions is named continuous trajectory
representation.

4. Avoidance

An avoidance between two moving objects occurs when both are moving towards the same
area at the same time, but either one or both change their behavior when they come close
enough to be aware of each other. In the following, with a slight abuse of terms, we will
indistinctly use the terms trajectory and object when referring to the avoidance. This is
acceptable since the trajectories referring to the same object do not temporally overlap.
In order to de�ne the avoidance concept, we �rst introduce the predicatesmeet and will-

meet. The �rst one expresses the fact that in a certain interval two trajectories become
su�ciently close to be considered in contact, whereas the second one states that the
forecast of these trajectories, determined by some technique on the basis of some observed
behavior, will lead to a contact.

Definition 4.1 (Meet): Given two trajectories Ta and Tb, a time interval [t1, t2] and
a distance threshold δ, we de�ne the predicate meetδ as

meetδ(Ta, Tb, [t1, t2]) ≡ ∃t ∈ [t1, t2]. dist(Ta(t), Tb(t)) < δ

6

Figure 2. A meets B (the distance in t′ is less than δ) during [t1, t2] but not during [t2, t3].

Figure 3. Di�erent kinds of predictors based on several interpolations and on movement
constraints (road network).

where dist(pa, pb) is the Euclidean distance of the points pa and pb.

When the predicate is satis�ed we also say that Ta meets Tb during [t1, t2] with threshold
δ. In case the threshold δ is evident from the context it will be omitted in the predicate
notation, writing meet instead of meetδ.
Figure 2 illustrates a pair of trajectories, A and B, during the time interval [t1, t3]. The

predicate meet is true for [t1, t2], since at time t′ the distance of the two trajectories is
less than δ. Note that for the interval [t2, t3], even if the two trajectories have a spatial
intersection X the meet predicate is false since the distance between the two moving
objects at any instant t ∈ [t2, t3] is always greater than δ. In fact, A and B cross X at
di�erent time instants.
Having a way of predicting the movement of the trajectories on the basis of what

happened in the past, we can establish if two trajectories will meet each other or not.
We next introduce an abstract notion of movement predictor clarifying which are the
expected properties.

Definition 4.2 (Movement predictor): Given a movement domain, consisting of all
possible movement functions,M = {M |M : R+ → R2}, and a temporal domain R+, a
movement predictor is a functional

forecast :M× (R+ ×R+)→M such that

∀M,M ′ ∈M. M |]0,t1]= M ′ |]0,t1] =⇒ forecast(M, [t1, t2]) = forecast(M ′, [t1, t2])

The functional forecast maps a movement function M to its forecast movement into
the interval [t1, t2] by exploiting only the behavior of M in the past interval]0, t1]. It
can be de�ned in di�erent ways depending on the contexts. Commonly, it is based on
the assumption that the behavior does not change with respect to the recent past of the
trajectory. For instance, in case of objects that move freely in space, we can use the Taylor

7

Figure 4. According to the forecasts, A will meet B (the distance will be less than δ) at
some time t′ in the time interval [t1, t2].

series in order to estimate the next positions of the trajectory, and the more terms of
these series we compute, the more precise we obtain the approximation, e.g., the �rst term
preserves the direction, the second one the curvature. On the other hand, if the object
movement is constrained by a network, we can exploit the network to predict where the
object is going.
Figure 3 shows several di�erent forecast functionals for the interval [t1, t2]. The solid

line represents the actual trajectory. In Figure 3 (left and right) the dashed green line
models a linear prediction, preserving the direction at time t1; the dash-dot red line (in
Figure 3(left)) shows a forecast based on a higher order Taylor series, preserving several
derivatives of the trajectory; and the dotted blue line (in Figure 3 (right)) illustrates a
prediction based on the knowledge of the road network.
In the rest of this paper we will use a simple linear movement predictor. We highlight,

however, that this choice only a�ects the implementation, and any predictor could be
used.

Definition 4.3 (Will-meet): Given two trajectories Ta and Tb, a time interval [t1, t2],
a movement predictor forecast and a threshold δ, we de�ne the predicate will-meetδ as

will-meetδ(Ta, Tb, [t1, t2]) ≡ meetδ(forecast(Ta, [t1, t2]),forecast(Tb, [t1, t2]), [t1, t2])

When the predicate is satis�ed we also say that Ta is expected to meet Tb during [t1, t2]
with threshold δ. In case the threshold δ is evident from the context it will be omitted in
the predicate notation, writing will-meet instead of will-meetδ.
Figure 4 illustrates an example where the predicate will-meet holds: A and B are

supposed to meet at time t′, provided that they maintain the same speed and direction
they had at time t1 (we used a linear movement predictor for simplicity).
With these de�nitions we de�ne an avoidance between trajectories as an event that

happens in a time interval where the prediction is a meet between two trajectories but
this meet does not occur.

Definition 4.4 (Avoid): Given two trajectories Ta and Tb, a time interval [t1, t2], and
a threshold δ, we de�ne the predicate avoid δ as

avoid δ(Ta, Tb, [t1, t2]) ≡ will-meetδ(Ta, Tb, [t1, t2]) ∧ ¬meetδ(Ta, Tb, [t1, t2])

When the predicate is satis�ed we say that Ta and Tb avoid to meet, with threshold
δ, during [t1, t2]. In case the threshold δ is evident from the context it will be omitted in
the predicate notation, writing avoid instead of avoid δ.
The duration of the time interval [t1, t2] is a measure of the future awareness of the

moving objects (e.g., a person or an animal), that is the amount of time they are able to
reliably forecast all of the involved trajectories to avoid collisions or encounters.
It is worth mentioning that although it is not explicit in De�nition 4.4, this de�nition

8

Figure 5. A avoids B during the time interval [t1, t2]: meet is expected according to the
forecast computed at time t1 but no actual meet happened during the given time interval.

covers the avoidance cases shown in Figure 1(b, c, and d), considering both speed and
direction.
Figure 5 shows two di�erent cases of avoidance in which trajectory B exactly ful�lls

the prediction (dashed green), whereas trajectory A behaves di�erently with respect to
the forecast (dashed green): on the left, A changes direction after time t1, and on the
right it reduces its speed. As a result, the forecast of the two trajectories (A and B) are
expected to meet at time t′ ∈ [t1, t2], but the two trajectories do not actually meet since
their distance is always larger than δ (omitted for simplicity in Figure 5) during [t1, t2].
Thus, in both cases the avoid predicate is true.

