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Abstract.  Instance-based learning algorithms are often faced with the problem of deciding
which instances to store for use during generalization.  Storing too many instances can result in
large memory requirements and slow execution speed, and can cause an oversensitivity to noise.
This paper has two main purposes.  First, it provides a survey of existing algorithms used to
reduce storage requirements in instance-based learning algorithms and other exemplar-based
algorithms.  Second, it proposes six additional reduction algorithms called DROP1-DROP5 and
DEL (three of which were first described in Wilson & Martinez, 1997c, as RT1-RT3) that can be
used to remove instances from the concept description.  These algorithms and 10 algorithms
from the survey are compared on 31 classification tasks.  Of those algorithms that provide
substantial storage reduction, the DROP algorithms have the highest average generalization
accuracy in these experiments, especially in the presence of uniform class noise.
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1. Introduction

In supervised learning, a machine learning algorithm is shown a training set, T, which is a
collection of training examples called instances.  Each instance has an input vector and an output
value.  After learning from the training set, the learning algorithm is presented with additional
input vectors, and the algorithm must generalize, i.e., it must use some inductive bias (Mitchell,
1980; Schaffer, 1994; Dietterich, 1989; Wolpert, 1993) to decide what the output value should be
even if the new input vector was not in the training set.

A large number of machine learning algorithms compute a distance between the input vector
and stored exemplars when generalizing.  Exemplars can be instances from the original training
set, or can be in other forms such as hyperrectangles, prototypes, or rules.  Many such exemplar-
based learning algorithms exist, and they are often faced with the problem of deciding how many
exemplars to store, and what portion of the input space they should cover.

Instance-based learning (IBL) algorithms (Aha, Kibler & Albert, 1991; Aha, 1992) are a
subset of exemplar-based learning algorithms that use original instances from the training set as
exemplars.  One of the most straightforward instance-based learning algorithms is the nearest
neighbor algorithm (Cover & Hart, 1967; Hart, 1968; Dasarathy, 1991).  During generalization,
instance-based learning algorithms use a distance function to determine how close a new input
vector y is to each stored instance, and use the nearest instance or instances to predict the output
class of y (i.e., to classify y).

Other exemplar-based machine learning paradigms include memory-based reasoning
(Stanfill & Waltz, 1986), exemplar-based generalization (Salzberg, 1991; Wettschereck &
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Dietterich, 1995), and case-based reasoning (CBR) (Watson & Marir, 1994).  Such algorithms
have had much success on a wide variety of domains.  There are also several exemplar-based
neural network learning algorithms, including probabilistic neural networks (PNN) (Specht,
1992; Wilson & Martinez, 1996, 1997b) and other radial basis function networks (Broomhead &
Lowe, 1988; Renals & Rohwer, 1989; Wasserman, 1993), as well as counterpropagation
networks (Hecht-Nielsen, 1987), ART (Carpenter & Grossberg, 1987), and competitive learning
(Rumelhart & McClelland, 1986).

Exemplar-based learning algorithms must often decide what exemplars to store for use
during generalization in order to avoid excessive storage and time complexity, and possibly to
improve generalization accuracy by avoiding noise and overfitting.

For example, the basic nearest neighbor algorithm retains all of the training instances.  It
learns very quickly because it need only read in the training set without much further processing,
and it generalizes accurately for many applications.  However, since the basic nearest neighbor
algorithm stores all of the training instances, it has relatively large memory requirements.  It
must search through all available instances to classify a new input vector, so it is slow during
classification.  Also, since it stores every instance in the training set, noisy instances (i.e., those
with errors in the input vector or output class, or those not representative of typical cases) are
stored as well, which can degrade generalization accuracy.

Techniques such as k-d trees (Sproull, 1991; Wess, Althoff & Richter, 1993) and projection
(Papadimitriou & Bentley, 1980) can reduce the time required to find the nearest neighbor(s) of
an input vector, but they do not reduce storage requirements, nor do they address the problem of
noise.  In addition, they often become much less effective as the dimensionality of the problem
(i.e., the number of input attributes) grows (Sproull, 1991).

On the other hand, when some of the instances are removed from the training set, the storage
requirements and time necessary for generalization are correspondingly reduced.  This paper
focuses on the problem of reducing the size of the stored set of instances (or other exemplars)
while trying to maintain or even improve generalization accuracy.  It accomplishes this by first
providing a relatively thorough survey of machine learning algorithms used to reduce the number
of instances needed by learning algorithms, and then by proposing several new reduction
techniques.

Section 2 discusses several issues related to the problem of instance set reduction, and
provides a framework for the discussion of individual reduction algorithms.  Section 3 surveys
much of the work done in this area.  Section 4 presents a collection of six additional algorithms
called DROP1-DROP5 and DEL that are used to reduce the size of the training set while
maintaining or even improving generalization accuracy.  Section 5 presents empirical results
comparing 10 of the surveyed techniques with the six additional techniques presented in Section
4 on 31 datasets.  Section 6 provides conclusions and future research directions.

2. Issues in Instance Set Reduction

This section provides a framework for the discussion of the instance reduction algorithms
presented in later sections.  The issues discussed in this section include exemplar representation,
the order of the search, the choice of distance function, the general intuition of which instances to
keep, and how to evaluate the different reduction strategies.

2.1. Representation

One choice in designing a training set reduction algorithm is to decide whether to retain a
subset of the original instances or to modify the instances using a new representation.  For
example, some algorithms (Salzberg, 1991; Wettschereck & Dietterich, 1995) use
hyperrectangles to represent collections of instances;  instances can be generalized into rules
(Domingos, 1995, 1996); and prototypes can be used to represent a cluster of instances (Chang,
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1974), even if no original instance occurred at the point where the prototype is located.
On the other hand, many algorithms (i.e., instance-based algorithms) seek to retain a subset

of the original instances.  One problem with using the original data points is that there may not
be any data points located at the precise points that would make for the most accurate and
concise concept description.  Prototypes, on the other hand, can be artificially constructed to
exist exactly where they are needed, if such locations can be accurately determined.  Similarly,
rules and hyperrectangles can be constructed to reduce the need for instances in certain areas of
the input space.

2.2. Direction of Search

When searching for a subset S of instances to keep from training set T, there are also a variety
of directions the search can proceed, including incremental, decremental, and batch.

2.2.1. Incremental.  An incremental search begins with an empty subset S, and adds each
instance in T to S if it fulfills some criteria.  In this case the order of presentation of instances can
be very important.  In particular, the first few instances may have a very different probability of
being included in S than they would if they were visited later.

Under such schemes, the order of presentation of instances in T to the algorithm is typically
random because by definition, an incremental algorithm should be able to handle new instances
as they become available without all of them being present at the beginning.  In addition, some
incremental algorithms do not retain all of the previously seen instances even during the learning
phase, which can also make the order of presentation important.

One advantage of an incremental scheme is that if instances are made available later, after
training is complete, they can continue to be added to S according to the same criteria.  Another
advantage of incremental algorithms is that they can be faster and use less storage during
learning than non-incremental algorithms, since they can ignore some of the discarded instances
when adding others.  Thus instead of O(n2) time and O(n) storage during the learning phase, they
can use O(ns) time and O(s) storage, where n is the number of training instances and s is the
number of instances retained in the subset.

The main disadvantage is that incremental algorithms are sensitive to the order of
presentation of the instances, and their early decisions are based on very little information, and
are therefore prone to errors until more information is available.  Some incremental algorithms
(e.g., EACH, Salzberg, 1991) use a small number of instances (e.g., 100) in an initial “batch”
phase to help alleviate these problems.

Some algorithms add instances to S in a somewhat incremental fashion, but they examine all
available instances to help select which instance to add next.  This makes the algorithm not truly
incremental, but may improve its performance substantially.

2.2.2. Decremental.  The decremental search begins with S=T, and then searches for
instances to remove from S.  Again the order of presentation is important, but unlike the
incremental process, all of the training examples are available for examination at any time, so a
search can be made to determine which instance would be best to remove during each step of the
algorithm.  Decremental algorithms discussed in Section 3 include RNN (Gates, 1972), SNN
(Ritter et al., 1975), ENN (Wilson, 1972), VSM (Lowe, 1995), and the Shrink (Subtractive)
Algorithm (Kibler & Aha, 1987).  RISE (Domingos, 1995) can also be viewed as a decremental
algorithm, except that instead of simply removing instances from S, instances are generalized
into rules.  Similarly, Chang’s prototype rule (Chang, 1974) operates in a decremental order, but
prototypes are merged into each other instead of being simply removed.

One disadvantage with the decremental rule is that it is often computationally more
expensive than incremental algorithms.  For example, in order to find the nearest neighbor in T
of an instance, n distance calculations must be made.  On the other hand, there are fewer than n
instances in S (zero initially, and some fraction of T eventually), so finding the nearest neighbor
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in S of an instance takes less computation.
However, if the application of a decremental algorithm can result in greater storage

reduction, then the extra computation during learning (which is done just once) can be well
worth the computational savings during execution thereafter.  Increased generalization accuracy,
if it can be achieved, is also typically worth some extra time during learning.

2.2.3. Batch.  Another way to apply a training set reduction rule is in batch mode.  This
involves deciding if each instance meets the removal criteria before removing any of them.  Then
all those that do meet the criteria are removed at once.  For example, the All k-NN rule (Tomek,
1976) operates this way.  This can relieve the algorithm from having to constantly update lists of
nearest neighbors and other information when instances are individually removed.

However, there are also dangers in batch processing.  For example, assume the following rule
is applied to an instance set:

Remove an instance if it has the same output class as its k nearest neighbors.

