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Abstract The research on trajectory behavior has in-
creased significantly in the last few years. The focus has
been on the search for patterns considering the move-
ment of the mobile object in space and time, essentially
looking for similar geometric properties and dense re-
gions. This paper proposes an algorithm to detect a
new kind of behavior pattern that identifies when a
mobile object is avoiding specific spatial regions, as for
instance, security cameras. This behavior was called
avoidance pattern. The algorithm was evaluated with
real trajectory data and achieved very good results.

Keywords trajectory behavior · spatio-temporal
pattern · mobile objects · trajectory data mining ·
avoidance behavior

1 Introduction

The use of location aware devices as GPS and mobile
phones has significantly increased in the last few years.
This kind of devices can generate sequences of space-
time points capturing the trajectories of the object that
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carries the device. This kind of data - trajectory data -
acquired for operational level use, are being generated
in an incredible rate and can be analyzed to obtain new
knowledge, a higher level knowledge for decision making
processes.

There are several situations in the real world that
consider spatio-temporal fenomena that are target of
analysis and research, as the pattern of humans buy-
ing items in a supermarket or a shopping center, ani-
mal migration behavior monitoring, human behavior in
parks and cities, vehicle traffic, boats movement, etc.
The study of trajectory behavior of these mobile ob-
jects intends to transform these enormous quantity of
raw data in useful information to the decision making
process, knowledge discovery and reality interpretation.
It can contribute to problem solving (for instance iden-
tifying fishing areas [21]), to identify standards and ten-
dencies, or to discover outliers, for instance. Trajectory
data are obtained as a sequence of points (id, x, y, t),
where (x, y) represent the geographic coordinates of the
object id in the time instant t. We call this data as raw
trajectories.

Many works have been developed in the last years
considering the study of trajectory behavior. These works
are being developed according to two main research op-
tics: a geometric one [12,10,6,9,3] and a semantic one
[2,20,5,4,19].

Some works analyze one trajectory at a time while
others evaluate sets of trajectories, using, for instance,
clustering techniques. Several works search for some
kind of similarity between trajectories: spatial format,
time interval, velocity, stops at the same points, and so
on.

Those works dsicover different types of patterns as:
flocks, convergence, leadership, encounter, co-location
episodes, and so on.
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Fig. 1 Examples of the avoidance behavior

However, as far as we know, there are no works that
identify, in trajectory data, the behavior of mobile ob-
jects that avoid some regions or that avoid other tra-
jectories. For instance, people avoiding to collide with
other people during a walk in a park, vehicles that
change their route in situations of low speed traffic, or
individuals that move in a suspicious manner avoiding
vigilance cameras or security points.

An avoidance behavior can occur, for instance, when
a trajectory avoids a specific spatial region, when one
or more trajectories change their direction to avoid in-
tersecting each other, or when one or more trajectories
change their speed to avoid other mobile objects, as
can be seen in Figure 1. In Figure 1 (a) and (b) the
avoidance is between two trajectories and by direction
changing. Figure 1 (d) presents an example of avoid-
ance between two trajectories by speed changing, while
(c) presents another kind of avoidance where a mobile
object avoids a static region.

This work presents a new algorithm able to identify
an avoidance behavior where a mobile object avoids a
specific spatial region, as in the example show in Figure
1 (c).

The remainder of this paper is organized as fol-
lows: Section 2 shows the main related works, Section
3 presents the heuristics used to identify an avoidance,
Section 4 presents the developed algorithm to recog-
nize an avoidance pattern, Section 5 shows some exper-
iments, and Section 6 concludes the paper.

2 Related Work

Detecting patterns of movement has been of interest
since 1970, when Hagenstrand posed the bases of Time-
Geography [11], where he first proposed the idea of
”spatio-temporal prism” to represent the human move-
ment. From that time, a number of approaches tried
either to represent the human movement or to detect
patterns from datasets of movement traces. The paper
from Dodge et al. ([8]) presents a taxonomy of move-
ment patterns. The interesting part of this work is that

they first propose a systematic vision of the movement
patterns distinguishing between Generic and Behav-
ioral patterns, and the Generic pattern is divided in
Compound and Primitive. For example, a moving clus-
ter is classified as a Primitive pattern whereas a flock
is a Behavioral pattern. Despite the fact that this pro-
posal is interesting as a tentative to classify the many
movement patterns proposed in the last decade, we be-
lieve that some important patterns are not included, as,
for example, the avoidance pattern.