4.1. Avoidance Classi�cation

The concept of avoidance is related to a change of behavior of one or both the involved
objects such that a predicted meet does not occur. We de�ne a new predicate, change-
behavior, to better characterize di�erent kinds of avoidance. Informally, we regard the
behavior of an object as changed during a time interval when there is a di�erence between
the actual trajectory and its forecast that is su�cient to cause missed meets without any
change in the other trajectory. Intuitively such a di�erence should have at least the same
magnitude as the meet threshold δ.

Definition 4.5 (Change-behavior): Given a trajectory T , a time interval [t1, t2], and
a meet distance threshold δ, we de�ne the predicate change-behavior δ

change-behavior δ(T, [t1, t2]) ≡ ∃t ∈ [t1, t2], dist(forecast(T, [t1, t2])(t), T (t)) > δ

where forecast(T, [t1, t2])(t) and T (t) are respectively the forecast and the actual position
for trajectory T at time t.

When the predicate is satis�ed we say that T changes its behavior, with threshold δ,
during [t1, t2]. In case the threshold δ is evident from the context it will be omitted in
the predicate notation, writing change-behavior instead of change-behavior δ.
Figure 6 focuses on trajectory A of Figure 5, showing how it changes its behavior. On

the left it changes direction whereas on the right it reduces the speed with respect to the
forecast (green dashed line). In both cases the distance at t′ between the forecast and the
actual trajectory is greater than δ, hence the predicate change-behavior holds.
Based on the above de�nition, we distinguish among weak, individual and mutual avoid-

9

Figure 6. Trajectory A changes behavior : at some time t′ during [t1, t2] the distance of
the actual position from the forecast position is greater than δ.

Figure 7. On the left, both A and B change behavior to avoid each other (mutual avoid-
ance). On the right, according to the forecast A and B should meet but this does not
happen even if both did not signi�cantly change behavior (weak avoidance).

ance.

Definition 4.6 (Avoidance classi�cation): Given two trajectories Ta and Tb, and a
time interval [t1, t2] such that avoid δ(Ta, Tb, [t1, t2]) is true, we classify that avoidance in
the following way:

type_avoidδ(Ta, Tb, [t1, t2]) =



mutual if change-behaviorδ(Ta, [t1, t2]) ∧
change-behaviorδ(Tb, [t1, t2])

weak if ¬change-behaviorδ(Ta, [t1, t2]) ∧
¬change-behaviorδ(Tb, [t1, t2])

individual otherwise

In other words, we have a mutual avoidance when there is an evident change of behav-
ior for both trajectories, an individual avoidance when only one trajectory signi�cantly
changes its behavior, and a weak avoidance when there is an avoidance despite the fact
that the behavior changes are minimal for both trajectories.
Figure 7 shows examples of mutual and weak avoidance, whereas avoidances in Figure 5

are both individual. We recall that trajectories are represented in solid black, forecasts in
dashed green, and their speci�c positions at a given time are circled, respectively in solid
gray and dashed green. In Figure 7 (left), A changes its behavior by reducing its speed

10

and this is detected since there exists a time t′ ∈ [t1, t2] such that the distance of the
forecast position from the actual position is greater than δ. The same happens for B that
changes its direction. Since both trajectories changed behavior during interval [t1, t2], this
is a mutual avoidance. In Figure 7 (right) at any time in [t1, t2] for both trajectories the
distance of the forecast position from the actual position is less than δ (the height of
the gray rectangle). Nevertheless, trajectories were expected to meet but did not actually
meet (their distance is larger than δ) and thus the avoid predicate is true. Since the
change-behavior predicate is false for both trajectories, this is a weak avoidance.

4.2. Problem Statement

In this paper we address two problems of increasing complexity regarding the detection
of avoidance behaviors between moving object trajectories: the avoidance decision prob-
lem (i.e., decide whether a pair of trajectories in a given temporal interval satis�es the
predicate avoid) and the avoidance search problem (for every possible pair of trajectories
�nd those time intervals such that the predicate avoid is true).
We de�ne both problems on trajectory tracks since real trajectory datasets usually

consist of sets of samplings. To obtain the continuous representation of a trajectory we
use an interpolation function, namely interp, and we denote as interp(T) the application
of interp to the trajectory track T .
We check avoidances in intervals starting at the samples of a trajectory and the duration

of the interval is based on a look-ahead time ∆t, which can be interpreted as a measure
of the future awareness of moving objects. Consequently, ∆t must be chosen according
to their characteristics. For instance, pedestrians have a consistently smaller look-ahead
time than big ships (e.g., cargos), since in the latter case, due to the tonnage and the
size of the objects, changes of heading or speed are necessarily much slower. Still related
to the characteristics of the moving objects is the meet threshold δ. If we consider two
completely di�erent classes of moving objects, e.g., pedestrians and ships, it is evident
that the spatial extent of the actions needed to change their movements, as well as the
distance at which they are considered close to another object of the same type, will be
typically di�erent and this fact can and should in�uence the selection of δ.
The �rst problem we address is the decision problem.

Definition 4.7 (Avoidance decision problem): Given two trajectory tracks Ta,Tb,
the set of their timestamps TS = {timestamp(p) | p ∈ Ta∨p ∈ Tb}, a time instant t, such
that t ∈ TS, a look-ahead interval ∆t, and a meet threshold δ, the avoidance decision
problem consists in determining whether

avoid δ(interp(Ta), interp(Tb), [t, t+ ∆t]) holds.