This could result in entire clusters disappearing if there are no instances of a different class
nearby.  If done in decremental mode, however, some instances would remain, because
eventually enough neighbors would be removed that one of the k nearest neighbors of an instance
would have to be of another class, even if it was originally surrounded by those of its own class.

As with decremental algorithms, batch processing suffers from increased time complexity
over incremental algorithms.

2.3. Border points vs. central points

Another factor that distinguishes instance reduction techniques is whether they seek to retain
border points, central points, or some other set of points.

The intuition behind retaining border points is that “internal” points do not affect the decision
boundaries as much as border points, and thus can be removed with relatively little effect on
classification.

On the other hand, some algorithms instead seek to remove border points.  They remove
points that are noisy or do not agree with their neighbors.  This removes close border points,
leaving smoother decision boundaries behind.  However, such algorithms do not remove internal
points that do not necessarily contribute to the decision boundary.

It may take a large number of border points to completely define a border, so some
algorithms retain center points in order to use those instances which are most typical of a
particular class to classify instances near them.  This can dramatically affect decision boundaries,
because the decision boundaries depend on not only where the instances of one class lie, but
where those of other classes lie as well.  Roughly speaking (i.e., assuming k = 1), the decision
boundary lies halfway between two nearest instances of opposing classes, so center points must
be chosen carefully in order to keep the decision boundaries in the correct general vicinity.

2.4. Distance Function

The distance function (or its complement, the similarity function) is used to decide which
neighbors are closest to an input vector and can have a dramatic effect on an instance-based
learning system.

The nearest neighbor algorithm and its derivatives usually use variants of the Euclidean
distance function, which is defined as:

E(x, y) = (xi − yi )2

i=1

m

∑ (1)



5

where x and y are the two input vectors, m is the number of input attributes, and xi and yi are the
input values for input attribute i.  This function is appropriate when all the input attributes are
numeric and have ranges of approximately equal width.  When the attributes have substantially
different ranges, the attributes can be normalized by dividing the individual attribute distances by
the range or standard deviation of the attribute.

A variety of other distance functions are also available for continuously-valued attributes,
including the Minkowsky (Batchelor, 1978), Mahalanobis (Nadler & Smith, 1993), Camberra,
Chebychev, Quadratic, Correlation, and Chi-square distance metrics (Michalski, Stepp & Diday,
1981; Diday, 1974); the Context-Similarity measure (Biberman, 1994); the Contrast Model
(Tversky, 1977); hyperrectangle distance functions (Salzberg, 1991; Domingos, 1995) and
others.  Several of these functions are defined in Figure 1 (Wilson & Martinez, 1997a).

Figure 1.  Equations of selected distance functions.
(x and y are vectors of m attribute values).
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When nominal (discrete, unordered) attributes are included in an application, a distance
metric is needed that supports them.  Some learning algorithms have used the overlap metric,
which defines the distance for an attribute as 0 if the values are equal, or 1 if they are different,
regardless of which two values they are.

An alternative distance function for nominal attributes is the Value Difference Metric (VDM)
(Stanfill & Waltz, 1986).  Using the VDM, the distance between two values x and y of a single
attribute a is given as:

vdma (x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y











c=1

C

∑
2

(2)

where Na,x is the number of times attribute a had value x; Na,x,c is the number of times attribute
a had value x and the output class was c; and C is the number of output classes.  Using this
distance measure, two values are considered to be closer if they have more similar classifications,
regardless of the order of the values.

In order to handle heterogeneous applications—those with both numeric and nominal
attributes—it is possible to use a heterogeneous distance function such as HVDM (Wilson &
Martinez, 1997a), which is defined as:

HVDM(x, y) = da
2 (xa , ya )

a=1

m

∑ (3)

where the function da(x,y) is the distance for attribute a and is defined as:

da (x, y) =
1,  if  x or y is unknown;  otherwise...

vdma (x, y),  if a is nominal              
x − y

4σa
,  if a is numeric                     













(4)

where vdma(x,y) is the function given in (2), and σa is the standard deviation of the values
occurring for attribute a in the instances in the training set T.  This distance function provides
appropriate normalization between numeric and nominal attributes, as well as between numeric
attributes of different scales.  It handles unknown input values by assigning them a large distance
so that instances with missing attributes will be less likely to be used as neighbors than those
with all attributes specified.  Using a constant for the distance to an unknown attribute value also
serves to effectively ignore such attributes when an instance to be classified is missing a value,
since the distance to that attribute will be the same for all instances in the system.

2.4.1. Weighting.  Several algorithms use weighting schemes that alter the distance
measurements and voting influence of each instance.  In this paper we focus on training set
reduction, and thus will not use any weighting schemes in our experiments other than those
needed for normalization in the distance function, as explained above.  A good survey of
weighting schemes is given by Wettschereck, Aha and Mohri (1997).

2.5. Voting

Another decision that must be made for many algorithms is the choice of k, which is the
number of neighbors used to decide the output class of an input vector.  The value of k is
typically a small, odd integer (e.g., 1, 3 or 5).  Usually each such nearest neighbor gets exactly
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one vote, so even values of k could result in “ties” that would have to be resolved arbitrarily or
through some more complicated scheme.  There are some algorithms which give closer
neighbors more influence than further ones, such as the Distance-Weighted kNN Rule (Dudani,
1976).  Such modifications reduce the sensitivity of the algorithm to the selection of k.  Radial
Basis Function networks (Wasserman, 1993) and Probabilistic Neural Networks (Specht, 1992)
use a Gaussian weighting of influence and allow all instances to “vote”, though instances that are
very far from the input have only negligible influence.  This does away with the need for the k
parameter, but introduces a need for weight-spreading parameters.

One common way of determining the value of k is to use leave-one-out cross-validation.  For
each of several values of k, each instance is classified by its k nearest neighbors other than the
instance itself, to see if it is classified correctly.  The value for k that produces the highest
accuracy is chosen.

In the basic nearest neighbor rule, setting k greater than 1 decreases the sensitivity of the
algorithm to noise, and tends to smooth the decision boundaries somewhat (Cover & Hart, 1967;
Dasarathy, 1991).  It is also important for many instance set reduction algorithms to have a k > 1.
However, once reduction has taken place, it is possible that the value of k should be changed.
For example, if the training set has been reduced to the point that there is only one instance
representing what was formerly a cluster of instances, then perhaps k = 1 would be more
appropriate than k > 1, especially if the noisy instances have been removed during the reduction
process.  In other cases, the value of k should remain the same.  Thus, it may be appropriate to
find a value of k for use during the reduction process, and then redetermine the best value for k
after reduction is completed.

It may even be advantageous to update k dynamically during the reduction process.  For
example, if a very large value of k were used initially, the order of removal of instances from the
subset might be improved.

2.6. Evaluation Strategies

In comparing training set reduction algorithms, there are a number of criteria that can be used
to compare the relative strengths and weaknesses of each algorithm.  These include speed
increase (during execution), storage reduction, noise tolerance, generalization accuracy, time
requirements (during learning), and incrementality.

2.6.1. Storage reduction.  One of the main goals of training set reduction algorithms is to
reduce storage requirements.  It is important to note that if alternate representations are used
(e.g., hyperrectangles or rules), any increase in the size of the new representation must be taken
into account along with the reduction in number of instances stored.

2.6.2. Speed increase.  Another main goal is to speed up classification.  A reduction in the
number of stored instances will typically yield a corresponding reduction in the time it takes to
search through these instances and classify a new input vector.  Again, more complex
representations such as hyperrectangles may not need as many comparisons, but may require
more computation for each comparison, and this must be taken into account.

2.6.3. Generalization accuracy.  A successful algorithm will often be able to significantly
reduce the size of the training set without significantly reducing generalization accuracy.  In
some cases generalization accuracy can increase with the reduction of instances, such as when
noisy instances are removed and when decision boundaries are smoothed to more closely match
the true underlying function rather than the sampling distribution.

2.6.4. Noise tolerance.  Algorithms also differ with respect to how well they work in the
presence of noise.  In the presence of class noise, for example, there are two main problems that
can occur.  The first is that very few instances will be removed from the training set because
many instances are needed to maintain the noisy (and thus overly complex) decision boundaries.
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The second problem is that generalization accuracy can suffer, especially if noisy instances are
retained while good instances are removed.  In such cases the reduced training set can be much
less accurate than the full training set in classifying new input vectors.

2.6.5. Learning speed.  The learning process is done just once on a training set, so it is not
quite as important for the learning phase to be fast.  However, if the learning phase takes too long
it can become impractical for real applications.  Ironically, it is on especially large training sets
that reduction algorithms are most badly needed, so a reasonable (e.g., O(n2) or faster) time
bound is desirable.

2.6.6. Incremental.  In some cases it is convenient to have an incremental algorithm so that
additional instances can be added over time as they become available.  On the other hand, it is
possible to use a non-incremental algorithm on an initial database and then employ a separate
incremental algorithm once a reasonable starting point has been achieved.

Note that not all algorithms attempt to meet all of these goals.  For example, a hybrid
hyperrectangle and nearest-neighbor algorithm by Wettschereck (1994) saves all of the training
set in addition to the hyperrectangles, and thus actually increases storage requirements.
However, it uses the hyperrectangles to quickly classify most input vectors, and only uses the
entire training set when necessary.  Thus, it sacrifices the goal of storage reduction in favor of the
goals of classification speed and maintaining or increasing generalization accuracy.

3. Survey of Instance Reduction Algorithms

Many researchers have addressed the problem of training set size reduction.  This section
surveys several techniques, discusses them in light of the framework presented in Section 2, and
points out their interesting differences.  This survey builds upon an earlier survey done by
Dasarathy (1991).  Most of the algorithms discussed here use a subset S of the original instances
in the training set T as their representation, and though most have primarily used the Euclidean
distance function in the past, they can typically make use of the HVDM distance function or other
distance functions when needed.  Most of the algorithms also tend to use k = 1 except where
noted, though in most cases the algorithms can be modified to use k > 1.