Several recent works define trajectory patterns ba-
sically considering the geometric part of trajectories.
Laube in 2005 introduced the mobile group pattern,
which is a set of trajectories close to each other, with
distance less than a given threshold, for a minimal amount
of time (minTime) [13]. In this approach the direction is
not considered and frequent groups are computed with
the algorithm Apriori [1]. Laube also [12] proposed five
types of geometric trajectory patterns based on move-
ment, direction, and location: convergence, encounter,
flock, leadership, and recurrence. A Flock pattern has
at least m subtrajectories within a region of radius r

that move in the same direction during a certain time
interval. The Leadership pattern must have at least m

subtrajectories within a circular region of radius r, that
move in the same direction, and at least one of the en-
tities is heading in that direction for at least a certain
time. Encounter is the pattern characterized by at least
m subtrajectories that are concurrently inside the same
circular region of radius r, assuming they move with
the same speed and direction. Reccurence patterns oc-
cur when at least m entities visit a circular region at
least k times.

Later in 2006, [10] extended the flock algorithm to
compute the longest duration flock patterns, where the
longest pattern has the longest duration and has at least
a minimal number of trajetctories. In [6] Co-location
episoids in spatio-temporal data are computed, where
groups of trajectories are spatially close in a time win-
dow and move together.

Lee [14] proposed an algorithm to find outliers be-
tween a set of trajectories.

Another approach is the T-pattern [9]. It is a se-
quential trajectory pattern mining algorithm that first
generates regions of interest considering dense regions
in space, and than computes sequences of regions vis-
ited, taking into account transition time from one re-
gion to another and minimum support.

In trajectory data analysis there are no works that
define avoidance patterns. The few works about avoid-
ance concerns collision-avoidance. The idea is to de-
velop real-time systems, called ”collision-avoidance sys-
tems” that proactively detect the risk of collision be-
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tween vehicles, and are intended to be used by pilots or
automatically during their travels to avoid the collisions
with other vehicles. The focus has been on avoidance
of different types of collisions as cars[7], ships [16], and
air traffic [22]. Also in transportation systems collision-
avoidance is studied [18], for pedestrians.

Some works in Robotics [23,15,24] use the idea of
avoidance in trajectories, but instead of analyzing a tra-
jectory to identify an avoidance, as proposed in our
work, they use the concept of collision-avoidance for
planning the future trajectories of a robot.

On the contrary, our proposal aims at analyzing his-
torical GPS traces (trajectories) in order to find if there
is the presence of avoidance patterns. This method is
not intended to be used for real time systems collision
avoidance, but to detect a specific avoidance behavior
in past trajectories. To the best of our knowledge, there
are no similar approaches in the literature.

This paper is a extended version of the work pre-
sented in Portuguese at [17].

3 Heuristics to identify an avoidance behavior

The avoidance behavior pattern occurs when a mobile
object is moving toward an object of interest or target
object (as a surveillance or security camera for exam-
ple), shifts to avoid passing the object of interest, and
after that goes back to its original path. The problem
is to differentiate what is really a shift to avoid the ob-
ject of interest from a natural path change caused by
another reason.

Some aspects that have to be considered:
The mobile object should not cross (intersect) the

object of interest called target object (the region covered
by the security camera, for instance), because if the
mobile object changes its direction but yet crosses the
target object, it did not keep away from object, what
therefore does not characterize an avoidance.