The second problem we address is a search problem: for each pair of trajectories we
look for all the timestamps belonging to one of the two trajectory tracks such that the
predicate avoid holds and we determine the associated type of avoidance. As a �rst step
we formulate this problem for a pair of trajectories in order to �nd the set of timestamps
and the relative avoidance type where an avoidance between such trajectories is detected.
Then the notion will be generalized to a set of trajectories.

Definition 4.8 (Avoidances set): Given two trajectory tracks Ta,Tb, the set of their
timestamps TS = {timestamp(p) | p ∈ Ta ∨ p ∈ Tb}, a look-ahead time ∆t and a meet
threshold δ, we de�ne

avoidancesδ(Ta, Tb) = {(t, type) | t ∈ TS ∧ avoidδ(interp(Ta), interp(Tb), [t, t+ ∆t]) ∧

11

type_avoidδ(interp(Ta), interp(Tb), [t, t+ ∆t]) = type}

In words, a pair (t, type) ∈ avoidancesδ when t is a timestamp in one of the trajectory
tracks and the predicate avoid holds for the two trajectories in the interval [t, t + ∆t].
type is the kind of the detected avoidance.

Definition 4.9 (Avoidance search problem): Given a set of trajectory tracks D,
a look-ahead time ∆t, and a meet threshold δ, the avoidance search problem consists in
�nding the set of tuples

{(Ta, Tb, (t, type)) | Ta ∈ D ∧ Tb ∈ D ∧ (t, type) ∈ avoidancesδ(Ta, Tb)}

each consisting of a pair of trajectory tracks Ta, Tb, a time instant t and a type type
such that Ta and Tb avoid to meet, with threshold δ, after t for ∆t time and the kind of
avoidance is speci�ed by type.

In order to get a more compact representation of the result set, we next replace the
set of timestamps for a couple of trajectories (avoidances(Ta, Tb)) with a disjoint set
of intervals. The idea is to join two avoidances if the intervals where they are detected
overlap. To this aim, we introduce the notion of repeated avoidance in an interval.

Definition 4.10 (Repeated avoidance): Given two trajectory tracks Ta,Tb, the set
of their timestamps TS = {timestamp(p) | p ∈ Ta ∨ p ∈ Tb}, a look-ahead time ∆t,
and t1, t2 ∈ TS we say that the interval [t1, t2] contains a repeated avoidance, written
repeated_avoidδ(Ta, Tb, [t1, t2], type), when for any t ∈ [t1, t2] there exists t′ ∈ TS such
that t ∈ [t′, t′ + ∆t] and (t′,_) ∈ avoidancesδ(Ta, Tb)}. Moreover, type = sup{type′ | t′ ∈
[t1, t2] ∩ TS ∧ (t′, type′) ∈ avoidancesδ(Ta, Tb)} where

sup(X) =


weak if ∀x ∈ X x = weak

mutual if ∃x ∈ X x = mutual

individual otherwise

Hence, the compression of the set of avoidances consists of a set of maximal intervals
satisfying the repeated_avoid predicate. The type of a repeated avoidance is the upper
bound of the types of the avoidances occurring in the associated maximal interval.

Definition 4.11 (Compression of the set of avoidances): Given two trajectory
tracks Ta,Tb, the set of their timestamps TS = {timestamp(p) | p ∈ Ta ∨ p ∈ Tb}, a
look-ahead time ∆t, the compression of the set avoidancesδ(Ta, Tb) is de�ned as follows:

compressed_avoidδ(Ta, Tb) = {([t1, t2], type) | t1, t2 ∈ TS
∧ repeated_avoidδ(Ta, Tb, [t1, t2], type)
∧ [t1, t2] maximal}

5. Algorithmic Framework

In this section, �rst we present an algorithm for solving the avoidance search problem
(Section 5.1) and then we make some considerations on the choice of the right parameters
to detect avoidances. As a consequence, we propose two di�erent strategies for using our
algorithm: the simple detector and the fused detector. The simple detector consists of
a single execution of the algorithm with a �xed set of parameters whereas the fused

12

detector consists of multiple executions of the algorithm with various parameter sets and
the di�erent results are merged into a single result set (Section 5.2).

5.1. An Algorithm for Avoidance Detection

In order to solve the problems posed in Section 4.2 we propose Algorithm 1 which, given
a �nite set of trajectory tracks D, a meet threshold δ and a look-ahead time ∆t, returns
a set of avoidance behaviors A, consisting of tuples specifying a pair of trajectories, a
compressed interval in which the avoidance is detected between such trajectories and the
relative type of avoidance.
The algorithm starts by considering every possible pair of trajectory tracks in T and,

for each pair, it determines the �rst and last useful sample timestamps with respect to
the look-ahead time ∆t, (functions getFirstUsefulSampleTime and getLastUsefulSample-
Time, lines 4-7). More precisely, if tstartm and tendm denote, respectively, the timestamps
of the very �rst and last samples of a trajectory track Tm, then the timestamps of the
�rst and last useful samples with respect to ∆t are determined as getFirstUsefulSample-
Time(Tm,∆t) = min{t | p ∈ Tm ∧ p = (x, y, t) ∧ t ≥ tstartm + ∆t} and getLastUseful-
SampleTime(Tm,∆t) = max{t | p ∈ Tm ∧ p = (x, y, t) ∧ t ≤ tendm −∆t}.
Once the �rst and last useful samples of both trajectory tracks are determined (if any),

the algorithm starts scanning the trajectories from these samples (line 8). The sample
with the smaller timestamp, tcurr, is chosen (lines 9-12). Then, the algorithm proceeds
with the avoidance search. First, it checks whether there is a weak avoidance in the
interval [tcurr, tcurr + ∆t] (line 13): if there is an avoidance the algorithm determines
whether the avoidance is mutual (line 15) or individual (line 17) by properly testing the
change-behavior predicate. It could happen that there is not enough evidence to further
specify the avoidance, hence it remains labeled as a weak avoidance.
Once the avoidance has been detected, the algorithm removes the last avoidance, iden-

ti�ed by [t1, t2] with type typelast, for the two trajectories under investigation Tm, Tn
(line 19). It checks whether the interval [t1, t2 +∆t] overlaps the interval [tcurr, tcurr+∆t]
and in this case it merges the two avoidances, inserting in the result set the interval
[t1, t