3.1. Nearest Neighbor Editing Rules

3.1.1. Condensed Nearest Neighbor Rule.  Hart (1968) made one of the first attempts to
reduce the size of the training set with his Condensed Nearest Neighbor Rule (CNN).  His
algorithm finds a subset S of the training set T such that every member of T is closer to a member
of S of the same class than to a member of S of a different class.  In this way, the subset S can be
used to classify all the instances in T correctly (assuming that T is consistent, i.e., that no two
instances in T have identical inputs but different classes).

This algorithm begins by randomly selecting one instance belonging to each output class
from T and putting them in S.  Then each instance in T is classified using only the instances in S.
If an instance is misclassified, it is added to S, thus ensuring that it will be classified correctly.
This process is repeated until there are no instances in T that are misclassified.  This algorithm
ensures that all instances in T are classified correctly, though it does not guarantee a minimal set.

This algorithm is especially sensitive to noise, because noisy instances will usually be
misclassified by their neighbors, and thus will be retained.  This causes two problems.  First,
storage reduction is hindered, because noisy instances are retained, and because they are there,
often non-noisy instances nearby will also need to be retained.  The second problem is that
generalization accuracy is hurt because noisy instances are usually exceptions and thus do not
represent the underlying function well.  Since some neighbors have probably been removed, a
noisy instance in S will often cover more of the input space than it did in T, thus causing even
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more misclassifications than before reduction.

3.1.2. Selective Nearest Neighbor Rule.  Ritter et al. (1975) extended the condensed NN
method in their Selective Nearest Neighbor Rule (SNN) such that every member of T must be
closer to a member of S of the same class than to any member of T (instead of S) of a different
class.  Further, the method ensures a minimal subset satisfying these conditions.

The algorithm for SNN is more complex than most other reduction algorithms, and the
learning time is significantly greater, due to the manipulation of an n × n matrix and occasional
recursion.  The SNN algorithm begins by constructing a binary n × n matrix A (where n is the
number of instances in T), where Aij is set to 1 when instance j is of the same class as instance i,
and it is closer to instance i than i’s nearest enemy, i.e., the nearest neighbor of i in T that is of a
different class than i.  Aii is always set to 1.

Once this array is set up, the following 5 steps are taken until no columns remain in the array:

1. For all columns i that have exactly one bit on, let j be the row with the bit on in column i.  All columns
with a bit on in row j are removed, row j is removed, and instance j is added to S

2. For all rows j, delete row j if for all (remaining) columns i and for some (remaining) row k, Aji ≤ Aki.  In
other words, row j is deleted if for some other row k, whenever row j contains a 1, row k also contains
a 1.  In this case instance j is not added to S.

3. Delete any column i if for all (remaining) rows j and some (remaining) column k, Aji ≥ Ajk.  In other
words, column i is deleted if there is some other column k that has zeroes in every row that column i
does (and possibly zeroes in other rows as well).  Again instance i is not added to S.

4. Continue to repeat steps 1-3 until no further progress can be made.  If no columns remain in the array,
then S is complete and the algorithm is finished.  Otherwise, go on to step 5.

5. Find the row j that when included in S requires the fewest other rows to also be included in S.  This is
done as follows:
(a) For each remaining row j, assume that instance j will be added to S, and that row j and any

(remaining) columns with a bit on in row j will be deleted (but do not actually remove row j or
the columns yet).  Subject to this assumption, find the fewest number of additional rows it
would take to get at least as many 1’s as there are remaining columns.  From the minimums
found for each row j, keep track of the absolute minimum found by any row j.

(b) For each row j in (a) that resulted in the absolute minimum number of additional rows that
might be needed, actually remove j and columns with bits on in row j and call the algorithm
recursively beginning with step 1.  If the minimum number of rows was really used, then add j
to S and stop: S is complete.  Otherwise, restore row j and the removed columns, and try the
next possible row j.

(c) If no row j is successful in achieving the minimum number, increment the absolute minimum
and try (b) again until successful.

Note that the only steps in which instances are chosen for inclusion in S are steps 1 and 5.
This algorithm takes approximately O(mn2 + n3) time, compared to the O(mn2) or less time

required by most other algorithms surveyed.  It also requires O(n2) storage during the learning
phase for the matrix, though this matrix is discarded after learning is complete.  The algorithm is
sensitive to noise, though it will tend to sacrifice storage more than accuracy when noise is
present.  For an example of how this algorithm works, the reader is referred to Ritter et al.
(1975), which also appears in Dasarathy (1991).  An implementation in C is also available in the
on-line appendix to this paper.

3.1.3. Reduced Nearest Neighbor Rule.  Gates (1972) introduced the Reduced Nearest
Neighbor Rule (RNN).  The RNN algorithm starts with S=T and removes each instance from S if
such a removal does not cause any other instances in T to be misclassified by the instances



10

remaining in S.  It is computationally more expensive than Hart’s Condensed NN rule, but will
always produce a subset of CNN, and is thus less expensive in terms of computation and storage
during the classification stage.

Since the instance being removed is not guaranteed to be classified correctly, this algorithm
is able to remove noisy instances and internal instances while retaining border points.

3.1.4. Edited Nearest Neighbor Rule.  Wilson (1972) developed the Edited Nearest
Neighbor (ENN) algorithm in which S starts out the same as T, and then each instance in S is
removed if it does not agree with the majority of its k nearest neighbors (with k=3, typically).
This edits out noisy instances as well as close border cases, leaving smoother decision
boundaries.  It also retains all internal points, which keeps it from reducing the storage
requirements as much as most other reduction algorithms.  The Repeated ENN (RENN) applies
the ENN algorithm repeatedly until all instances remaining have a majority of their neighbors
with the same class, which continues to widen the gap between classes and smooths the decision
boundary.

3.1.5. All k-NN.  Tomek (1976) extended the ENN with his All k-NN method of editing.  This
algorithm works as follows: for i=1 to k, flag as bad any instance not classified correctly by its i
nearest neighbors.  After completing the loop all k times, remove any instances from S flagged as
bad.  In his experiments, RENN produced higher accuracy than ENN, and the All k-NN method
resulted in even higher accuracy yet.  As with ENN, this method can leave internal points intact,
thus limiting the amount of reduction that it can accomplish.  These algorithms serve more as
noise filters than serious reduction algorithms.

Kubat & Matwin (1997) extended Tomek’s algorithm to remove internal instances as well as
border instances.  They first apply a variant of Hart’s CNN rule (1968), and then remove any
instances that participate in Tomek Links, i.e., pairs of instances of different classes that have
each other as their nearest neighbors.  Their algorithm was developed for the purpose of handling
cases where one class was much more rare than the other(s), so only instances in the majority
class are removed by their reduction algorithm, and all of the instances in the minority class are
retained.

3.1.6. Variable Similarity Metric.  Lowe (1995) presented a Variable Similarity Metric
(VSM) learning system that produces a confidence level of its classifications.  In order to reduce
storage and remove noisy instances, an instance t is removed if all k of its neighbors are of the
same class, even if they are of a different class than t (in which case t is likely to be noisy).  This
removes noisy instances as well as internal instances, while retaining border instances.  The
instance is only removed, however, if its neighbors are at least 60% sure of their classification.
The VSM system typically uses a fairly large k (e.g., k=10), and the reduction in storage is thus
quite conservative, but it can provide an increase in generalization accuracy.  Also, the VSM
system used distance-weighted voting, which makes a larger value of k more appropriate.

3.2. “Instance-Based” Learning Algorithms

Aha et al. (1991; Aha, 1992) presented a series of instance-based learning algorithms.  IB1
(Instance Based learning algorithm 1) was simply the 1-NN algorithm, and was used as a
baseline.

3.2.1. IB2. The IB2 algorithm is incremental: it starts with S initially empty, and each
instance in T is added to S if it is not classified correctly by the instances already in S (with the
first instance always added).  An early case study (Kibler & Aha, 1987) calls this algorithm the
Growth (Additive) Algorithm.  This algorithm is quite similar to Hart’s Condensed NN rule,
except that IB2 does not seed S with one instance of each class, and does not repeat the process
after the first pass through the training set.  This means that IB2 will not necessarily classify all
instances in T correctly.
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This algorithm retains border points in S while eliminating internal points that are surrounded
by members of the same class.  Like the CNN algorithm, IB2 is extremely sensitive to noise,
because erroneous instances will usually be misclassified, and thus noisy instances will almost
always be saved, while more reliable instances are removed.

3.2.2. Shrink (Subtractive) Algorithm.  Kibler & Aha (1987) also presented an algorithm
that starts with S=T, and then removes any instances that would still be classified correctly by the
remaining subset.  This is similar to the Reduced Nearest Neighbor (RNN) rule, except that it
only considers whether the removed instance would be classified correctly, whereas RNN
considers whether the classification of other instances would be affected by the instance’s
removal.  Like RNN and many of the other algorithms, it retains border points, but unlike RNN,
this algorithm is sensitive to noise.

3.2.3. IB3. The IB3 algorithm (Aha et al., 1991; Aha 1992) is another incremental algorithm
that addresses IB2’s problem of keeping noisy instances by retaining only acceptable
misclassified instances.  The algorithm proceeds as shown below.

1. For each instance t in T
2. Let a be the nearest acceptable instance in S to t.
3. (if there are no acceptable instances in S, let a be a random instance in S)
4. If class(a)≠class(t) then add t to S.
5. For each instance s in S
6. If s is at least as close to t as a is
7. Then update the classification record of s
8. and remove s from S if its classification record is significantly poor.
9. Remove all non-acceptable instance from S.