The mobile object should be going in direction to
the target object (the object to be avoided) and to de-
viate from the target object relatively close to it to be
considered an avoidance. A counter-example is a per-
son walking and one or more kilometers away he/she
deviates from a security camera; this person is proba-
bly changing his/her direction by any other reason and
not for escaping from the security camera, and therefore
not characterizing an avoidance behavior. To material-
ize this idea we created the concepts of target object
and region of interest. target object is a convex spatial
location that a trajectory could avoid. The region of
interest is defined by a distance d from the target ob-
ject. Any behavior outside of the region of interest is

Fig. 2 Example of target object, region of interest and tra-
jectories behavior

Fig. 3 Examples of trajectory behaviors

not considered because it is too far from the target ob-
ject. Then, a mobile object must intercept the region of
interest in order to characterize an avoidance.

Figure 2 shows these intuitions. Trajectory t1 was
moving in direction to the target object, deviated to
avoid it, and after a while continued more or less its
original path, characterizing a case of avoidance. Tra-
jectory t2 moves in direction to the target object and in-
tersects it, without avoiding it, and therefore not char-
acterizing a case of avoidance. Finally, trajectory t3 was
moving in direction to the target object but changed its
direction far away from the target, and the deviation oc-
curred outside the region of interest, and therefore not
characterizing an avoidance behavior.

Even with the definition of region of interest, we
observed that some trajectories, although intersecting
the region of interest and not crossing the target object,
do not presented a clear behavior of moving toward
the target object before changing direction. In these
cases, it is not possible to give to these trajectories a
suspicious behavior, considering the example of security
cameras. Figure 3 shows some examples. The trajectory
t2 clearly presents an avoidance behavior, but for the
trajectories t1 and t3 this is not so obvious.
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Fig. 4 Example of subtrajectory directed to the target

Fig. 5 Two different examples of avoidance

In order to make more robust the identification of
an avoidance behavior, we introduce the notion of sub-
trajectory directed to the target. The subtrajectory di-
rected to the target is the greatest subtrajectory that
is moving in direction to the target object, inside the
region of interest, with length greater or equal to a min-
imum length l. Then, a new condition to characterize an
avoidance is: the trajectory should have a subtrajectory
directed to the target. Figure 4 presents some examples
of this concept. The trajectories t1 and t2 have a sub-
trajectory directed to the target but the trajectories t3
and t4 do not.

After these considerations, we can define the heuris-
tics to characterize an avoidance: a trajectory t has an
avoidance in relation to a target object o if it has a sub-
trajectory directed to the target o and does not intersect
the target object o.

However, if we observe the avoidance behavior of the
trajectories in Figure 5, intuitively we can say that the
avoidance of trajectory t1 is stronger than the avoidance
of trajectory t2, because t1 returns to its original path
after deviating the target object (the security camera),
with a clear intent of avoiding the target. In the case of
trajectory t2, this is not so obvious, because the trajec-
tory deviated the camera and follows this new direction
without returning to its original path.

Fig. 6 Examples of confidence incremental regions

To know if a trajectory returns to its original path
or not after deviating the target, we create the notion
of confidence incremental region, denoted by a region
inside the region of interest, that does not contain the
target object and is situated between the target object
and the edge of the region of interest, on the opposite
side to the subtrajectory directed to the target, with
width equal the diameter of the target object. An ex-
ample is shown in Figure 6. This region is unique for
each trajectory considering a target object.

Intuitively, trajectory t1, in Figure 6 (a) presents an
avoidance with greater degree of certainty than trajec-
tory t2 in Figure 6 (b), because t1 intersects the confi-
dence incremental region. Using this intuition we create
two levels of avoidance of one trajectory in relation to
a target object: strong - when the trajectory intersects
the confidence incremental region, and weak - when a
trajectory moves in direction to a target, has a sub-
trajectory directed to the target, but neither intersects
the target nor the confidence incremental region. This
idea is mapped to a value, called local avoidance con-
fidence (in relation to a specific target object): 0.0 for
no avoidance, 0.5 for weak avoidance and 1.0 for strong
avoidance.

