
Contents

Preface �Second Edition� xi

Acknowledgments �Second Edition�
xiii

Acknowledgments �First Edition� xvii

�� Introduction �

���� Purpose �
���� Notational Conventions �
������ Decimal Numbers �
������ Nil� False� and the Empty

List �
������ Evaluation� Expansion� and

Equivalence �
������ Errors �
������ Descriptions of Functions and

Other Entities 	
����	� The Lisp Reader �

������ Overview of Syntax �

�� Data Types ��

���� Numbers �	
������ Integers ��
������ Ratios ��
������ Floating
Point Numbers �

������ Complex Numbers ��
���� Characters ��
������ Standard Characters ��
������ Line Divisions �	
������ Non
standard Characters ��
������ Character Attributes ��
������ String Characters ��

���� Symbols ��
���� Lists and Conses ��
���� Arrays ��
������ Vectors ��
������ Strings �	
������ Bit
Vectors ��
��	� Hash Tables ��
���� Readtables ��
���� Packages ��
���� Pathnames ��
���
� Streams ��
����� Random
States ��
����� Structures ��
����� Functions ��
����� Unreadable Data Objects �

����� Overlap� Inclusion� and

Disjointness of Types ��

�� Scope and Extent �	

�� Type Specifiers ��

���� Type Speci�er Symbols ��
���� Type Speci�er Lists ��
���� Predicating Type

Speci�ers ��
���� Type Speci�ers That

Combine ��
���� Type Speci�ers That

Specialize ��
��	� Type Speci�ers That

Abbreviate 	�

v

vi CONTENTS

���� De�ning New Type
Speci�ers 		

���� Type Conversion Function 	�
���� Determining the Type of an

Object �

���
� Type Upgrading ��

�� Program Structure ��

���� Forms ��
������ Self
Evaluating Forms ��
������ Variables ��
������ Special Forms �	
������ Macros ��
������ Function Calls ��
���� Functions ��
������ Named Functions �

������ Lambda
Expressions �

���� Top
Level Forms ��
������ De�ning Named Functions �

������ Declaring Global Variables and

Named Constants ��
������ Control of Time of

Evaluation ��

�� Predicates �
�

	��� Logical Values �
�
	��� Data Type Predicates �
�
	����� General Type Predicates �
�
	����� Speci�c Data Type

Predicates �
�
	��� Equality Predicates ��

	��� Logical Operators ��	

�� Control Structure ���

���� Constants and Variables ��

������ Reference ��

������ Assignment ���
���� Generalized Variables ���
���� Function Invocation ���
���� Simple Sequencing ���
���� Establishing New Variable

Bindings ���
��	� Conditionals �	�
���� Blocks and Exits ��

���� Iteration ���
������ Inde�nite Iteration ���
������ General Iteration ���
������ Simple Iteration

Constructs ���
������ Mapping ��

������ The �Program Feature� ���
���� Structure Traversal and Side

E�ects ���
���
� Multiple Values ���
���
��� Constructs for Handling

Multiple Values ��

���
��� Rules Governing the Passing of

Multiple Values ���
����� Dynamic Non
Local Exits ���

�� Macros �
�

���� Macro De�nition �
	
���� Macro Expansion ���
���� Destructuring ���
���� Compiler Macros ���
���� Environments ��

	� Declarations ���

���� Declaration Syntax ���
���� Declaration Speci�ers ���
���� Type Declaration for

Forms ���

�
� Symbols ���

�
��� The Property List ���
�
��� The Print Name ���
�
��� Creating Symbols �	

��� Packages �	�

����� Consistency Rules �		
����� Package Names �		
����� Translating Strings to

Symbols �	�
����� Exporting and Importing

Symbols ��

����� Name Con�icts ���
���	� Built
in Packages ���

CONTENTS vii

����� Package System Functions and
Variables ���

����� Modules ���
����� An Example ��	

��� Numbers �
�

����� Precision� Contagion� and
Coercion �
�

����� Predicates on Numbers ���
����� Comparisons on Numbers ���
����� Arithmetic Operations ���
����� Irrational and Transcendental

Functions ���
������� Exponential and Logarithmic

Functions ��

������� Trigonometric and Related

Functions ���
������� Branch Cuts� Principal Values�

and Boundary Conditions in
the Complex Plane ���

���	� Type Conversions and
Component Extractions on
Numbers ���

����� Logical Operations on
Numbers ���

����� Byte Manipulation
Functions ���

����� Random Numbers ���
����
� Implementation

Parameters ���

��� Characters ���

����� Character Attributes �
�
����� Predicates on Characters �
�
����� Character Construction and

Selection �
�
����� Character Conversions ��

����� Character Control
Bit

Functions ���

��� Sequences ���

����� Simple Sequence
Functions ���

����� Concatenating� Mapping� and
Reducing Sequences ���

����� Modifying Sequences ��	
����� Searching Sequences for

Items ���
����� Sorting and Merging ���

��� Lists ���

����� Conses ���
����� Lists ���
����� Alteration of List

Structure ���
����� Substitution of

Expressions ���
����� Using Lists as Sets ��	
���	� Association Lists �	�

��� Hash Tables �	�

�	��� Hash Table Functions �	�
�	��� Primitive Hash Function ���

��� Arrays ���

����� Array Creation ���
����� Array Access ��

����� Array Information ���
����� Functions on Arrays of

Bits ��	
����� Fill Pointers ���
���	� Changing the Dimensions of an

Array ���

��� Strings ���

����� String Access ���
����� String Comparison ���
����� String Construction and

Manipulation ���

�	� Structures �
�

����� Introduction to
Structures �
�

����� How to Use Defstruct �
�

viii CONTENTS

����� Using the Automatically
De�ned Constructor
Function �
�

����� Defstruct Slot
Options ��

����� Defstruct Options ���
���	� By
Position Constructor

Functions ���
����� Structures of Explicitly

Speci�ed Representational
Type ���

������� Unnamed Structures ���
������� Named Structures ���
������� Other Aspects of Explicitly

Speci�ed Structures ���

�
� The Evaluator ��	

�
��� Run
Time Evaluation of
Forms ��	

�
��� The Top
Level Loop ��

��� Streams ���

����� Standard Streams ���
����� Creating New Streams ��	
����� Operations on Streams ��

��� Input�Output ���

����� Printed Representation of Lisp
Objects ���

������� What the Read Function
Accepts ��	

������� Parsing of Numbers and
Symbols ���

������� Macro Characters �	�
������� Standard Dispatching Macro

Character Syntax �	�
������� The Readtable ��

�����	� What the Print Function

Produces ���
����� Input Functions 	
�
������� Input from Character

Streams 	
�
������� Input from Binary

Streams 	�

����� Output Functions 	�

������� Output to Character
Streams 	��

������� Output to Binary
Streams 	��

������� Formatted Output to
Character Streams 	��

����� Querying the User 	��

��� File System Interface 	��

����� File Names 	��
������� Pathnames 		

������� Case Conventions 			
������� Structured Directories 	�

������� Extended Wildcards 	��
������� Logical Pathnames 	��
��������� Syntax of Logical Pathname

Namestrings 	��
��������� Parsing of Logical Pathname

Namestrings 	�

��������� Using Logical

Pathnames 	��
��������� Examples of the Use of

Logical Pathnames 	��
��������� Discussion of Logical

Pathnames 	�	
�����	� Pathname Functions 	��
����� Opening and Closing

Files 	��
����� Renaming� Deleting� and Other

File Operations �
�
����� Loading Files ��

����� Accessing Directories ��	

��� Errors ���

����� General Error
Signaling
Functions ���

����� Specialized Error
Signaling
Forms and Macros ���

����� Special Forms for Exhaustive
Case Analysis ���

��� Miscellaneous Features ��

����� The Compiler ��

������� Compiler Diagnostics ���

CONTENTS ix

������� Compiled Functions ���
������� Compilation Environment ��

������� Similarity of Constants ���
����� Documentation ���
����� Debugging Tools ��

����� Environment Inquiries ���
������� Time Functions ���
������� Other Environment

Inquiries �	�
����� Identity Function �	�

��� Loop �	�

�	��� Introduction �	�
�	��� How the Loop Facility

Works �	�
�	��� Parsing Loop Clauses �		
�	����� Order of Execution �	�
�	����� Kinds of Loop Clauses �	�
�	����� Loop Syntax ���
�	��� User Extensibility ���
�	��� Loop Constructs ���
�	�	� Iteration Control ���
�	��� End
Test Control ���
�	��� Value Accumulation ���
�	��� Variable Initializations ���
�	��
� Conditional Execution ��	
�	���� Unconditional Execution ���
�	���� Miscellaneous Features �

�	������ Data Types �

�	������ Destructuring �
�

��� Pretty Printing �
	

����� Introduction �
	
����� Pretty Printing Control

Variables �
�
����� Dynamic Control of the

Arrangement of Output �
�
����� Format Directive

Interface ��

����� Compiling Format Control

Strings ���
���	� Pretty Printing Dispatch

Tables ���

��� Common Lisp Object
System ���

����� Programmer Interface
Concepts ���

������� Error Terminology ��

������� Classes ���

��������� De�ning Classes ���

��������� Creating Instances of
Classes ���

��������� Slots ���

��������� Accessing Slots ���

������� Inheritance ���

��������� Inheritance of Methods ���

��������� Inheritance of Slots and Slot
Options ���

��������� Inheritance of Class
Options ��

��������� Examples ��

������� Integrating Types and
Classes ��

������� Determining the Class
Precedence List ���

��������� Topological Sorting ���

��������� Examples ���

�����	� Generic Functions and
Methods ���

�����	��� Introduction to Generic
Functions ���

�����	��� Introduction to
Methods ���

�����	��� Agreement on Parameter
Specializers and Quali�ers ���

�����	��� Congruent Lambda
Lists for
All Methods of a
Generic Function ���

�����	��� Keyword Arguments in
Generic Functions and
Methods ���

������� Method Selection and
Combination ���

��������� Determining the E�ective
Method ���

��������� Standard Method
Combination ���

x CONTENTS

��������� Declarative Method
Combination �	

��������� Built
in Method Combination
Types �	

������� Meta
objects �	�

��������� Metaclasses �	�

��������� Standard Metaclasses �	�

��������� Standard Meta
objects �	�

������� Object Creation and
Initialization �	�

��������� Initialization
Arguments �	�

��������� Declaring the Validity of
Initialization Arguments �		

��������� Defaulting of Initialization
Arguments �	�

��������� Rules for Initialization
Arguments �	�

��������� Shared
Initialize ��

�������	� Initialize
Instance ���

��������� De�nitions of Make
Instance
and Initialize
Instance ���

������
� Rede�ning Classes ���

������
��� Modifying the Structure of
Instances ��	

������
��� Initializing Newly Added
Local Slots ��	

������
��� Customizing Class
Rede�nition ���

������
��� Extensions ���

�������� Changing the Class of an
Instance ���

���������� Modifying the Structure of
an Instance ���

���������� Initializing Newly Added
Local Slots ���

���������� Customizing the Change of
Class of an Instance ���

�������� Reinitializing an
Instance ���

���������� Customizing
Reinitialization ���

����� Functions in the Programmer
Interface ���

�	� Conditions ��	

����� Introduction ��	
����� Changes in Terminology ���
����� Survey of Concepts ���
������� Signaling Errors ���
������� Trapping Errors ���
������� Handling Conditions ���
������� Object
Oriented Basis of

Condition Handling ���
������� Restarts ��	
�����	� Anonymous Restarts ���
������� Named Restarts ���
������� Restart Functions ���
������� Comparison of Restarts and

Catch�Throw ��

������
� Generalized Restarts ���
�������� Interactive Condition

Handling ���
�������� Serious Conditions ���
�������� Non
Serious Conditions ���
�������� Condition Types ���
�������� Signaling Conditions ���
������	� Resignaling Conditions ��	
�������� Condition Handlers ��	
�������� Printing Conditions ���
����� Program Interface to the

Condition System ���
������� Signaling Conditions ���
������� Assertions �	�
������� Exhaustive Case Analysis �	�
������� Handling Conditions �	�
������� De�ning Conditions ���
�����	� Creating Conditions ���
������� Establishing Restarts ���
������� Finding and Manipulating

Restarts ���
������� Warnings ���
������
� Restart Functions ��	
�������� Debugging Utilities ���
����� Prede�ned Condition

Types ���

Appendix A� Series ���

A��� Introduction ���

CONTENTS xi

A��� Series Functions ���
A����� Scanners �

A����� Mapping �

�
A����� Truncation and Other Simple

Transducers �

�
A����� Conditional and Other

Complex Transducers �

�
A����� Collectors �
��
A���	� Alteration of Series �
�	
A��� Optimization �
��
A����� Basic Restrictions �
��
A����� Constraint Cycles �
�

A����� De�ning New Series

Functions �
��
A����� Declarations �
��
A��� Primitives �
�	

Appendix B� Generators and
Gatherers �
��

B��� Introduction �
��
B��� Generators �
��
B��� Gatherers �
��
B��� Discussion �
��

Appendix C� Backquote �
�	

References �
��

Index of X�J�� Votes �
��

Other Indexes �
	

xii CONTENTS

Preface
SECOND EDITION

Common Lisp has succeeded� Since publication of the �rst edition of this

book in ����� many implementors have used it as a de facto standard for Lisp
implementation� As a result� it is now much easier to port large Lisp programs

from one implementation to another� Common Lisp has proved to be a useful

and stable platform for rapid prototyping and systems delivery in arti�cial

intelligence and other areas� WIth experience gained in using Common Lisp

for so many applications� implementors found no shortage of opportunities for
innovation� One of the important characteristics of Lisp is its good support for

experimental extension of the language� while Common Lisp has been stable�

it has not stagnated�

The ���� de�nition of Common Lisp was imperfect and incomplete� In some
cases this was inadvertent� some odd boundary situation was overlooked and

its consequences not speci�ed� or di	erent passages in were con
ict� or some

property of Lisp was so well�known and traditionally relied upon that I forgot

to write it down� In other cases the informal committee that was de�ning
Common Lisp could not settle on a solution� and therefore agreed to leave

some important aspect of the language unspeci�ed rather than choose a less

than satisfactory de�nition� An example is error handling� ���� Common

Lisp had plenty of ways to signal errors but no way for a program to trap or

process them�

Over the next year I collected reports of errors in the book and gaps in

the language� In December ����� a group of implementors and users met in

Boston to discuss the state of Common Lisp� I prepared two lists for this

meeting� one of errata and clari�cations that I thought would be relatively
uncontroversial
boy� was I wrong�� and one of more substantial changes I

thought should be considered and perhaps voted upon� Others also brought

proposals to discuss� It became clear to everyone that there was now enough

interest in Common Lisp� and dependence on its stability� that a more formal

mechanism was needed for managing changes to the language�

xiii

xiv PREFACE �SECOND EDITION�

This realization led to the formation of X�J��� a subcommittee of ANSI

committee X�� to produce a formal American National Standard for Common

Lisp� That process is nearing completion� X�J�� has completed the bulk of

its technical work in rectifying the ���� de�nition and codifying extensions

to that de�nition that have received widespread use and approval� A draft
standard is now being prepared� it will probably be available in ����� There

will then be a period
required by ANSI� for public review� X�J�� must then

consider the comments it receives and respond appropriately� If the comments

result in substantial changes to the draft standard� multiple public review
periods may be required before the draft can be approved as an American

National Standard�

Fortunately� X�J�� has done an outstanding job of documenting its work�

For every change that came to a formal vote� a document was prepared that

described the problem to be solved and one or more solutions� For each

solution there is a detailed proposal for changing the language� a rationale� test
cases that distinguish the proposal from the status quo or from other proposals

for solving that problem� discussions of current practice� cost to implementors�

cost to users� cost of not adopting the proposal� bene�ts of adoption� aesthetic

criteria� and any relevant informal discussion that may have preceded creation
of the formal proposal� All of these proposal documents were made available

on�line as well as in paper form� By my count� by June ���� some ��� such

proposals were approved as language changes�
This count does not include

many proposals that came before the committee but were rejected��

The purpose of this second edition is to bridge the gap between the �rst
edition and the forthcoming ANSI standard for Common Lisp� Because of the

requirement for formal public review� it will be some time yet before the ANSI

standard is �nal� This book in no way resembles the forthcoming standard

which is being written independently by Kathy Chapman of Digital Equip�

ment Corporation with assistance from the X�J�� Drafting Subcommittee��

I have incorporated into this second edition a great deal of material based
on the votes of X�J��� in order to give the reader a picture of where the

language is heading� My purpose here is not simply to quote the X�J��

documents verbatim but to paraphrase them and relate them to the structure

of the �rst edition� A single vote by X�J�� may be discussed in many parts
of this book� and a single passage of this book may be a	ected by many of

the votes�

I wish to be very clear� this book is not an o�cial document of X�J���

though it is based on publicly available material produced by X�J��� In

no way does this book constitute a de�nitive description of the forthcoming

ANSI standard� The committee�s decisions have been remarkably stable
it

PREFACE �SECOND EDITION� xv

has rescinded earlier decisions only two or three times�� and I do not expect

radical changes in direction� Nevertheless� it is quite probable that the draft

standard will be substantively revised in response to editorial review or public

comment� I have therefore reported here on the actions of X�J�� not to

inscribe them in stone� but to make clear how the language of the �rst edition
is likely to change� I have tried to be careful in my wording to avoid saying

�the language has been changed� and to state simply that �X�J�� voted at

such�and�so time to make the following change��

Until the day when an o�cial ANSI Common Lisp standard emerges� it
is likely that the ���� de�nition of Common Lisp will continue to be used

widely� This book has been designed to be used as a reference both to the

���� de�nition and to the language as modi�ed by the actions of X�J���

It contains the entire text of the �rst edition of Common Lisp� The Lan�

guage� with corrections and minor editorial changes� however� more than half
of the material in this edition is new� All new material is identi�ed by solid

lines in the left margin� Dotted lines in the left margin indicate material from

the �rst edition that applies to the ���� de�nition but that has been modi�ed

by a vote of X�J��� Modi�cations to these outmoded passages are explained
by preceding or following text
which will have a solid line in the margin�� In

summary�

� To use the ���� language de�nition� read all material that does not have a

solid line in the margin�

� To use the updated language de�nition� read everything� but be wary of

material with a dotted line in the margin�

At the end of the book is an index of the X�J�� votes� ordered by the com�
mittee�s internal code names
included to ease cross�reference to the X�J��

documents� which may be useful during the public review periods�� Refer�

ences to this list of votes appear as numbers in angle brackets� thus �h��i�
refers to the vote on issue number ��� whereas ������ refers to reference �� in

the bibliography�
I have kept changes to the wording of the �rst�edition material to a min�

imum� Obvious spelling and typographical errors have been corrected� and

the entire text has been edited to a uniform style of spelling and punctuation�

Note in particular that the �rst edition used the spelling �signalling� but
this edition� in deference to the style decision of the X�J�� Drafting Subcom�

mittee� uses �signaling��� A few minor changes were made to accommodate

typographical or layout constraints�
For example� the word �also� has been

deleted from the �rst sentence of chapter �� partly to make that paragraph

look better and partly to allow a better page break at the bottom of page ���

xvi PREFACE �SECOND EDITION�

In a very few cases the �rst edition contained substantive errors that I could

not in good conscience correct silently� these have been
agged by paragraphs

beginning with the phrase Notice of correction�

The chapter and section numbering of this edition matches that of the

�rst edition� with the exception that a new section ��� has been interpolated�
Four new chapters
������ describe substantial changes approved by X�J���

an extended loop macro� a pretty printer interface� the Common Lisp Object

System� and the Common Lisp Condition System�

X�J��� in the course of its work� formed a subcommittee to study whether
additional means of iteration should be standardized for use in Common Lisp�

for a great deal of existing practice in this area was not included in the �rst

edition because of lack of agreement in ����� The X�J�� Iteration Subcom�

mittee produced reports on three possible facilities� One
loop� was approved

for inclusion in the forthcoming draft standard and is described in chapter ���
X�J�� expressed interest in the other two approaches
series and genera�

tors�� but the consensus as of January ���� was that these other approaches

were not yet su�ciently mature or in su�ciently widespread use to warrant

inclusion in the draft Common Lisp standard at that time� However� the sub�
committee was directed to continue work on these approaches and X�J�� is

open to the possibility of standardizing them at a later date� Please note that

I do not wish the prejudge the question of whether X�J�� will ever choose

to make the other two proposals the subject of standardization� Neverthe�

less� I have chosen to include them in the second edition� in cooperation with
Dr� Richard C� Waters� as appendices A and B� in order to make these ideas

available to the Lisp community� In my judgement these proposals address

an area of language design not otherwise covered by Common Lisp and are

likely to have practical value even if they are never adopted as part of a formal
standard�

Some new material in this book has nothing to do with the work of X�J���

In many places I have added explanations� clari�cations� new examples� warn�

ings� and tips on writing portable code� Appendix C contains a piece of code

that may help in understanding the backquote syntax�
This second edition� unlike the �rst edition� also includes a few diagrams

to pep up the text� However� there are absolutely no new jokes� and very few

outright lies�

Acknowledgments
SECOND EDITION

First and foremost� I must thank the many people in the Lisp community who

have worked so hard to specify� implement� and use Common Lisp� Some of

these have volunteered many hours of e	ort as members of ANSI committee

X�J��� Others have made presentations or proposals to X�J��� and yet others
have sent suggestions and corrections to the �rst edition directly to me� This

book builds on their e	orts as well as mine�

An early draft of this book was made available to all members of X�J�� for

their criticism� I have also worked with the many public documents that have
been written during the course of the committee�s work
which is not over

yet�� It is my hope that this book is an accurate re
ection of the committee�s

actions as of October ����� Nevertheless� any errors or inconsistencies are my

responsibility� The fact that I have made a draft available to certain persons�
received feedback from them� or thanked them in these acknowledgments does

not necessarily imply that any one of them or any of the institutions with

which they are a�liated endorse this book or anything of its contents�

Digital Press and I gave permission to X�J�� to use any or all parts of
the �rst edition in the production of an ANSI Common Lisp standard� Con�

versely� in writing this book I have worked with publicly available documents

produced by X�J�� in the course of its work� and in some cases as a courtesy

have obtained the consent of the authors of those documents to quote them ex�
tensively� This common ancestry will result in similarities between this book

and the emerging ANSI Common Lisp standard
that is the purpose� after

all�� Nevertheless� this second edition has no o�cial connection whatsoever

with X�J�� or ANSI� nor is it endorsed by either of those institutions�

The following persons have been members of X�J�� or involved in its ac�

tivities at one time or another� Jim Allard� Dave Andre� Jim Antonisse�

William Arbaugh� John Aspinall� Bob Balzer� Gerald Barber� Richard Bar�

ber� Kim Barrett� David Bartley� Roger Bate� Alan Bawden� Michael Beckerle�

Paul Beiser� Eric Benson� Daniel Bobrow� Mary Boelk� Skona Brittain� Gary

xvii

xviii ACKNOWLEDGMENTS �SECOND EDITION�

Brown� Tom Bucken� Robert Buckley� Gary Byers� Dan Carnese� Bob Cassels�

J�er�ome Chailloux� Kathy Chapman� Thomas Christaller� Will Clinger� Peter

Co	ee� John Cugini� Pavel Curtis� Doug Cutting� Christopher Dabrowski�

Je	 Dalton� Linda DeMichiel� Fred Discenzo� Jerry Duggan� Patrick Dussud�

Susan Ennis� Scott Fahlman� Jogn Fitch� John Foderaro� Richard Gabriel�
Steven Gadol� Nick Gall� Oscar Garcia� Robert Giansiracusa� Brad Gold�

stein� David Gray� Richard Greenblatt� George Hadden� Steve Ha
ich� Dave

Henderson� Carl Hewitt� Carl Ho	man� Cheng Hu� Masayuki Ida� Takayasu

Ito� Sonya Keene� James Kempf� Gregory Jennings� Robert Kerns� Gregor
Kiczales� Kerry Kimbrough� Dieter Kolb� Timothy Koschmann� Ed Krall�

Fritz Kunze� Aaron Larson� Joachim Laubsch� Kevin Layer� Michael Levin�

Ray Lim� Thom Linden� David Loe�er� Sandra Loosemore� Barry Margolin�

Larry Masinter� David Matthews� Robert Mathis� John McCarthy� Chris Mc�

Connell� Rob McLachlan� Jay Mendelsohn� Martin Mikelsons� Tracey Miles�
Richard Mlyarnik� David Moon� Jarl Nilsson� Leo Noordhulsen� Ronald Oh�

lander� Julian Padget� Je	 Peck� Jan Pedersen� Bob Pellegrino� Crispin Per�

due� Dan Pierson� Kent Pitman� Dexter Pratt� Christian Quiennec� B� Ragha�

van� Douglas Rand� Jonathan Rees� Chris Richardson� Je	 Rininger� Walter
van Roggen� Je	rey Rosenking� Don Sakahara� William Scherlis� David Slater�

James Smith� Alan Snyder� Angela Sodan� Richard Soley� S� Sridhar� Bill

St� Clair� Philip Stanhope� Guy Steele� Herbert Stoyan� Hiroshi Torii� Dave

Touretzky� Paul Tucker� Rick Tucker� Thomas Turba� David Unietis� Mary

Van Deusen� Ellen Waldrum� Richard Waters� Allen Wechsler� Mark Weg�
man� Jon L White� Skef Wholey� Alexis Wieland� Martin Yonke� Bill York�

Taiichi Yuasa� Gail Zacharias� and Jan Zubko	�

I must express particular gratitude and appreciation to a number of people

for their exceptional e	orts�

Larry Masinter� chairman of the X�J�� Cleanup Subcommittee� developed

the standard format for documenting all proposals to be voted upon� The
result has been an outstanding tehcnical and historical record of all the actions

taken by X�J�� to rectify and improve Common Lisp�

Sandra Loosemore� chairwoman of the X�J�� Compiler Subcommittee� pro�

duced many proposals for clarifying the semantics of the compilation process�

She has been a diligent stickler for detail and has helped to clarify many parts
of Common Lisp left vague in the �rst edition�

Jon L White� chairman of the X�J�� Iteration Subcommittee� supervised

the consideration of several controversial proposals� one of which
loop� was

eventually adopted by X�J���

Thom Linden� chairman of the X�J�� Character Subcommittee� led a team

in grappling with the di�cult problem of accommodating various character

ACKNOWLEDGMENTS �SECOND EDITION� xix

sets in Common Lisp� One result is that Common Lisp will be more attractive

for international use�

Kent Pitman� chairman of the X�J�� Error Handling Subcommittee�

plugged the biggest outstanding hole in Common Lisp as described by the
�rst edition�

Kathy Chapman� chairwoman of the X�J�� Drafting Subcommittee� and

principal author of the draft standard� has not only written a great deal of

text but also insisted on coherent and consistent terminology and pushed the
rest of the committee forward when necessary�

Robert Mathis� chairman of X�J��� has kept administrative matters
owing

smoothly during technical controversies�

Mary Van Deusen� secretary of X�J��� kept excellent minutes that were a
tremendous aid to me in tracing the history of a number of complex discus�

sions�

Jan Zubko	� X�J�� meeting and mailing organizer� knows what�s going

on� as always� She is a master of organization and of physical arrangements�
Moreover� she once again pulled me out of the �re at the last minute�

Dick Gabriel� international representative for X�J��� has kept information

owing smoothly between Europe� Japan� and the United States� He provided

a great deal of the energy and drive for the completion of the Common Lisp
Object System speci�cation� He has also provided me with a great deal of

valuable advice and has been on call for last�minute consultation at all hours

during the �nal stages of preparation for this book�

David Moon has consistently been a source of reason� expert knowledge�
and careful scrutiny� He has read the �rst edition and the X�J�� proposals

perhaps more carefully than anyone else�

David Moon� Jon L White� Gregor Kiczales� Robert Mathis� Mary Boelk

provided extensive feedback on an early draft of this book� I thank them as
well as the many others who commented in one way or another on the draft�

I wish to thank the authors of large proposals to X�J�� that have made

material available for more or less wholesale inclusion in this book as distinct

chapters� This material was produced primarily for the use of X�J�� in its
work� It has been included here on a non�exclusive basis with the consent of

the authors�

The author of the chapter on loop
Jon L White� notes that the chapter

is based on documentation written at Lucid� Inc�� by Molly M� Miller� Sonia
Orin Lyris� and Kris Dinkel� Glenn Burke� Scott Fahlman� Colin Meldrum�

David Moon� Cris Perdue� and Dick Waters contributed to the design of the

loop macro�

The authors of the Common Lisp Object System speci�cation
Daniel

xx ACKNOWLEDGMENTS �SECOND EDITION�

G� Bobrow� Linda G� DeMichiel� Richard P� Gabriel� Sonya E� Keene� Gregor

Kiczales� and David A� Moon� wish to thank Patrick Dussud� Kenneth Kahn�

Jim Kempf� Larry Masinter� Mark Ste�k� Daniel L� Weinreb� and Jon L White

for their contributions�

The author of the chapter on Conditions
Kent M� Pitman� notes that there

is a paper ���� containing background information about the design of the con�

dition system� which is based on the condition system of the Symbolics Lisp

Machines ����� The members of the X�J�� Error Handling Subcommittee were

Andy Daniels and Kent Pitman� Richard Mlynarik and David A� Moon made
major design contributions� Useful comments� questions� suggestions� and

criticisms were provided by Paul Anagnostopoulos� Alan Bawden� William

Chiles� Pavel Curtis� Mary Fontana� Dick Gabriel� Dick King� Susan Lander�

David D� Loe�er� Ken Olum� David C� Plummer� Alan Snyder� Eric Weaver�
and Daniel L� Weinreb� The Condition System was designed speci�cally to ac�

commodate the needs of Common Lisp� The design is� however� most directly

based on the �New Error System�
NES� developed at Symbolics by David L�

Andre� Bernard S� Greenberg� Mike McMahon� David A� Moon� and Daniel L�

Weinreb� The NES was in turn based on experiences with the original Lisp
Machine error system
developed at MIT�� which was found to be inadequate

for the needs of the modern Lisp Machine environments� Many aspects of

the NES were inspired by the
PL�I� condition system used by the Honeywell

Multics operating system� Henry Lieberman provided conceptual guidance
and encouragement in the design of the NES� A reimplementation of the NES

for non�Symbolics Lisp Machine dialects
MIT� LMI� and TI� was done at

MIT by Richard M� Stallman� During the process of that reimplementation�

some conceptual changes were made which have signi�cantly in
uenced the

Common Lisp Condition System�

As for the smaller but no less important proposals� Larry Masinter deserves

recognition as an author of over half of them� He has worked indefatigably to

write up proposals and to polish drafts by other authors� Kent Pitman� David

Moon� and Sandra Loosemore have also been notably proli�c� as well as Jon L
White� Dan Pierson� Walter van Roggen� Skona Brittain� Scott Fahlman� and

myself� Other authors of proposals include David Andre� John Aspinall� Kim

Barrett� Eric Benson� Daniel Bobrow� Bob Cassels� Kathy Chapman� WIlliam

Clinger� Pavel Curtis� Doug Cutting� Je	 Dalton� Linda DiMichiel� Richard

Gabriel� Steven Ha
ich� Sonya Keene� James Kempf� Gregor Kiczales� Dieter
Kolb� Barry Margolin� Chris McConnell� Je	 Peck� Jan Pedersen� Crispin

Perdue� Jonathan Rees� Don Sakahara� David Touretzky� Richard Waters�

and Gail Zacharias�

I am grateful to Donald E� Knuth and his colleagues for producing the

ACKNOWLEDGMENTS �SECOND EDITION� xxi

TEX text formatting system ����� which was used to produce and typeset the

manuscript� Knuth did an especially good job of publishing the program

for TEX ����� I had to consult the code about eight times while debugging

particularly complicated macros� Thanks to the extensive indexing and cross�

references� in each case it took me less than �ve minutes to �nd the relevant
fragment of that ����page program�

I also owe a debt to Leslie Lamport� author of the LaTEX macro package ����

for TEX� within which I implemented the document style for this book�

Blue Sky Research sells and supports Textures� an implementation of TEX
for Apple Macintosh computers� Gayla Groom and Barry Smith of Blue Sky

Research provided excellent technical support when I needed it� Other soft�

ware tools that were invaluable in preparing this book were QuicKeys
sold

by CE Software� Inc��� which provides keyboard macros� G ofer
sold by Mi�
crolytics� Inc��� which performs rapid text searches in multiple �les� Symantec

Utilities for Macintosh
sold by Symantec Corporation�� which saved me from

more than one disk crash� and the PostScript language and compatible fonts

sold by Adobe Systems Incorporated��

Some of this software
such as LaTEX� I obtained for free and some I bought�
but all have proved to be useful tools of excellent quality� I am grateful to

these developers for creating them�

Electronic mail has been indispensible to the writing of this book� as well

to as the work of X�J���
It is a humbling experience to publish a book and
then for the next �ve years to receive at least one electronic mail message a

week� if not twenty� pointing out some mistake or defect�� Kudos to those

develop and maintain the Internet� which arose from the Arpanet and other

networks�

Chase Du	y� George Horesta� and Will Buddenhagen of Digital Press have

given me much encouragement and support� David Ford designed the book

and provided speci�cations that I could code into TEX� Alice Cheyer and Kate

Schmit edited the copy for style and puzzled over the more obscure jokes with

great patience� Marilyn Rowland created the index� Tim Evans and I did
some polishing� Laura Fillmore and her colleagues at Editorial� Inc�� have

tirelessly and meticulously checked one draft after another and has kept the

paperwork
owing smoothly during the last hectic weeks of proofreading� page

makeup� and typesetting�

Thinking Machines Corporation has supported all my work with X�J��� I

thank all my colleagues there for their encouragement and help�

Others who provided indispensible encouragement and support include Guy

and Nalora Steele� David Steele� Cordon and Ruth Kerns� David� Patricia�

Tavis� Jacob� Nicholas� and Daniel Auwerda� Donald and Denise Kerns� and

xxii ACKNOWLEDGMENTS �SECOND EDITION�

David� Joyce� and Christine Kerns�

Most of the writing of this book took place between �� P�M� and � A�M�
I�m

not as young as I used to be�� I am grateful to Barbara� Julia� Peter� and

Matthew for putting up with it� and for their love�

Guy L� Steele Jr�

Lexington� Massachusetts

All Saints� Day� ����

Acknowledgments
FIRST EDITION ������

Common Lisp was designed by a diverse group of people a�liated with many

institutions�

Contributors to the design and implementation of Common Lisp and to the
polishing of this book are hereby gratefully acknowledged�

Paul Anagnostopoulos Digital Equipment Corporation

Dan Aronson Carnegie�Mellon University

Alan Bawden Massachusetts Institute of Technology
Eric Benson University of Utah� Stanford University� and Symbolics�

Incorporated

Jon Bentley Carnegie�Mellon University and Bell Laboratories

Jerry Boetje Digital Equipment Corporation

Gary Brooks Texas Instruments
Rodney A� Brooks Stanford University

Gary L� Brown Digital Equipment Corporation

Richard L� Bryan Symbolics� Incorporated

Glenn S� Burke Massachusetts Institute of Technology
Howard I� Cannon Symbolics� Incorporated

George J� Carrette Massachusetts Institute of Technology

Robert Cassels Symbolics� Incorporated

Monica Cellio Carnegie�Mellon University

David Dill Carnegie�Mellon University
Scott E� Fahlman Carnegie�Mellon University

Richard J� Fateman University of California� Berkeley

Neal Feinberg Carnegie�Mellon University

Ron Fischer Rutgers University
John Foderaro University of California� Berkeley

Steve Ford Texas Instruments

xxiii

xxiv ACKNOWLEDGMENTS �FIRST EDITION� �����

Richard P� Gabriel Stanford University and Lawrence Livermore National

Laboratory

Joseph Ginder Carnegie�Mellon University and Perq Systems Corp�

Bernard S� Greenberg Symbolics� Incorporated

Richard Greenblatt Lisp Machines Incorporated
LMI�
Martin L� Griss University of Utah and Hewlett�Packard Incorporated

Steven Handerson Carnegie�Mellon University

Charles L� Hedrick Rutgers University

Gail Kaiser Carnegie�Mellon University
Earl A� Killian Lawrence Livermore National Laboratory

Steve Krueger Texas Instruments

John L� Kulp Symbolics� Incorporated

Jim Large Carnegie�Mellon University

Rob Maclachlan Carnegie�Mellon University
William Maddox Carnegie�Mellon University

Larry M� Masinter Xerox Corporation� Palo Alto Research Center

John McCarthy Stanford University

Michael E� McMahon Symbolics� Incorporated
Brian Milnes Carnegie�Mellon University

David A� Moon Symbolics� Incorporated

Beryl Morrison Digital Equipment Corporation

Don Morrison University of Utah

Dan Pierson Digital Equipment Corporation
Kent M� Pitman Massachusetts Institute of Technology

Jonathan Rees Yale University

Walter van Roggen Digital Equipment Corporation

Susan Rosenbaum Texas Instruments
William L� Scherlis Carnegie�Mellon University

Lee Schumacher Carnegie�Mellon University

Richard M� Stallman Massachusetts Institute of Technology

Barbara K� Steele Carnegie�Mellon University

Guy L� Steele Jr� Carnegie�Mellon University and Tartan Laboratories
Incorporated

Peter Szolovits Massachusetts Institute of Technology

William vanMelle Xerox Corporation� Palo Alto Research Center

Ellen Waldrum Texas Instruments
Allan C� Wechsler Symbolics� Incorporated

Daniel L� Weinreb Symbolics� Incorporated

Jon L White Xerox Corporation� Palo Alto Research Center

Skef Wholey Carnegie�Mellon University

ACKNOWLEDGMENTS �FIRST EDITION� ����� xxv

Richard Zippel Massachusetts Institute of Technology

Leonard Zubko	 Carnegie�Mellon University and Tartan Laboratories

Incorporated

Some contributions were relatively small� others involved enormous expendi�
tures of e	ort and great dedication� A few of the contributors served more as

worthy adversaries than as benefactors
and do not necessarily endorse the ��

nal design reported here�� but their pointed criticisms were just as important

to the polishing of Common Lisp as all the positively phrased suggestions�

All of the people named above were helpful in one way or another� and I am
grateful for the interest and spirit of cooperation that allowed most decisions

to be made by consensus after due discussion�

Considerable encouragement and moral support were also provided by�

Norma Abel Digital Equipment Corporation

Roger Bate Texas Instruments

Harvey Cragon Texas Instruments

Dennis Duncan Digital Equipment Corporation
Sam Fuller Digital Equipment Corporation

A� Nico Habermann Carnegie�Mellon University

Berthold K� P� Horn Massachusetts Institute of Technology

Gene Kromer Texas Instruments

Gene Matthews Texas Instruments
Allan Newell Carnegie�Mellon University

Dana Scott Carnegie�Mellon University

Harry Tennant Texas Instruments

Patrick H� Winston Massachusetts Institute of Technology
Lowell Wood Lawrence Livermore National Laboratory

William A� Wulf Carnegie�Mellon University and Tartan Laboratories

Incorporated

I am very grateful to each of them�

Jan Zubko	 of Carnegie�Mellon University provided a great deal of organi�

zation� secretarial support� and unfailing good cheer in the face of adversity�

The development of Common Lisp would most probably not have been

possible without the electronic message system provided by the ARPANET�
Design decisions were made on several hundred distinct points� for the most

part by consensus� and by simple majority vote when necessary� Except for

two one�day face�to�face meetings� all of the language design and discussion

was done through the ARPANET message system� which permitted e	ortless

dissemination of messages to dozens of people� and several interchanges per

xxvi ACKNOWLEDGMENTS �FIRST EDITION� �����

day� The message system also provided automatic archiving of the entire

discussion� which has proved invaluable in the preparation of this reference

manual� Over the course of thirty months� approximately ���� messages

were sent
an average of three per day�� ranging in length from one line to

twenty pages� Assuming ���� characters per printed page of text� the entire
discussion totaled about ���� pages� It would have been substantially more

di�cult to have conducted this discussion by any other means� and would

have required much more time�

The ideas in Common Lisp have come from many sources and been polished

by much discussion� I am responsible for the form of this book� and for any

errors or inconsistencies that may remain� but the credit for the design and

support of Common Lisp lies with the individuals named above� each of whom

has made signi�cant contributions�

The organization and content of this book were inspired in large part by

the MacLISP Reference Manual by David A� Moon and others ����� and by

the LISP Machine Manual
fourth edition� by Daniel Weinreb and David
Moon ����� which in turn acknowledges the e	orts of Richard Stallman� Mike

McMahon� Alan Bawden� Glenn Burke� and �many people too numerous to

list��

I thank Phyllis Keenan� Chase Du	y� Virginia Anderson� John Osborn�

and Jonathan Baker of Digital Press for their help in preparing this book

for publication� Jane Blake did an admirable job of copy�editing� James

Gibson and Katherine Downs of Waldman Graphics were most cooperative in

typesetting this book from my on�line manuscript �les�

I am grateful to Carnegie�Mellon University and to Tartan Laboratories

Incorporated for supporting me in the writing of this book over the last three

years�

Part of the work on this book was done in conjunction with the Carnegie�

Mellon University Spice Project� an e	ort to construct an advanced scienti�c

software development environment for personal computers� The Spice Project

is supported by the Defense Advanced Research Projects Agency� Department
of Defense� ARPA Order ����� monitored by the Air Force Avionics Labora�

tory under contract F���������C������ The views and conclusions contained

in this book are those of the author and should not be interpreted as represent�

ing the o�cial policies� either expressed or implied� of the Defense Advanced
Research Projects Agency or the U�S� Government�

Most of the writing of this book took place between midnight and � A�M� I

am grateful to Barbara� Julia� and Peter for putting up with it� and for their

love�

ACKNOWLEDGMENTS �FIRST EDITION� ����� xxvii

Guy L� Steele Jr�

Pittsburgh� Pennsylvania

March ����

Would it be wonderful if� under the
pressure of all these di�culties� the
Convention should have been
forced into some deviations from
that arti�
 cial structure and
regular symmetry which an
abstract view of the subject might
lead an ingenious theorist to
bestow on a constitution planned
in his closet or in his imagination�

�James Madison� The Federalist
No� ��� January ��� ����

�

Introduction

Common Lisp is a new dialect of Lisp� a successor to MacLisp ���� ���� in�

uenced strongly by Zetalisp ���� ��� and to some extent by Scheme ���� and

Interlisp �����

���� Purpose

Common Lisp is intended to meet these goals�

Commonality

Common Lisp originated in an attempt to focus the work of several imple�

mentation groups� each of which was constructing successor implementations

of MacLisp for di	erent computers� These implementations had begun to

diverge because of the di	erences in the implementation environments� mi�

crocoded personal computers
Zetalisp� Spice Lisp�� commercial timeshared
computers
NIL!the �New Implementation of Lisp��� and supercomputers

S�� Lisp�� While the di	erences among the several implementation environ�

ments of necessity will continue to force certain incompatibilities among the

implementations� Common Lisp serves as a common dialect to which each
implementation makes any necessary extensions�

Portability

Common Lisp intentionally excludes features that cannot be implemented

easily on a broad class of machines� On the one hand� features that are
di�cult or expensive to implement on hardware without special microcode

are avoided or provided in a more abstract and e�ciently implementable

form�
Examples of this are the invisible forwarding pointers and locatives

of Zetalisp� Some of the problems that they solve are addressed in di	er�

ent ways in Common Lisp�� On the other hand� features that are useful

�

� COMMON LISP

only on certain �ordinary� or �commercial� processors are avoided or made

optional�
An example of this is the type declaration facility� which is use�

ful in some implementations and completely ignored in others� Type dec�

larations are completely optional and for correct programs a	ect only e��

ciency� not semantics�� Common Lisp is designed to make it easy to write
programs that depend as little as possible on machine�speci�c characteris�

tics� such as word length� while allowing some variety of implementation

techniques�

Consistency

Most Lisp implementations are internally inconsistent in that by default the

interpreter and compiler may assign di	erent semantics to correct programs�

This semantic di	erence stems primarily from the fact that the interpreter

assumes all variables to be dynamically scoped� whereas the compiler assumes

all variables to be local unless explicitly directed otherwise� This di	erence
has been the usual practice in Lisp for the sake of convenience and e�ciency

but can lead to very subtle bugs� The de�nition of Common Lisp avoids

such anomalies by explicitly requiring the interpreter and compiler to impose

identical semantics on correct programs so far as possible�

Expressiveness

Common Lisp culls what experience has shown to be the most useful and un�

derstandable constructs from not only MacLisp but also Interlisp� other Lisp

dialects� and other programming languages� Constructs judged to be awk�
ward or less useful have been excluded�
An example is the store construct

of MacLisp��

Compatibility

Unless there is a good reason to the contrary� Common Lisp strives to be

compatible with Lisp Machine Lisp� MacLisp� and Interlisp� roughly in that
order�

E�ciency

Common Lisp has a number of features designed to facilitate the production of

high�quality compiled code in those implementations whose developers care to
invest e	ort in an optimizing compiler� One implementation of Common Lisp�

namely S�� Lisp� already has a compiler that produces code for numerical

computations that is competitive in execution speed to that produced by

a Fortran compiler ����� The S�� Lisp compiler extends the work done in

MacLisp to produce extremely e�cient numerical code �����

INTRODUCTION �

Power

Common Lisp is a descendant of MacLisp� which has traditionally placed
emphasis on providing system�building tools� Such tools may in turn be used

to build the user�level packages such as Interlisp provides� these packages are

not� however� part of the Common Lisp core speci�cation� It is expected such

packages will be built on top of the Common Lisp core�

Stability

It is intended that Common Lisp will change only slowly and with due delib�
eration� The various dialects that are supersets of Common Lisp may serve

as laboratories within which to test language extensions� but such extensions

will be added to Common Lisp only after careful examination and experimen�

tation�

The goals of Common Lisp are thus very close to those of Standard Lisp
���� and Portable Standard Lisp ����� Common Lisp di	ers from Standard

Lisp primarily in incorporating more features� including a richer and more

complicated set of data types and more complex control structures�

This book is intended to be a language speci�cation rather than an

implementation speci�cation
although implementation notes are scattered
throughout the text�� It de�nes a set of standard language concepts and con�

structs that may be used for communication of data structures and algorithms

in the Common Lisp dialect� This set of concepts and constructs is sometimes

referred to as the �core Common Lisp language� because it contains conceptu�

ally necessary or important features� It is not necessarily implementationally
minimal� While many features could be de�ned in terms of others by writing

Lisp code� and indeed may be implemented that way� it was felt that these

features should be conceptually primitive so that there might be agreement

among all users as to their usage�
For example� bignums and rational numbers
could be implemented as Lisp code given operations on �xnums� However� it

is important to the conceptual integrity of the language that they be regarded

by the user as primitive� and they are useful enough to warrant a standard

de�nition��

For the most part� this book de�nes a programming language� not a pro�
gramming environment� A few interfaces are de�ned for invoking such stan�

dard programming tools as a compiler� an editor� a program trace facility�

and a debugger� but very little is said about their nature or operation� It is

expected that one or more extensive programming environments will be built

using Common Lisp as a foundation� and will be documented separately�

� COMMON LISP

There are now many implementations of Common Lisp� some programmed

by research groups in universities and some by companies that sell them com�

mercially� and a number of useful programming environments have indeed

grown up around these implementations� What is more� all the goals stated

above have been achieved� most notably that of portability� Moving large
bodies of Lisp code from one computer to another is now routine�

���� Notational Conventions

A number of special notational conventions are used throughout this book for

the sake of conciseness�

������ Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit

indication to the contrary�
Decimal notation is normally taken for granted�

of course� Unfortunately� for certain other dialects of Lisp� MacLisp in partic�

ular� the default notation for numbers is octal
base �� rather than decimal�
and so the use of decimal notation for describing Common Lisp is� taken in

its historical context� a bit unusual��

������ Nil� False� and the Empty List

In Common Lisp� as in most Lisp dialects� the symbol nil is used to represent

both the empty list and the �false� value for Boolean tests� An empty list may�

of course� also be written ��� this normally denotes the same object as nil�

It is possible� by extremely perverse manipulation of the package system� to
cause the sequence of letters nil to be recognized not as the symbol that

represents the empty list but as another symbol with the same name� This

obscure possibility will be ignored in this book�� These two notations may

be used interchangeably as far as the Lisp system is concerned� However�
as a matter of style� this book uses the notation �� when it is desirable to

emphasize the use of an empty list� and uses the notation nil when it is

desirable to emphasize the use of the Boolean �false�� The notation nil

note the explicit quotation mark� is used to emphasize the use of a symbol�

For example�

�defun three �� �� �Emphasize empty parameter list

�append �� ��� � �� �Emphasize use of empty lists

INTRODUCTION 	

�not nil� � t �Emphasize use as Boolean �false�

�get nil color� �Emphasize use as a symbol

Any data object other than nil is construed to be Boolean �not false�� that

is� �true�� The symbol t is conventionally used to mean �true� when no other

value is more appropriate� When a function is said to �return false� or to �be
false� in some circumstance� this means that it returns nil� However� when

a function is said to �return true� or to �be true� in some circumstance� this

means that it returns some value other than nil� but not necessarily t�

������ Evaluation� Expansion� and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of
code normally results in a data object called the value produced by the code�

The symbol � is used in examples to indicate evaluation� For example�

�� � �� � �

means �the result of evaluating the code �� � �� is
or would be� or would
have been� ���

The symbol � is used in examples to indicate macro expansion� For exam�

ple�

�push x v� � �setf v �cons x v��

means �the result of expanding the macro�call form �push x v� is �setf v

�cons x v���� This implies that the two pieces of code do the same thing�

the second piece of code is the de�nition of what the �rst does�

The symbol � is used in examples to indicate code equivalence� For exam�
ple�

�gcd x �gcd y z�� � �gcd �gcd x y� z�

means �the value and e	ects of evaluating the form �gcd x �gcd y z�� are

always the same as the value and e	ects of �gcd �gcd x y� z� for any values
of the variables x� y� and z�� This implies that the two pieces of code do the

same thing� however� neither directly de�nes the other in the way macro

expansion does�

������ Errors

When this book speci�es that it �is an error� for some situation to occur� this

means that�

 COMMON LISP

� No valid Common Lisp program should cause this situation to occur�

� If this situation occurs� the e	ects and results are completely unde�ned as
far as adherence to the Common Lisp speci�cation is concerned�

� No Common Lisp implementation is required to detect such an error� Of

course� implementors are encouraged to provide for detection of such errors

wherever reasonable�

This is not to say that some particular implementation might not de�ne the

e	ects and results for such a situation� the point is that no program conforming

to the Common Lisp speci�cation may correctly depend on such e	ects or

results�

On the other hand� if it is speci�ed in this book that in some situation �an

error is signaled�� this means that�

� If this situation occurs� an error will be signaled
see error and cerror��

� Valid Common Lisp programs may rely on the fact that an error will be

signaled�

� Every Common Lisp implementation is required to detect such an error�

In places where it is stated that so�and�so �must� or �must not� or �may
not� be the case� then it �is an error� if the stated requirement is not met�

For example� if an argument �must be a symbol�� then it �is an error� if the

argument is not a symbol� In all cases where an error is to be signaled� the

word �signaled� is always used explicitly in this book�

X�J�� has adopted a more elaborate terminology for errors� and has made

some e	ort to specify the type of error to be signaled in situations where
signaling is appropriate� This e	ort was not complete as of September �����

and I have made little attempt to incorporate the new error terminology

or error type speci�cations in this book� However� the new terminology is

described and used in the speci�cation of the Common Lisp Object System

appearing in chapter ��� this gives the
avor of how erroneous situations will
be described� and appropriate actions prescribed� in the forthcoming ANSI

Common Lisp standard�

������ Descriptions of Functions and Other Entities

Functions� variables� named constants� special forms� and macros are de�

scribed using a distinctive typographical format� Table ��� illustrates the

manner in which Common Lisp functions are documented� The �rst line

INTRODUCTION �

Table ���� Sample Function Description

�Function�samplefunction arg� arg� �optional arg� arg�

The function samplefunction adds together arg� and arg�� and then multi�

plies the result by arg�� If arg� is not provided or is nil� the multiplication

isn�t done� samplefunction then returns a list whose �rst element is this

result and whose second element is arg�
which defaults to the symbol foo��
For example�

�samplefunction � �� � �	 foo�

�samplefunction
 � � bar� � �� bar�

In general� �samplefunction x y� � �list �� x y� foo��

Table ���� Sample Variable Description

�Variable�
samplevariable

The variable
samplevariable
 speci�es how many times the special form
samplespecialform should iterate� The value should always be a non�

negative integer or nil
which means iterate inde�nitely many times�� The

initial value is �
meaning no iterations��

Table ���� Sample Constant Description

�Constant �sampleconstant

The named constant sampleconstant has as its value the height of the ter�

minal screen in furlongs times the base�� logarithm of the implementation�s

total disk capacity in bytes� as a
oating�point number�

speci�es the name of the function� the manner in which it accepts arguments�
and the fact that it is a function� If the function takes many arguments� then

the names of the arguments may spill across two or three lines� The para�

graphs following this standard header explain the de�nition and uses of the

function and often present examples or related functions�

Sometimes two or more related functions are explained in a single combined

description� In this situation the headers for all the functions appear together�

� COMMON LISP

Table ���� Sample Special Form Description

�Special form�samplespecialform �name� � fvarg� � f formg�

This evaluates each form in sequence as an implicit progn� and does this

as many times as speci�ed by the global variable
samplevariable
� Each

variable var is bound and initialized to �� before the �rst iteration� and un�

bound after the last iteration� The name name� if supplied� may be used
in a returnfrom form to exit from the loop prematurely� If the loop ends

normally� samplespecialform returns nil� For example�

�setq
samplevariable
 ��

�samplespecialform �� form� form��

This evaluates form�� form�� form�� form�� form�� form� in that order�

Table ���� Sample Macro Description

�Macro�samplemacro var �� declaration� j doc�string �� ftag j statementg�

This evaluates the statements as a prog body� with the variable var bound to

���

�samplemacro x �return �� x x��� � ��

�samplemacro var � body� � �prog ��var ���� � body�

followed by the combined description�

In general� actual code
including actual names of functions� appears in this

typeface� �cons a b�� Names that stand for pieces of code
metavariables�

are written in italics� In a function description� the names of the parameters

appear in italics for expository purposes� The word �optional in the list
of parameters indicates that all arguments past that point are optional� the

default values for the parameters are described in the text� Parameter lists

may also contain �rest� indicating that an inde�nite number of arguments

may appear� or �key� indicating that keyword arguments are accepted�
The

�optional��rest��key syntax is actually used in Common Lisp function
de�nitions for these purposes��

Table ��� illustrates the manner in which a global variable is documented�

The �rst line speci�es the name of the variable and the fact that it is a variable�

INTRODUCTION �

Purely as a matter of convention� all global variables used by Common Lisp

have names beginning and ending with an asterisk�

Table ��� illustrates the manner in which a named constant is documented�

The �rst line speci�es the name of the constant and the fact that it is a

constant�
A constant is just like a global variable� except that it is an error
ever to alter its value or to bind it to a new value��

Tables ��� and ��� illustrate the documentation of special forms and macros�

which are closely related in purpose� These are very di	erent from functions�

Functions are called according to a single� speci�c� consistent syntax� the
�optional��rest��key syntax speci�es how the function uses its arguments

internally but does not a	ect the syntax of a call� In contrast� each special

form or macro can have its own idiosyncratic syntax� It is by special forms

and macros that the syntax of Common Lisp is de�ned and extended�

In the description of a special form or macro� an italicized word names
a corresponding part of the form that invokes the special form or macro�

Parentheses stand for themselves and should be written as such when invoking

the special form or macro� Brackets� braces� stars� plus signs� and vertical bars

are metasyntactic marks� Brackets� � and �� indicate that what they enclose
is optional
may appear zero times or one time in that place�� the square

brackets should not be written in code� Braces� f and g� simply parenthesize

what they enclose but may be followed by a star� �� or a plus sign� �� a

star indicates that what the braces enclose may appear any number of times

including zero� that is� not at all�� whereas a plus sign indicates that what
the braces enclose may appear any non�zero number of times
that is� must

appear at least once�� Within braces or brackets� a vertical bar� j� separates
mutually exclusive choices� In summary� the notation fxg� means zero or

more occurrences of x� the notation fxg� means one or more occurrences of
x� and the notation �x � means zero or one occurrence of x� These notations

are also used for syntactic descriptions expressed as BNF�like productions� as

in table �����

Double brackets� �� and ��� indicate that any number of the alternatives

enclosed may be used� and those used may occur in any order� but each
alternative may be used at most once unless followed by a star� For example�

p �� x j fyg� j z �� q
means that at most one x� any number of y�s� and at most one z may appear

between the mandatory occurrences of p and q� and those that appear may

be in any order�

A downward arrow� �� indicates a form of syntactic indirection that helps

to make �� �� notation more readable� If X is some non�terminal symbol

�� COMMON LISP

occurring on the left�hand side of some BNF production� then the right�hand

side of that production is to be textually substituted for any occurrence of

�X � Thus the two fragments

p �� �xyz�mixture �� q
xyz�mixture ��" x j fyg� j z
are together equivalent to the previous example�

In the last example in table ���� notice the use of dot notation� The dot

appearing in the expression �samplemacro var � body� means that the name

body stands for a list of forms� not just a single form� at the end of a list� This

notation is often used in examples�

In the heading line in table ���� notice the use of �� �� notation to indicate

that any number of declarations may appear but at most one documentation
string
which may appear before� after� or somewhere in the middle of any

declarations��

������ The Lisp Reader

The term �Lisp reader� refers not to you� the reader of this book� nor to some

person reading Lisp code� but speci�cally to a Lisp procedure� namely the

function read� which reads characters from an input stream and interprets
them by parsing as representations of Lisp objects�

������ Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp�

The complete syntax is explained in detail in chapter ��� but a quick summary

here may be useful�

� A left parenthesis begins a list of items� The list may contain any number

of items� including zero� Lists may be nested� For example� �cons �car

x� �cdr y�� is a list of three things� of which the last two are themselves

lists�

� A right parenthesis ends a list of items�

An acute accent
also called single quote or apostrophe� followed by

an expression form is an abbreviation for �quote form�� Thus foo

means �quote foo� and �cons a b� means �quote �cons �quote

a� �quote b����

INTRODUCTION ��

� Semicolon is the comment character� It and all characters up to the end

of the line are discarded�

� Double quotes surround character strings�

�This is a thirtyninecharacter string��

� Backslash is an escape character� It causes the next character to be treated

as a letter rather than for its usual syntactic purpose� For example� A��B

denotes a symbol whose name consists of the three characters A� �� and
B� Similarly� ���� denotes a character string containing one character� a

double quote� because the �rst and third double quotes serve to delimit the

string� and the second double quote serves as the contents of the string�

The backslash causes the second double quote to be taken literally and pre�

vents it from being interpreted as the terminating delimiter of the string�

� Vertical bars are used in pairs to surround the name
or part of the name�
of a symbol that has many special characters in it� It is roughly equivalent

to putting a backslash in front of every character so surrounded� For

example� �A�B��� A���B���� and A��B�� all mean the symbol whose name

consists of the four characters A� �� B� and ��

��� The number sign signals the beginning of a complicated syntactic struc�

ture� The next character designates the precise syntax to follow� For
example� ���o
�� means ����
��� in octal notation�� ���x
�� means �����

��� in hexadecimal notation�� ���b
�

 means �����
���� in binary no�

tation�� ����L denotes a character object for the character L� and ����a b c�

denotes a vector of three elements a� b� and c� A particularly important
case is that ��� fn means �function fn�� in a manner analogous to form

meaning �quote form��

Grave accent
�backquote�� signals that the next expression is a template

that may contain commas� The backquote syntax represents a program

that will construct a data structure according to the template�

� Commas are used within the backquote syntax�

� Colon is used to indicate which package a symbol belongs to� For example�

network�reset denotes the symbol named reset in the package named
network� A leading colon indicates a keyword� a symbol that always eval�

uates to itself� The colon character is not actually part of the print name

of the symbol� This is all explained in chapter ��� until you read that�

just keep in mind that a symbol notated with a leading colon is in e	ect a

constant that evaluates to itself�

�� COMMON LISP

Notice of correction� In the �rst edition� the characters ��� and ��� at the

left margin above were inadvertently omitted�

Brackets� braces� question mark� and exclamation point
that is� �� �� ��

�� �� and �� are not used for any purpose in standard Common Lisp syntax�

These characters are explicitly reserved to the user� primarily for use as macro
characters for user�de�ned lexical syntax extensions
see section ��������

All code in this book is written using lowercase letters� Common Lisp is
���

generally insensitive to the case in which code is written� Internally� names of

symbols are ordinarily converted to and stored in uppercase form� There are
ways to force case conversion on output if desired� see
printcase
� In this

book� wherever an interactive exchange between a user and the Lisp system

is shown� the input is exhibited with lowercase letters and the output with

uppercase letters�

X�J�� voted in June ���� h���i to introduce readtablecase� Certain set�
tings allow the names of symbols to be case�sensitive� The default behavior�

however� is as described in the previous paragraph� In any event� only upper�

case letters appear in the internal print names of symbols naming the standard

Common Lisp facilities described in this book�

�

Data Types

Common Lisp provides a variety of types of data objects� It is important to

note that in Lisp it is data objects that are typed� not variables� Any variable
can have any Lisp object as its value�
It is possible to make an explicit

declaration that a variable will in fact take on one of only a limited set of

values� However� such a declaration may always be omitted� and the program

will still run correctly� Such a declaration merely constitutes advice from the

user that may be useful in gaining e�ciency� See declare��

In Common Lisp� a data type is a
possibly in�nite� set of Lisp objects�

Many Lisp objects belong to more than one such set� and so it doesn�t always

make sense to ask what is the type of an object� instead� one usually asks only

whether an object belongs to a given type� The predicate typep may be used
to ask whether an object belongs to a given type� and the function typeof

returns a type to which a given object belongs�

The data types de�ned in Common Lisp are arranged into a hierarchy

actually a partial order� de�ned by the subset relationship� Certain sets
of objects� such as the set of numbers or the set of strings� are interesting

enough to deserve labels� Symbols are used for most such labels
here� and

throughout this book� the word �symbol� refers to atomic symbols� one kind

of Lisp object� elsewhere known as literal atoms�� See chapter � for a complete

description of type speci�ers�

The set of all objects is speci�ed by the symbol t� The empty data type�

which contains no objects� is denoted by nil�

A type called common encompasses all the data objects required by the
���

Common Lisp language� A Common Lisp implementation is free to provide
other data types that are not subtypes of common�

X�J�� voted in March ���� h��i to remove the type common
and the pred�

icate commonp� from the language� on the grounds that it has not proved to

be useful in practice and that it could be di�cult to rede�ne in the face of

��

�� COMMON LISP

other changes to the Common Lisp type system
such as the introduction of

CLOS classes��

The following categories of Common Lisp objects are of particular interest�

numbers� characters� symbols� lists� arrays� structures� and functions� There

are others as well� Some of these categories have many subdivisions� There are

also standard types de�ned to be the union of two or more of these categories�

The categories listed above� while they are data types� are neither more nor
less �real� than other data types� they simply constitute a particularly useful

slice across the type hierarchy for expository purposes�

Here are brief descriptions of various Common Lisp data types� The remain�

ing sections of this chapter go into more detail and also describe notations

for objects of each type� Descriptions of Lisp functions that operate on data

objects of each type appear in later chapters�

� Numbers are provided in various forms and representations� Common Lisp

provides a true integer data type� any integer� positive or negative� has in
principle a representation as a Common Lisp data object� subject only to

total memory limitations
rather than machine word width�� A true rational

data type is provided� the quotient of two integers� if not an integer� is a

ratio� Floating�point numbers of various ranges and precisions are also

provided� as well as Cartesian complex numbers�

� Characters represent printed glyphs such as letters or text formatting op�

erations� Strings are one�dimensional arrays of characters� Common Lisp

provides for a rich character set� including ways to represent characters of

various type styles�

� Symbols
sometimes called atomic symbols for emphasis or clarity� are

named data objects� Lisp provides machinery for locating a symbol ob�

ject� given its name
in the form of a string�� Symbols have property lists�

which in e	ect allow symbols to be treated as record structures with an

extensible set of named components� each of which may be any Lisp object�
Symbols also serve to name functions and variables within programs�

� Lists are sequences represented in the form of linked cells called conses�

There is a special object
the symbol nil� that is the empty list� All other

lists are built recursively by adding a new element to the front of an existing
list� This is done by creating a new cons� which is an object having two

components called the car and the cdr� The car may hold anything� and the

cdr is made to point to the previously existing list�
Conses may actually be

used completely generally as two�element record structures� but their most

important use is to represent lists��

DATA TYPES �	

� Arrays are dimensioned collections of objects� An array can have any non�

negative number of dimensions and is indexed by a sequence of integers� A

general array can have any Lisp object as a component� other types of arrays

are specialized for e�ciency and can hold only certain types of Lisp objects�

It is possible for two arrays� possibly with di	ering dimension information�
to share the same set of elements
such that modifying one array modi�es

the other also� by causing one to be displaced to the other� One�dimensional

arrays of any kind are called vectors� One�dimensional arrays of characters

are called strings� One�dimensional arrays of bits
that is� of integers whose
values are � or �� are called bit�vectors�

� Hash tables provide an e�cient way of mapping any Lisp object
a key� to

an associated object�

� Readtables are used to control the built�in expression parser read�

� Packages are collections of symbols that serve as name spaces� The parser

recognizes symbols by looking up character sequences in the current pack�

age�

� Pathnames represent names of �les in a fairly implementation�independent

manner� They are used to interface to the external �le system�

� Streams represent sources or sinks of data� typically characters or bytes�

They are used to perform I�O� as well as for internal purposes such as

parsing strings�

� Random�states are data structures used to encapsulate the state of the

built�in random�number generator�

� Structures are user�de�ned record structures� objects that have named com�

ponents� The defstruct facility is used to de�ne new structure types� Some

Common Lisp implementations may choose to implement certain system�
supplied data types� such as bignums� readtables� streams� hash tables� and

pathnames� as structures� but this fact will be invisible to the user�

� Functions are objects that can be invoked as procedures� these may take ar�
��

guments and return values�
All Lisp procedures can be construed to return

values and therefore every procedure is a function�� Such objects include

compiled�functions
compiled code objects�� Some functions are represented

as a list whose car is a particular symbol such as lambda� Symbols may

also be used as functions�

�
 COMMON LISP

X�J�� voted in June ���� h��i to specify that symbols are not of type

function� but are automatically coerced to functions in certain situations

see section ������

X�J�� voted in June ���� h��i to adopt the Common Lisp Condition Sys�

tem� thereby introducing a new category of data objects�

� Conditions are objects used to a	ect control
ow in certain conventional
ways by means of signals and handlers that intercept those signals� In

particular� errors are signaled by raising particular conditions� and errors

may be trapped by establishing handlers for those conditions�

X�J�� voted in June ���� h��i to adopt the Common Lisp Object System�

thereby introducing additional categories of data objects�

� Classes determine the structure and behavior of other objects� their in�
stances� Every Common Lisp data object belongs to some class�
In some

ways the CLOS class system is a generalization of the system of type spec�

i�ers of the �rst edition of this book� but the class system augments the

type system rather than supplanting it��

� Methods are chunks of code that operate on arguments satisfying a partic�
ular pattern of classes� Methods are not functions� they are not invoked

directly on arguments but instead are bundled into generic functions�

� Generic functions are functions that contain� among other information� a

set of methods� When invoked� a generic function executes a subset of its

methods� The subset chosen for execution depends in a speci�c way on the
classes or identities of the arguments to which it is applied�

These categories are not always mutually exclusive� The required relation�

ships among the various data types are explained in more detail in section �����

���� Numbers

Several kinds of numbers are de�ned in Common Lisp� They are divided into

integers� ratios� 	oating�point numbers� with names provided for up to four

di	erent
oating�point representations� and complex numbers�
X�J�� voted in March ���� h���i to add the type real�

The number data type encompasses all kinds of numbers� For convenience�

there are names for some subclasses of numbers as well� Integers and ratios

are of type rational� Rational numbers and
oating�point numbers are of

type real� Real numbers and complex numbers are of type number�

DATA TYPES ��

Although the names of these types were chosen with the terminology of

mathematics in mind� the correspondences are not always exact� Integers and

ratios model the corresponding mathematical concepts directly� Numbers of

type float may be used to approximate real numbers� both rational and ir�

rational� The real type includes all Common Lisp numbers that represent
mathematical real numbers� though there are mathematical real numbers
ir�

rational numbers� that do not have an exact Common Lisp representation�

Only real numbers may be ordered using the �� �� �� and � functions�

Compatibility note� The Fortran �� standard de�nes the term real datum to mean
�a processor approximation to the value of a real number�� In practice the Fortran
basic real type is the �oating
point data type that Common Lisp calls singlefloat�
The Fortran double precision type is Common Lisp�s doublefloat� The Pascal real
data type is an �implementation
de�ned subset of the real numbers�� In practice
this is usually a �oating
point type� often what Common Lisp calls doublefloat�
A translation of an algorithm written in Fortran or Pascal that uses real data

usually will use some appropriate precision of Common Lisp�s float type� Some
algorithms may gain accuracy or �exibility by using Common Lisp�s rational or
real type instead�

������ Integers

The integer data type is intended to represent mathematical integers� Unlike

most programming languages� Common Lisp in principle imposes no limit on

the magnitude of an integer� storage is automatically allocated as necessary

to represent large integers�
In every Common Lisp implementation there is a range of integers that are

represented more e�ciently than others� each such integer is called a
xnum�

and an integer that is not a �xnum is called a bignum� Common Lisp is

designed to hide this distinction as much as possible� the distinction between

�xnums and bignums is visible to the user in only a few places where the
e�ciency of representation is important� Exactly which integers are �xnums

is implementation�dependent� typically they will be those integers in the range

��n to �n��� inclusive� for some n not less than ��� See mostpositivefixnum

and mostnegativefixnum�
X�J�� voted in January ���� h��i to specify that fixnum must be a su�

pertype of the type �signedbyte
��� and additionally that the value of

arraydimensionlimit must be a �xnum
implying that the implementor

should choose the range of �xnums to be large enough to accommodate the

largest size of array to be supported��

�� COMMON LISP

Rationale� This speci�cation allows programmers to declare variables in portable
code to be of type fixnum for e�ciency� Fixnums are guaranteed to encompass at
least the set of �	
bit signed integers �compare this to the data type short int in
the C programming language�� In addition� any valid array index must be a �xnum�
and therefore variables used to hold array indices �such as a dotimes variable� may
be declared fixnum in portable code�

Integers are ordinarily written in decimal notation� as a sequence of decimal

digits� optionally preceded by a sign and optionally followed by a decimal

point� For example�

� �Zero

� �This always means the same as �
�� �The �rst perfect number

�� �The second perfect number

���� �Two to the tenth power

 �e�i

��

�
�������������������� ��� factorial
����� probably a bignum

Compatibility note� MacLisp and Lisp Machine Lisp normally assume that in

tegers are written in octal �radix
�� notation unless a decimal point is present�
Interlisp assumes integers are written in decimal notation and uses a trailing Q to
indicate octal radix� however� a decimal point� even in trailing position� always indi

cates a �oating
point number� This is of course consistent with Fortran� Ada does
not permit trailing decimal points but instead requires them to be embedded� In
Common Lisp� integers written as described above are always construed to be in
decimal notation� whether or not the decimal point is present� allowing the decimal
point to be present permits compatibility with MacLisp�

Integers may be notated in radices other than ten� The notation

���nnrddddd or ���nnRddddd

means the integer in radix�nn notation denoted by the digits ddddd� More
precisely� one may write ���� a non�empty sequence of decimal digits represent�

ing an unsigned decimal integer n� r
or R�� an optional sign� and a sequence

of radix�n digits� to indicate an integer written in radix n
which must be

between � and ��� inclusive�� Only legal digits for the speci�ed radix may be

used� for example� an octal number may contain only the digits � through ��

DATA TYPES ��

For digits above �� letters of the alphabet of either case may be used in or�

der� Binary� octal� and hexadecimal radices are useful enough to warrant the

special abbreviations ���b for ����r� ���o for ����r� and ���x for ���
�r� For example�

����r

�
�
�
 �Another way of writing �
� decimal
���b

�
�
�
 �Ditto

���b�

�
�
�
 �Ditto

���o��� �Ditto� in octal radix

���xD� �Ditto� in hexadecimal radix
���
�r�D� �Ditto

���o��� �Decimal ����� written in base �

����r�
�
� �Same thing in base �

�����R	H �Same thing in base ��

���xACCEDED ����������� in hexadecimal radix

������ Ratios

A ratio is a number representing the mathematical ratio of two integers� In�
tegers and ratios collectively constitute the type rational� The canonical

representation of a rational number is as an integer if its value is integral�

and otherwise as the ratio of two integers� the numerator and denominator�

whose greatest common divisor is �� and of which the denominator is positive

and in fact greater than �� or else the value would be integral�� A ratio is
notated with as a separator� thus� � �� It is possible to notate ratios in

non�canonical
unreduced� forms� such as � �� but the Lisp function prin

always prints the canonical form for a ratio�

If any computation produces a result that is a ratio of two integers such

that the denominator evenly divides the numerator� then the result is imme�
diately converted to the equivalent integer� This is called the rule of rational

canonicalization�

Rational numbers may be written as the possibly signed quotient of decimal

numerals� an optional sign followed by two non�empty sequences of digits

separated by a � This syntax may be described as follows�

ratio ��" �sign� fdigitg� fdigitg�

The second sequence may not consist entirely of zeros� For example�

� � �This is in canonical form

� � �A non�canonical form for the same number

	 �� �A not very interesting ratio

�� COMMON LISP

���
	�	�
�� ��	�� �This is
�������

� � �The canonical form for this is �

To notate rational numbers in radices other than ten� one uses the same

radix speci�ers
one of ���nnR� ���O� ���B� or ���X� as for integers� For example�

���o
�
 	� �Octal notation for �� �

����r
�� �
 �Ternary notation for
� 	
���Xbc ad �Hexadecimal notation for
��
	�

���xFADED FACADE �Hexadecimal notation for
��	���
�������

������ Floating	Point Numbers

Common Lisp allows an implementation to provide one or more kinds of

oating�point number� which collectively make up the type float� Now a

oating�point number is a
mathematical� rational number of the form s � f �
be�p� where s is #� or ��� the sign� b is an integer greater than �� the base
or radix of the representation� p is a positive integer� the precision
in base�b

digits� of the
oating�point number� f is a positive integer between b p�� and

b p � �
inclusive�� the signi
cand� and e is an integer� the exponent� The

value of p and the range of e depends on the implementation and on the type

of
oating�point number within that implementation� In addition� there is
a
oating�point zero� depending on the implementation� there may also be a

�minus zero�� If there is no minus zero� then ��� and ��� are both interpreted

as simply a
oating�point zero�

Implementation note� The form of the above description should not be con

strued to require the internal representation to be in sign
magnitude form� Two�s

complement and other representations are also acceptable� Note that the radix of
the internal representation may be other than �� as on the IBM �	
 and ��
� which
use radix �	� see floatradix�

Floating�point numbers may be provided in a variety of precisions and sizes�

depending on the implementation� High�quality
oating�point software tends

to depend critically on the precise nature of the
oating�point arithmetic and

so may not always be completely portable� As an aid in writing programs
that are moderately portable� however� certain de�nitions are made here�

� A short
oating�point number
type shortfloat� is of the representation

of smallest �xed precision provided by an implementation�

DATA TYPES ��

Table ���� Recommended Minimum Floating
Point Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size

Short �� bits � bits
Single �� bits � bits
Double �
 bits � bits
Long �
 bits � bits

� A long
oating�point number
type longfloat� is of the representation of

the largest �xed precision provided by an implementation�

� Intermediate between short and long formats are two others� arbitrarily

called single and double
types singlefloat and doublefloat��

The precise de�nition of these categories is implementation�dependent� How�
ever� the rough intent is that short
oating�point numbers be precise to at

least four decimal places
but also have a space�e�cient representation�� single

oating�point numbers� to at least seven decimal places� and double
oating�

point numbers� to at least fourteen decimal places� It is suggested that the

precision
measured in bits� computed as p log� b� and the exponent size
also
measured in bits� computed as the base�� logarithm of � plus the maximum

exponent value� be at least as great as the values in table ����

Floating�point numbers are written in either decimal fraction or computer�

ized scienti�c notation� an optional sign� then a non�empty sequence of digits

with an embedded decimal point� then an optional decimal exponent speci��
cation� If there is no exponent speci�er� then the decimal point is required�

and there must be digits after it� The exponent speci�er consists of an ex�

ponent marker� an optional sign� and a non�empty sequence of digits� For

preciseness� here is a modi�ed�BNF description of
oating�point notation�

	oating�point�number ��" �sign� fdigitg� decimal�point fdigitg� �exponent �
j �sign� fdigitg� �decimal�point fdigitg� � exponent

sign ��" � j
decimal�point ��" �

digit ��" � j
 j � j � j � j � j � j 	 j � j �
exponent ��" exponent�marker �sign� fdigitg�
exponent�marker ��" e j s j f j d j l j E j S j F j D j L
If no exponent speci�er is present� or if the exponent marker e
or E� is used�

then the precise format to be used is not speci�ed� When such a representation

is read and converted to an internal
oating�point data object� the format

�� COMMON LISP

speci�ed by the variable
readdefaultfloatformat
 is used� the initial value

of this variable is singlefloat�

The letters s� f� d� and l
or their respective uppercase equivalents� explic�

itly specify the use of short� single� double� and long format� respectively�

Examples of
oating�point numbers�

��� �Floating�point zero in default format
�E� �Also
oating�point zero in default format

�� �This may be a zero or a minus zero�

� depending on the implementation

�� �The integer zero� not a
oating�point zero�
���s� �A
oating�point zero in short format

�s� �Also a
oating�point zero in short format

��
�
���������	������d� �A double�format approximation to �

����E��� �Avogadro�s number� in default format

���E��
 �Also Avogadro�s number� in default format
���
������	f
 �log�� �� in single format

����������
s� �e�i in short format� the hard way

Notice of correction� The �rst edition unfortunately listed an incorrect

value
��
�
������	f
� for the base��� logarithm of ��

The internal format used for an external representation depends only on

the exponent marker and not on the number of decimal digits in the external

representation�

While Common Lisp provides terminology and notation su�cient to ac�

commodate four distinct
oating�point formats� not all implementations will

have the means to support that many distinct formats� An implementation is

therefore permitted to provide fewer than four distinct internal
oating�point
formats� in which case at least one of them will be �shared� by more than one

of the external format names short� single� double� and long according to the

following rules�

� If one internal format is provided� then it is considered to be single�

but serves also as short� double� and long� The data types shortfloat�

singlefloat� doublefloat� and longfloat are considered to be identical�

An expression such as �eql
��s�
��d�� will be true in such an imple�
mentation because the two numbers
��s� and
��d� will be converted

into the same internal format and therefore be considered to have the same

data type� despite the di	ering external syntax� Similarly� �typep
��L�

shortfloat� will be true in such an implementation� For output purposes

all
oating�point numbers are assumed to be of single format and thus will

DATA TYPES ��

print using the exponent letter E or F�

� If two internal formats are provided� then either of two correspondences

may be used� depending on which is the more appropriate�

� One format is short� the other is single and serves also as double and

long� The data types singlefloat� doublefloat� and longfloat are

considered to be identical� but shortfloat is distinct� An expression
such as �eql
��s�
��d��will be false� but �eql
��f�
��d��will be

true� Similarly� �typep
��L� shortfloat� will be false� but �typep

��L� singlefloat� will be true� For output purposes all
oating�

point numbers are assumed to be of short or single format�

� One format is single and serves also as short� the other is double and serves
also as long� The data types shortfloat and singlefloat are considered

to be identical� and the data types doublefloat and longfloat are

considered to be identical� An expression such as �eql
��s�
��d��

will be false� as will �eql
��f�
��d��� but �eql
��d�
��L��will be
true� Similarly� �typep
��L� shortfloat� will be false� but �typep

��L� doublefloat� will be true� For output purposes all
oating�

point numbers are assumed to be of single or double format�

� If three internal formats are provided� then either of two correspondences

may be used� depending on which is the more appropriate�

� One format is short� another format is single� and the third format is
double and serves also as long� Similar constraints apply�

� One format is single and serves also as short� another is double� and the

third format is long�

Implementation note� It is recommended that an implementation provide as
many distinct �oating
point formats as feasible� using table �
� as a guideline� Ide

ally� short
format �oating
point numbers should have an �immediate� representation
that does not require heap allocation� single
format �oating
point numbers should
approximate IEEE proposed standard single
format �oating
point numbers� and
double
format �oating
point numbers should approximate IEEE proposed standard
double
format �oating
point numbers ���� ��� �	��

������ Complex Numbers

Complex numbers
type complex� are represented in Cartesian form� with

a real part and an imaginary part� each of which is a non�complex number

�� COMMON LISP

integer� ratio� or
oating�point number�� It should be emphasized that the

parts of a complex number are not necessarily
oating�point numbers� in this�

Common Lisp is like PL�I and di	ers from Fortran� However� both parts

must be of the same type� either both are rational� or both are of the same

oating�point format�

Complex numbers may be notated by writing the characters ���C followed by

a list of the real and imaginary parts� If the two parts as notated are not
of the same type� then they are converted according to the rules of
oating�

point contagion as described in chapter ���
Indeed� ���C�a b� is equivalent to

�����complex a b�� see the description of the function complex�� For example�

���C����s
 ���s
� �Real and imaginary parts are short format
���C�� �� �A Gaussian integer

���C�� � 	��� �Will be converted internally to ���C�
������ 	���

���C��
� �The imaginary unit� that is� i

The type of a speci�c complex number is indicated by a list of the word

complex and the type of the components� for example� a specialized repre�
sentation for complex numbers with short
oating�point parts would be of

type �complex shortfloat�� The type complex encompasses all complex

representations�

A complex number of type �complex rational�� that is� one whose com�

ponents are rational� can never have a zero imaginary part� If the result of

a computation would be a complex rational with a zero imaginary part� the

result is immediately converted to a non�complex rational number by taking
the real part� This is called the rule of complex canonicalization� This rule

does not apply to
oating�point complex numbers� ���C���� ���� and ��� are

di	erent�

���� Characters

Characters are represented as data objects of type character�

There are two subtypes of interest� called standardchar and stringchar�
��

X�J�� voted in March ���� h��i to remove the type stringchar�

A character object can be notated by writing ���� followed by the charac�
ter itself� For example� ����g means the character object for a lowercase g�

This works well enough for printing characters� Non�printing characters have

names� and can be notated by writing ���� and then the name� for example�

����Space
or ����SPACE or ����space or ����sPaCE� means the space character� The

syntax for character names after ���� is the same as that for symbols� However�

DATA TYPES �	

only character names that are known to the particular implementation may

be used�

������ Standard Characters

Common Lisp de�nes a standard character set
subtype standardchar� for

two purposes� Common Lisp programs that are written in the standard char�

acter set can be read by any Common Lisp implementation� and Common Lisp

programs that use only standard characters as data objects are most likely

to be portable� The Common Lisp character set consists of a space charac�
ter ����Space� a newline character ����Newline� and the following ninety�four

non�blank printing characters or their equivalents�

� � ��� ! " � � �
 � � � �
 � � � � � 	 � � � � � � �

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z � � � $

a b c d e f g h i j k l m n o p q r s t u v w x y z � � �

The Common Lisp standard character set is apparently equivalent to the
ninety��ve standard ASCII printing characters plus a newline character� Nev�

ertheless� Common Lisp is designed to be relatively independent of the ASCII

character encoding� For example� the collating sequence is not speci�ed ex�

cept to say that digits must be properly ordered� the uppercase letters must
be properly ordered� and the lowercase letters must be properly ordered
see

char� for a precise speci�cation�� Other character encodings� particularly

EBCDIC� should be easily accommodated
with a suitable mapping of print�

ing characters��

Of the ninety�four non�blank printing characters� the following are used in
only limited ways in the syntax of Common Lisp programs�

� � � � � � $! "

All of these characters except � and $ are used within format strings as
��

formatting directives� Except for this� �� �� �� �� �� and � are not used in

Common Lisp and are reserved to the user for syntactic extensions� and $

are not yet used in Common Lisp but are part of the syntax of reserved tokens

and are reserved to implementors� is not yet used in Common Lisp and is
reserved to implementors� and ! and " are normally regarded as alphabetic

characters but are not used in the names of any standard Common Lisp

functions� variables� or other entities�

X�J�� voted in June ���� h���i to add a format directive $
see chap�

ter ����

�
 COMMON LISP

The following characters are called semi�standard�

����Backspace ����Tab ����Linefeed ����Page ����Return ����Rubout

Not all implementations of Common Lisp need to support them� but those
implementations that use the standard ASCII character set should support

them� treating them as corresponding respectively to the ASCII characters

BS
octal code ����� HT
����� LF
����� FF
����� CR
����� and DEL

����� These characters are not members of the subtype standardchar unless

synonymous with one of the standard characters speci�ed above� For example�
in a given implementation it might be sensible for the implementor to de�ne

����Linefeed or ����Return to be synonymous with ����Newline� or ����Tab to be

synonymous with ����Space�

������ Line Divisions

The treatment of line divisions is one of the most di�cult issues in designing

portable software� simply because there is so little agreement among operating

systems� Some use a single character to delimit lines� the recommended ASCII

character for this purpose is the line feed character LF
also called the new line
character� NL�� but some systems use the carriage return character CR� Much

more common is the two�character sequence CR followed by LF� Frequently

line divisions have no representation as a character but are implicit in the

structuring of a �le into records� each record containing a line of text� A deck

of punched cards has this structure� for example�

Common Lisp provides an abstract interface by requiring that there be a sin�

gle character� ����Newline� that within the language serves as a line delimiter�

The language C has a similar requirement�� An implementation of Common

Lisp must translate between this internal single�character representation and
whatever external representation
s� may be used�

Implementation note� How the character called ����Newline is represented inter

nally is not speci�ed here� but it is strongly suggested that the ASCII LF character
be used in Common Lisp implementations that use the ASCII character encoding�
The ASCII CR character is a workable� but in most cases inferior� alternative�

When the �rst edition was written it was not yet clear that UNIX would

become so widely accepted� The decision to represent the line delimiter as a

single character has proved to be a good one�

DATA TYPES ��

The requirement that a line division be represented as a single character has

certain consequences� A character string written in the middle of a program in

such a way as to span more than one line must contain exactly one character

to represent each line division� Consider this code fragment�

�setq astring �This string

contains

fortytwo characters���

Between g and c there must be exactly one character� ����Newline� a two�

character sequence� such as ����Return and then ����Newline� is not acceptable�
nor is the absence of a character� The same is true between s and f�

When the character ����Newline is written to an output �le� the Common

Lisp implementation must take the appropriate action to produce a line divi�

sion� This might involve writing out a record or translating ����Newline to a
CR�LF sequence�

Implementation note� If an implementation uses the ASCII character encoding�
uses the CR�LF sequence externally to delimit lines� uses LF to represent ����Newline
internally� and supports ����Return as a data object corresponding to the ASCII char

acter CR� the question arises as to what action to take when the program writes out
����Return followed by ����Newline� It should �rst be noted that ����Return is not a
standard Common Lisp character� and the action to be taken when ����Return is writ

ten out is therefore not de�ned by the Common Lisp language� A plausible approach
is to bu�er the ����Return character and suppress it if and only if the next character
is ����Newline �the net e�ect is to generate a CR�LF sequence�� Another plausible
approach is simply to ignore the di�culty and declare that writing ����Return and
then ����Newline results in the sequence CR�CR�LF in the output�

������ Non	standard Characters

Any implementation may provide additional characters� whether printing

characters or named characters� Some plausible examples�

�� COMMON LISP

����� ����� ����Break ����HomeUp ����Escape

The use of such characters may render Common Lisp programs non�portable�

������ Character Attributes
���

Every object of type character has three attributes� code� bits� and font�

The code attribute is intended to distinguish among the printed glyphs and
formatting functions for characters� it is a numerical encoding of the character

proper� The bits attribute allows extra
ags to be associated with a character�

The font attribute permits a speci�cation of the style of the glyphs
such as

italics�� Each of these attributes may be understood to be a non�negative

integer�

The font attribute may be notated in unsigned decimal notation between
the ��� and the �� For example� �����a means the letter a in font �� This might

mean the same thing as ����� if font � were used to represent Greek letters�

Note that not all Common Lisp implementations provide for non�zero font

attributes� see charfontlimit�

The bits attribute may be notated by preceding the name of the character
by the names or initials of the bits� separated by hyphens� The character itself

may be written instead of the name� preceded if necessary by �� For example�

����ControlMetaReturn ����MetaControlQ

����HyperSpace ����Meta�a

����ControlA ����MetaHyper��

����CMReturn ����Hyper��

Note that not all Common Lisp implementations provide for non�zero bits

attributes� see charbitslimit�

X�J�� voted in March ���� h��i to replace the notion of bits and font

attributes with that of implementation�de�ned attributes�

������ String Characters
��

Any character whose bits and font attributes are zero may be contained in

strings� All such characters together constitute a subtype of the characters�

this subtype is called stringchar�

X�J�� voted in March ���� h��i to eliminate the type stringchar� Two

new subtypes of character are basecharacter� de�ned to be equivalent to

the result of the function call

DATA TYPES ��

�upgradedarrayelementtype standardchar�

and extendedcharacter� de�ned to be equivalent to the type speci�er

�and character �not basecharacter��

An implementation may support additional subtypes of character that may

or may not be supertypes of basecharacter� In addition� an implementation

may de�ne basecharacter to be equivalent to character� The choice of any
base characters that are not standard characters is implementation�de�ned�

Only base characters can be elements of a base string� No upper bound

is speci�ed for the number of distinct characters of type basecharacter!

that is implementation�dependent!but the lower bound is ��� the number of
standard Common Lisp characters�

���� Symbols

Symbols are Lisp data objects that serve several purposes and have several
interesting characteristics� Every object of type symbol has a name� called

its print name� Given a symbol� one can obtain its name in the form of a

string� Conversely� given the name of a symbol as a string� one can obtain the

symbol itself�
More precisely� symbols are organized into packages� and all

the symbols in a package are uniquely identi�ed by name� See chapter ����

Symbols have a component called the property list� or plist� By conven�

tion this is always a list whose even�numbered components
calling the �rst

component zero� are symbols� here functioning as property names� and whose

odd�numbered components are associated property values� Functions are pro�
vided for manipulating this property list� in e	ect� these allow a symbol to be

treated as an extensible record structure�

Symbols are also used to represent certain kinds of variables in Lisp pro�

grams� and there are functions for dealing with the values associated with
symbols in this role�

A symbol can be notated simply by writing its name� If its name is not

empty� and if the name consists only of uppercase alphabetic� numeric� or

certain pseudo�alphabetic special characters
but not delimiter characters such
as parentheses or space�� and if the name of the symbol cannot be mistaken

for a number� then the symbol can be notated by the sequence of characters

in its name� Any uppercase letters that appear in the
internal� name may

be written in either case in the external notation
more on this below�� For

example�

�� COMMON LISP

FROBBOZ �The symbol whose name is FROBBOZ

frobboz �Another way to notate the same symbol

fRObBoz �Yet another way to notate it

unwindprotect �A symbol with a in its name

�! �The symbol named �!

� �The symbol named
�

�
 �This is the integer �� not a symbol

pascal$style �This symbol has an underscore in its name

b ��
a
c �This is a single symbol�
� It has several special characters in its name

file�rel��� �This symbol has periods in its name

 usr games zork �This symbol has slashes in its name

In addition to letters and numbers� the following characters are normally
considered to be alphabetic for the purposes of notating symbols�

�
 # ! " � $ � � �

Some of these characters have conventional purposes for naming things� for

example� symbols that name special variables generally have names beginning
and ending with
� The last character listed above� the period� is considered

alphabetic provided that a token does not consist entirely of periods� A single

period standing by itself is used in the notation of conses and dotted lists� a

token consisting of two or more periods is syntactically illegal�
The period

also serves as the decimal point in the notation of numbers��

The following characters are also alphabetic by default but are explicitly re�
served to the user for de�nition as reader macro characters
see section �������

or any other desired purpose and therefore should not be used routinely in

names of symbols�

� � � � � �

A symbol may have uppercase letters� lowercase letters� or both in its print

name� However� the Lisp reader normally converts lowercase letters to the

corresponding uppercase letters when reading symbols� The net e	ect is that

most of the time case makes no di	erence when notating symbols� Case does
make a di	erence internally and when printing a symbol� Internally the sym�

bols that name all standard Common Lisp functions� variables� and keywords

have uppercase names� their names appear in lowercase in this book for read�

ability� Typing such names with lowercase letters works because the function

read will convert lowercase letters to the equivalent uppercase letters�

DATA TYPES ��

X�J�� voted in June ���� h���i to introduce readtablecase� which con�

trols whether read will alter the case of letters read as part of the name of a

symbol�

If a symbol cannot be simply notated by the characters of its name because

the
internal� name contains special characters or lowercase letters� then there
are two �escape� conventions for notating them� Writing a � character before

any character causes the character to be treated itself as an ordinary character

for use in a symbol name� in particular� it suppresses internal conversion of

lowercase letters to their uppercase equivalents� If any character in a notation
is preceded by �� then that notation can never be interpreted as a number�

For example�

�� �The symbol whose name is �

��
 �The symbol whose name is �

��
 �Also the symbol whose name is �

�frobboz �The symbol whose name is fROBBOZ

��
�
������s� �The symbol whose name is ��
�
�����s�

��
�
������S� �A di	erent symbol� whose name is ��
�
�����S�

��
�
�����s� �A short�format
oating�point approximation to �

APL����� �The symbol whose name is APL����
apl����� �Also the symbol whose name is APL����

��b ���� � �
a
c �The name is �B �� �
A
C�

� it has parentheses and two spaces in it

���b ���� � �
�a
�c �The name is �b �� �
a
c�
� the letters are explicitly lowercase

It may be tedious to insert a � before every delimiter character in the name of

a symbol if there are many of them� An alternative convention is to surround

the name of a symbol with vertical bars� these cause every character between

them to be taken as part of the symbol�s name� as if � had been written before
each one� excepting only � itself and �� which must nevertheless be preceded

by �� For example�

��� �The same as writing ��

��b �� �
a
c� �The name is �b �� �
a
c

�frobboz� �The name is frobboz� not FROBBOZ
�APL����� �The name is APL���� because the � quotes the �

�APL������ �The name is APL����

�apl������ �The name is apl����

������ �Same as ����� the name is ��

��B �� �
A
C� �The name is �B �� �
A
C�

�� COMMON LISP

� it has parentheses and two spaces in it

��b �� �
a
c� �The name is �b �� �
a
c

���� Lists and Conses

A cons is a record structure containing two components called the car and

the cdr� Conses are used primarily to represent lists�

A list is recursively de�ned to be either the empty list or a cons whose cdr
component is a list� A list is therefore a chain of conses linked by their cdr

components and terminated by nil� the empty list� The car components of

the conses are called the elements of the list� For each element of the list there

is a cons� The empty list has no elements at all�

A list is notated by writing the elements of the list in order� separated by
blank space
space� tab� or return characters� and surrounded by parentheses�

�a b c� �A list of three symbols

����s� �a
� ����
� �A list of three things� a short
oating�point

� number� another list� and a character object

The empty list nil therefore can be written as ��� because it is a list with no

elements�

A dotted list is one whose last cons does not have nil for its cdr� rather
some other data object
which is also not a cons� or the �rst�mentioned cons

would not be the last cons of the list�� Such a list is called �dotted� because

of the special notation used for it� the elements of the list are written between

parentheses as before� but after the last element and before the right paren�
thesis are written a dot
surrounded by blank space� and then the cdr of the

last cons� As a special case� a single cons is notated by writing the car and

the cdr between parentheses and separated by a space�surrounded dot� For

example�

�a � �� �A cons whose car is a symbol

� and whose cdr is an integer
�a b c � d� �A dotted list with three elements whose last cons