An instance is acceptable if the lower bound on its accuracy is statistically significantly
higher (at a 90% confidence level) than the upper bound on the frequency of its class.  Similarly,
an instance is dropped from S if the upper bound on its accuracy is statistically significantly
lower (at a 70% confidence level) than the lower bound on the frequency of its class.  Other
instances are kept in S during training, and then dropped at the end if they do not prove to be
acceptable.

The formula for the upper and lower bounds of the confidence interval is:

p + z2

2n ± z
p(1 − p)

n
+ z2

4n2

1 + z2

n

(5)

where for the accuracy of an instance in S, n is the number of classification attempts since
introduction of the instance to S (i.e., the number of times it was at least as close to t as a was), p
is the accuracy of such attempts (i.e., the number of times the instance’s class matched t’s class,
divided by n), and z is the confidence (.9 for acceptance, .7 for dropping).  For the frequency of a
class, p is the frequency (i.e. proportion of instances so far that are of this class), n is the number
of previously processed instances, and z is the confidence (.9 for acceptance, .7 for dropping).

IB3 was able to achieve greater reduction in the number of instances stored and also achieved
higher accuracy than IB2, due to its reduced sensitivity to noise on the applications on which it
was tested.

3.2.4. IB4 and IB5.  In order to handle irrelevant attributes, IB4 (Aha, 1992) extends IB3 by
building a set of attribute weights for each class.  It requires fewer instances to generalize well
when irrelevant attributes are present in a dataset.  IB5 (Aha, 1992) extends IB4 to handle the
addition of new attributes to the problem after training has already begun.  These extensions of
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IB3 address issues that are beyond the scope of this paper, and are thus only briefly mentioned
here.

3.2.5. MCS.  Brodley (1993) introduced a Model Class Selection (MCS) system that uses an
instance-based learning algorithm (which claims to be “based loosely on IB3”) as part of a larger
hybrid learning algorithm.  Her algorithm for reducing the size of the training set is to keep track
of how many times each instance was one of the k nearest neighbors of another instance (as
instances were being added to the concept description), and whether its class matched that of the
instance being classified.  If the number of times it was wrong is greater than the number of
times it was correct then it is thrown out.  This tends to avoid noise, though it uses a simpler
approach than IB3.

3.2.6. TIBL.  Zhang (1992) used a different approach called the Typical Instance Based
Learning (TIBL) algorithm, which attempted to save instances near the center of clusters rather
than on the border.  This can result in much more drastic reduction in storage and smoother
decision boundaries, and is robust in the presence of noise.

The typicality of an instance is defined as the ratio of its average similarity to instances of the
same class to its average similarity to instances of other classes.  The similarity of two instances
x and y is defined as 1 - distance(x,y), where

distance(x, y) = 1
m

xi − yi

maxi − mini







2

i=1

m

∑ (6)

and m is the number of input attributes, maxi and mini are the maximum and minimum values
occurring for attribute i, respectively.  For nominal attributes, the distance for that attribute is 0 if
they are equal or 1 if they are different (i.e., the overlap metric).  Each instance x has a weight wx
that is multiplied by the distance to compute a weighted distance for use during training and
subsequent classification.

The learning algorithm proceeds as follows.  Pick the most typical instance x in T-S that is
incorrectly classified by the instances in S.  Find the most typical instance y in T-S which causes
x to be correctly classified, and add it to S.  Note that x itself is not added at this point.  Set y’s
weight to be wy = 1/typicality(y).  Repeat this process until all instances in T are classified
correctly.

This strategy shows great reduction in storage, especially when the application has “graded
structures” in which some instances are more typical of a class than others in a fairly continuous
way.  The TIBL algorithm also avoids saving noisy instances.  It is pseudo-incremental, i.e., it
proceeds in an incremental fashion, but it uses the entire training set to determine the typicality
of each instance and the range of each input attribute.

The TIBL algorithm may have difficulty on problems with complex decision surfaces, and
requires modifications to handle disjoint geometric regions that belong to the same class.

3.2.7. Random Mutation Hill Climbing.  Skalak (1994) used random mutation hill climbing
(Papadimitriou & Steiglitz, 1982) to select instances to use in S.  The method begins with m
randomly-selected instances in S (where m is a parameter that is supplied by the user).  Then for
each iteration (called a mutation), one randomly-selected instance in S is removed and replaced
with another randomly-selected instance in T-S.  If this strictly improves classification of the
instances in T, the change is retained, otherwise it is undone.  This process is repeated for n
iterations, where n is another parameter provided by the user.  Skalak used n = 100.

Since it does not determine the number m of instances to retain in the subset, this method
only solves part of the problem.

3.2.8. Encoding Length.  Cameron-Jones (1995)  used an encoding length heuristic to
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determine how good the subset S is in describing T.  The basic algorithm begins with a growing
phase that takes each instance i in T and adds it to S if that results in a lower cost than not adding
it.  As with IB3, the growing phase can be affected by the order of presentation of the instances.

The cost (i.e., the value to be minimized) of the instance-based model is

COST(m, n, x) = F(m, n) + m log2 (C) + F(x, n − m) + x log2 (C −1) (7)

where n is the number of instances in T, m is the number of instances in S, and x is the number of
exceptions (i.e., the number of instances seen so far that are misclassified by the instances in S).
C is the number of classes in the classification task.  F(m,n) is the cost of encoding which m
instances of the n available are retained, and is defined as:

F(m, n) = log* Cj
n

j=0

m

∑








 = log*

n!
j !(n − j !)

j=0

m

∑








 (8)

where log*(x) is the sum of the positive terms of log2(x), log2(log2(x)), etc.
After all instances are seen, instance reduction is done, where each instance i in S is removed

if doing so lowers the cost of the classifier.  Cameron-Jones calls this method the “Pre/All”
method, since it is not truly incremental, but to better distinguish it from other techniques in this
paper, we call it the Encoding Length Grow (ELGrow) method.

The Explore method (Cameron-Jones, 1995) begins by growing and reducing S using the
ELGrow method, and then performs 1000 mutations to try to improve the classifier.  Each
mutation tries adding an instance to S, removing one from S, or swapping one in S with one in T-
S, and keeps the change if it does not increase the cost of the classifier.  The generalization
accuracy of the Explore method is quite good empirically, and its storage reduction is much
better than most other algorithms.

3.3. Prototypes and Other Modifications of the Instances

Some algorithms seek to reduce storage requirements and speed up classification by
modifying the instances themselves, instead of just deciding which ones to keep.

3.3.1. Prototypes.  Chang (1974) introduced an algorithm in which each instance in T is
initially treated as a prototype.  The nearest two instances that have the same class are merged
into a single prototype (using a weighted averaging scheme) that is located somewhere between
the two prototypes.  This process is repeated until classification accuracy starts to suffer.

This method achieved good results, though it requires modification to handle applications
that have one or more nominal input attributes.

3.3.2. RISE.  Domingos (1995) introduced the RISE 2.0 system which treats each instance in
T as a rule in R.  For each rule r in R, the nearest example n in T of the same class as r is found
that is not yet covered by r.  The rule r is then minimally generalized to cover n, unless that
harms accuracy.  This process is repeated until no rules are generalized during an entire pass
through all the rules in R.

During generalization, the nearest rule to an input vector is used to provide the output class.
If two rules are equally close, the one with higher generalization accuracy on the training set is
used.

3.3.3. EACH.  Salzberg (1991) introduced the Nested Generalized Exemplar (NGE) theory,
in which hyperrectangles are used to take the place of one or more instances, thus reducing
storage requirements.  The program used to implement NGE is called the Exemplar-Aided
Constructor of Hyperrectangles (EACH).  EACH seeds the system with several randomly-
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selected instances from the training set, after which it operates incrementally.  As each instance
is presented, EACH finds the distance to the nearest exemplar (i.e., a point or hyperrectangle),
which is 0 if the instance is inside a hyperrectangle.  A point inside multiple hyperrectangles is
considered to be closest to the smallest one.

When the new instance has the same class as its nearest exemplar, the exemplar is
generalized (i.e., the hyperrectangle is grown) so that it also covers the new instance.  When the
classes are different, EACH attempts to change the shape of the second-closest exemplar so that
it becomes the closest one.  If it cannot do so, then the new instance becomes a new exemplar.
Weights are maintained for each exemplar that reduce the effect of noisy exemplars and
irrelevant attributes.

Wettschereck & Dietterich (1995) introduced a hybrid nearest-neighbor and nearest-
hyperrectangle algorithm that uses hyperrectangles to classify input vectors if they fall inside the
hyperrectangle, and kNN to classify inputs that were not covered by any hyperrectangle.  This
algorithm must store the entire training set T, but accelerates classification by using relatively
few hyperrectangles whenever possible.

4. Ordered Removal

Given the issues in Section 2 to consider, our research has been directed towards finding
instance reduction techniques that provide noise tolerance, high generalization accuracy,
insensitivity to the order of presentation of instances, and significant storage reduction, which in
turn improves generalization speed.

This section presents a collection of new heuristics used to decide which instances to keep
and which instances to remove from a training set.  Unlike most previous methods, these
algorithms take careful note of the order in which instances are removed.  The first three
methods, DROP1-DROP3, were previously introduced by the authors under the names RT1-RT3,
respectively (Wilson & Martinez, 1997c).

In order to avoid repeating lengthy definitions, some notation is introduced here.  A training
set T consists of n instances (or prototypes) P1..n.  Each instance P has k nearest neighbors
P.N1..k (ordered from nearest to furthest), where k is typically a small odd integer such as 1, 3 or
5.  P also has a nearest enemy, P.E, which is the nearest instance with a different output class.
Those instances that have P as one of their k nearest neighbors are called associates of P, and are
notated as P.A1..a (sorted from nearest to furthest) where a is the number of associates that P
has.