A last heuristic is that if there is a region with sev-
eral security cameras we can analyze the behavior of the
whole trajectory in relation to the whole set of target
objects. To do this, if a trajectory crosses the region of
interest of several target objects, we can have a global
avoidance value for the whole trajectory, considering
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Fig. 7 Example of a trajectory in a region with four target
objects

each local avoidance value. As a first approximation,
we define the equation

Avti =
∑n

k=1 Avik

n
(1)

where Avti stands for the avoidance confidence for the
whole trajectory i. Avik

is the value of local avoidance
for trajectory i in relation to the target object k, and
n is the number of regions of interest intersected by
trajectory i.

Figure 7 shows an example of avoidance confidence
for a whole trajectory. Trajectory t1 has a strong avoid-
ance considering the target object 1, a weak avoidance
in relation to target object 2 and has no avoidance for
targets 3 and 4. Therefore, its global avoidance confi-
dence is (1+0.5+0)/3=0.5. The target object 4 is not
counted in the denominator because its region of inter-
est is not intersected by the trajectory.

4 An algorithm for avoidance detection

Based on the heuristics presented in Section 3, we pro-
pose an algorithm to detect avoidance patterns, in the
pseudo-code shown in Listing 1.

Initially, the algorithm tests the intersection of the
trajectory points with the regions of interest of each
target object (line 12). Only the trajectory points that
intersect any region of interest are considered in the rest
of the algorithm, what significantly decreases the pro-
cessing time. If the trajectory intersects the region of
interest then it is not an avoidance (lines 14– 15). The
function SubtrajDT() (line 17) returns the longest sub-
trajectory that goes to the target inside the region of
interest. The pseudocode is presented in Listing 2 and

is detailed later in this section. The fuction ConfIncrR()
(line 18 of Listing 1) determines the confidence incre-
mental region, and is detailed later in Listing 3. If the
trajectory intersects the increasing confidence region in
a time period posterior to the time period of the sub-
trajectory directed to the target, then the avoidance is
strong (lines 19– 20); otherwise the avoidance is weak
(lines 21– 22). The global confidence of the avoidance
of a whole trajectory i is computed in line 29, using
equation (1).

Listing 1 Pseudo-code of the proposed avoidance algorithm

1 Input : T // se t of t r a j e c t o r i e s
2 O // se t of t a r ge t ob j e c t s
3 d // s i z e of the bu f f e r for the region of
4 // i n t e r e s t around the ta rge t ob j e c t
5 subt //minimal s i z e of the sub t ra j ec to ry
6 // d i rec ted to the ta rge t
7
8 Output : Avt // se t of degrees of avoidance
9

10
11 Method :
12 for each ti ∈ T | intersects (ti , buffer (O ,d ) ) do
13 for each ok ∈ O do
14 i f intersects (ti ,ok )
15 avik = none
16 else
17 i f SubtrajDT (ti ,ok ,d) >= subt
18 CIR=ConfIncrR (ti ,ok ,d)
19 i f intersects (ti , CIR )
20 avik = strong
21 else
22 avik = weak
23 endif
24 else
25 avik = none
26 endif
27 endif
28 endfor
29 calculate Avti

30 endfor
31 return Avt

The function SubtrajectoryDT() shown in Listing 2,
considers the first trajectory point inside the region of
interest and takes the next points, one by one, while the
direction of the line segment from the initial point to the
last considered point intersects the target object. This
procedure is repeated for the next points to determine
the longest subtrajectory directed to the target object
inside the region of interest.

As shown in Listing 2, the procedure starts with the
two first trajectory points that intersect the region of
interest of the target object being considered (lines 11–
12) and a loop is performed for all points in P (lines
14– 29). Inside the loop, the first step is to calculate
the azimuth between the two points to determine the
direction of the trajectory and to extend this line seg-
ment until a possible intersection with the target object
occurs (lines 15– 17). If the line segment intersects the
target object, then the mobile object is moving in direc-
tion to the target (line 18). The next step is to calculate
the euclidean distance between the points and save the
longest subtrajectory directed to the target (lines 20–
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21). While the line segment is moving in direction to
the target, the initial point is kept and the next point
is taken. If the line segment is not moving in direction
to the target (line 24), the initial point becomes the
next after that one that was the initial (lines 25– 27).
This procedure continues until all points of P have been
evaluated.
Listing 2 Pseudo-code of the SubtrajDT function