curr] associated with the least upper bound between typelast and type (line 21). The
de�nition of sup is given in De�nition 4.10. Otherwise the algorithm inserts back the
avoidance [t1, t2] with type typelast in the result set and it adds also the new avoidance
[tcurr, tcurr] with type (line 23-24).
After having processed a sample, the function nextSampleTime returns the timestamp

of the next sample(s) in the trajectory track(s) (lines 25-31).
As a �nal consideration we observe that our algorithm can be easily adapted to more

complex processing pipelines, where preprocessing phases are allowed to �lter out unnec-
essary information prior to the avoidance behavior detection phase, hence reducing the
overall amount of data to be analyzed. Moreover, the algorithm can be also parallelized
with respect to the set of trajectory pairs under investigation, since each pair can be
processed separately in a core, thus entailing linear speedups with respect to the number
of cores used.

5.2. Avoidance Detectors

In this section we present two di�erent ways of using the algorithm proposed in the
previous section for avoidance detection: single detector and fused detector. Single detector
represents a single run of the algorithm using a �xed pair of (∆t, δ) values.

13

Algorithm 1: Avoidance behavior detection

Input: Finite set of trajectory tracks D, meet threshold δ, look-ahead time ∆t.
Output: Set of avoidance behaviors A.

1 begin
2 A = ∅
3 foreach Tm, Tn ∈ D with m < n do

4 tcurrm = getF irstUsefulSampleT ime(Tm,∆t)
5 tcurrn = getF irstUsefulSampleT ime(Tn,∆t)

6 tlastm = getLastUsefulSampleT ime(Tm,∆t)

7 tlastn = getLastUsefulSampleT ime(Tn,∆t)

8 while (tcurrm < tlastm ∧ tcurrn < tlastn) do

9 if (tcurrm < tcurrn) then
10 tcurr = tcurrm

11 else
12 tcurr = tcurrn

13 if (avoidδ(interp(Tm), interp(Tn), [tcurr, tcurr + ∆t])) then
14 type = weak

15 if (change_behavior(interp(Tm), [tcurr, tcurr + ∆t]) ∧
change_behavior(interp(Tn), [tcurr, tcurr + ∆t])) then

16 type = mutual

17 else if change_behavior(interp(Tm), [tcurr, tcurr + ∆t]) ∨
change_behavior(interp(Tn), [tcurr, tcurr + ∆t]) then

18 type = individual

19 ([t1, t2], typelast) = poplastResult(A, Tm, Tn)
20 if t2 + ∆t >= tcurr then
21 addToResultSet(A, Tm, Tn, [t1, t

curr], sup{typelast, type})
22 else
23 addToResultSet(A, Tm, Tn, [t1, t2], typelast)
24 addToResultSet(A, Tm, Tn, [t

curr, tcurr], type)

25 if tcurrm < tcurrn then
26 tcurrm = nextSampleT ime(Tm, t

curr
m)

27 else if tcurrn < tcurrm then
28 tcurrn = nextSampleT ime(Tn, t

curr
n)

29 else
30 tcurrm = nextSampleT ime(Tm, t

curr
m)

31 tcurrn = nextSampleT ime(Tn, t
curr
n)

32 return A

Given a pair of trajectory tracks (Ta,Tb), a meet threshold δ and a lookahead time ∆t,
the single detector returns the (possibly empty) set:

RSδ∆t
= {Ii}i=1,...,m = {[tis, tie]}i=1,...,m (1)

where tis and tie (with tis < tie) denote the starting and ending timestamps of the i�th

14

avoidance, Ii = [tis, t
i
e] denotes a temporal interval during which an avoidance occurs,

while the set {Ii}i=1,...,m consists of disjoint intervals, i.e., ∀i, j, Ii ∩ Ij = ∅.
Depending on the set of parameter values, an avoidance can be detected or missed. To

minimize this problem, we propose a fusion detector that will detect the avoidance with
di�erent sets of parameters, and fuse the results in a unique output. We call this the
fused detector.
Given a �xed lookahead time ∆t, and a monotonically increasing sequence of meet

thresholds 〈δ1, . . . , δh〉, where δ1 < . . . δi < . . . < δh, we can fuse the result sets obtained
for each δi, still obtaining a disjoint set of temporal intervals. Speci�cally,

RS〈δ1,...,δh〉∆t
=

⊎
j=1,...,h

RSδj∆t
(2)

where the result set RS〈δ1,...,δh〉∆t
is obtained by fusing the interval sets obtained by all the

single detectors with parameters δ ∈ {δ1, . . . , δh}. The operation
⊎

is a simple set-union
of the various intervals, except that the groups of overlapping intervals � such that, for
each interval I in a group, there is at least another interval I ′ belonging to the same
group, where I ∩ I ′ 6= ∅ � are fused and replaced by a single larger interval, that spans
all the overlapping ones. Note that this guarantees that the �nal fused result set is still
composed of disjoint intervals, each one representing a distinct avoidance.

6. Experimental Evaluation

The goal of this section is to evaluate the proposed algorithm under di�erent points of
view. First, we quantitatively test the e�ectiveness of the algorithm by analyzing the
ability to correctly detect expected avoidance behaviors. To this end we use an ad-hoc
annotated dataset, our ground truth, created for the purposes of this work (Section 6.1).
Second, we assess the ability of the algorithm in highlighting interesting and previously
unknown patterns emerging from avoidance behaviors when using datasets for which no
prior knowledge related to avoidance behaviors is available (Section 6.2).