4.1. DROP1

The first new reduction technique we present is the Decremental Reduction Optimization
Procedure 1, or DROP1.  This algorithm is identical to RNN (Gates, 1972) with the exception
that the accuracy is checked on S instead of T.  It is included here mostly as a baseline for
comparison with the other DROP algorithms, and to provide a framework on which to build the
others.

DROP1 uses the following basic rule to decide if it is safe to remove an instance from the
instance set S (where S = T originally):

 Remove P if at least as many of its associates in S
would be classified correctly without P.

To see if an instance P can be removed using this rule, each associate (i.e., each instance that
has P as one of its neighbors) is checked to see what effect the removal of P would have on it.

Removing P causes each associate P.Ai to use its k+1st nearest neighbor (P.Ai.Nk+1) in place
of P.  If P has the same class as P.Ai, and P.Ai.Nk+1 has a different class than P.Ai, this weakens
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its classification, and could cause P.Ai to be misclassified by its neighbors.  On the other hand, if
P is a different class than P.Ai and P.Ai.Nk+1 is the same class as P.Ai, the removal of P could
cause a previously misclassified instance to be classified correctly.

In essence, this rule tests to see if removing P would degrade leave-one-out cross-validation
generalization accuracy, which is an estimate of the true generalization ability of the resulting
classifier.  An instance is removed when it results in the same level of generalization with lower
storage requirements.  By maintaining lists of k+1 neighbors and an average of k+1 associates
(and their distances), the leave-one-out cross-validation can be computed in O(k) time for each
instance instead of the usual O(mn) time, where n is the number of instances in the training set,
and m is the number of input attributes.  An O(mn) step is only required once an instance is
selected for removal.  This efficient method is similar to the method used in RISE (Domingos,
1995).

The algorithm for DROP1 proceeds as follows.

  1 DROP1(Training set T): Instance set S.
  2 Let S = T.
  3 For each instance P in S:
  4 Find P.N1..k+1, the k+1 nearest neighbors of P in S.
  5 Add P to each of its neighbors’ lists of associates.
  6 For each instance P in S:
  7 Let with = # of associates of P classified correctly with P as a neighbor.
  8 Let without = # of associates of P classified correctly without P.
  9 If (without - with) ≥ 0
10 Remove P from S.
11 For each associate A of P
12 Remove P from A’s list of nearest neighbors
13 Find a new nearest neighbor for A.
14 Add A to its new neighbor’s list of associates.
15 For each neighbor N of P
16 Remove P from N’s lists of associates.
17 Endif
18 Return S.

This algorithm begins by building a list of nearest neighbors for each instance, as well as a
list of associates.  Then each instance in S is removed if its removal does not hurt the
classification of the instances remaining in S.  When an instance P  is removed, all of its
associates must remove P from their list of nearest neighbors, and then must find a new nearest
neighbor so that they still have k+1 neighbors in their list.  When they find a new neighbor N,
they also add themselves to N’s list of associates so that at all times every instance has a current
list of neighbors and associates.

This algorithm removes noisy instances, because a noisy instance P usually has associates
that are mostly of a different class, and such associates will be at least as likely to be classified
correctly without P.  DROP1 also removes instances in the center of clusters, because associates
there are not near their enemies, and thus continue to be classified correctly without P.

Near the border, the removal of some instances can cause others to be classified incorrectly
because the majority of their neighbors can become enemies.  Thus this algorithm tends to keep
non-noisy border points.  At the limit, there is typically a collection of border instances such that
the majority of the k nearest neighbors of each of these instances is the correct class.

4.2. DROP2: Using More Information and Ordering the Removal

There is a potential problem that can arise in DROP1 with regard to noisy instances.  A noisy
instance will typically have associates of a different class, and will thus cover a somewhat small
portion of the input space.  However, if its associates are removed by the above rule, the noisy
instance may cover more and more of the input space.  Eventually it is hoped that the noisy
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instance itself will be removed.  However, if many of its neighbors are removed first, its
associates may eventually include instances of the same class from the other side of the original
decision boundary, and it is possible that removing the noisy instance at that point could cause
some of its distant associates to be classified incorrectly.

DROP2 solves this problem by considering the effect of the removal of an instance on all the
instances in the original training set T instead of considering only those instances remaining in S.
In other words, an instance P is removed from S only if at least as many of its associates—
including those that may have already been removed from S—are classified correctly without it.

Thus, the removal criterion can be restated as:

 Remove P if at least as many of its associates in T
would be classified correctly without P.

Using this modification, each instance P in the original training set T continues to maintain a
list of its k + 1 nearest neighbors in S, even after P is removed from S.  This in turn means that
instances in S have associates that are both in and out of S, while instances that have been
removed from S have no associates (because they are no longer a neighbor of any instance).  This
modification makes use of additional information that is available for estimating generalization
accuracy, and also avoids some problems that can occur with DROP1 such as removing entire
clusters.  This change is made by removing lines 15 and 16 from the pseudo-code for DROP1 in
Section 4.1 so that instances that have been removed from S will still be associates of their
nearest neighbors in S.

DROP2 also changes the order of removal of instances.  It initially sorts the instances in S by
the distance to their nearest enemy.  Instances are then checked for removal beginning at the
instance furthest from its nearest enemy.  This tends to remove instances furthest from the
decision boundary first, which in turn increases the chance of retaining border points.

4.3. DROP3: Filtering Noise

DROP2 sorts S in an attempt to remove center points before border points.  One problem
with this method is that noisy instances are also “border” points, and cause the order of removal
to be drastically changed.  One noisy point in the center of a cluster causes many points in that
cluster to be considered border points, and some of these can remain in S even after the noisy
point is removed.

Two passes through S can remove the dangling center points, but unfortunately, by that time
some border points may have already been removed that should have been kept.

DROP3 therefore uses a noise-filtering pass before sorting the instances in S.  This is done
using a rule similar to ENN (Wilson, 1972): Any instance misclassified by its k nearest neighbors
is removed.  This removes noisy instances, as well as close border points, which can in turn
smooth the decision boundary slightly.  This helps to avoid “overfitting” the data, i.e., using a
decision surface that goes beyond modeling the underlying function and starts to model the data
sampling distribution as well.

After removing noisy instances from S in this manner, the instances are sorted by distance to
their nearest enemy remaining in S, and thus points far from the real decision boundary are
removed first.  This allows points internal to clusters to be removed early in the process, even if
there were noisy points nearby.

4.4. DROP4: More Carefully Filtering Noise

DROP4 is identical to DROP3 except that instead of blindly applying ENN, the noise-
filtering pass removes each instance only if it is (1) misclassified by its k nearest neighbors, and
(2) it does not hurt the classification of other instances.  While DROP3 usually works well, it can
in rare cases remove far too many instances in the noise-reduction pass.  In one experiment, it
went so far as to remove all of them.  DROP4 avoids such problems and thus protects against
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especially poor generalization accuracy in such rare cases, at the expense of slightly higher
storage requirements on average.

4.5. DROP5: Smoothing the Decision Boundary

DROP5 modifies DROP2 so that instances are considered for removal beginning with
instances that are nearest to their nearest enemy, and proceeding outward.  This serves as a
noise-reduction pass, but will also cause most internal points to be removed as well.  By
removing points near the decision boundary first, the decision boundary is smoothed.  After this
pass, the furthest-to-nearest pass as done by DROP2 is done repeatedly until no further
improvement can be made.

A modified version of DROP5 was used in the Reduced Probabilistic Neural Network
(RPNN) (Wilson & Martinez, 1997b), which is a Radial Basis Function (RBF) network used for
classification.  The RPNN used a reduction technique that included a conservative nearest-to-
furthest noise-filtering pass followed by a more aggressive furthest-to-nearest node [instance]
reduction pass.

4.6. Decremental Encoding Length

The Decremental Encoding Length (DEL) algorithm is the same as DROP3, except that it
uses the encoding length heuristic (as is used in ELGrow and Explore in Section 3.2.8) to decide
in each case whether an instance can be removed.  DEL starts with S = T, and begins with a
noise-filtering pass in which each instance is removed if (a) it is misclassified by its k nearest
neighbors, and (b) removing the instance does not increase the encoding length cost.  The
remaining instances are then sorted by the distance to their nearest enemy, and as long as any
improvement is being made, the remaining instances are removed (starting with the instance
furthest from its nearest enemy) if doing so does not increase the encoding length cost.

5. Experimental Results

Many of the reduction techniques surveyed in Section 3 and all of the techniques proposed in
Section 4 were implemented and tested on 31 datasets from the Machine Learning Database
Repository at the University of California, Irvine (Merz & Murphy, 1996).  Those included in
these experiments are CNN, SNN, ENN, RENN, All k-NN, IB2, IB3, ELGrow, Explore, DEL, and
DROP1-DROP5.

These experiments were limited to those algorithms that choose a subset S from the training
set T to use for subsequent classification.  Therefore, the methods that modify the instances
themselves were not included, i.e., rule-based, prototype, and hyperrectangle-building methods.
Similarly, VSM and MCS were excluded since they are part of more complicated systems.
RMHC was excluded because it does not specify how many instances to retain, and its method is
subsumed by Explore.  Similarly, RNN and Shrink (Subtractive) are improved upon by DROP2
and DROP1, respectively, and are thus not included for the sake of parsimony.

The basic k nearest neighbor (kNN) algorithm that retains 100% of the training set is also
included for comparison.