1 Input : P // se t of t r a j e c t o ry points tha t
2 // in t e r s e c t the i n t e r e s t region
3 o // ta rge t ob j ec t being analyzed
4 d // s i z e of the bu f f e r for the region of
5 // i n t e r e s t around the ta rge t ob j e c t
6
7 Output : dist // greater euc l idean dis tance in the
8 // d i r ec t i on of the ta rge t ob j e c t
9

10 Method :
11 i = P . firstPoint ( )
12 next = P . nextPoint ( )
13 dist , auxdist = 0
14 repeat
15 ap = azimuth (pi ,pnext )
16 paux . x = sen ( ap )∗2∗ d+(pi . x
17 paux . y = cos ( ap )∗2∗ d+(pi . y
18 i f intersects ( makeline (pi ,paux ) ,o)
19 auxdist = calcDistance (pi ,pnext )
20 i f auxdist >dist
21 dist = auxdist
22 endif
23 next = P . nextPoint ( )
24 else
25 P . point = i
26 i = P . nextPoint ( )
27 next = P . nextPoint ( )
28 endif
29 until the end of P
30 return dist

Figure 8 exemplifies the calculus of the subtrajec-
tory directed to the target. Figure 8 (a), (b), and (c)
show the same trajectory t1 and the line segment cal-
culated to test the intersection with the target at each
cycle of the repeated loop. In Figure 8 (a), the line seg-
ment is created between the two first points inside the
region of interest, p2 and p3. As it intersects the target
object, the point p2 is kept and the procedure contin-
ues with the points p2 and p4, as show in Figure 8 (b),
where the line segment intersect the target. In Figure
8 (c), the line segment is between the points p2 and p5,
where the expanded line does not intersects the target.
The procedure continues between the points p3 and p4

and after between p3 and p5, and so on. The subtrajec-
tory directed to the target will be the distance between
p2 and p4.

The function ConfIncrR() (line 18 of Listing 1) cal-
culates the confidence incremental region. Its pseudo-
code is presented in Listing 3. The function initially
computes the azimuth between the first point of the
trajectory inside the region of interest and the centroid
of the target object. In the sequence, two line segments
are computed, tangent to the target and with the az-
imuth calculated, from the target object to the exterior
limit of the interest region (lines 13– 14). Finally, the

Fig. 8 Example of subtrajetory directed to the target calcu-
lus

geometry of the confidence incremental region is com-
puted (line 15).

Although all the examples of target objects are cir-
cular, this function works for any convex target object.

Listing 3 Pseudo-code of the ConfIncrR function

1 Input : P // se t of t r a j e c t o ry points tha t
2 // in t e r s e c t the i n t e r e s t region
3 o // ta rge t ob j ec t being analyzed
4 d // s i z e of the bu f f e r for the region of
5 // i n t e r e s t around the ta rge t ob j e c t
6
7 Output : reg // confidence incremental region
8
9 Method :

10 i = P . firstPoint ( )
11 Oc = centroid (o)
12 az = azimuth ( i , Oc )
13 lim1 = makeLine1 ( az , o , exteriorRing ( buffer (o ,d ) ) )
14 lim2 = makeLine2 ( az , o , exteriorRing ( buffer (o ,d ) ) )
15 reg = computeRegion ( lim1 , exteriorRing (o ) , lim2 ,
16 exteriorRing ( buffer (o ,d ) ) )
17 return reg

5 Experiments

In order to evaluate the results of the proposed algo-
rithm, two different experiments where performed with
real GPS data collected at the rate of one point each
second. One dataset was collected by cars and the other
one by pedestrians.