6.1. Experiments with the Ground-Truth Dataset

We exploit a ground truth of annotated trajectories, explicitly created for this work, whose
data derive from real GPS observations of moving objects collected in Florianopolis and
Venice. The dataset contains an overall amount of 86 trajectories representing pedestrian
movements, for a total of 7,834 samples and an average sampling rate of one second.
Although this dataset is not large, it is su�cient to validate the proposed method.
In this trajectory dataset, 32 pairs of trajectories are labeled as positive, since they

exhibit at least one avoidance. Among the positive pairs, 8 pairs exhibit two distinct
avoidances while the remaining ones a single avoidance.
For each positive pair, the set of intervals during which the avoidance(s) occur(s) is

reported as well. The positive/negative labels and the temporal intervals referring to
single avoidances were given by human assessors. This may result in imprecise annotation
of temporal intervals, since their span may depend on the perception of assessors.
In order to evaluate the e�ectiveness of the (simple/fused) detector that solves the

decision problem (De�nition 4.7), for each pair of trajectories we check the correctness of

15

the detector by verifying if the yes/no answer matches the positive/negative label in the
ground truth. The detector returns yes if a non-empty set of avoidances is detected, no
otherwise.
On the other hand, in order to evaluate the quality of the detector that solves the

search problem (De�nitions 4.9 and 4.11), for each positive pair correctly detected we
also inspect the temporal intervals returned by the detector, by comparing them with the
ones associated by the human assessor in the ground truth.
In the following we de�ne the metrics used to evaluate the proposed method.

Decision problem. For this study we recur to well-established metrics commonly used
in data mining to evaluate the quality of a classi�er (Tan et al. 2005). Given a set of N
pairs of trajectories, we evaluate the results of the detector algorithm by constructing an
integer confusion matrix (see Table 1), a 2×2 table where the number of true positives (tp)
and true negatives (tn) are given in the main diagonal, while the anti-diagonal contains
the number of false positives (fp) and false negatives (fn) detected. Clearly, N = tp +
tn+ fp+ fn.
We call positive any trajectory pair in the ground truth that is labeled as avoidance

behavior = yes, while we use the term negative otherwise. Hence, tp and tn correspond
to the pairs which the detector labels correctly yes or no, respectively, while fp and fn
correspond to mislabeled pairs. Speci�cally, fp (fn) are pairs that the detector labels as
positive (negative), but in fact appear as negative (positive) in the ground truth.

Detected
positive negative

Actual
positive tp fn
negative fp tn

Table 1. Confusion matrix.

Recall and Precision are two widely used metrics employed in applications where suc-
cessful detection of positive cases, i.e., in our case trajectory pairs for which an avoidance
behavior is observed, is considered more signi�cant than detection of other behavior. A
formal de�nition of these metrics is given below:

Precision, p =
tp

tp+ fp
Recall, r =

tp

tp+ fn

Precision p and recall r can be summarized into another metric known as F-Measure,
de�ned as follows:

F-Measure, F =
2.r.p

r + p

where 0 ≤ F ≤ 1.

Search problem. As previously stated, for positive pairs correctly detected by the sim-
ple/fused detector we also inspect the temporal intervals returned by comparing them
with the ones associated by human assessor in the ground truth.
Let TP be the set of positive pairs pi in the ground truth that were correctly identi�ed

by the detector, i.e., pairs pi for which the result set returned by the algorithm is not

16

empty. Assuming that we are using a given combination ∆t and δ, for clarity purposes
in this context we denote such result set as RSi, omitting the parameters symbols in the
notation. For each pair pi ∈ TP , we know the set of actual disjoint temporal intervals

Gi = {Ii1, . . . , I
i
k} in the ground truth, associated with k > 0 avoidances. The detector,

either single or fused, also returns a set of m intervals RSi = {Ii1, . . . , Iim}.
Let Ĝi = {Iij ∈ Gi | ∃!Iih ∈ RS

i s.t. (I
i
j ∩ Iih 6= ∅) ∧ (@Iik ∈ Gi, k 6= j s.t. I

i
k ∩ Iih 6= ∅)},

Ĝi ⊆ Gi, be the set of intervals in Gi such that each interval overlaps with only one
interval in RSi, and the latter does not overlap with any other intervals in Gi.
Finally, we can quantitatively evaluate the quality of the results for all the pairs pi ∈ TP

by Q-Measure:

Q-Measure =

∑
pi∈tp

|Ĝi|
|Gi|

|tp|

where 0 ≤ Q-Measure ≤ 1. Ideally Q-Measure should be equal or close to 1.
In the following we present some visual examples of the output of the algorithm (Section

6.1.1), then in Sections 6.1.2 and 6.1.3 we show quantitatively the results obtained by
exploiting the (simple/fused) detector that solves the decision or the search problem.
In all the experiments described below, we discuss the various results obtained by

changing the two main parameters of our avoidance detection algorithm, namely ∆t and
δ, whose values are reported in seconds and meters, respectively.

6.1.1. Visual inspection of avoidances

In order to visualize some avoidances detected by our algorithm on the ground truth
dataset, we conveniently use Google Earth. Speci�cally, the avoidances shown in Figure 8
refer to trajectory pairs collected in Florianopolis. The subset of segments highlighted in
purple represents the set of samples over which an avoidance is detected. The segments
highlighted in yellow and white represent, respectively, a �xed sequence of samples occur-
ring before and after the avoidance detected by the algorithm. Figure 8(a) represents an
individual avoidance by entity ID11 (which moves initially from bottom-right to top-left),
slowing down at some point in order to avoid ID12 (moving from top-right to bottom-
left). Figure 8(b) depicts a mutual avoidance where ID21 (moving from bottom-left to
top-right) and ID22 (moving in the opposite direction) change their direction as soon
as they get close. Finally, Figure 8(c) depicts a mutual avoidance where the two entities
invert their direction as soon as they get too close.

6.1.2. Results for the Decision Problem

In this section we evaluate the ability of the detectors (simple detector and fused
detector) of correctly identifying the trajectory pairs of the ground truth that are posi-
tively/negatively labeled (decision problem).