All of the algorithms use k = 3, and in our experiments they all use the HVDM distance
function.  (Experiments were also done using a more traditional Euclidean distance metric with
overlap metric for nominal attributes, but the average accuracy for every one of the algorithms
was higher using HVDM.)

5.1. Results

Ten-fold cross-validation was used for each experiment.  Each dataset was divided into 10
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 Table 1.  Empirical results on 31 datasets.  The left column shows generalization accuracy and
the right column (“%”) shows what percent of the original training set was retained by the

reduction algorithm.  (a) Accuracy and storage percentage for CNN, SNN, IB2, IB3 and DEL.

Database kNN % Avg%
Anneal 93.11 100

Australian 84.78 100

Breast Cancer(WI) 96.28 100

Bridges 66.09 100

Crx 83.62 100

Echocardiogram 94.82 100

Flag 61.34 100

Glass 73.83 100

Heart 81.48 100

Heart(Cleveland) 81.19 100

Heart(Hungarian) 79.55 100

Heart(Long Beach VA) 70.00 100

Heart(More) 73.78 100

Heart(Swiss) 92.69 100

Hepatitis 80.62 100

Horse Colic 57.84 100

Image Segmentation 93.10 100

Ionosphere 84.62 100

Iris 94.00 100

LED Creator+17 67.10 100

LED Creator 73.40 100

Liver (Bupa) 65.57 100

Pima Diabetes 73.56 100

Promoters 93.45 100

Sonar 87.55 100

Soybean (Large) 88.59 100

Vehicle 71.76 100

Voting 95.64 100

Vowel 96.57 100

Wine 94.93 100

Zoo 94.44 100

Average 82.11 100

92.32

82.35
94.56

59.20
82.91

89.01
56.85

65.30

78.41
79.00

78.04
70.26

73.02
92.95

78.69
60.89

89.71
83.99

92.27
66.21

70.79
60.33

71.00
88.64

77.90
84.81

66.80
94.44

85.57
93.50

91.05
32.54

Average
28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06

96.99 9.57 86.08 10.57 96.74 9.48 91.35 9.79

77.68 24.22 81.31 28.38 78.26 24.15 85.22 4.78

95.71 7.09 93.85 8.35 95.71 7.09 96.57 3.47

61.18 49.48 61.37 52.52 62.18 48.64 64.73 28.83

79.42 24.15 81.59 27.52 79.42 24.15 86.09 4.28

85.18 14.72 48.75 26.29 85.18 14.72 72.86 11.57

53.63 50.29 53.63 51.66 53.11 49.95 49.47 34.14

68.14 38.53 64.39 42.63 66.77 39.25 62.14 33.80

70.00 26.17 77.04 33.78 70.00 26.17 80.00 13.58

73.95 30.84 76.25 33.88 73.96 30.29 81.16 11.11

70.40 28.87 75.84 34.01 73.87 27.44 79.20 9.90

61.00 35.67 67.00 43.56 57.00 35.39 70.00 4.89

69.69 33.21 72.22 43.64 69.69 33.21 76.31 9.36

91.09 11.38 92.69 15.90 90.26 11.38 93.46 3.70

75.50 25.30 81.92 30.96 74.17 25.66 73.08 5.09

59.90 35.66 64.47 48.65 60.24 35.36 66.75 8.49

90.00 16.61 77.38 13.02 89.52 16.93 92.14 16.01

82.93 21.62 81.74 19.21 82.93 21.62 85.75 14.59

90.00 12.74 83.34 14.07 90.00 12.74 94.67 19.78

55.50 43.14 59.10 51.38 55.50 43.16 60.70 32.31

64.90 35.79 71.80 92.78 64.60 35.71 70.40 22.04

56.80 40.87 57.70 52.59 56.80 40.87 58.24 10.66

65.76 36.89 67.97 42.95 65.76 36.89 69.78 10.97

86.73 13.83 87.09 15.51 84.91 14.36 91.64 18.12

74.12 32.85 79.81 28.26 80.88 33.87 69.38 12.02

83.10 24.97 80.44 20.27 84.06 24.61 86.63 30.33

67.50 37.04 67.27 43.21 67.50 37.04 67.62 28.36

93.59 9.12 95.40 10.21 93.59 9.12 95.64 5.44

86.72 30.05 78.56 19.97 87.48 29.71 89.57 36.60

92.65 14.30 96.05 14.23 92.65 14.30 91.50 16.60

91.11 12.47 76.67 10.62 91.11 12.47 92.22 29.38

CNN % SNN % IB2 % IB3 %

76.48 26.69 75.44 31.63 76.58 26.64 78.85 16.13

93.85 9.30

84.78 2.56

96.28 1.89

64.27 35.64

83.62 3.08

93.39 6.91

56.18 45.88

69.59 38.42

78.89 4.73

79.49 13.64

77.18 12.28

70.00 19.28

75.15 16.81

92.69 4.25

80.00 7.59

67.73 21.82

91.90 11.11

86.32 12.88

93.33 9.56

66.60 20.90

72.30 13.92

61.38 38.36

71.61 12.64

83.09 7.34

83.29 29.86

87.27 24.76

68.10 32.51

94.27 2.02

93.17 36.15

94.38 9.05

90.00 18.27

LED %

80.65 16.88
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#DROP3 better/worse
#Sig. better/worse

Wilcoxon

14-17
5-10

-78.99

31-0
31-0

99.5

26-5
19-1

99.50

25-6
25-5

99.50

24-7
20-1

99.50

25-6
25-4

99.50

25-6
19-2

99.50

25-6
25-5

99.50

20-10
8-2

99.32

20-11
13-9

93.53

20-10
9-5

91.97

17-14
15-12

87.55

partitions and each reduction technique was given a training set T consisting of 9 of the partitions
(i.e., 90% of the data), from which it returned a subset S.  The remaining partition (i.e., the other
10% of the data) was classified using only the instances in S.  Ten such trials were run for each
dataset with each reduction algorithm, using a different one of the 10 partitions as the test set for
each trial.  The average accuracy over the 10 trials is reported for each reduction algorithm on
each dataset in Table 1.  The average percentage of instances in T that were included in S is also
reported for each experiment under the column “%”.  The average accuracy and storage
percentage for each method over all of the 31 datasets is shown in bold near the bottom of Table
1.  Due to the size of Table 1, it is broken into three parts, but the overall average of all of the
reduction techniques on each dataset and the results for the kNN algorithm are included with
each part for comparison.

DROP3 seemed to have the best mix of storage reduction and generalization accuracy of the
DROP methods, so it was selected for comparisons with all of the other methods.  Three tests
were used to see how DROP3 compared to the other reduction algorithms on this entire set of
classification tasks.  The first is a count of how often DROP3 was “better” and “worse” than
each of the other algorithms, where “better” means higher accuracy or lower storage
requirements in the respective columns.  These counts are given as a pair of numbers in the row
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 Table 1(b).  Accuracy and storage percentage for DROP1-DROP5.
Database kNN % DROP1 % DROP2 % DROP3 % DROP4 % DROP5 % Avg%
Anneal 93.11 100 87.70 5.05 95.61 8.08 94.11 8.65 94.36 11.67 95.24 9.93

Australian 84.78 100 64.49 2.30 83.62 7.28 83.91 5.96 84.78 7.99 83.91 9.18

Breast Cancer(WI) 96.28 100 77.52 1.14 95.86 3.13 96.14 3.58 96.28 4.05 95.71 4.07

Bridges 66.09 100 39.64 10.17 61.18 17.30 56.36 17.60 57.36 21.28 62.82 22.22

Crx 83.62 100 65.94 3.75 84.64 7.31 85.80 5.46 85.51 7.33 83.77 7.68

Echocardiogram 94.82 100 93.39 9.61 94.82 10.51 93.39 10.66 94.82 10.96 93.39 9.16

Flag 61.34 100 43.18 9.05 62.79 20.62 61.29 20.45 59.58 27.09 58.13 25.26

Glass 73.83 100 62.97 15.47 65.04 23.10 65.02 23.88 65.91 29.54 65.45 24.81

Heart 81.48 100 72.59 5.47 81.85 12.22 83.33 13.62 81.85 16.71 81.11 16.67

Heart(Cleveland) 81.19 100 70.91 6.09 79.55 11.92 80.84 12.76 78.19 15.26 79.84 15.37

Heart(Hungarian) 79.55 100 72.17 5.74 78.52 8.80 80.29 9.86 79.22 11.53 79.60 11.15

Heart(Long Beach VA) 70.00 100 69.00 4.39 70.00 11.83 73.50 4.50 74.00 11.72 73.00 14.94

Heart(More) 73.78 100 63.46 3.51 73.98 10.71 76.38 9.14 74.36 13.19 74.63 14.62

Heart(Swiss) 92.69 100 93.46 1.81 93.46 2.53 93.46 1.81 93.46 2.35 92.63 5.42

Hepatitis 80.62 100 72.38 4.66 80.75 10.54 81.87 7.81 78.75 9.75 83.29 9.39

Horse Colic 57.84 100 59.15 1.55 70.74 8.20 70.13 10.30 67.73 20.41 68.45 14.14

Image Segmentation 93.10 100 81.19 6.61 92.86 10.45 92.62 10.98 94.05 12.41 89.29 11.35

Ionosphere 84.62 100 79.77 3.23 86.60 7.79 87.75 7.06 86.90 10.60 86.90 9.78

Iris 94.00 100 84.67 8.59 94.67 14.22 95.33 14.81 95.33 14.89 94.00 12.15

LED Creator+17 67.10 100 61.40 9.94 69.20 12.98 70.40 12.66 69.50 16.37 69.80 14.96

LED Creator 73.40 100 68.30 10.05 71.80 11.85 71.70 11.93 71.90 13.71 72.00 12.33