5.1 Experiment I - Car Trajectories

The car trajectories were collected in the city of Porto
Alegre, with and without restrictions, i.e., avoiding or
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Fig. 9 Car trajectories in Porto Alegre

Table 1 Result of the first experiment considering 20 meters
as the diameter of the target object, 80 meters for the buffer of
the region of interest around the target object and 8 meters as
minimum length for the subtrajectory directed to the target

Tid Global Confidence

t7 1
t13 1
t18 0.875
t21 0.5
t15 0.333
t11 0.25

not specific regions mapped as the target objects. The
target object may be any convex geometry, but in our
experiments we considered this object as a circle with
a radius of 20 meters and 80 meters around the tar-
get as the region of interest. As the minimal length
for the subtrajectory directed to the target we defined
8 meters. The 8 meters represents 10% of the size of
the buffer around the region of interest. Figure 9 shows
these trajectories.

Table 1 shows the result of the first experiment that
found avoidance patterns in 6 of 21 trajectories with the
respective global confidence.

Figure 10 shows the avoidance patterns for trajec-
tories in Table 1. Figure 10 (a) shows trajectory t7 that
intersects only the region of interest of target object 2,
and Figure 10 (b) shows trajectory t13 that intersect
only the region of interest of target 1. Both are cases
of strong avoidance because they crossed the respective
confidence incremental region. Figure 10 (c) shows tra-
jectory t18, which intersects all 4 regions of interest. For
target objects 0, 1 and 2 it also intersects the confidence
incremental region, therefore, getting a local confidence
as strong. Because this trajectory does not intersect the
confidence incremental region at target object 3, it has
a weak local avoidance at this point, and therefore the
global avoidance confidence is (1+1+1+0.5)/4=0.875.

Figure 10 (d) shows trajectory t21, which intersects
3 regions of interest, all with weak local confidence,
since there was no valid intersection of any confidence
incremental region. This trajectory intersects the re-
gion of interest of target 1 twice. The first time, it does
not have any subtrajectory directed to the target. The
second intersection of trajectory t21 with the region of
interest of target 1 had a subtrajectory directed to the
target that was long enough, but after that the trajec-
tory did not intersect the confidence incremental region.

Trajectory t15, shown in Figure 10 (e), presents one
strong local avoidance considering the target 0. In re-
lation to the target 1 the local avoidance is none, since
the trajectory intersects the target object. In relation to
the target 3, the local avoidance is also none, i.e., there
is no avoidance since the trajectory intersects the region
of interest but it has no subtrajectory moving in direc-
tion to the target with a valid length. Therefore, the
global confidence for this trajectory is 1/3 (0,333), hav-
ing one strong avoidance and intersections with three
regions of interest.

Finally, trajectory t11, shown in Figure 10 (f), in-
tersects the region of interest of target objects 0 and 1,
and has one weak local avoidance in relation to target
object 1 and no avoidance in relation to target 0 be-
cause the subtrajectory moving to the target was less
than 8m when the trajectory finished.

For this dataset, a total of 11 avoidance patterns
were computed for all trajectories.

5.2 Experiment II - Pedestrian Trajectories

The second dataset is a set of 17 pedestrian trajecto-
ries collected at the Germania park in the city of Porto
Alegre, considering four monitoring regions located on
the crossing paths of the main routes in the park. Dif-
ferently from the car trajectories that follow a road net-
work, pedestrians may follow any directions, anywhere.
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Fig. 10 Avoidance patterns for trajectories in Table 1

Although there are a few main routes, the objects move
in aleatory ways in the park, therefore these trajecto-
ries present characteristics very different from car tra-
jectories. Indeed, the speed as a pedestrian moves may
affect the density of the points, since the path followed
by a pedestrian during 15 minutes, for instance, will be
much shorter and more dense than a car traveling in a
highway during the same time period. As the GPS for
the pedestrians was configured as for the car trajecto-
ries, i.e., the collection of a point every one second, this
trajectory dataset is much more dense than the pre-
vious one, and this behavior difference motivates this
experiment.

In this experiment we considered 10 meters as the
radius of the target object and 40 meters as the buffer of
the region of interest, simulating a reasonable distance
for a pedestrian to identify a camera and then to choose
a change on her/his path. We used 4 meters as the
minimal length for the subtrajectory directed to the
target.