Simple detector. For each pair of parameters ∆t and δ, we build the confusion matrix
by considering all trajectories in the ground truth, then determine precision/recall, and
�nally compute the F-Measure scores. Figure 9 reports the scores obtained by the algo-
rithm for all combinations of parameters. Speci�cally, each curve in the plot refers to a
distinct ∆t, and shows the F-Measure score as a function of δ.
For almost all values of ∆t, a common optimal value for the meet threshold δ that

maximizes the F-measure score falls in the interval [3, 6]; for larger values of δ, the score
degrades. It is worth noting that these optimal values for δ approximately re�ect the aver-

17

(a) (b) (c)

Figure 8. Examples of three visual inspections performed on three di�erent avoidances
returned by the algorithm.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 3 6 9 12 15 18

F-
M

ea
su

re

Meet threshold (meters)

Decision problem
F-Measure analysis

Δt 2 sec.
Δt 3 sec.

Δt 4 sec.
Δt 5 sec.

Δt 6 sec.
Δt 7 sec.

Δt 8 sec.

Figure 9. Decision problem with simple detector: F-Measure analysis.

age avoidance distance used to physically produce the avoidances for (positive) trajectory
pairs included in the ground truth.

Fused detector. In the following we show how the overall performance of the algorithm
can substantially be improved by conveniently fusing di�erent result sets of distinct simple
detectors, according to the fusion operator de�ned by Equation (2).
Given a ∆t, and a sequence of values for δ, e.g., 〈3, 6, 9〉, a pair of trajectories is identi�ed

as a positive case, i.e., avoidance behavior = yes, if at least a simple detector for some
δ in the sequence identi�es one or more avoidance behaviors. Conversely, if no simple
detector is able to recognize any avoidance, the pair is identi�ed as a negative case, i.e.,
avoidance behavior = no. Still, for the fused detector we can build the confusion matrix,
by considering all trajectory pairs in the ground truth, and �nally compute the F-Measure
scores.
Considering the results shown in Figure 9, we choose ∆t ∈ {4, 5, 6, 7} to evaluate

the fused detector. For each ∆t, we compute the F-Measure related to the fused result

sets RS〈δ=3〉
∆t ,RS〈δ=3,δ=6〉

∆t , ...,RS〈δ=3,δ=6,...,δ=18〉
∆t (each one de�ned as per Equation 2).

18

Results are reported in Figure 10, where each fused result set is represented by its upper
δ threshold in the X-axis. The �gure shows how the fused detector entails substantial
improvements in terms of F-Measure (up to 95%), provided that ∆t is properly chosen
according to the dataset features.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 6 9 12 15 18

F-
M

ea
su

re

Cumulative meet threshold (meters)

Decision problem - Fused result sets
F-Measure analysis

Δt 4 sec. Δt 5 sec. Δt 6 sec. Δt 7 sec.

Figure 10. Decision problem with fused detector: F-Measure analysis. In X-axis the values
are the maximums of the thresholds δ used during the fusion operation, e.g., 9 is the
maximum for the set {3, 6, 9}.

In general, we argue that the opportunity of fusing di�erent result sets depends on the
kind of analysis we want to perform. Speci�cally, it depends on the classes of avoidance
behaviors we want to discover (e.g., only values for δ that are relevant for our purposes
should be used for the fusion operation), and on the amount of useful information an
analyst is interested in extracting at the expense of possible losses in precision (due to
the detection of false avoidances).

6.1.3. Results for the Search Problem

In this section we assess the quality of the temporal intervals reported by both detectors
(simple and fused), for the positive pairs correctly detected, and thus included in the set
of trajectory pairs TP , where tp = |TP |.
Simple detector. Figure 11 reports the Q-Measure scores obtained in the experiments.
The experimental �ndings con�rm all the remarks done in Section 6.1.2 concerning ∆t
and δ. In general, we obtain the best Q-Measure score for the same parameters ∆t and δ
for which we obtained the best F-Measure scores. We also point out that using high values
of ∆t (where high is relative to the dataset features) may erroneously induce the fusion
of distinct avoidance behaviors, due to compression, thus potentially mapping multiple
avoidances occurring between two trajectories in the ground truth to a single detected
avoidance. This in turn induces losses in terms of Q-Measure scores.

Fused detector. Also for the fused detector we aim at analyzing the quality of the
temporal intervals for the trajectory pairs in TP . To this end, we consider again the

fused result sets belonging to {RS〈δ=3〉
∆t ,RS〈δ=3,δ=6〉

∆t , ...,RS〈δ=3,δ=6,...,δ=18〉
∆t }.

Figure 12 reports the performance of the algorithm in terms of Q-Measure score. We
can observe how fusing di�erent result sets entails substantial improvements. These im-

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 6 9 12 15 18

In
te

rv
al

 q
ua

lit
y

Meet threshold (meters)

Search problem
Q-Measure analysis

Δt 2 sec.
Δt 3 sec.

Δt 4 sec.
Δt 5 sec.

Δt 6 sec.
Δt 7 sec.

Δt 8 sec.

Figure 11. Search problem with simple detector: Q-Measure analysis.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 6 9 12 15 18

In
te

rv
al

 q
ua

lit
y

Cumulative meet threshold (meters)

Search problem - Fused result sets
Q-Measure analysis

Δt 2 sec.
Δt 3 sec.

Δt 4 sec.
Δt 5 sec.

Δt 6 sec.
Δt 7 sec.

Δt 8 sec.

Figure 12. Search problem with fused detector: Q-Measure analysis. In X-axis the values
are the maximums of the thresholds δ used during the fusion operation, e.g., 9 is the
maximum for the set {3, 6, 9}.

provements are particularly evident whenever the fusion is performed for δ values close
to the average distances used for physically producing avoidances (δ ∈ [3, 6]).

6.2. Analysis of a Real World Unannotated Dataset

In this section we consider the AIS Brest dataset, a real world unannotated dataset con-
taining 824 trajectories related to the movements of 824 ships1 nearby Brest's harbor (Eti-
enne et al. 2012). Basic statistics reveal that the dataset contains 5.756.438 points, the

1Each trajectory is uniquely associated with a ship.