Liver (Bupa) 65.57 100 58.24 10.92 67.77 24.77 60.84 24.99 62.60 32.56 65.50 31.08

Pima Diabetes 73.56 100 65.23 6.50 70.44 17.59 75.01 16.90 72.53 21.76 73.05 21.95

Promoters 93.45 100 87.00 6.39 84.91 13.63 86.82 16.67 86.82 16.67 87.00 12.58

Sonar 87.55 100 64.93 11.38 80.88 26.60 78.00 26.87 82.81 31.20 79.88 29.81

Soybean (Large) 88.59 100 77.20 19.51 86.60 22.77 84.97 25.26 86.29 28.41 83.73 25.44

Vehicle 71.76 100 59.91 12.07 67.37 21.49 65.85 23.00 67.03 27.88 70.22 26.71

Voting 95.64 100 93.11 2.91 94.50 4.90 95.87 5.11 95.87 5.36 95.86 7.13

Vowel 96.57 100 83.31 39.16 91.08 44.66 89.56 45.22 90.70 46.02 93.36 42.66

Wine 94.93 100 90.98 5.74 93.24 11.42 94.93 16.11 94.93 16.17 96.08 9.74

Zoo 94.44 100 88.89 18.02 88.89 15.80 90.00 20.00 91.11 21.60 95.56 17.16

Average 82.11 100 72.65 8.41 81.07 14.03 81.14 14.31 81.11 17.30 81.39 16.09

92.32

82.35
94.56

59.20
82.91

89.01
56.85

65.30
78.41

79.00
78.04

70.26
73.02

92.95
78.69

60.89
89.71

83.99
92.27

66.21
70.79

60.33
71.00

88.64
77.90

84.81

66.80
94.44

85.57
93.50

91.05
32.54

Average
28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06
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#DROP3 better/worse
#Sig. better/worse

Wilcoxon

14-17
5-10

-78.99

31-0
31-0

99.5

28-1
24-0

99.50

0-30
0-29

-99.50

17-13
5-6

70.23

10-21
8-11

-91.03

n/a
n/a
n/a

0-0
0-0

-50.00

11-15
4-3

56.25

30-0
26-0

99.50

18-12
4-5

62.42

25-6
22-6

99.50

labeled “#DROP3 better/worse.”  For example, under CNN, “26-5” in the accuracy column and
“25-6” in the storage column indicates that DROP3 had higher average accuracy than CNN on 26
of the 31 datasets, and lower average storage requirements on 25 of them.

Since many differences were not statistically significant, a one-tailed paired t-test was used
on the 10-fold cross-validation results for each dataset to measure whether the average accuracy
for DROP3 was significantly higher (when its average accuracy was higher) or lower (when its
average accuracy was lower) than each of the other methods.  In Table 1, the superscripts “+”
and “++” indicate that DROP3’s average accuracy was significantly higher than the other
method’s average accuracy at a 90% and 95% confidence level, respectively.  Similarly, “-” and
“--” indicate that DROP3 had significantly lower average accuracy than the other method at a
90% and 95% confidence level, respectively.

The row labeled “#sig. better/worse” gives a count of how often DROP3 was significantly
“better” and “worse” than each of the other algorithms at a 90% or higher confidence level.  A t-
test was also done to test the significance of differences in storage requirements for each
experiment, and the results are summarized in this same row, though the “+’s” and “-’s” were not
included in the storage column due to space constraints.

In a further effort to verify whether differences in accuracy and storage requirements on this
entire set of classification tasks were statistically significant, a one-tailed Wilcoxon Signed
Ranks test (Conover, 1971; DeGroot, 1986) was used to compare DROP3 with each of the other
reduction techniques.  The confidence level of a significant difference is shown in the
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 Table 1(c).  Accuracy and storage percentage for ENN, RENN, All k-NN, ELGrow, and Explore.
Database kNN % Avg%
Anneal 93.11 100

Australian 84.78 100

Breast Cancer(WI) 96.28 100

Bridges 66.09 100

Crx 83.62 100

Echocardiogram 94.82 100

Flag 61.34 100

Glass 73.83 100

Heart 81.48 100

Heart(Cleveland) 81.19 100

Heart(Hungarian) 79.55 100

Heart(Long Beach VA) 70.00 100

Heart(More) 73.78 100

Heart(Swiss) 92.69 100

Hepatitis 80.62 100

Horse Colic 57.84 100

Image Segmentation 93.10 100

Ionosphere 84.62 100

Iris 94.00 100

LED Creator+17 67.10 100

LED Creator 73.40 100

Liver (Bupa) 65.57 100

Pima Diabetes 73.56 100

Promoters 93.45 100

Sonar 87.55 100

Soybean (Large) 88.59 100

Vehicle 71.76 100

Voting 95.64 100

Vowel 96.57 100

Wine 94.93 100

Zoo 94.44 100

Average 82.11 100

92.32

82.35
94.56

59.20
82.91

89.01
56.85

65.30
78.41

79.00
78.04

70.26
73.02

92.95
78.69

60.89
89.71

83.99
92.27

66.21
70.79

60.33
71.00

88.64
77.90

84.81

66.80
94.44

85.57
93.50

91.05
32.54

Average
28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06

89.73 91.99 89.48 90.70 89.98 92.43

84.49 86.49 84.20 84.80 86.09 78.07

97.00 96.80 96.86 96.61 97.00 94.58

59.46 68.23 58.36 65.93 59.36 58.48

85.36 86.17 85.80 85.64 85.07 78.82

93.39 92.94 93.39 92.94 93.39 92.18

63.32 67.07 62.76 62.83 61.24 55.67

65.91 70.82 64.00 69.06 67.75 65.89

81.11 83.13 81.11 81.98 81.85 72.02

82.49 83.46 82.16 82.51 81.51 72.72

80.28 82.12 79.25 79.93 80.62 70.79

74.00 75.44 74.00 72.72 74.00 62.28

76.31 76.58 76.51 74.41 75.60 66.97

93.46 93.49 93.46 93.49 93.46 88.71

81.25 83.73 80.58 82.80 81.33 75.20

45.89 58.21 32.91 27.87 45.89 52.16

91.90 92.72 91.43 91.77 92.14 91.46

84.04 84.24 84.04 82.27 84.05 82.18

95.33 94.74 95.33 94.67 95.33 93.78

71.00 71.42 70.90 70.00 70.90 58.98

72.10 73.88 72.00 72.86 71.80 72.07

61.12 68.15 58.77 63.13 60.24 52.34

75.39 76.37 75.91 74.52 74.88 64.61

93.45 96.33 93.45 96.33 93.45 95.07

81.79 84.35 78.38 81.79 80.36 80.29

86.61 89.90 85.97 87.41 86.62 88.24

69.52 73.81 69.05 69.75 70.21 64.74

95.41 95.84 95.41 95.81 95.41 94.35

92.40 96.57 91.27 95.94 93.54 96.70

94.93 95.57 94.93 95.57 94.93 94.76

91.11 92.96 91.11 92.59 93.33 94.07

ENN % RENN % AllKNN %

80.95 83.34 80.09 80.92 81.01 77.44

88.35 0.70 91.11 0.75

83.62 0.32 85.80 0.32

89.86 0.32 96.71 0.32

56.27 5.35 57.18 5.67

85.22 0.32 85.51 0.32

93.39 3.01 94.82 3.01

55.50 2.00 56.16 2.06

50.54 2.28 63.98 3.53

74.44 0.82 81.85 0.82

81.52 0.73 82.15 0.73

80.61 0.75 82.30 0.75

72.50 0.84 74.50 1.11

67.48 0.14 73.13 0.14

93.46 0.90 93.46 0.90

76.67 1.00 78.67 1.29

67.09 0.37 67.09 0.37

85.95 2.22 89.76 2.43

73.77 0.63 80.89 0.63

88.67 2.30 92.67 2.30

71.20 1.66 72.20 1.40

70.40 1.53 72.10 1.52

56.74 0.55 57.65 0.64

67.84 0.29 75.27 0.29

88.82 2.10 91.36 2.10

70.24 1.07 70.29 1.07

82.70 7.35 85.92 7.78

58.15 2.25 60.76 2.47

88.99 0.51 94.25 0.51

50.20 4.69 57.77 6.65

81.47 1.93 95.46 2.12

94.44 7.90 95.56 8.40

ELGrow % Explore %

75.68 1.83 79.24 2.01
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#DROP3 better/worse
#Sig. better/worse

Wilcoxon

14-17
5-10

-78.99

31-0
31-0

99.5

10-18
4-6

-91.85

31-0
31-0

99.50

10-17
4-5

-57.88

31-0
31-0

99.50

12-16
3-7

-84.48

31-0
31-0

99.50

24-5
17-1

99.50

0-31
0-31

-99.50

16-14
9-4

95.62

0-31
0-31

-99.50

“Wilcoxon” row of Table 1.  Positive values indicate the confidence that DROP3 is “better” (i.e.,
higher accuracy or lower storage requirements) than the other method on these datasets, while
negative values indicate the confidence that DROP3 is “worse.”  Confidence values with a
magnitude of at least 90% can be considered significant differences, and throughout the
remainder of this paper, the word “significant” will be used to refer to statistical significance
with at least a 90% confidence level.

The accuracy and storage percentages for each of the 10 trials for each method on each
dataset are available in an on-line appendix, along with standard deviations, t-test confidence
values, source code and data files (see the Appendix of this paper for details).