Figure 11 shows the visualization of these trajecto-
ries in Google Earth. The circles represent the monitor-
ing regions defined as the target objects. After running
the algorithm, five avoidance patterns were found. Ta-
ble 2 shows the result of the avoidance patterns of these
trajectories, with its respective global confidence.

Among the trajectories with avoidance patterns, tra-
jectory t7 had the highest global confidence. As can be

Fig. 11 Pedestrian trajectories in a park

Table 2 Result of the pedestrians experiment considering 10
meters as the diameter of the target object, 50 meters for the
buffer of the region of interest around the target object and 4
meters as minimum length for the subtrajectory directed to
the target

Tid Global Confidence

t7 0.667
t6 0.5
t8 0.5
t4 0.167

seen in Figure 12 (a), this trajectory avoided the target
objects 1 and 2 with strong local confidence. The global
confidence was reduced by the intersection of this tra-
jectory with the region of interest of the target object 0,
where there was no subtrajectory directed to the tar-
get with a valid length. Additional experiments have
demonstrated that when we use 2 meters for the min-
imal subtrajectory length directed to the target, the
global confidence for this trajectory becomes maximal.

In trajectory t6 (Figure 12 (b)) we identify one case
of weak local avoidance, in relation to the target ob-
ject 3, and one strong local avoidance in relation to
the target object 2. This trajectory intersected the re-
gion of interest of target object 0, but has no subtra-
jectory directed to the target with 4m length to charac-
terize an avoidance. Then, no avoidance was identified



An algorithm to identify avoidance behavior in moving object trajectories 9

Fig. 12 Some pedestrian trajectories

in relation to this target. This trajectory does not in-
tersected the region of interest of target 1. Therefore,
the avoidance level for the whole trajectory resulted in
(1+0.5+0)/3=0.5.

Trajectory 8, shown in Figure 12 (c),intersects the
four regions of interest but in relation to the target ob-
ject 1 there is no valid subtrajectory directed to the
target. Considering the targets 2 and 3, the trajectory
does not intersect the confidence incremental region, re-
ceiving the value weak (0.5) as local avoidance. In rela-
tion to the target object 0, a strong avoidance has been
identified because the trajectory satisfies all avoidance
conditions.

In Figure 12 (d), trajectory 4 intersects three regions
of interest, but in relation to the target objects 1 and
2 there is no subtrajectory directed to the target with
the minimal length of 4m, and hence has no avoidance
with these targets. A weak avoidance exists with respect
to the target object 3. The avoidance for the whole
trajectory is then (0+0+0.5)/3=0.167.

Although in this paper we presented only two small
datasets to evaluate the proposed algorithm, we have
performed more experiments and the results show that
the algorithm found correctly the existing avoidance
patterns. Of course, the parameters - the length of the
buffer around the target object to define the region of

interest, and the minimal length of the trajectory di-
rected to the target - are very important and should be
defined according to the specific application in hand.

6 Conclusion and Future Works

Trajectory data are becoming more and more common
in daily life. Several works have been developed to ex-
tract interesting information and knowledge from these
data, as well as trying to infer the behavior of the mov-
ing object. Most works focus on the common behavior
of groups of trajectories of different mobile objects.

In this paper we contribute to move the literature
in trajectory data analysis one step forward proposing
a novel work to identify avoidance behavior in trajec-
tories. Our work identifies avoidance behavior of indi-
vidual objects in relation to existing static targets,that
could be, for instance, security cameras, police offices
or police controllers, and so on.

The method proposed in this work may be useful
in several application domains like the monitoring of
prisoners in semi-open (pre-release) level, traffic man-
agement, hurricane analysis, and so on.

As we use raw trajectory data, without considering
semantic information, the proposed heuristics can not
know if a trajectory deviated the target with the unique
intention to avoided it, or if it is the normal path of the
mobile object. As future works are investigating new
measures to ensure if an avoidance was intentional or
forced by an event, like a blocked street, for instance.
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