20

trajectories move at an average speed of 7.77 km/h and most of the trajectories have an
average sampling rate between 1 and 20 seconds. These characteristics make the dataset
quite interesting in terms of the precision with which the trajectories are described.
By considering the aforementioned statistics, and after a scrutinization of di�erent meet

thresholds and look-ahead times, according to entities' features we chose a meet threshold
δ of 30 meters and a look-ahead time ∆t of 50 seconds. Indeed, we argue that for this
case study this combination of parameters allows us to capture interesting patterns, as
we will show further on.
The algorithm detects a total of 1480 avoidances, among which 321 are mutual, 970

individual and 189 weak. Given this considerable amount of information it is necessary
to perform a deeper analysis in order to infer meaningful patterns.
Among the 824 ships, 229 are involved in at least one avoidance. We call this set as the

set of active ships. If we further look at the number of avoidances in which each active
ship is involved, we notice that 8 ships are involved in more than 100 avoidances, while
the vast majority - more precisely 196 ships (which constitutes the 85,5% of the active
ships set) - are involved in a number of avoidances between 1 and 10. We call the former
set as the set of frequent ships while the rest of the ships ends up in the set of infrequent
ships.
The information above suggests that the frequent ships play a very important role in

the dataset. If we decompose the total amount of avoidances detected by the algorithm,
we �nd out that the overall amount of avoidances between frequent and infrequent ships
are 973 (65,7% of the result set), while the avoidances between frequent ships are 386
(26,1%) and between infrequent ones are 121 (8,2%).
If we look at the MMSI codes of the frequent ships in order to �nd out their typology

(Table 2), we have that the top-2 frequent ships are pilot ships, while the remaining ones
are passenger ships and tugboats.

MMSI Code Type Amount of avoidances

227730220 Pilot ship 414
227005550 Pilot ship 364
227635210 Passenger ship 194
227592820 Passenger ship 175
227574020 Passenger ship 174
227612860 Passenger ship 158
227574030 Passenger ship 147
228051000 Tugboat 119

Table 2. Frequent ships details.

Given these data we want to answer the following questions:

(1) Which are the events producing so many avoidances between frequent and infre-
quent ships?

(2) Which are the events producing a considerable amount of avoidances between
frequent ships?

(3) Is there any kind of recurring pattern causing avoidances between infrequent
ships?

When answering Question (1) we notice a dominant pattern (Figure 13) that we call
paired movement event. Through a graphical inspection we observe that almost all these
events can be decomposed in 3 phases: during the �rst phase the two ships approach each
other, mostly when they are entering or exiting the harbor (approach phase, Figure 13(a)).

21

(a) Approach (b) Paired movement (c) Detach

Figure 13. Example of a paired movement event involving the frequent ship 228051000.
The ships are moving from bottom to top.

Then, the ships proceed paired (paired movement phase, Figure 13(b)) until they approach
the docks or they exit the harbor area. During this intermediate phase some avoidances
may emerge or not, depending on the continuous adjustment performed by both ships
in order to maintain the relative distance. Finally, the ships separate (detach phase), as
shown in Figure 13(c).
Given the typologies of the frequent ships reported in Table 2 we argue that the pilot

ships and the tugboats produce these events when they have to pilot (or tow, respectively)
an incoming (or outgoing) ship. For what concerns the passenger ships, we argue that
they adjust their trajectories in order to avoid other infrequent ships nearby; moreover,
the amount of avoidances in which they are involved is justi�ed by the fact that they are
servicing, and thus repeatedly going through, a �xed route.
In general we expect that these avoidances are mostly distributed in predetermined

areas. Indeed, if we plot the avoidances occurring during a two-month window we see
that they are approximately distributed on a �xed path going from the harbor's docks to
the strait exit (Figure 14). This also gives an idea about the most dangerous or tra�cked
areas (especially near the docks).

Figure 14. Subtrajectories related to avoidance behaviors detected in a time interval
spanning two months ([20/04/2009, 20/06/2009]).

Concerning Question (2), we found that many avoidances are produced according to
the same pattern observed for Question (1), or when a frequent ship is docking (and
therefore slowing down, hence the avoidance) in the harbor nearby already docked ships.

22

The latter pattern is observed between frequent and infrequent ships as well, although
with a lesser extent.
Finally, as far as Question (3) is concerned we found out that the second pattern

observed when explaining the avoidances related to Question (2) also occurs, i.e., almost
all the avoidances between infrequent ships happen near the docks when one or more
ships are docked while one ship is docking nearby.

7. Conclusion

Several algorithms have been proposed for mining di�erent types of trajectory patterns.
However, an interesting behavior that has not been much explored in historical trajecto-
ries of moving objects is avoidance.
In this paper we have introduced a new type of trajectory pattern: avoidance between

moving objects. We presented a set of theoretical de�nitions and an algorithm which
is able to detect such a pattern. The discovery of avoidances between moving objects is
challenging, since the intent of any moving object may not be immediately apparent from
its trajectories. To determine an avoidance, two objects should move towards the same
area at the same time, but either one or both should change their behavior when they
come close enough to be aware of each other. To identify a behavior change we forecast
the movements of both moving objects and compare them with the actual movements.
If the forecasts predict a meet but the actual movements do not meet, an avoidance is
detected. Each detected avoidance is in turn classi�ed, whenever possible, as individual
when only one moving object changes signi�cantly its behavior, or as mutual when both
objects change their behavior signi�cantly.
It is worth mentioning that a behavior change is measured through the distance between

the forecast movement and the actual movement. Such generalization prevents from using
speci�c features such as direction and speed for detecting a change of behavior.
In this paper, besides analyzing the parameters of the algorithm, we went one step

further by introducing the idea of fused detector, which merges the result sets of several
simple detectors (with di�erent meet thresholds) in order to allow the detection of a
possibly broad range of avoidance behaviors. The proposed approach for avoidance de-
tection makes use of only two parameters and is able to deal with trajectories collected
at di�erent sampling rates and/or having di�erent temporal lengths.
The algorithm has been evaluated with two real-world datasets. The �rst dataset is

annotated and it contains pedestrian movements; the purpose of analyzing such dataset
is to verify that the algorithm was able to correctly detect avoidances which actually
occur. The method correctly detected the avoidances (F-measure up to 95%). The second
real-world dataset, unannotated, contains ship movements nearby the Brest's harbor.
Since no prior avoidance information is available, the purpose of analyzing such dataset
is to check whether the algorithm is able to extract interesting evidence from the data.
Indeed, by characterizing the avoidances between ships on the basis of their frequency,
their spatial distribution and by means of visual inspections on the behavior of frequent
ships, we were able to highlight the most tra�cked areas, as well as a frequently recurring
event, i.e., the paired movement event.
We have not compared the results of our algorithm with other approaches because, to

the best of our knowledge, there is no other work for avoidance detection that identi�es
every avoidance occurrence in a trajectory dataset.
Future work includes an analysis on the e�ect of using di�erent forecast functions and

REFERENCES 23

the de�nition of a con�dence measure to evaluate the avoidance.