5.2. Analysis of Results

Several observations can be made from the results in this table.  CNN and IB2 achieve almost
identical results (less than 1% difference in both size and accuracy in most cases), due to the
similarity of their algorithms.  SNN had lower accuracy and higher storage requirements on
average when compared to CNN and IB2, and the SNN algorithm is much more complex and
substantially slower than the others as well.  IB3 was able to achieve higher accuracy and lower
storage than SNN, CNN and IB2, with the only disadvantage being a learning algorithm that is
somewhat more complex (though not much slower) than CNN or IB2.

DROP3 had significantly higher accuracy than all of these four methods at over a 99%
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confidence level (according to the Wilcoxon test) on these datasets.  It also had significantly
lower storage requirements than all of these methods at over a 99% confidence level, except on
IB3, where the confidence of lower storage requirements was still over 90%.

As expected, ENN, RENN and All k-NN all retained over 75% of the instances, due to their
retention of internal (non-border) instances.  They all had fairly good accuracy, largely because
they still had access to most of the original instances.  In agreement with Tomek (1976), the All
k-NN method achieved better reduction and higher accuracy than RENN, which in turn had
higher reduction (though slightly lower accuracy) than ENN.  All three of these methods had
higher average accuracy than DROP3, though only ENN’s accuracy was significantly higher, but
this is mostly due to retaining most of the instances.

The ELGrow and Explore techniques had by far the best storage reduction of any of the
algorithms.  The ELGrow algorithm achieved the best average reduction (retaining only 1.67% of
the training instances) but also suffered a significant drop in generalization accuracy when
compared to the original (unreduced) KNN system.  However, the Explore method achieved
better average accuracy than ELGrow with only a slight increase in storage over ELGrow,
indicating that the random mutation hill climbing step was successful in finding a better subset S
after the growing and reduction phases were complete.  DROP3 had significantly better accuracy
than both of these algorithms, but their storage requirements were significantly better than that of
DROP3.

The ordered reduction techniques DROP2-DROP5 all had average generalization accuracy
that was within 1% of the full kNN classifier.  Their average accuracy was higher than any of the
other reduction methods.  DROP2 and DROP3 both had average storage requirements of about
14%, which is lower than any of the other methods except ELGrow and Explore.  DROP1
retained about half as many instances as the other ordered reduction techniques (significantly
better than DROP3), but had the worst generalization accuracy of any of them (significantly
worse than DROP3), because it fails to use information provided by previously removed
instances in determining whether further instances should be removed.

The DEL approach also had good accuracy, but was not quite as high as DROP2-DROP5,
and its storage requirements were not quite as low as most of the DROP methods.  DROP3 had
lower storage and significantly higher accuracy than DEL.

5.3. Effect of Noise

Since several of these algorithms are designed to be robust in the presence of noise, the same
experiments were repeated with 10% uniform class noise artificially added to each dataset.  This
was done by randomly changing the output class of 10% of the instances in the training set to an
incorrect value (with an equal probability for each of the incorrect classes).  The output class of
the instances in the test set are not noisy, so the results indicate how well each model is able to
predict the correct output even if some of its training data is mislabeled.

Table 2 shows the average accuracy and storage requirements over all 31 datasets for each
algorithm, including the basic (unreduced) kNN algorithm.

As can be seen from Table 2, the accuracy for the kNN algorithm dropped just over 3% on
average.  Note that some of the effect of noise is already handled by the use of k = 3 in these
experiments.  Otherwise the drop in accuracy would be more on the order of 8% (i.e., 10% of the
82% already classified correctly).

As expected, CNN and IB2 increased storage and suffered large reductions in accuracy in the
presence of noise.  SNN dropped only slightly in accuracy when uniform class noise was added,
but it retained almost half of the instances in the training set due to its strict (and noise intolerant)
requirements as to which instances must be in S.

In agreement with Aha’s results (1992), IB3 had higher accuracy and lower storage
requirements in the presence of noise than IB2, though it still suffered a dramatic decrease in
accuracy (and a slight increase in storage) when compared to its performance in the noise-free
case.  In our experiments we found that when the number of instances in the training set was
small, IB3 would occasionally end up with an empty subset S, because none of the instances gets
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Table 2.  Average accuracy and storage requirements in the presence of 10% uniform class noise.

Algorithm Clean Size% Noisy Size%

kNN 82.11 100.00 78.93 100.00

CNN 76.48 26.69 68.14 38.29

SNN 75.44 31.63 74.60 48.60

IB2 76.58 26.64 67.80 38.27

IB3 78.85 16.13 72.09 18.85

DEL 80.65 16.88 78.16 8.57

DROP1 72.65 8.41 71.24 8.00

DROP2 81.07 14.03 79.99 14.75

DROP3 81.14 14.31 80.00 11.49

DROP4 81.11 17.30 79.57 14.74

DROP5 81.39 16.09 79.95 15.52

ENN 80.95 83.34 80.19 74.91

RENN 80.09 80.92 79.65 72.53

AllKNN 81.01 77.44 79.98 64.58

ELGrow 75.68 1.83 73.67 1.88

Explore 79.24 2.01 77.96 2.03

Average 79.06 32.54 76.36 32.83

enough statistical strength to be acceptable.  This problem worsens in the presence of noise, and
thus more training data (or a modification of the algorithm) is required to handle small, noisy
datasets.

DROP1 did not fall much in accuracy, but its accuracy was already poor to begin with.
However, all of the other DROP methods (DROP2-DROP5) achieved accuracy higher than the
kNN method, while using less than one-sixth of the original instances.  DROP3 had the highest
accuracy of the DROP methods, and had the lowest storage of the accurate ones (DROP2-
DROP5), using less than 12% of the original instances.

The ENN, RENN, and All k-NN methods also achieved higher accuracy than kNN, since they
were designed specifically for noise filtering.  They also required about 10% less storage than in
the noise-free case, probably because they were throwing most of the noisy instances (as well as
a few good instances that were made to appear noisy due to the added noise).

The encoding-length heuristic methods all dropped about 2% in accuracy when noise was
added leaving them closer to—but still below—the kNN method in terms of accuracy.  ELGrow
had fairly poor accuracy compared to the others, but Explore was within 1% of the kNN method
in terms of accuracy while using only about 2% of the instances for storage.

6. Conclusions and Future Research Directions

Many techniques have been proposed to reduce the number of instances used for
classification in instance-based and other exemplar-based learning algorithms.  In experiments
on 31 datasets, the results make possible the division of the tested algorithms into several groups.
The first group consists of algorithms which had low generalization accuracy and are thus mostly
of historical significance.  This group includes CNN, SNN, IB2 (which led to the development of
IB3) and DROP1 (which led to the more successful DROP algorithms).  These had low
generalization even before noise was introduced, and dropped further when it was.  Of this
group, only DROP1 kept less than 25% of the instances on average, so the storage reduction did
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not make up for the lack of accuracy.
The second group consists of the three similar noise-filtering algorithms: ENN, RENN, and

All k-NN.  These had high accuracy but also kept most of the instances.  In the noise-free
environment, they achieved slightly lower accuracy than kNN, but when uniform class noise was
added, their accuracy was higher than kNN, indicating that they are successful in the situation for
which they were designed.  These algorithms are useful when noise is expected in the data and
when it is reasonable to retain most of the data.  Of this group, All k-NN had the highest accuracy
and lowest storage requirements in the presence of noise.

The third group consists of two algorithms, ELGrow and Explore, that were able to achieve
reasonably good accuracy with only about 2% of the data.  ELGrow had the lowest storage
(about 1.8%) but its accuracy was somewhat poor, especially in the noisy domain.  The Explore
method had fairly good accuracy, especially in the noisy arena, though it was not quite as
accurate as the DROP methods.  However, its aggressive storage reduction would make this
trade-off acceptable in many cases.

The final group consists of algorithms which had high accuracy and reasonably good storage
reduction.  These include IB3, DROP2-DROP5 and DEL.  IB3 was designed to overcome the
noise-sensitivity of IB2, and in our experiments it had better accuracy and storage reduction than
IB2, especially in the noisy case.  However, its accuracy still dropped substantially in the noisy
experiments, and it had lower average accuracy and higher average storage than the Explore
method both with and without noise.

The algorithms DROP2-DROP5 had higher average accuracy than IB3 on the original data,
and had much higher average accuracy in the noisy case.  They also improved in terms of
average storage reduction as well. DROP2-DROP5 all had an accuracy within about 1% of kNN
on the original data, and were about 1% higher when uniform class noise was added, with
storage ranging from 11% to 18%.  DEL had slightly lower accuracy than the DROP2-DROP5
methods, but had lower storage in the noisy domain.

DROP3 seemed to have the best mix of generalization accuracy and storage requirements of
the DROP methods.  DROP3 had significantly higher accuracy and lower storage than any of the
algorithms in the first group; somewhat lower accuracy but significantly lower storage than any
of the algorithms in the second group;  and significantly worse storage but significantly better
accuracy than the algorithms in the third group.

This paper has reviewed much of the work done in the area of reducing storage requirements
in instance-based learning systems.  The effect of uniform output class noise on many of the
algorithms has also been observed on a collection of datasets.  Other factors that influence the
success of each algorithm must still be identified.  Continued research should help determine
under what conditions each of these algorithms is successful so that an appropriate algorithm can
be automatically chosen when needed.  Current research is also focused on combining the
reduction techniques proposed here with various weighting techniques in order to develop
learning systems that can more dynamically adapt to problems of interest.

Appendix

An on-line appendix is available at the following location.

http://axon.cs.byu.edu/~randy/pubs/ml/drop/
 [previously at ftp://axon.cs.byu.edu/pub/randy/ml/drop/]

This site contains the complete source code used for these experiments, including the cost
function for the encoding-length methods and the code used to generate t-test and Wilcoxon test
statistics.  The site also contains all of the data sets and complete experimental results, including
the accuracy for all 10 trials of each experiment, standard deviations, etc.
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