References

Alvares, L.O., et al., 2011. An algorithm to identify avoidance behavior in moving object
trajectories. J. Braz. Comp. Soc., 17 (3), 193�203.

Borenstein, J. and Koren, Y., 1991. The vector �eld histogram-fast obstacle avoidance
for mobile robots. IEEE Transactions on Robotics and Automation, 7 (3), 278�288.

Brooks, R.A., 1986. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2 (1), 14�23.

de Lucca Siqueira, F. and Bogorny, V., 2011. Discovering Chasing Behavior in Moving
Object Trajectories. Transactions in GIS, 15 (5), 667�688.

Dodge, S., Weibel, R., and Lautenschütz, A.K., 2008. Towards a taxonomy of movement
patterns. Information Visualization, 7 (3-4), 240�252.

Etienne, L., Devogele, T., and Bouju, A., 2012. Spatio-temporal trajectory analysis of mo-
bile objects following the same itinerary. Advances in Geo-Spatial Information Science,
10, 47.

Giannotti, F., et al., 2007. Trajectory pattern mining. In: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, 330�339.

Gudmundsson, J. and van Kreveld, M.J., 2006. Computing longest duration �ocks in tra-
jectory data. In: R.A. de By and S. Nittel, eds. 14th ACM International Symposium on
Geographic Information Systems, ACM-GIS 2006, November 10-11, 2006, Arlington,
Virginia, USA, Proceedings ACM, 35�42.

Hafner, M.R., et al., 2013. Cooperative Collision Avoidance at Intersections: Algorithms
and Experiments. IEEE Transactions on Intelligent Transportation Systems, 14 (3),
1162�1175.

Khansari-Zadeh, S.M. and Billard, A., 2012. A Dynamical System Approach to Realtime
Obstacle Avoidance. Autonomous Robots, 32 (4), 433�454.

Khatib, O., 1986. Real-time obstacle avoidance for robot manipulator and mobile robots.
International Journal of Robotics Research, 5 (1), 90�98.

Kim, D.J., Park, K.H., and Bien, Z., 2007. Hierarchical longitudinal controller for rear-end
collision avoidance. IEEE Transactions on Industrial Electronics, 54 (2), 805�817.

Laube, P., Imfeld, S., and Weibel, R., 2005. Discovering relative motion patterns in groups
of moving point objects. International Journal of Geographical Information Science, 19
(6), 639�668.

Li, Z., et al., 2010. Mining periodic behaviors for moving objects. In: B. Rao, B. Krish-
napuram, A. Tomkins and Q. Yang, eds. KDD ACM, 1099�1108.

Li, Z., et al., 2013. Attraction and Avoidance Detection from Movements. PVLDB, 7 (3),
157�168.

Liu, Y.H. and Shi, C.J., 2005. A fuzzy-neural inference network for ship collision avoid-
ance. In: Proceedings of 2005 International Conference on Machine Learning and Cy-
bernetics, Guangzhou, China IEEE Computer Society, 4754�4754.

Mou, J.M., van der Tak, C., and Ligteringen, H., 2010. Study on collision avoidance in
busy waterways by using AIS data. Ocean Engineering, 37 (5), 483�490.

Nedevschi, S., Bota, S., and Tomiuc, C., 2009. Stereo-based pedestrian detection for
collision-avoidance applications. Transactions on Intelligent Transportation Systems,
10 (3), 380�391.

Pang, L.X., et al., 2013. On detection of emerging anomalous tra�c patterns using GPS

24 REFERENCES

data. Data Knowl. Eng., 87, 357�373.
Parent, C., et al., 2013. Semantic Trajectories Modeling and Analysis. ACM Computing
Surveys, 40.

Pechoucek, M. and Sislak, D., 2009. Agent-Based Approach to Free-Flight Planning,
Control, and Simulation. IEEE Intelligent Systems, 24 (1), 14�17.

Renso, C., Spaccapietra, S., and Zimanyi, E., eds. , 2013. Mobility Data: Modeling, Man-
agement, and Understanding. Cambridge, UK: Cambridge University Press.

Richards, A. and How, J.P., 2002. Aircraft trajectory planning with collision avoidance
using mixed integer linear programming. In: American Control Conference, 2002. Pro-
ceedings of the 2002, Vol. 3, 1936�1941.

Shandy, S. and Valasek, J., 2001. Intelligent Agent for Aircraft Collision Avoidance. In:
Proceedings of AIAA Guidance, Navigation, and Control Conference, Montreal, Canada
American Institute of Aeronautics and Astronautics, 1�11.

Sun, D., Kleiner, A., and Nebel, B., 2014. Behavior-based Multi-Robot Collision Avoid-
ance. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, 1668�1673.

Tan, P.N., Steinbach, M., and Kumar, V., 2005. Introduction to Data Mining, (First
Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Trasarti, R., et al., 2011. Mining mobility user pro�les for car pooling. In: Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, 1190�1198.

Wachowicz, M., et al., 2011. Finding moving �ock patterns among pedestrians through
collective coherence. International Journal of Geographical Information Science, 25
(11), 1849�1864.

Xausa, I., et al., 2012. Avoidance Trajectories for Driver Assistance Systems via Solvers
for Optimal Control Problems. In: International Symposium on Mathematical Theory
of Networks and Systems Springer, 1�8.