� has the symbol d in its cdr

Compatibility note� In MacLisp� the dot in dotted
list notation need not be
surrounded by white space or other delimiters� The dot is required to be delimited
in Common Lisp� as in Lisp Machine Lisp�

DATA TYPES ��

It is legitimate to write something like �a b � �c d��� this means the same

as �a b c d�� The standard Lisp output routines will never print a list in

the �rst form� however� they will avoid dot notation wherever possible�

Often the term list is used to refer either to true lists or to dotted lists� When

the distinction is important� the term �true list� will be used to refer to a list
terminated by nil� Most functions advertised to operate on lists expect to

be given true lists� Throughout this book� unless otherwise speci�ed� it is an

error to pass a dotted list to a function that is speci�ed to require a list as an

argument�

Implementation note� Implementors are encouraged to use the equivalent of the
predicate endp wherever it is necessary to test for the end of a list� Whenever
feasible� this test should explicitly signal an error if a list is found to be terminated
by a non
nil atom� However� such an explicit error signal is not required� because
some such tests occur in important loops where e�ciency is important� In such
cases� the predicate atom may be used to test for the end of the list� quietly treating
any non
nil list
terminating atom as if it were nil�

Sometimes the term tree is used to refer to some cons and all the other

conses transitively accessible to it through car and cdr links until non�conses

are reached� these non�conses are called the leaves of the tree�

Lists� dotted lists� and trees are not mutually exclusive data types� they
are simply useful points of view about structures of conses� There are yet

other terms� such as association list� None of these are true Lisp data types�

Conses are a data type� and nil is the sole object of type null� The Lisp

data type list is taken to mean the union of the cons and null data types�

and therefore encompasses both true lists and dotted lists�

���� Arrays

An array is an object with components arranged according to a Cartesian

coordinate system� In general� these components may be any Lisp data ob�

jects�

The number of dimensions of an array is called its rank
this terminology

is borrowed from APL�� the rank is a non�negative integer� Likewise� each
dimension is itself a non�negative integer� The total number of elements in

the array is the product of all the dimensions�

An implementation of Common Lisp may impose a limit on the rank of

an array� but this limit may not be smaller than �� Therefore� any Common

Lisp program may assume the use of arrays of rank � or less�
A program

�� COMMON LISP

may determine the actual limit on array ranks for a given implementation by

examining the constant arrayranklimit��

It is permissible for a dimension to be zero� In this case� the array has no
elements� and any attempt to access an element is in error� However� other

properties of the array� such as the dimensions themselves� may be used� If the

rank is zero� then there are no dimensions� and the product of the dimensions

is then by de�nition �� A zero�rank array therefore has a single element�

An array element is speci�ed by a sequence of indices� The length of the

sequence must equal the rank of the array� Each index must be a non�negative

integer strictly less than the corresponding array dimension� Array indexing

is therefore zero�origin� not one�origin as in
the default case of� Fortran�

As an example� suppose that the variable foo names a ��by�� array� Then

the �rst index may be �� �� or �� and the second index may be �� �� �� ��

or �� One may refer to array elements using the function aref� for example�
�aref foo �
� refers to element
�� �� of the array� Note that aref takes a

variable number of arguments� an array� and as many indices as the array has

dimensions� A zero�rank array has no dimensions� and therefore aref would

take such an array and no indices� and return the sole element of the array�

In general� arrays can be multidimensional� can share their contents with

other array objects� and can have their size altered dynamically
either en�

larging or shrinking� after creation� A one�dimensional array may also have a

ll pointer�

Multidimensional arrays store their components in row�major order� that is�

internally a multidimensional array is stored as a one�dimensional array� with
the multidimensional index sets ordered lexicographically� last index varying

fastest� This is important in two situations�
�� when arrays with di	erent

dimensions share their contents� and
�� when accessing very large arrays in a

virtual�memory implementation�
The �rst situation is a matter of semantics�

the second� a matter of e�ciency��

An array that is not displaced to another array� has no �ll pointer� and is

not to have its size adjusted dynamically after creation is called a simple array�

The user may provide declarations that certain arrays will be simple� Some
implementations can handle simple arrays in an especially e�cient manner�

for example� simple arrays may have a more compact representation than

non�simple arrays�

X�J�� voted in June ���� h�i to clarify that if one or more of the

�adjustable� �fillpointer� and �displacedto arguments is true when

makearray is called� then whether the resulting array is simple is unspeci�ed�

but if all three arguments are false� then the resulting array is guaranteed to
be simple�

DATA TYPES �	

������ Vectors

One�dimensional arrays are called vectors in Common Lisp and constitute the

type vector
which is therefore a subtype of array�� Vectors and lists are
collectively considered to be sequences� They di	er in that any component of

a one�dimensional array can be accessed in constant time� whereas the average

component access time for a list is linear in the length of the list� on the other

hand� adding a new element to the front of a list takes constant time� whereas

the same operation on an array takes time linear in the length of the array�

A general vector
a one�dimensional array that can have any data object

as an element but that has no additional paraphernalia� can be notated by

notating the components in order� separated by whitespace and surrounded

by ���� and �� For example�

����a b c� �A vector of length �

����� �An empty vector

����� � � 	

�
	
� �� �� �
 �	 �
 �� �	�

�A vector containing the primes below ��

Note that when the function read parses this syntax� it always constructs a

simple general vector�

Rationale� Many people have suggested that brackets be used to notate vectors� as
�a b c� instead of ����a b c�� This notation would be shorter� perhaps more read

able� and certainly in accord with cultural conventions in other parts of computer
science and mathematics� However� to preserve the usefulness of the user
de�nable
macro
character feature of the function read� it is necessary to leave some characters
to the user for this purpose� Experience in MacLisp has shown that users� especially
implementors of languages for use in arti�cial intelligence research� often want to
de�ne special kinds of brackets� Therefore Common Lisp avoids using brackets and
braces for any syntactic purpose�

Implementations may provide certain specialized representations of arrays

for e�ciency in the case where all the components are of the same specialized

typically numeric� type� All implementations provide specialized arrays for
the cases when the components are characters
or rather� a special subset of

the characters�� the one�dimensional instances of this specialization are called

strings� All implementations are also required to provide specialized arrays

of bits� that is� arrays of type �array bit�� the one�dimensional instances of

this specialization are called bit�vectors�

��

�
 COMMON LISP

������ Strings

A string is simply a vector of characters� More precisely� a string is a
��

specialized vector whose elements are of type stringchar�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

rede�ne the type string to be the union of one or more specialized vector

types� the types of whose elements are subtypes of the type character� Sub�

types of string include simplestring� basestring� and simplebasestring�

basestring � �vector basecharacter�

simplebasestring � �simplearray basecharacter �
��

An implementation may support other string subtypes as well� All Common

Lisp functions that operate on strings treat all strings uniformly� note� how�

ever� that it is an error to attempt to insert an extended character into a base

string�

DATA TYPES ��

The type string is therefore a subtype of the type vector�

A string can be written as the sequence of characters contained in the string�

preceded and followed by a �
double quote� character� Any � or � character

in the sequence must additionally have a � character before it�

For example�

�Foo� �A string with three characters in it

�� �An empty string

���APL�������� he cried�� �A string with twenty characters
��x� �x�� �A ten�character string

Notice that any vertical bar � in a string need not be preceded by a �� Sim�

ilarly� any double quote in the name of a symbol written using vertical�bar

notation need not be preceded by a �� The double�quote and vertical�bar

notations are similar but distinct� double quotes indicate a character string

containing the sequence of characters� whereas vertical bars indicate a symbol
whose name is the contained sequence of characters�

The characters contained by the double quotes� taken from left to right�

occupy locations within the string with increasing indices� The leftmost char�

acter is string element number �� the next one is element number �� the next

one is element number �� and so on�

Note that the function prin
 will print any character vector
not just a
simple one� using this syntax� but the function read will always construct a

simple string when it reads this syntax�

������ Bit	Vectors

A bit�vector can be written as the sequence of bits contained in the string�

preceded by ���
� any delimiter character� such as whitespace� will terminate

the bit�vector syntax� For example�

���

�

� �A �ve�bit bit�vector� bit � is a �
���
 �An empty bit�vector

The bits notated following the ���
� taken from left to right� occupy locations

within the bit�vector with increasing indices� The leftmost notated bit is

bit�vector element number �� the next one is element number �� and so on�

The function prin
 will print any bit�vector
not just a simple one� using

this syntax� but the function read will always construct a simple bit�vector

when it reads this syntax�

�� COMMON LISP

���� Hash Tables

Hash tables provide an e�cient way of mapping any Lisp object
a key� to an

associated object� They are provided as primitives of Common Lisp because
some implementations may need to use internal storage management strate�

gies that would make it very di�cult for the user to implement hash tables in

a portable fashion� Hash tables are described in chapter ���

���� Readtables

A readtable is a data structure that maps characters into syntax types for the

Lisp expression parser� In particular� a readtable indicates for each character

with syntaxmacro character what its macro de�nition is� This is a mechanism

by which the user may reprogram the parser to a limited but useful extent�
See section �������

��
� Packages

Packages are collections of symbols that serve as name spaces� The parser
recognizes symbols by looking up character sequences in the current package�

Packages can be used to hide names internal to a module from other code�

Mechanisms are provided for exporting symbols from a given package to the

primary �user� package� See chapter ���

���� Pathnames

Pathnames are the means by which a Common Lisp program can interface to

an external �le system in a reasonably implementation�independent manner�

See section �������

����� Streams

A stream is a source or sink of data� typically characters or bytes� Nearly

all functions that perform I�O do so with respect to a speci�ed stream� The
function open takes a pathname and returns a stream connected to the �le

speci�ed by the pathname� There are a number of standard streams that are

used by default for various purposes� See chapter ���

X�J�� voted in January ���� h���i to introduce subtypes of type stream�

broadcaststream� concatenatedstream� echostream� synonymstream�

DATA TYPES ��

stringstream� filestream� and twowaystream are disjoint subtypes of

stream� Note particularly that a synonym stream is always and only of type

synonymstream� regardless of the type of the stream for which it is a synonym�

����� Random	States

An object of type randomstate is used to encapsulate state information

used by the pseudo�random number generator� For more information about

randomstate objects� see section �����

����� Structures

Structures are instances of user�de�ned data types that have a �xed number

of named components� They are analogous to records in Pascal� Structures

are declared using the defstruct construct� defstruct automatically de�nes

access and constructor functions for the new data type�

Di	erent structures may print out in di	erent ways� the de�nition of a
structure type may specify a print procedure to use for objects of that type

see the �printfunction option to defstruct�� The default notation for

structures is

���S�structure�name

slot�name�� slot�value��
slot�name�� slot�value��

����

where ���S indicates structure syntax� structure�name is the name
a symbol� of

the structure type� each slot�name is the name
also a symbol� of a component�

and each corresponding slot�value is the representation of the Lisp object in
that slot�

����� Functions

A function is anything that may be correctly given to the funcall or apply
��

function� and is to be executed as code when arguments are supplied�
A compiled�function is a compiled code object�

A lambda�expression
a list whose car is the symbol lambda� may serve as

a function� Depending on the implementation� it may be possible for other

lists to serve as functions� For example� an implementation might choose to

represent a �lexical closure� as a list whose car contains some special marker�

��

�� COMMON LISP

A symbol may serve as a function� an attempt to invoke a symbol as a

function causes the contents of the symbol�s function cell to be used� See

symbolfunction and defun�

The result of evaluating a function special form will always be a function�

X�J�� voted in June ���� h��i to revise these speci�cations� The type

function is to be disjoint from cons and symbol� and so a list whose car
is lambda is not� properly speaking� of type function� nor is any symbol�

However� standard Common Lisp functions that accept functional arguments

will accept a symbol or a list whose car is lambda and automatically coerce

it to be a function� such standard functions include funcall� apply� and

mapcar� Such functions do not� however� accept a lambda�expression as a
functional argument� therefore one may not write

�mapcar �lambda �x y� �sqrt �
 x y��� p q�

but instead one must write something like

�mapcar ��� �lambda �x y� �sqrt �
 x y��� p q�

This change makes it impermissible to represent a lexical closure as a list
whose car is some special marker�

The value of a function special form will always be of type function�

����� Unreadable Data Objects

Some objects may print in implementation�dependent ways� Such objects

cannot necessarily be reliably reconstructed from a printed representation�

and so they are usually printed in a format informative to the user but not
acceptable to the read function� ����useful information�� The Lisp reader will

signal an error on encountering �����

As a hypothetical example� an implementation might print

����stackpointer si�renamewithinnewdefinitionmaybe ���o�

��	����

for an implementation�speci�c �internal stack pointer� data type whose

printed representation includes the name of the type� some information about

the stack slot pointed to� and the machine address
in octal� of the stack slot�

See printunreadableobject� a macro that prints an object using ���� syn�

tax�

DATA TYPES ��

����� Overlap� Inclusion� and Disjointness of Types

The Common Lisp data type hierarchy is tangled and purposely left some�

what open�ended so that implementors may experiment with new data types

as extensions to the language� This section explicitly states all the de�ned
relationships between types� including subtype�supertype relationships� dis�

jointness� and exhaustive partitioning� The user of Common Lisp should not

depend on any relationships not explicitly stated here� For example� it is not

valid to assume that because a number is not complex and not rational that

it must be a float� because implementations are permitted to provide yet
other kinds of numbers�

First we need some terminology� If x is a supertype of y� then any object
of type y is also of type x� and y is said to be a subtype of x� If types x and

y are disjoint� then no object
in any implementation� may be both of type x

and of type y� Types a� through an are an exhaustive union of type x if each

aj is a subtype of x� and any object of type x is necessarily of at least one of
the types aj� a� through an are furthermore an exhaustive partition if they are

also pairwise disjoint�

� The type t is a supertype of every type whatsoever� Every object is of type
t�

� The type nil is a subtype of every type whatsoever� No object is of type

nil�

� The types cons� symbol� array� number� and character are pairwise dis�
���

joint�

X�J�� voted in June ���� h��i to extend the preceding paragraph as follows�

� The types cons� symbol� array� number� character� hashtable�

readtable� package� pathname� stream� randomstate� and any single
other type created by defstruct or defclass are pairwise disjoint�

The wording of the �rst edition was intended to allow implementors to use

the defstruct facility to de�ne the built�in types hashtable� readtable�
package� pathname� stream� randomstate� The change still permits this im�

plementation strategy but forbids these built�in types from including� or being

included in� other types
in the sense of the defstruct �include option��

X�J�� voted in June ���� h��i to specify that the type function is disjoint

from the types cons� symbol� array� number� and character� The type

compiledfunction is a subtype of function� implementations are free to
de�ne other subtypes of function�

��

�� COMMON LISP

� The types rational� float� and complex are pairwise disjoint subtypes of
��

number�

X�J�� voted in March ���� h���i to rewrite the preceding item as follows�

� The types real and complex are pairwise disjoint subtypes of number�

Rationale� It might be thought that real and complex should form an exhaustive
partition of the type number� This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system�

� The types rational and float are pairwise disjoint subtypes of real�

Rationale� It might be thought that rational and float should form an exhaus

tive partition of the type real� This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system�

� The types integer and ratio are disjoint subtypes of rational�

Rationale� It might be thought that integer and ratio should form an exhaustive
partition of the type rational� This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp rational number
system�

� The types fixnum and bignum are disjoint subtypes of integer�
���

Rationale� It might be thought that fixnum and bignum should form an exhaustive
partition of the type integer� This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp integer number
system� such as the idea of adding explicit representations of in�nity or of positive
and negative in�nity�

X�J�� voted in January ���� h��i to specify that the types fixnum and

bignum do in fact form an exhaustive partition of the type integer� more

precisely� they voted to specify that the type bignum is by de�nition equivalent

to �and integer �not fixnum��� This is consistent with the �rst edition

text in section ������

I interpret this to mean that implementators could still experiment with
such extensions as adding explicit representations of in�nity� but such in�nities

would necessarily be of type bignum�

DATA TYPES ��

� The types shortfloat� singlefloat� doublefloat� and longfloat are

subtypes of float� Any two of them must be either disjoint or identical� if

identical� then any other types between them in the above ordering must

also be identical to them
for example� if singlefloat and longfloat are

identical types� then doublefloat must be identical to them also��

� The type null is a subtype of symbol� the only object of type null is nil�

� The types cons and null form an exhaustive partition of the type list�

� The type standardchar is a subtype of stringchar� stringchar is a sub�
���

type of character�

X�J�� voted in March ���� h��i to remove the type stringchar� The

preceding item is replaced by the following�

� The type standardchar is a subtype of basecharacter� The types

basecharacter and extendedcharacter form an exhaustive partition of
character�

� The type string is a subtype of vector� for string means �vector
��

stringchar��

�� COMMON LISP

X�J�� voted in March ���� h��i to remove the type stringchar� The

preceding item is replaced by the following�

� The type string is a subtype of vector� it is the union of all types

�vector c� such that c is a subtype of character�

� The type bitvector is a subtype of vector� for bitvectormeans �vector

bit��

� The types �vector t�� string� and bitvector are disjoint�

� The type vector is a subtype of array� for all types x� the type �vector

x� is the same as the type �array x �
���

� The type simplearray is a subtype of array�

� The types simplevector� simplestring� and simplebitvector are dis�
���

joint subtypes of simplearray� for they respectively mean �simplearray

t �
��� �simplearray stringchar �
��� and �simplearray bit �
���

X�J�� voted in March ���� h��i to remove the type stringchar� The

preceding item is replaced by the following�

� The types simplevector� simplestring� and simplebitvector are dis�

joint subtypes of simplearray� for they mean �simplearray t �
��� the

union of all types �simplearray c �
�� such that c is a subtype of
character� and �simplearray bit �
��� respectively�

� The type simplevector is a subtype of vector and indeed is a subtype of

�vector t��

� The type simplestring is a subtype of string�
Note that although

string is a subtype of vector� simplestring is not a subtype of
simplevector��

Rationale� The hypothetical name simplegeneralvector would have been more
accurate than simplevector� but in this instance euphony and user convenience
were deemed more important to the design of Common Lisp than a rigid symmetry�

� The type simplebitvector is a subtype of bitvector�
Note that although

bitvector is a subtype of vector� simplebitvector is not a subtype of

simplevector��

� The types vector and list are disjoint subtypes of sequence�

DATA TYPES �	

� The types randomstate� readtable� package� pathname� stream� and

hashtable are pairwise disjoint�

X�J�� voted in June ���� h��i to make randomstate� readtable� package�

pathname� stream� and hashtable pairwise disjoint from a number of other

types as well� see note above�

X�J�� voted in January ���� h���i to introduce subtypes of type stream�

� The types twowaystream� echostream� broadcaststream� filestream�
synonymstream� stringstream� and concatenatedstream are disjoint sub�

types of stream�

� Any two types created by defstruct are disjoint unless one is a supertype

of the other by virtue of the �include option�

� An exhaustive union for the type common is formed by the types
��

cons� symbol� �array x� where x is either t or a subtype of common�
string� fixnum� bignum� ratio� shortfloat� singlefloat� doublefloat�

longfloat� �complex x� where x is a subtype of common� standardchar�

hashtable� readtable� package� pathname� stream� randomstate� and all

types created by the user via defstruct� An implementation may not uni�

laterally add subtypes to common� however� future revisions to the Common
Lisp standard may extend the de�nition of the common data type� Note that

a type such as number or array may or may not be a subtype of common�

depending on whether or not the given implementation has extended the

set of objects of that type�

X�J�� voted in March ���� h��i to remove the type common from the lan�
guage�

�

Scope and Extent

In describing various features of the Common Lisp language� the notions of

scope and extent are frequently useful� These notions arise when some object

or construct must be referred to from some distant part of a program� Scope

refers to the spatial or textual region of the program within which references
may occur� Extent refers to the interval of time during which references may

occur�

As a simple example� consider this program�

�defun copycell �x� �cons �car x� �cdr x���

The scope of the parameter named x is the body of the defun form� There is

no way to refer to this parameter from any other place but within the body

of the defun� Similarly� the extent of the parameter x
for any particular call

to copycell� is the interval from the time the function is invoked to the time

it is exited�
In the general case� the extent of a parameter may last beyond
the time of function exit� but that cannot occur in this simple case��

Within Common Lisp� a referenceable entity is established by the execu�
tion of some language construct� and the scope and extent of the entity are

described relative to the construct and the time
during execution of the con�

struct� at which the entity is established� For the purposes of this discussion�

the term �entity� refers not only to Common Lisp data objects� such as sym�
bols and conses� but also to variable bindings
both ordinary and special��

catchers� and go targets� It is important to distinguish between an entity and

a name for the entity� In a function de�nition such as

�defun foo �x y� �
 x �� y
���

there is a single name� x� used to refer to the �rst parameter of the procedure

whenever it is invoked� however� a new binding is established on every invoca�

tion� A binding is a particular parameter instance� The value of a reference to

�

SCOPE AND EXTENT ��

the name x depends not only on the scope within which it occurs
the one in

the body of foo in the example occurs in the scope of the function de�nition�s

parameters� but also on the particular binding or instance involved�
In this

case� it depends on the invocation during which the reference is made�� More

complicated examples appear at the end of this chapter�

There are a few kinds of scope and extent that are particularly useful in

describing Common Lisp�

� Lexical scope� Here references to the established entity can occur only within

certain program portions that are lexically
that is� textually� contained

within the establishing construct� Typically the construct will have a part

designated the body� and the scope of all entities established will be
or
include� the body�

Example� the names of parameters to a function normally are lexically

scoped�

� Inde
nite scope� References may occur anywhere� in any program�

� Dynamic extent� References may occur at any time in the interval between

establishment of the entity and the explicit disestablishment of the entity�

As a rule� the entity is disestablished when execution of the establishing

construct completes or is otherwise terminated� Therefore entities with dy�
namic extent obey a stack�like discipline� paralleling the nested executions

of their establishing constructs�

Example� the withopenfile construct opens a connection to a �le and

creates a stream object to represent the connection� The stream object
has inde�nite extent� but the connection to the open �le has dynamic ex�

tent� when control exits the withopenfile construct� either normally or

abnormally� the stream is automatically closed�

Example� the binding of a �special� variable has dynamic extent�

� Inde
nite extent� The entity continues to exist as long as the possibility

of reference remains�
An implementation is free to destroy the entity if

it can prove that reference to it is no longer possible� Garbage collection

strategies implicitly employ such proofs��

Example� most Common Lisp data objects have inde�nite extent�

Example� the bindings of lexically scoped parameters of a function have

inde�nite extent�
By contrast� in Algol the bindings of lexically scoped

parameters of a procedure have dynamic extent�� The function de�nition

�� COMMON LISP

�defun compose �f g�

��� �lambda �x�

�funcall f �funcall g x����

when given two arguments� immediately returns a function as its value�

The parameter bindings for f and g do not disappear because the returned
function� when called� could still refer to those bindings� Therefore

�funcall �compose ��� sqrt ��� abs� ����

produces the value ����
An analogous procedure would not necessarily

work correctly in typical Algol implementations or� for that matter� in most

Lisp dialects��

In addition to the above terms� it is convenient to de�ne dynamic scope

to mean inde
nite scope and dynamic extent� Thus we speak of �special�
variables as having dynamic scope� or being dynamically scoped� because they

have inde�nite scope and dynamic extent� a special variable can be referred

to anywhere as long as its binding is currently in e	ect�

The term �dynamic scope� is a misnomer� Nevertheless it is both traditional
and useful�

The above de�nitions do not take into account the possibility of shadowing�

Remote reference of entities is accomplished by using names of one kind or

another� If two entities have the same name� then the second may shadow

the �rst� in which case an occurrence of the name will refer to the second and
cannot refer to the �rst�

In the case of lexical scope� if two constructs that establish entities with the

same name are textually nested� then references within the inner construct

refer to the entity established by the inner one� the inner one shadows the
outer one� Outside the inner construct but inside the outer one� references

refer to the entity established by the outer construct� For example�

�defun test �x z�

�let ��z �
 x ���� �print z��

z�

The binding of the variable z by the let construct shadows the parameter

binding for the function test� The reference to the variable z in the print

form refers to the let binding� The reference to z at the end of the function

refers to the parameter named z�

In the case of dynamic extent� if the time intervals of two entities overlap�

then one interval will necessarily be nested within the other one� This is a

property of the design of Common Lisp�

SCOPE AND EXTENT ��

Implementation note� Behind the assertion that dynamic extents nest properly
is the assumption that there is only a single program or process� Common Lisp
does not address the problems of multiprogramming �timesharing� or multiprocess

ing �more than one active processor� within a single Lisp environment� The doc

umentation for implementations that extend Common Lisp for multiprogramming
or multiprocessing should be very clear on what modi�cations are induced by such
extensions to the rules of extent and scope� Implementors should note that Common
Lisp has been carefully designed to allow special variables to be implemented using
either the �deep binding� technique or the �shallow binding� technique� but the two
techniques have di�erent semantic and performance implications for multiprogram

ming and multiprocessing�

A reference by name to an entity with dynamic extent will always refer to

the entity of that name that has been most recently established that has not

yet been disestablished� For example�

�defun fun
 �x�

�catch trap �� � �fun� x����

�defun fun� �y�

�catch trap �
 � �fun� y����

�defun fun� �z�

�throw trap z��

Consider the call �fun
 	�� The result will be
�� At the time the throw

is executed� there are two outstanding catchers with the name trap� one

established within procedure fun
� and the other within procedure fun�� The

latter is the more recent� and so the value 	 is returned from the catch form
in fun�� Viewed from within fun�� the catch in fun� shadows the one in

fun
� Had fun� been de�ned as

�defun fun� �y�

�catch snare �
 � �fun� y����

then the two catchers would have di	erent names� and therefore the one in
fun
 would not be shadowed� The result would then have been 	�

As a rule� this book simply speaks of the scope or extent of an entity� the

possibility of shadowing is left implicit�

The important scope and extent rules in Common Lisp follow�

� Variable bindings normally have lexical scope and inde�nite extent�

	� COMMON LISP

� Variable bindings for which there is a dynamicextent declaration also have

lexical scope and inde�nite extent� but objects that are the values of such

bindings may have dynamic extent�
The declaration is the programmer�s

guarantee that the program will behave correctly even if certain of the data

objects have only dynamic extent rather than the usual inde�nite extent��

� Bindings of variable names to symbol macros by symbolmacrolet have

lexical scope and inde�nite extent�

� Variable bindings that are declared to be special have dynamic scope

inde�nite scope and dynamic extent��

� Bindings of function names established� for example� by flet and labels

have lexical scope and inde�nite extent�

� Bindings of function names for which there is a dynamicextent declaration
also have lexical scope and inde�nite extent� but function objects that are

the values of such bindings may have dynamic extent�

� Bindings of function names to macros as established by macrolet have

lexical scope and inde�nite extent�

� Condition handlers and restarts have dynamic scope
see chapter ����

� A catcher established by a catch or unwindprotect special form has dy�

namic scope�

� An exit point established by a block construct has lexical scope and dy�

namic extent�
Such exit points are also established by do� prog� and other

iteration constructs��

� The go targets established by a tagbody� named by the tags in the tagbody�

and referred to by go have lexical scope and dynamic extent�
Such go

targets may also appear as tags in the bodies of do� prog� and other iteration

constructs��

� Named constants such as nil and pi have inde�nite scope and inde�nite

extent�

The rules of lexical scoping imply that lambda�expressions appearing in the

function construct will� in general� result in �closures� over those non�special
variables visible to the lambda�expression� That is� the function represented

by a lambda�expression may refer to any lexically apparent non�special vari�

able and get the correct value� even if the construct that established the

binding has been exited in the course of execution� The compose example

shown earlier in this chapter provides one illustration of this� The rules also

SCOPE AND EXTENT 	�

imply that special variable bindings are not �closed over� as they may be in

certain other dialects of Lisp�

Constructs that use lexical scope e	ectively generate a new name for each
established entity on each execution� Therefore dynamic shadowing cannot

occur
though lexical shadowing may�� This is of particular importance when

dynamic extent is involved� For example�

�defun contortedexample �f g x�

�if � x ��

�funcall f�

�block here

�� � �contortedexample g

��� �lambda ��

�returnfrom here ���

� x
������

Consider the call �contortedexample nil nil ��� This produces the result

�� During the course of execution� there are three calls on contortedexample�

interleaved with two establishments of blocks�

�contortedexample nil nil ��

�block here� ����

�contortedexample nil ��� �lambda �� �returnfrom here� ���
�

�block here� ����

�contortedexample ��� �lambda �� �returnfrom here� ���

��� �lambda �� �returnfrom here� ���

��

�funcall f�

where f � ��� �lambda �� �returnfrom here� ���

�returnfrom here� ��

At the time the funcall is executed there are two block exit points outstand�

ing� each apparently named here� In the trace above� these exit points are

distinguished for expository purposes by subscripts� The returnfrom form

executed as a result of the funcall operation refers to the outer outstand�

ing exit point
here��� not the inner one
here��� This is a consequence of

	� COMMON LISP

the rules of lexical scoping� it refers to that exit point textually visible at

the point of execution of the function construct
here abbreviated by the ���
syntax� that resulted in creation of the function object actually invoked by

the funcall�

If� in this example� one were to change the form �funcall f� to �funcall

g�� then the value of the call �contortedexample nil nil �� would be ��

The value would change because the funcall would cause the execution of

�returnfrom here� ��� thereby causing a return from the inner exit point

here��� When that occurs� the value � is returned from the middle invocation
of contortedexample� � is added to that to get �� and that value is returned

from the outer block and the outermost call to contortedexample� The point

is that the choice of exit point returned from has nothing to do with its being

innermost or outermost� rather� it depends on the lexical scoping information

that is e	ectively packaged up with a lambda�expression when the function
construct is executed�

This function contortedexample works only because the function named

by f is invoked during the extent of the exit point� Block exit points are like

non�special variable bindings in having lexical scope� but they di	er in having
dynamic extent rather than inde�nite extent� Once the
ow of execution has

left the block construct� the exit point is disestablished� For example�

�defun illegalexample ��

�let ��y �block here ��� �lambda �z� �returnfrom here z�����

�if �numberp y� y �funcall y �����

One might expect the call �illegalexample� to produce � by the following

incorrect reasoning� the let statement binds the variable y to the value of the

block construct� this value is a function resulting from the lambda�expression�

Because y is not a number� it is invoked on the value �� The returnfrom

should then return this value from the exit point named here� thereby exiting

from the block again and giving y the value � which� being a number� is then

returned as the value of the call to illegalexample�

The argument fails only because exit points are de�ned in Common Lisp
to have dynamic extent� The argument is correct up to the execution of

the returnfrom� The execution of the returnfrom is an error� however� not

because it cannot refer to the exit point� but because it does correctly refer

to an exit point and that exit point has been disestablished�

�

Type Specifiers

In Common Lisp� types are named by Lisp objects� speci�cally symbols

and lists� called type speci
ers� Symbols name prede�ned classes of objects�
whereas lists usually indicate combinations or specializations of simpler types�

Symbols or lists may also be abbreviations for types that could be speci�ed

in other ways�

���� Type Speci
er Symbols

The type symbols de�ned by the system include those shown in table ���� In

addition� when a structure type is de�ned using defstruct� the name of the
structure type becomes a valid type symbol�

Notice of correction� In the �rst edition� the type speci�ers signedbyte

and unsignedbyte were inadvertently omitted from table ����

X�J�� voted in March ���� h��i to eliminate the type common� this fact is

indicated by the brackets around the common type speci�er in the table�
X�J�� voted in March ���� h��i to eliminate the type stringchar� this

fact is indicated by the brackets around the stringchar type speci�er in the

table�

X�J�� voted in March ���� h��i to add the type extendedcharacter and
the type basecharacter�

X�J�� voted in March ���� h���i to add the type speci�er real�

X�J�� votes have also implicitly added many other type speci�ers as names

of classes
see chapter ��� or of conditions
see chapter ����

���� Type Speci
er Lists

If a type speci�er is a list� the car of the list is a symbol� and the rest of the

list is subsidiary type information� In many cases a subsidiary item may be

	�

	� COMMON LISP

Table ���� Standard Type Speci�er Symbols

array fixnum package simplestring

atom float pathname simplevector

bignum function randomstate singlefloat

bit hashtable ratio standardchar

bitvector integer rational stream

character keyword readtable string

�common� list sequence �stringchar�
compiledfunction longfloat shortfloat symbol

complex nil signedbyte t

cons null simplearray unsignedbyte

doublefloat number simplebitvector vector

X�J�� voted in March ���� h��i to remove the type common�
X�J�� voted in March ���� h��i to remove the type stringchar�
X�J�� voted in March ���� h��i to add basecharacter and extendedcharacter�
X�J�� voted in March ���� h���i to add the type real�

unspeci
ed� The unspeci�ed subsidiary item is indicated by writing
� For
example� to completely specify a vector type� one must mention the type of

the elements and the length of the vector� as for example

�vector doublefloat
���

To leave the length unspeci�ed� one would write

�vector doublefloat
�

To leave the element type unspeci�ed� one would write

�vector

���

One may also leave both length and element type unspeci�ed�

�vector

�

Suppose that two type speci�ers are the same except that the �rst has a

where the second has a more explicit speci�cation� Then the second denotes

a subtype of the type denoted by the �rst�

As a convenience� if a list has one or more unspeci�ed items at the end�

such items may simply be dropped rather than writing an explicit
 for each

one� If dropping all occurrences of
 results in a singleton list� then the

TYPE SPECIFIERS 		

parentheses may be dropped as well
the list may be replaced by the symbol

in its car�� For example� �vector doublefloat
� may be abbreviated to

�vector doublefloat�� and �vector

� may be abbreviated to �vector�

and then to simply vector�

���� Predicating Type Speci
ers

A type speci�er list �satisfies predicatename� denotes the set of all objects

that satisfy the predicate named by predicate�name� which must be a sym�
bol whose global function de�nition is a one�argument predicate�
A name is

required� lambda�expressions are disallowed in order to avoid scoping prob�

lems�� For example� the type �satisfies numberp� is the same as the type

number� The call �typep x �satisfies p�� results in applying p to x and

returning t if the result is true and nil if the result is false�
As an example� the type stringchar could be de�ned as

���

�deftype stringchar ��

�and character �satisfies stringcharp���

See deftype�

X�J�� voted in March ���� h��i to remove the type stringchar and the
function stringcharp from the language�

It is not a good idea for a predicate appearing in a satisfies type speci�er

to cause any side e	ects when invoked�

���� Type Speci
ers That Combine

The following type speci�er lists de�ne a type in terms of other types or

objects�

�member object� object� ����

This denotes the set containing precisely those objects named� An object is
of this type if and only if it is eql to one of the speci�ed objects�

Compatibility note� This is roughly equivalent to the Interlisp DECL package�s
memq�

�eql object�

X�J�� voted in June ���� h��i to add the eql type speci�er� It may be

	
 COMMON LISP

used as a parameter specializer for CLOS methods
see section �������� and

findmethod�� It denotes the set of the one object named� an object is of

this type if and only if it is eql to object� While �eql object� denotes the

same type as �member object�� only �eql object� may be used as a CLOS

parameter specializer�

�not type�

This denotes the set of all those objects that are not of the speci�ed type�

�and type� type� ����

This denotes the intersection of the speci�ed types�

Compatibility note� This is roughly equivalent to the Interlisp DECL package�s
allof�

When typep processes an and type speci�er� it always tests each of the

component types in order from left to right and stops processing as soon

as one component of the intersection has been found to which the object in

question does not belong� In this respect an and type speci�er is similar to an
executable and form� The purpose of this similarity is to allow a satisfies

type speci�er to depend on �ltering by previous type speci�ers� For example�

suppose there were a function primep that takes an integer and says whether

it is prime� Suppose also that it is an error to give any object other than an
integer to primep� Then the type speci�er

�and integer �satisfies primep��

is guaranteed never to result in an error because the function primep will not

be invoked unless the object in question has already been determined to be
an integer�

�or type� type� ����

This denotes the union of the speci�ed types� For example� the type list by

de�nition is the same as �or null cons�� Also� the value returned by the
function position is always of type �or null �integer �
��
either nil

or a non�negative integer��

Compatibility note� This is roughly equivalent to the Interlisp DECL package�s
oneof�

TYPE SPECIFIERS 	�

As for and� when typep processes an or type speci�er� it always tests each

of the component types in order from left to right and stops processing as

soon as one component of the union has been found to which the object in

question belongs�

���� Type Speci
ers That Specialize

Some type speci�er lists denote specializations of data types named by sym�
bols� These specializations may be re
ected by more e�cient representations

in the underlying implementation� As an example� consider the type �array

shortfloat�� Implementation A may choose to provide a specialized repre�

sentation for arrays of short
oating�point numbers� and implementation B

may choose not to�
If you should want to create an array for the express purpose of holding

only short�
oat objects� you may optionally specify to makearray the element

type shortfloat� This does not require makearray to create an object of type

�array shortfloat�� it merely permits it� The request is construed to mean
�Produce the most specialized array representation capable of holding short�

oats that the implementation can provide�� Implementation A will then

produce a specialized array of type �array shortfloat�� and implementation

B will produce an ordinary array of type �array t��

If one were then to ask whether the array were actually of type �array

shortfloat�� implementation A would say �yes�� but implementation B

would say �no�� This is a property of makearray and similar functions� what

you ask for is not necessarily what you get�

Types can therefore be used for two di	erent purposes� declaration and
��

discrimination� Declaring to makearray that elements will always be of type

shortfloat permits optimization� Similarly� declaring that a variable takes

on values of type �array shortfloat� amounts to saying that the vari�

able will take on values that might be produced by specifying element type

shortfloat to makearray� On the other hand� if the predicate typep is used
to test whether an object is of type �array shortfloat�� only objects ac�

tually of that specialized type can satisfy the test� in implementation B no

object can pass that test�

X�J�� voted in January ���� h�i to eliminate the di	ering treatment of
types when used �for discrimination� rather than �for declaration� on the

grounds that implementors have not treated the distinction consistently and

which is more important� users have found the distinction confusing�

As a consequence of this change� the behavior of typep and subtypep on

array and complex type speci�ers must be modi�ed� See the descriptions of

	� COMMON LISP

those functions� In particular� under their new behavior� implementation B

would say �yes�� agreeing with implementation A� in the discussion above�

Note that the distinction between declaration and discrimination remains
useful� if only so that we may remark that the specialized
list� form of the

function type speci�er may still be used only for declaration and not for

discrimination�

X�J�� voted in June ���� h��i to clarify that while the specialized form of

the function type speci�er
a list of the symbol function possibly followed

by argument and value type speci�ers� may be used only for declaration� the

symbol form
simply the name function� may be used for discrimination�

The valid list�format names for data types are as follows�

�array element�type dimensions�

This denotes the set of specialized arrays whose elements are all members of

the type element�type and whose dimensions match dimensions� For declara�

tion purposes� this type encompasses those arrays that can result by specifying

element�type as the element type to the function makearray� this may be dif�
ferent from what the type means for discrimination purposes� element�type

must be a valid type speci�er or unspeci�ed� dimensions may be a non�

negative integer� which is the number of dimensions� or it may be a list of

non�negative integers representing the length of each dimension
any dimen�
sion may be unspeci�ed instead�� or it may be unspeci�ed� For example�

�array integer �� �Three�dimensional arrays of integers

�array integer �

�� �Three�dimensional arrays of integers
�array
 �� � ��� ���by���by�� arrays

�array character ��
�� �Two�dimensional arrays of characters

� that have exactly three rows

�array shortfloat ��� �Zero�rank arrays of short�format

�
oating�point numbers

Note that �array t� is a proper subset of �array
�� The reason is that

�array t� is the set of arrays that can hold any Common Lisp object
the ele�

ments are of type t� which includes all objects�� On the other hand� �array
�

is the set of all arrays whatsoever� including� for example� arrays that can hold
only characters� Now �array character� is not a subset of �array t�� the

two sets are in fact disjoint because �array character� is not the set of all

arrays that can hold characters but rather the set of arrays that are special�

ized to hold precisely characters and no other objects� To test whether an

array foo can hold a character� one should not use

TYPE SPECIFIERS 	�

�typep foo �array character��

but rather

�subtypep character �arrayelementtype foo��

See arrayelementtype�

X�J�� voted in January ���� h�i to change typep and subtypep so that the
specialized array type speci�er means the same thing for discrimination as for

declaration� it encompasses those arrays that can result by specifying element�

type as the element type to the function makearray� Under this interpretation

�array character� might be the same type as �array t�
although it also
might not be the same�� See upgradedarrayelementtype� However�

�typep foo �array character��

is still not a legitimate test of whether the array foo can hold a character�

one must still say

�subtypep character �arrayelementtype foo��

to determine that question�

X�J�� also voted in January ���� h��i to specify that within the lexical

scope of an array type declaration� it is an error for an array element� when

referenced� not to be of the exact declared element type� A compiler may�

for example� treat every reference to an element of a declared array as if
the reference were surrounded by a the form mentioning the declared array

element type
not the upgraded array element type�� Thus

�defun snarfhexdigits �thearray�

�declare �type �array �unsignedbyte ��
� thearray��

�do ��j � �length array�
� � j
��

�val � �logior �ash val ��

�aref thearray j����

��� j �� val���

may be treated as

� COMMON LISP

�defun snarfhexdigits �thearray�

�declare �type �array �unsignedbyte ��
� thearray��

�do ��j � �length array�
� � j
��

�val � �logior �ash val ��

�the �unsignedbyte ��

�aref thearray j�����

��� j �� val���

The declaration amounts to a promise by the user that the aref will never
produce a value outside the interval � to ��� even if in that particular

implementation the array element type �unsignedbyte �� is upgraded to�

say� �unsignedbyte ��� If such upgrading does occur� then values out�

side that range may in fact be stored in thearray� as long as the code in
snarfhexdigits never sees them�

As a general rule� a compiler would be justi�ed in transforming

�aref �the �array elt�type ���� a� ����

into

�the elt�type �aref �the �array elt�type ���� a� ����

It may also make inferences involving more complex functions� such as

position or find� For example� find applied to an array always returns
either nil or an object whose type is the element type of the array�

�simple�array element�type dimensions�

This is equivalent to �array elementtype dimensions� except that it addi�

tionally speci�es that objects of the type are simple arrays
see section �����

�vector element�type size�

This denotes the set of specialized one�dimensional arrays whose elements

are all of type element�type and whose lengths match size� This is entirely

equivalent to �array elementtype �size��� For example�

�vector doublefloat� �Vectors of double�format

�
oating�point numbers

�vector
 �� �Vectors of length �

�vector t �� �General vectors of length �

�vector �mod ���
� �Vectors of integers between � and ��

��

TYPE SPECIFIERS
�

The specialized types �vector stringchar� and �vector bit� are so use�
��

ful that they have the special names string and bitvector� Every imple�

mentation of Common Lisp must provide distinct representations for these as

distinct specialized data types�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to
rede�ne the type string to be the union of one or more specialized vector

types� the types of whose elements are subtypes of the type character�

�simple�vector size�

This is the same as �vector t size� except that it additionally speci�es that

its elements are simple general vectors�

�complex type�

Every element of this type is a complex number whose real part and imaginary

part are each of type type� For declaration purposes� this type encompasses

those complex numbers that can result by giving numbers of the speci�ed type

to the function complex� this may be di	erent from what the type means for

discrimination purposes� As an example� Gaussian integers might be described
as �complex integer�� even in implementations where giving two integers to

the function complex results in an object of type �complex rational��

X�J�� voted in January ���� h�i to change typep and subtypep so that

the specialized complex type speci�er means the same thing for discrimination
purposes as for declaration purposes� See upgradedcomplexparttype�

�function �arg��type arg��type ���� value�type�

This type may be used only for declaration and not for discrimination� typep
will signal an error if it encounters a speci�er of this form� Every element of

this type is a function that accepts arguments at least of the types speci�ed

by the argj�type forms and returns a value that is a member of the types

speci�ed by the value�type form� The �optional� �rest� and �key markers

may appear in the list of argument types� The value�type may be a values

type speci�er in order to indicate the types of multiple values�

X�J�� voted in January ���� h��i to specify that the arg�type that follows

a �rest marker indicates the type of each actual argument that would be

gathered into the list for a �rest parameter� and not the type of the �rest

parameter itself
which is always list�� Thus one might declare the function

gcd to be of type �function ��rest integer� integer�� or the function

aref to be of type �function �array �rest fixnum� t��

X�J�� voted in March ���� h��i to specify that� in a function type spec�

i�er� an argument type speci�er following �key must be a list of two items�

� COMMON LISP

a keyword and a type speci�er� The keyword must be a valid keyword�

name symbol that may be supplied in the actual arguments of a call to the

function� and the type speci�er indicates the permitted type of the corre�

sponding argument value�
The keyword�name symbol is typically a keyword�

but another X�J�� vote h���i allows it to be any symbol�� Furthermore� if
�allowotherkeys is not present� the set of keyword�names mentioned in the

function type speci�er may be assumed to be exhaustive� for example� a com�

piler would be justi�ed in issuing a warning for a function call using a keyword

argument name not mentioned in the type declaration for the function being
called� If �allowotherkeys is present in the function type speci�er� other

keyword arguments may be supplied when calling a function of the indicated

type� and if supplied such arguments may possibly be used�

As an example� the function cons is of type �function �t t� cons�� be�
���

cause it can accept any two arguments and always returns a cons� The func�
tion cons is also of type �function �float string� list�� because it can

certainly accept a
oating�point number and a string
among other things��

and its result is always of type list
in fact a cons is never null� but that

does not matter for this type declaration�� The function truncate is of type
�function �number number� �values number number��� as well as of type

�function �integer �mod ��� integer��

X�J�� voted in January ���� h��i to alter the meaning of the function

type speci�er when used in type and ftype declarations� While the preceding

formulation may be theoretically elegant� they have found that it is not useful
to compiler implementors and that it is not the interpretation that users

expect� X�J�� prescribed instead the following interpretation of declarations�

A declaration speci�er of the form

�ftype �function �arg��type arg��type ��� argn�type� value�type� fname�

implies that any function call of the form

�fname arg� arg� ����

within the scope of the declaration can be treated as if it were rewritten to
use the�forms in the following manner�

�the value�type

�fname �the arg��type arg��

�the arg��type arg��

���

�the argn�type argn���

TYPE SPECIFIERS
�

That is� it is an error for any of the actual arguments not to be of its speci�ed

type arg�type or for the result not to be of the speci�ed type value�type�
In

particular� if any argument is not of its speci�ed type� then the result is not

guaranteed to be of the speci�ed type!if indeed a result is returned at all��

Similarly� a declaration speci�er of the form

�type �function �arg��type arg��type ��� argn�type� value�type� var�

is interpreted to mean that any reference to the variable var will �nd that its

value is a function� and that it is an error to call this function with any actual

argument not of its speci�ed type arg�type� Also� it is an error for the result
not to be of the speci�ed type value�type� For example� a function call of the

form

�funcall var arg� arg� ����

could be rewritten to use the�forms as well� If any argument is not of its

speci�ed type� then the result is not guaranteed to be of the speci�ed type!if

indeed a result is returned at all�

Thus� a type or ftype declaration speci�er describes type requirements

imposed on calls to a function as opposed to requirements imposed on the
de�nition of the function� This is analogous to the treatment of type decla�

rations of variables as imposing type requirements on references to variables�

rather than on the contents of variables� See the vote of X�J�� on type

declaration speci�ers in general� discussed in section ����
In the same manner as for variable type declarations in general� if two or

more of these declarations apply to the same function call
which can occur if

declaration scopes are suitably nested�� then they all apply� in e	ect� the types

for each argument or result are intersected� For example� the code fragment

�locally �declare �ftype �function �biped� digit�

butcherfudge��

�locally �declare �ftype �function �featherless� opposable�

butcherfudge��

�butcherfudge sam���

may be regarded as equivalent to

�the opposable

�the digit �butcherfudge �the featherless

�the biped sam�����

� COMMON LISP

or to

�the �and opposable digit�

�butcherfudge �the �and featherless biped� sam���

That is� sam had better be both featherless and a biped� and the result

of butcherfudge had better be both opposable and a digit� otherwise the

code is in error� Therefore a compiler may generate code that relies on these

type assumptions� for example�

�values value��type value��type ����

This type speci�er is extremely restricted� it may be used only as the value�

type in a function type speci�er or in a the special form� It is used to specify

individual types when multiple values are involved� The �optional� �rest�
and �key markers may appear in the value�type list� they thereby indicate the

parameter list of a function that� when given to multiplevaluecall along

with the values� would be suitable for receiving those values�

���� Type Speci
ers That Abbreviate

The following type speci�ers are� for the most part� abbreviations for other

type speci�ers that would be far too verbose to write out explicitly
using� for

example� member��

�integer low high�

Denotes the integers between low and high� The limits low and high must

each be an integer� a list of an integer� or unspeci�ed� An integer is
an inclusive limit� a list of an integer is an exclusive limit� and
 means

that a limit does not exist and so e	ectively denotes minus or plus in�n�

ity� respectively� The type fixnum is simply a name for �integer small�

est largest� for implementation�dependent values of smallest and largest
see

mostnegativefixnum and mostpositivefixnum�� The type �integer �
�

is so useful that it has the special name bit�

�mod n�

Denotes the set of non�negative integers less than n� This is equivalent to
�integer � n�� or to �integer � �n���

�signed�byte s�

Denotes the set of integers that can be represented in two�s�complement

TYPE SPECIFIERS
	

form in a byte of s bits� This is equivalent to �integer �s� �s���� Sim�

ply signedbyte or �signedbyte
� is the same as integer�

�unsigned�byte s�

Denotes the set of non�negative integers that can be represented in a byte

of s bits� This is equivalent to �mod �s�� that is� �integer � �s��� Simply

unsignedbyte or �unsignedbyte
� is the same as �integer �
�� the set

of non�negative integers�

�rational low high�

Denotes the rationals between low and high� The limits low and high must

each be a rational� a list of a rational� or unspeci�ed� A rational is an inclusive
limit� a list of a rational is an exclusive limit� and
 means that a limit does

not exist and so e	ectively denotes minus or plus in�nity� respectively�

�float low high�

Denotes the set of
oating�point numbers between low and high� The limits

low and high must each be a
oating�point number� a list of a
oating�point

number� or unspeci�ed� a
oating�point number is an inclusive limit� a list of

a
oating�point number is an exclusive limit� and
 means that a limit does
not exist and so e	ectively denotes minus or plus in�nity� respectively�

In a similar manner� one may use�

�shortfloat low high�

�singlefloat low high�

�doublefloat low high�

�longfloat low high�

In this case� if a limit is a
oating�point number
or a list of one�� it must be

one of the appropriate format�

X�J�� voted in March ���� h���i to add a list form of the real type speci�er

to denote an interval of real numbers�

�real low high�

Denotes the real numbers between low and high� The limits low and high must

each be a real� a list of a real� or unspeci�ed� A real is an inclusive limit� a

list of a real is an exclusive limit� and
 means that a limit does not exist and
so e	ectively denotes minus or plus in�nity� respectively�

��

 COMMON LISP

�string size���

Means the same as �array stringchar �size��� the set of strings of the
indicated size�

�simple�string size�

Means the same as �simplearray stringchar �size��� the set of simple

strings of the indicated size�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

rede�ne the type string to be the union of one or more specialized vector

types� the types of whose elements are subtypes of the type character� Sim�
ilarly� the type simplestring is rede�ned to be the union of one or more

specialized simple vector types� the types of whose elements are subtypes of

the type character�

�base�string size�

Means the same as �vector basecharacter size�� the set of base strings of

the indicated size�

�simple�base�string size�

Means the same as �simplearray basecharacter �size��� the set of simple

base strings of the indicated size�

�bit�vector size�

Means the same as �array bit �size��� the set of bit�vectors of the indicated

size�

�simple�bit�vector size�

This means the same as �simplearray bit �size��� the set of bit�vectors of
the indicated size�

���� De
ning New Type Speci
ers

New type speci�ers can come into existence in two ways� First� de�ning a new

structure type with defstruct automatically causes the name of the structure

to be a new type speci�er symbol� Second� the deftype special form can be

used to de�ne new type�speci�er abbreviations�

TYPE SPECIFIERS
�

�Macro�deftype name lambda�list �� fdeclarationg� j doc�string �� f formg�

This is very similar to a defmacro form� name is the symbol that identi�es

the type speci�er being de�ned� lambda�list is a lambda�list
and may contain

�optional and �rest markers�� and the forms constitute the body of the

expander function� If we view a type speci�er list as a list containing the type

speci�er name and some argument forms� the argument forms
unevaluated�
are bound to the corresponding parameters in lambda�list� Then the body

forms are evaluated as an implicit progn� and the value of the last form is

interpreted as a new type speci�er for which the original speci�er was an

abbreviation� The name is returned as the value of the deftype form�

deftype di	ers from defmacro in that if no initform is speci�ed for an

�optional parameter� the default value is
� not nil�

If the optional documentation string doc�string is present� then it is attached

to the name as a documentation string of type type� see documentation�

Here are some examples of the use of deftype�

�deftype mod �n� �integer � ��n���

�deftype list �� �or null cons��

�deftype squarematrix ��optional type size�

�SQUAREMATRIX includes all square twodimensional arrays��

�array �type ��size �size���

�squarematrix shortfloat 	� means �array shortfloat �	 	��

�squarematrix bit� means �array bit �

��

If the type name de�ned by deftype is used simply as a type speci�er symbol�
it is interpreted as a type speci�er list with no argument forms� Thus� in the

example above� squarematrixwould mean �array
 �

��� the set of two�

dimensional arrays� This would unfortunately fail to convey the constraint

that the two dimensions be the same� �squarematrix bit� has the same
problem� A better de�nition is

�defun equidimensional �a�

�or �� �arrayrank a� ��

�apply ��� �arraydimensions a����

�deftype squarematrix ��optional type size�

�and �array �type ��size �size��

� COMMON LISP

�satisfies equidimensional���

X�J�� voted in March ���� h��i to specify that the body of the expander
function de�ned by deftype is implicitly enclosed in a block construct whose

name is the same as the name of the de�ned type� Therefore returnfrom

may be used to exit from the function�

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level

contexts� deftype must de�ne the expander function within the enclosing

lexical environment� not within the global environment�

��
� Type Conversion Function

The following function may be used to convert an object to an equivalent

object of another type�

�Function�coerce object resulttype

The result�type must be a type speci�er� the object is converted to an �equiv�

alent� object of the speci�ed type� If the coercion cannot be performed� then
an error is signaled� In particular� �coerce x nil� always signals an error�

If object is already of the speci�ed type� as determined by typep� then it is

simply returned� It is not generally possible to convert any object to be of

any type whatsoever� only certain conversions are permitted�

� Any sequence type may be converted to any other sequence type� provided
the new sequence can contain all actual elements of the old sequence
it is

an error if it cannot�� If the result�type is speci�ed as simply array� for

example� then �array t� is assumed� A specialized type such as string or

�vector �complex shortfloat�� may be speci�ed� of course� the result
may be of either that type or some more general type� as determined by the

implementation� Elements of the new sequence will be eql to corresponding

elements of the old sequence� If the sequence is already of the speci�ed

type� it may be returned without copying it� in this� �coerce sequence

type� di	ers from �concatenate type sequence�� for the latter is required
to copy the argument sequence� In particular� if one speci�es sequence�

then the argument may simply be returned if it already is a sequence�

�coerce �a b c� vector� � ����a b c�

TYPE SPECIFIERS
�

X�J�� voted in June ���� h���i to specify that coerce should signal an

error if the new sequence type speci�es the number of elements and the old

sequence has a di	erent length�

X�J�� voted in March ���� h��i to specify that if the result�type is string

then it is understood to mean �vector character�� and simplestring is

understood to mean �simplearray character �
���

� Some strings� symbols� and integers may be converted to characters� If
���

object is a string of length �� then the sole element of the string is returned�
If object is a symbol whose print name is of length �� then the sole element

of the print name is returned� If object is an integer n� then �intchar n�

is returned� See character�

�coerce �a� character� � ����a

X�J�� voted in March ���� h��i to eliminate intchar from Common Lisp�

Presumably this eliminates the possibility of coercing an integer to a character�
although the vote did not address this question directly�

� Any non�complex number can be converted to a shortfloat� singlefloat�
doublefloat� or longfloat� If simply float is speci�ed� and object

is not already a float of some kind� then the object is converted to a

singlefloat�

�coerce � shortfloat� � ���S�

�coerce ���L� float� � ���L�

�coerce 	 � float� � ���

� Any number can be converted to a complex number� If the number is not

already complex� then a zero imaginary part is provided by coercing the

integer zero to the type of the given real part�
If the given real part is

rational� however� then the rule of canonical representation for complex

rationals will result in the immediate re�conversion of the result from type
complex back to type rational��

�coerce ���s� complex� � ���C����S� ���S��

�coerce 	 � complex� � 	 �

�coerce ���C�	 � �� �complex doublefloat��

� ���C����D� ���D��

� Any object may be coerced to type t�

�coerce x t� � �identity x� � x

�� COMMON LISP

X�J�� voted in June ���� h��i to allow coercion of certain objects to the

type function�

� A symbol or lambda�expression can be converted to a function� A symbol is

coerced to type function as if by applying symbolfunction to the symbol�

an error is signaled if the predicate fboundp is not true of the symbol or if

the symbol names a macro or special form� A list x whose car is the symbol
lambda is coerced to a function as if by execution of �eval ��� �x�� that is�

of �eval �list function x���

Coercions from
oating�point numbers to rationals and from ratios to inte�

gers are purposely not provided because of rounding problems� The functions

rational� rationalize� floor� ceiling� truncate� and round may be used
for such purposes� Similarly� coercions from characters to integers are pur�

posely not provided� charcode or charint may be used explicitly to perform

such conversions�

���� Determining the Type of an Object

The following function may be used to obtain a type speci�er describing the

type of a given object�

�Function�typeof object

�typeof object� returns an implementation�dependent result� some type of
��

which the object is a member� Implementors are encouraged to arrange for

typeof to return the most speci�c type that can be conveniently computed

and is likely to be useful to the user� If the argument is a user�de�ned named
structure created by defstruct� then typeof will return the type name of

that structure� Because the result is implementation�dependent� it is usually

better to use typeof primarily for debugging purposes� however� in a few

situations portable code requires the use of typeof� such as when the result
is to be given to the coerce or map function� On the other hand� often the

typep function or the typecase construct is more appropriate than typeof�

Compatibility note� In MacLisp the function typeof is called typep� and anoma

lously so� for it is not a predicate�

Many have observed
and rightly so� that this speci�cation is totally wimpy

and therefore nearly useless� X�J�� voted in June ���� h���i to place the

following constraints on typeof�

TYPE SPECIFIERS ��

� Let x be an object such that �typep x type� is true and type is one of the

following�

array float package sequence

bitvector function pathname shortfloat

character hashtable randomstate singlefloat

complex integer ratio stream

condition longfloat rational string

cons null readtable symbol

doublefloat number restart vector

Then �subtypep �typeof x� type�� must return the values t and t� that

is� typeof applied to x must return either type itself or a subtype of type
that subtypep can recognize in that implementation�

� For any object x� �subtypep �typeof x� �classof x�� must produce the

values t and t�

� For every object x� �typep x �typeof x�� must be true�
This implies

that typeof can never return nil� for no object is of type nil��

� typeof never returns t and never uses a satisfies� and� or� not� or values

type speci�er in its result�

� For objects of CLOS metaclass structureclass or of standardclass�

typeof returns the proper name of the class returned by classof if it has

a proper name� and otherwise returns the class itself� In particular� for any
object created by a defstruct constructor function� where the defstruct

had the name name and no �type option� typeof will return name�

As an example� �typeof �acetylcholinesterase�� may return string

or simplestring or �simplestring ���� but not array or simplevector�

As another example� it is permitted for �typeof
	��� to return integer

or fixnum
if it is indeed a �xnum� or �signedbyte
�� or �integer
	��

	��� or �integer
���
	��� or even �mod
	���� but not rational or

number� because

�typep �� �expt � �� �expt
� ��� integer�

is true� integer is in the list of types mentioned above� and

�subtypep �typeof �� �expt
 �� �expt
� ���� integer�

would be false if typeof were to return rational or number�

�� COMMON LISP

����� Type Upgrading

X�J�� voted in January ���� h�i to add new functions by which a program can
determine� in a given Common Lisp implementation� how that implementation

will upgrade a type when constructing an array specialized to contain elements

of that type� or a complex number specialized to contain parts of that type�

�Function�upgradedarrayelementtype type

A type speci�er is returned� indicating the element type of the most specialized

array representation capable of holding items of the speci�ed argument type�
The result is necessarily a supertype of the given type� Furthermore� if a type

A is a subtype of type B� then �upgradedarrayelementtype A� is a subtype

of �upgradedarrayelementtype B��

The manner in which an array element type is upgraded depends only on
the element type as such and not on any other property of the array such as

size� rank� adjustability� presence or absence of a �ll pointer� or displacement�

Rationale� If upgrading were allowed to depend on any of these properties� all of
which can be referred to� directly or indirectly� in the language of type speci�ers� then
it would not be possible to displace an array in a consistent and dependable manner
to another array created with the same �elementtype argument but di�ering in one
of these properties�

Note that upgradedarrayelementtype could be de�ned as

�defun upgradedarrayelementtype �type�

�arrayelementtype �makearray � �elementtype type���

but this de�nition has the disadvantage of allocating an array and then im�

mediately discarding it� The clever implementor surely can conjure up a more

practical approach�

�Function�upgradedcomplexparttype type

A type speci�er is returned� indicating the element type of the most special�

ized complex number representation capable of having parts of the speci�ed

argument type� The result is necessarily a supertype of the given type� Fur�

thermore� if a type A is a subtype of type B� then �upgradedcomplexparttype
A� is a subtype of �upgradedcomplexparttype B��

�

Program Structure

In chapter � the syntax was sketched for notating data objects in Common

Lisp� The same syntax is used for notating programs because all Common

Lisp programs have a representation as Common Lisp data objects�

Lisp programs are organized as forms and functions� Forms are evaluated

relative to some context� to produce values and side e	ects� Functions are
invoked by applying them to arguments� The most important kind of form

performs a function call� conversely� a function performs computation by eval�

uating forms�

In this chapter� forms are discussed �rst and then functions� Finally� certain

�top level� special forms are discussed� the most important of these is defun�

whose purpose is to de�ne a named function�

���� Forms

The standard unit of interaction with a Common Lisp implementation is the
form� which is simply a data object meant to be evaluated as a program to

produce one or more values
which are also data objects�� One may request

evaluation of any data object� but only certain ones are meaningful� For

instance� symbols and lists are meaningful forms� while arrays normally are

not� Examples of meaningful forms are �� whose value is �� and �� � ���
whose value is 	� We write � � � and �� � �� � 	 to indicate these facts�

� means �evaluates to���

Meaningful forms may be divided into three categories� self�evaluating

forms� such as numbers� symbols� which stand for variables� and lists� The

lists in turn may be divided into three categories� special forms� macro calls�

and function calls�

Any Common Lisp data object not explicitly de�ned here to be a valid form
��

is not a valid form� It is an error to evaluate anything but a valid form�

��

��

�� COMMON LISP

Implementation note� An implementation is free to make implementation

dependent extensions to the evaluator but is strongly encouraged to signal an error
on any attempt to evaluate anything but a valid form or an object for which a
meaningful evaluation extension has been purposely de�ned�

X�J�� voted in October ���� h��i to specify that all standard Common Lisp

data objects other than symbols and lists
including defstruct structures

de�ned without the �type option� are self�evaluating�

������ Self	Evaluating Forms

All numbers� characters� strings� and bit�vectors are self�evaluating forms�

When such an object is evaluated� that object
or possibly a copy in the case

of numbers or characters� is returned as the value of the form� The empty list

��� which is also the false value nil� is also a self�evaluating form� the value

of nil is nil� Keywords
symbols written with a leading colon� also evaluate
to themselves� the value of �start is �start�

X�J�� voted in January ���� h��i to clarify that it is an error to de�
structively modify any object that appears as a constant in executable code�

whether as a self�evaluating form or within a quote special form�

������ Variables

Symbols are used as names of variables in Common Lisp programs� When a

symbol is evaluated as a form� the value of the variable it names is produced�
For example� after doing �setq items ��� which assigns the value � to the

variable named items� then items � �� Variables can be assigned to� as

by setq� or bound� as by let� Any program construct that binds a variable

e	ectively saves the old value of the variable and causes it to have a new value�

and on exit from the construct the old value is reinstated�

There are actually two kinds of variables in Common Lisp� called lexical
or

static� variables and special
or dynamic� variables� At any given time either
or both kinds of variable with the same name may have a current value� Which

of the two kinds of variable is referred to when a symbol is evaluated depends

on the context of the evaluation� The general rule is that if the symbol occurs

textually within a program construct that creates a binding for a variable of

the same name� then the reference is to the variable speci�ed by the binding�

PROGRAM STRUCTURE �	

if no such program construct textually contains the reference� then it is taken

to refer to the special variable of that name�

The distinction between the two kinds of variable is one of scope and ex�

tent� A lexically bound variable can be referred to only by forms occurring

at any place textually within the program construct that binds the variable�

A dynamically bound
special� variable can be referred to at any time from

the time the binding is made until the time evaluation of the construct that
binds the variable terminates� Therefore lexical binding of variables imposes a

spatial limitation on occurrences of references
but no temporal limitation� for

the binding continues to exist as long as the possibility of reference remains��

Conversely� dynamic binding of variables imposes a temporal limitation on
occurrences of references
but no spatial limitation�� For more information on

scope and extent� see chapter ��

The value a special variable has when there are currently no bindings of that

variable is called the global value of the
special� variable� A global value can

be given to a variable only by assignment� because a value given by binding

is by de�nition not global�

It is possible for a special variable to have no value at all� in which case

it is said to be unbound� By default� every global variable is unbound unless

and until explicitly assigned a value� except for those global variables de�ned
in this book or by the implementation already to have values when the Lisp

system is �rst started� It is also possible to establish a binding of a special

variable and then cause that binding to be valueless by using the function

makunbound� In this situation the variable is also said to be �unbound��
although this is a misnomer� precisely speaking� it is bound but valueless� It

is an error to refer to a variable that is unbound�

X�J�� voted in June ���� h���i to specify more precisely the e	ects of
referring to an unbound variable�

Reading an unbound variable or an unde�ned function must be detected in
the highest safety setting
see the safety quality of the optimize declaration

speci�er� but the e	ect is unde�ned in any other safety setting� That is� read�

ing an unbound variable should signal an error and reading an unde�ned func�

tion should signal an error�
�Reading a function� includes both references
to the function using the function special form� such as f in �function f��

and references to the function in a call� such as f in �f x y���

For the case of inline functions
in implementations where they are sup�

ported�� a permitted point of view is that performing the inlining constitutes

the read of the function� so that an fboundp check need not be done at execu�

tion time� Put another way� the e	ect of the application of fmakunbound to a

function name on potentially inlined references to that function is unde�ned�

�
 COMMON LISP

When an unbound variable is detected an error of type unboundvariable

is signaled� and the name slot of the unboundvariable condition is initialized

to the name of the o	ending variable�

When an unde�
�ned function is detected an error of type undefinedfunction is signaled�

and the name slot of the undefinedfunction condition is initialized to the

name of the o	ending function�

The condition type unboundslot� which inherits from cellerror� has an
additional slot instance� which can be initialized using the �instance key�

word to makecondition� The function unboundslotinstance accesses this

slot�

The type of error signaled by the default primary method for the CLOS

slotunbound generic function is unboundslot� The instance slot of the
unboundslot condition is initialized to the o	ending instance and the name

slot is initialized to the name of the o	ending variable�

Certain global variables are reserved as �named constants�� They have a

global value and may not be bound or assigned to� For example� the symbols
t and nil are reserved� One may not assign a value to t or nil� and one may

not bind t or nil� The global value of t is always t� and the global value of

nil is always nil� Constant symbols de�ned by defconstant also become

reserved and may not be further assigned to or bound
although they may
be rede�ned� if necessary� by using defconstant again�� Keyword symbols�

which are notated with a leading colon� are reserved and may never be assigned

to or bound� a keyword always evaluates to itself�

������ Special Forms

If a list is to be evaluated as a form� the �rst step is to examine the �rst

element of the list� If the �rst element is one of the symbols appearing in

table ���� then the list is called a special form�
This use of the word �special�
is unrelated to its use in the phrase �special variable���

Special forms are generally environment and control constructs� Every spe�

cial form has its own idiosyncratic syntax� An example is the if special form�

�if p �� x �� �� in Common Lisp means what �if p then x#� else ��
means in Algol�

The evaluation of a special form normally produces a value or values� but

the evaluation may instead call for a non�local exit� see returnfrom� go� and

throw�

PROGRAM STRUCTURE ��

Table ���� Names of All Common Lisp Special Forms

block if progv

catch labels quote

�compilerlet� let returnfrom

declare let� setq

evalwhen macrolet tagbody

flet multiplevaluecall the

function multiplevalueprog	 throw

go progn unwindprotect

X�J�� voted in June ���� h��i to remove compilerlet from the language�
X�J�� voted in June ���� h��i to add the special forms genericflet�
genericlabels� symbolmacrolet� and withaddedmethods�
X�J�� voted in March ���� h���i to make locally a special form rather than a
macro�
X�J�� voted in March ���� h���i to add the special form loadtimeeval�

The set of special forms is �xed in Common Lisp� no way is provided for the
user to de�ne more� The user can create new syntactic constructs� however�

by de�ning macros�

The set of special forms in Common Lisp is purposely kept very small be�

cause any program�analyzing program must have special knowledge about

every type of special form� Such a program needs no special knowledge about

macros because it is simple to expand the macro and operate on the result�

ing expansion�
This is not to say that many such programs� particularly
compilers� will not have such special knowledge� A compiler may be able to

produce much better code if it recognizes such constructs as typecase and

multiplevaluebind and gives them customized treatment��

An implementation is free to implement as a macro any construct described

herein as a special form� Conversely� an implementation is free to implement as

a special form any construct described herein as a macro if an equivalent macro
de�nition is also provided� The practical consequence is that the predicates

macrofunction and specialformp may both be true of the same symbol� It

is recommended that a program�analyzing program process a form that is a

list whose car is a symbol as follows�

�� If the program has particular knowledge about the symbol� process the form

using special�purpose code� All of the symbols listed in table ��� should fall

into this category�

�� Otherwise� if macrofunction is true of the symbol� apply either

�� COMMON LISP

macroexpand or macroexpand
� as appropriate� to the entire form and then

start over�

�� Otherwise� assume it is a function call�

������ Macros

If a form is a list and the �rst element is not the name of a special form�

it may be the name of a macro� if so� the form is said to be a macro call�
A macro is essentially a function from forms to forms that will� given a call

to that macro� compute a new form to be evaluated in place of the macro

call�
This computation is sometimes referred to as macro expansion�� For

example� the macro named return will take a form such as �return x� and

from that form compute a new form �returnfrom nil x�� We say that the
old form expands into the new form� The new form is then evaluated in place

of the original form� the value of the new form is returned as the value of the

original form�

X�J�� voted in January ���� h��i to clarify that macro calls� and subforms

of macro calls� need not be proper lists� but that use of dotted forms requires

the macro de�nition to use �� var� or ��rest var� in order to match them
properly� It is then the responsibility of the macro de�nition to recognize and

appropriately handle such dotted forms or subforms�

There are a number of standard macros in Common Lisp� and the user can
de�ne more by using defmacro�

Macros provided by a Common Lisp implementation as described herein
may expand into code that is not portable among di	ering implementations�

That is� a macro call may be implementation�independent because the macro

is de�ned in this book� but the expansion need not be�

Implementation note� Implementors are encouraged to implement the macros
de�ned in this book� as far as is possible� in such a way that the expansion will
not contain any implementation
dependent special forms� nor contain as forms data
objects that are not considered to be forms in Common Lisp� The purpose of
this restriction is to ensure that the expansion can be processed by a program

analyzing program in an implementation
independent manner� There is no problem
with a macro expansion containing calls to implementation
dependent functions�
This restriction is not a requirement of Common Lisp� it is recognized that certain
complex macros may be able to expand into signi�cantly more e�cient code in
certain implementations by using implementation
dependent special forms in the
macro expansion�

PROGRAM STRUCTURE ��

������ Function Calls

If a list is to be evaluated as a form and the �rst element is not a symbol that

names a special form or macro� then the list is assumed to be a function call�

The �rst element of the list is taken to name a function� Any and all remaining

elements of the list are forms to be evaluated� one value is obtained from each

form� and these values become the arguments to the function� The function is
then applied to the arguments� The functional computation normally produces

a value� but it may instead call for a non�local exit� see throw� A function

that does return may produce no value or several values� see values� If and

when the function returns� whatever values it returns become the values of
the function�call form�

For example� consider the evaluation of the form �� � �
 � ���� The

symbol � names the addition function� not a special form or macro� Therefore

the two forms � and �
 � �� are evaluated to produce arguments� The form

� evaluates to �� and the form �
 � �� is a function call
to the multiplication
function�� Therefore the forms � and � are evaluated� producing arguments

� and � for the multiplication� The multiplication function calculates the

number �� and returns it� The values � and �� are then given as arguments to

the addition function� which calculates and returns the number ��� Therefore
we say �� � �
 � ��� � ���

X�J�� voted in October ���� h��i to clarify that while the arguments in

a function call are always evaluated in strict left�to�right order� whether the

function to be called is determined before or after argument evaluation is

unspeci�ed� Programs are in error that rely on a particular order of evaluation
of the �rst element of a function call relative to the argument forms�

���� Functions

There are two ways to indicate a function to be used in a function�call form�

One is to use a symbol that names the function� This use of symbols to
name functions is completely independent of their use in naming special and

lexical variables� The other way is to use a lambda�expression� which is a

list whose �rst element is the symbol lambda� A lambda�expression is not a

form� it cannot be meaningfully evaluated� Lambda�expressions and symbols�
when used in programs as names of functions� can appear only as the �rst

element of a function�call form� or as the second element of the function

special form� Note that symbols and lambda�expressions are treated as names

of functions in these two contexts� This should be distinguished from the

treatment of symbols and lambda�expressions as function objects� that is�

�� COMMON LISP

objects that satisfy the predicate functionp� as when giving such an object

to apply or funcall to be invoked�

������ Named Functions

A name can be given to a function in one of two ways� A global name can be

given to a function by using the defun construct� A local name can be given
to a function by using the flet or labels special form� When a function

is named� a lambda�expression is e	ectively associated with that name along

with information about the entities that are lexically apparent at that point�

If a symbol appears as the �rst element of a function�call form� then it refers

to the de�nition established by the innermost flet or labels construct that
textually contains the reference� or to the global de�nition
if any� if there is

no such containing construct�

������ Lambda	Expressions

A lambda�expression is a list with the following syntax�

�lambda lambda�list � body�

The �rst element must be the symbol lambda� The second element must be a

list� It is called the lambda�list� and speci�es names for the parameters of the

function� When the function denoted by the lambda�expression is applied to

arguments� the arguments are matched with the parameters speci�ed by the

lambda�list� The body may then refer to the arguments by using the parameter
names� The body consists of any number of forms
possibly zero�� These forms

are evaluated in sequence� and the results of the last form only are returned

as the results of the application
the value nil is returned if there are zero

forms in the body�� The complete syntax of a lambda�expression is�

�lambda � fvarg�
��optional fvar j �var �initform �svar � � �g� �
��rest var �

��key fvar j � fvar j �keyword var�g �initform �svar � � �g� �
��aux fvar j �var �initform� �g� � �

�� fdeclarationg� j documentationstring ��
f formg� �

PROGRAM STRUCTURE ��

Each element of a lambda�list is either a parameter speci
er or a lambda�

list keyword� lambda�list keywords begin with ��
Note that lambda�list key�

words are not keywords in the usual sense� they do not belong to the keyword

package� They are ordinary symbols each of whose names begins with an

ampersand� This terminology is unfortunately confusing but is retained for
historical reasons��

In all cases a var or svar must be a symbol� the name of a variable� each
���

keyword must be a keyword symbol� such as �start� An initform may be any

form�

X�J�� voted in March ���� h���i to allow a keyword in the preceding spec�

i�cation of a lambda�list to be any symbol whatsoever� not just a keyword

symbol in the keyword package� See below�

A lambda�list has �ve parts� any or all of which may be empty�

� Speci�ers for the required parameters� These are all the parameter speci�ers
up to the �rst lambda�list keyword� if there is no such lambda�list keyword�

then all the speci�ers are for required parameters�

� Speci�ers for optional parameters� If the lambda�list keyword �optional is

present� the optional parameter speci�ers are those following the lambda�

list keyword �optional up to the next lambda�list keyword or the end of

the list�

� A speci�er for a rest parameter� The lambda�list keyword �rest� if present�
must be followed by a single rest parameter speci�er� which in turn must

be followed by another lambda�list keyword or the end of the lambda�list�

� Speci�ers for keyword parameters� If the lambda�list keyword �key is

present� all speci�ers up to the next lambda�list keyword or the end of

the list are keyword parameter speci�ers� The keyword parameter speci�ers

may optionally be followed by the lambda�list keyword �allowotherkeys�

� Speci�ers for aux variables� These are not really parameters� If the lambda�
list keyword �key is present� all speci�ers after it are auxiliary variable

speci�ers�

When the function represented by the lambda�expression is applied to argu�

ments� the arguments and parameters are processed in order from left to right�
In the simplest case� only required parameters are present in the lambda�list�

each is speci�ed simply by a name var for the parameter variable� When

the function is applied� there must be exactly as many arguments as there

are parameters� and each parameter is bound to one argument� Here� and in

general� the parameter is bound as a lexical variable unless a declaration has

�� COMMON LISP

been made that it should be a special binding� see defvar� proclaim� and

declare�

In the more general case� if there are n required parameters
n may be zero��

there must be at least n arguments� and the required parameters are bound

to the �rst n arguments� The other parameters are then processed using any
remaining arguments�

If optional parameters are speci�ed� then each one is processed as follows� If

any unprocessed arguments remain� then the parameter variable var is bound

to the next remaining argument� just as for a required parameter� If no
arguments remain� however� then the initform part of the parameter speci�er

is evaluated� and the parameter variable is bound to the resulting value
or

to nil if no initform appears in the parameter speci�er�� If another variable

name svar appears in the speci�er� it is bound to true if an argument was

available� and to false if no argument remained
and therefore initform had to
be evaluated�� The variable svar is called a supplied�p parameter� it is bound

not to an argument but to a value indicating whether or not an argument had

been supplied for another parameter�

After all optional parameter speci�ers have been processed� then there may
or may not be a rest parameter� If there is a rest parameter� it is bound to a list

of all as�yet�unprocessed arguments�
If no unprocessed arguments remain�

the rest parameter is bound to the empty list�� If there is no rest parameter

and there are no keyword parameters� then there should be no unprocessed

arguments
it is an error if there are��
X�J�� voted in January ���� h���i to clarify that if a function has a rest

parameter and is called using apply� then the list to which the rest parameter

is bound is permitted� but not required� to share top�level list structure with

the list that was the last argument to apply� Programmers should be careful
about performing side e	ects on the top�level list structure of a rest parameter�

This was the result of a rather long discussion within X�J�� and the wider

Lisp community� To set it in its historical context� I must remark that in Lisp

Machine Lisp the list to which a rest parameter was bound had only dynamic

extent� this in conjunction with the technique of �cdr�coding� permitted a
clever stack�allocation technique with very low overhead� However� the early

designers of Common Lisp� after a great deal of debate� concluded that it was

dangerous for cons cells to have dynamic extent� as an example� the �obvious�

de�nition of the function list

�defun list ��rest x� x�

could fail catastrophically� Therefore the �rst edition simply implied that

the list for a rest parameter� like all other lists� would have inde�nite extent�

PROGRAM STRUCTURE ��

This still left open the
ip side of the question� namely� Is the list for a rest

parameter guaranteed fresh$ This is the question addressed by the X�J��

vote� If it is always freshly consed� then it is permissible to destroy it� for

example by giving it to nconc� However� the requirement always to cons fresh

lists could impose an unacceptable overhead in many implementations� The
clari�cation approved by X�J�� speci�es that the programmer may not rely

on the list being fresh� if the function was called using apply� there is no way

to know where the list came from�

Next� any keyword parameters are processed� For this purpose the same

arguments are processed that would be made into a list for a rest parameter�

Indeed� it is permitted to specify both �rest and �key� In this case the

remaining arguments are used for both purposes� that is� all remaining argu�

ments are made into a list for the �rest parameter and are also processed

for the �key parameters� This is the only situation in which an argument is

used in the processing of more than one parameter speci�er�� If �key is spec�
i�ed� there must remain an even number of arguments� these are considered

as pairs� the �rst argument in each pair being interpreted as a keyword name

and the second as the corresponding value�

It is an error for the �rst object of each pair to be anything but a keyword�
���

Rationale� This last restriction is imposed so that a compiler may issue warnings
about certain malformed calls to functions that take keyword arguments� It must
be remembered that the arguments in a function call that evaluate to keywords are
just like any other arguments and may be any evaluable forms� A compiler could
not� without additional context� issue a warning about the call

�fill seq item x y�

because in principle the variable x might have as its value a keyword such as �start�
However� a compiler would be justi�ed in issuing a warning about the call

�fill seq item
 	
�

because the constant
 is de�nitely not a keyword� Similarly� if in the �rst case the
variable x had been declared to be of type integer� then type analysis could enable
the compiler to justify a warning�

X�J�� voted in March ���� h���i to allow a keyword in a lambda�list to be

any symbol whatsoever� not just a keyword symbol in the keyword package�

If� after �key� a variable appears alone or within only one set of parentheses

possibly with an initform and a svar�� then the behavior is as before� a

�� COMMON LISP

keyword symbol with the same name as the variable is used as the keyword�

name when matching arguments to parameter speci�ers� Only a parameter

speci�er of the form ��keyword var� ���� can cause the keyword�name not

to be a keyword symbol� by specifying a symbol not in the keyword package

as the keyword� For example�

�defun wager ��key ��secret password� nil� amount�

�format nil �You A ! D�

�if �eq password joesentme� �win� �lose��

amount��

�wager �amount
��� � �You lose !
���

�wager �amount
�� secret joesentme� � �You win !
���

The secret word could be made even more secret in this example by placing
it in some other obscure package� so that one would have to write

�wager �amount
�� obscure�secret joesentme� � �You win !
���

to win anything�

In each keyword parameter speci�er must be a name var for the parameter

variable� If an explicit keyword is speci�ed� then that is the keyword name for
the parameter� Otherwise the name var serves to indicate the keyword name�

in that a keyword with the same name
in the keyword package� is used as

the keyword� Thus

�defun foo ��key radix �type integer�� ����

means exactly the same as

�defun foo ��key ���radix radix�� ���type type� integer�� ����

The keyword parameter speci�ers are� like all parameter speci�ers� e	ectively

processed from left to right� For each keyword parameter speci�er� if there is
an argument pair whose keyword name matches that speci�er�s keyword name

that is� the names are eq�� then the parameter variable for that speci�er is

bound to the second item
the value� of that argument pair� If more than one

such argument pair matches� it is not an error� the leftmost argument pair is
used� If no such argument pair exists� then the initform for that speci�er is

evaluated and the parameter variable is bound to that value
or to nil if no

initform was speci�ed�� The variable svar is treated as for ordinary optional

parameters� it is bound to true if there was a matching argument pair� and

to false otherwise�

PROGRAM STRUCTURE �	

It is an error if an argument pair has a keyword name not matched by any

parameter speci�er� unless at least one of the following two conditions is met�

� �allowotherkeys was speci�ed in the lambda�list�

� Somewhere among the keyword argument pairs is a pair whose keyword is
�allowotherkeys and whose value is not nil�

If either condition obtains� then it is not an error for an argument pair to

match no parameter speci�ed� and the argument pair is simply ignored
but
such an argument pair is accessible through the �rest parameter if one was

speci�ed�� The purpose of these mechanisms is to allow sharing of argument

lists among several functions and to allow either the caller or the called func�

tion to specify that such sharing may be taking place�

After all parameter speci�ers have been processed� the auxiliary variable

speci�ers
those following the lambda�list keyword �aux� are processed from

left to right� For each one� the initform is evaluated and the variable var
bound to that value
or to nil if no initform was speci�ed�� Nothing can be

done with �aux variables that cannot be done with the special form let
�

�lambda �x y �aux �a �car x�� �b �� c� ����

� �lambda �x y� �let
 ��a �car x�� �b �� c� �����

Which to use is purely a matter of style�

Whenever any initform is evaluated for any parameter speci�er� that form

may refer to any parameter variable to the left of the speci�er in which the
initform appears� including any supplied�p variables� and may rely on the

fact that no other parameter variable has yet been bound
including its own

parameter variable��

Once the lambda�list has been processed� the forms in the body of the

lambda�expression are executed� These forms may refer to the arguments to

the function by using the names of the parameters� On exit from the function�

either by a normal return of the function�s value
s� or by a non�local exit� the
parameter bindings� whether lexical or special� are no longer in e	ect�
The

bindings are not necessarily permanently discarded� for a lexical binding can

later be reinstated if a �closure� over that binding was created� perhaps by

using function� and saved before the exit occurred��

Examples of �optional and �rest parameters�

��lambda �a b� �� a �
 b ���� � �� �
�

��lambda �a �optional �b ��� �� a �
 b ���� � �� �
�

��lambda �a �optional �b ��� �� a �
 b ���� �� �
�

�
 COMMON LISP

��lambda ��optional �a � b� �c � d� �rest x� �list a b c d x���

� �� nil � nil nil�

��lambda ��optional �a � b� �c � d� �rest x� �list a b c d x��

��

� �� t � nil nil�

��lambda ��optional �a � b� �c � d� �rest x� �list a b c d x��

� ��

� �� t � t nil�

��lambda ��optional �a � b� �c � d� �rest x� �list a b c d x��

� � ��

� �� t � t ����

��lambda ��optional �a � b� �c � d� �rest x� �list a b c d x��

� � � �
�

�

� �� t � t �� �
�

��

Examples of �key parameters�

��lambda �a b �key c d� �list a b c d��
 ��

� �
 � nil nil�

��lambda �a b �key c d� �list a b c d��
 � �c ��

� �
 � � nil�

��lambda �a b �key c d� �list a b c d��
 � �d ��

� �
 � nil ��

��lambda �a b �key c d� �list a b c d��
 � �c � �d ��

� �
 � � ��

��lambda �a b �key c d� �list a b c d��
 � �d � �c ��

� �
 � � ��

��lambda �a b �key c d� �list a b c d�� �a
 �d � �c ��

� ��a
 � ��

��lambda �a b �key c d� �list a b c d�� �a �b �c �d�

� ��a �b �d nil�

Examples of mixtures�

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

� � �
 � nil
 ���

PROGRAM STRUCTURE ��

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

 �� � �
 � nil
 ���

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

�c 	� � ��c 	 nil �c ���

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

 � �c 	� � �
 � 	
 ��c 	��

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

 � �d �� � �
 � nil � ��d ���

��lambda �a �optional �b �� �rest x �key c �d a��

�list a b c d x��

 � �d � �c � �d
�� � �
 � � � ��d � �c � �d
���

All lambda�list keywords are permitted� but not terribly useful� in lambda�
expressions appearing explicitly as the �rst element of a function�call form�

They are extremely useful� however� in functions given global names by defun�

All symbols whose names begin with � are conventionally reserved for use

as lambda�list keywords and should not be used as variable names� Implemen�

tations of Common Lisp are free to provide additional lambda�list keywords�

�Constant �lambdalistkeywords

The value of lambdalistkeywords is a list of all the lambda�list keywords

used in the implementation� including the additional ones used only by

defmacro� This list must contain at least the symbols �optional� �rest�

�key� �allowotherkeys� �aux� �body� �whole� and �environment�

As an example of the use of �allowotherkeys and �allowotherkeys� con�

sider a function that takes two keyword arguments of its own and also accepts

additional keyword arguments to be passed to makearray�

�defun arrayofstrings �str dims �rest keywordpairs

�key �start �� end �allowotherkeys�

�apply ��� makearray dims

�initialelement �subseq str start end�

�� COMMON LISP

�allowotherkeys t

keywordpairs��

This function takes a string and dimensioning information and returns an

array of the speci�ed dimensions� each of whose elements is the speci�ed string�

However� �start and �end keyword arguments may be used in the usual

manner
see chapter ��� to specify that a substring of the given string should

be used� In addition� the presence of �allowotherkeys in the lambda�list
indicates that the caller may specify additional keyword arguments� the �rest

argument provides access to them� These additional keyword arguments are

fed to makearray� Now� makearray normally does not allow the keywords

�start and �end to be used� and it would be an error to specify such keyword
arguments to makearray� However� the presence in the call to makearray of

the keyword argument �allowotherkeys with a non�nil value causes any

extraneous keyword arguments� including �start and �end� to be acceptable

and ignored�

�Constant �lambdaparameterslimit

The value of lambdaparameterslimit is a positive integer that is the up�

per exclusive bound on the number of distinct parameter names that may

appear in a single lambda�list� This bound depends on the implementa�
tion but will not be smaller than ��� Implementors are encouraged to

make this limit as large as practicable without sacri�cing performance� See

callargumentslimit�

���� Top	Level Forms

The standard way for the user to interact with a Common Lisp implementation

is via a read�eval�print loop� the system repeatedly reads a form from some
input source
such as a keyboard or a disk �le�� evaluates it� and then prints

the value
s� to some output sink
such as a display screen or another disk �le��

Any form
evaluable data object� is acceptable� however� certain special forms

are speci�cally designed to be convenient for use as top�level forms� rather than

as forms embedded within other forms in the way that �� � �� is embedded
within �if p �� � �� ��� These top�level special forms may be used to

de�ne globally named functions� to de�ne macros� to make declarations� and

to de�ne global values for special variables�

It is not illegal to use these forms at other than top level� but whether it
��

is meaningful to do so depends on context� Compilers� for example� may not

��

PROGRAM STRUCTURE ��

recognize these forms properly in other than top�level contexts�
As a special

case� however� if a progn form appears at top level� then all forms within that

progn are considered by the compiler to be top�level forms��

�� COMMON LISP

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level

contexts� All de�ning forms that create functional objects from code ap�

pearing as argument forms must ensure that such argument forms refer to the

enclosing lexical environment� Compilers must handle de�ning forms properly
in all situations� not just top�level contexts� However� certain compile�time

side e	ects of these de�ning forms are performed only when the de�ning forms

occur at top level
see section ������

Compatibility note� In MacLisp� a top
level progn is considered to contain top

level forms only if the �rst form is �quote compile�� This odd marker is unnecessary
in Common Lisp�

Macros are usually de�ned by using the special form defmacro� This facility
is fairly complicated� it is described in chapter ��

������ De
ning Named Functions

The defun special form is the usual means of de�ning named functions�

�Macro�defun name lambda�list �� fdeclarationg� j doc�string �� f formg�

Evaluating a defun form causes the symbol name to be a global name for the

function speci�ed by the lambda�expression

�lambda lambda�list fdeclaration j docstringg� f formg� �
de�ned in the lexical environment in which the defun form was executed�

Because defun forms normally appear at top level� this is normally the null
lexical environment�

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level

contexts� defun must de�ne the function within the enclosing lexical environ�
ment� not within the null lexical environment�

X�J�� voted in March ���� h��i to extend defun to accept any function�

name
a symbol or a list whose car is setf!see section ���� as a name� Thus

one may write

�defun �setf cadr� ����

to de�ne a setf expansion function for cadr
although it may be much more

convenient to use defsetf or definemodifymacro��

PROGRAM STRUCTURE ��

If the optional documentation string doc�string is present� then it is attached

to the name as a documentation string of type function� see documentation�

If doc�string is not followed by a declaration� it may be present only if at least

one form is also speci�ed� as it is otherwise taken to be a form� It is an error

if more than one doc�string is present�

The forms constitute the body of the de�ned function� they are executed

as an implicit progn�

The body of the de�ned function is implicitly enclosed in a block construct

whose name is the same as the name of the function� Therefore returnfrom

may be used to exit from the function�

Other implementation�dependent bookkeeping actions may be taken as well

by defun� The name is returned as the value of the defun form� For example�

�defun discriminant �a b c�

�declare �number a b c��

�Compute the discriminant for a quadratic equation�

Given a� b� and c� the value b ��
a
c is calculated�

The quadratic equation a
x ��b
x�c� has real� multiple�

or complex roots depending on whether this calculated

value is positive� zero� or negative� respectively��

� �
 b b� �
 � a c���

� discriminant

and now �discriminant
 � � �� � 	� �

The documentation string in this example neglects to mention that the
coe�cients a� b� and c must be real for the discrimination criterion to hold�

Here is an improved version�

�Compute the discriminant for a quadratic equation�

Given a� b� and c� the value b ��
a
c is calculated�

If the coefficients a� b� and c are all real �that is�

not complex�� then the quadratic equation a
x ��b
x�c�

has real� multiple� or complex roots depending on

whether this calculated value is positive� zero� or

negative� respectively��

It is permissible to use defun to rede�ne a function� to install a corrected

version of an incorrect de�nition� for example� It is permissible to rede�ne

a macro as a function� It is an error to attempt to rede�ne the name of a

special form
see table ���� as a function�

�� COMMON LISP

������ Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally de�ned variables� The defconstant special form is used for de�ning

named constants�

�Macro�defvar name �initial�value �documentation� �
�Macro�defparameter name initial�value �documentation�

�Macro�defconstant name initial�value �documentation�

defvar is the recommended way to declare the use of a special variable in a

program�

�defvar variable�

proclaims variable to be special
see proclaim�� and may perform other

system�dependent bookkeeping actions�

X�J�� voted in June ���� h��i to clarify that if no initial�value form is
provided� defvar does not change the value of the variable� if no initial�value

form is provided and the variable has no value� defvar does not give it a

value�

If a second argument form is supplied�

�defvar variable initial�value�

then variable is initialized to the result of evaluating the form initial�value

unless it already has a value� The initial�value form is not evaluated unless it

is used� this fact is useful if evaluation of the initial�value form does something
expensive like creating a large data structure�

X�J�� voted in June ���� h��i to clarify that evaluation of the initial�value

and the initialization of the variable occur� if at all� at the time the defvar

form is executed� and that the initial�value form is evaluated if and only if

the variable does not already have a value�
The initialization is performed by assignment and thus assigns a global value

to the variable unless there are currently special bindings of that variable�

Normally there should not be any such special bindings�

defvar also provides a good place to put a comment describing the meaning
of the variable� whereas an ordinary special proclamation o	ers the tempta�

tion to declare several variables at once and not have room to describe them

all�

�defvar
visiblewindows
 �

�Number of windows at least partially visible on the screen��

PROGRAM STRUCTURE ��

defparameter is similar to defvar� but defparameter requires an initial�

value form� always evaluates the form� and assigns the result to the vari�

able� The semantic distinction is that defvar is intended to declare a vari�

able changed by the program� whereas defparameter is intended to declare a

variable that is normally constant but can be changed
possibly at run time��
where such a change is considered a change to the program� defparameter

therefore does not indicate that the quantity never changes� in particular�

it does not license the compiler to build assumptions about the value into

programs being compiled�

defconstant is like defparameter but does assert that the value of the vari�

able name is �xed and does license the compiler to build assumptions about
the value into programs being compiled�
However� if the compiler chooses to

replace references to the name of the constant by the value of the constant

in code to be compiled� perhaps in order to allow further optimization� the

compiler must take care that such �copies� appear to be eql to the object

that is the actual value of the constant� For example� the compiler may freely
make copies of numbers but must exercise care when the value is a list��

It is an error if there are any special bindings of the variable at the time the
defconstant form is executed
but implementations may or may not check

for this��

Once a name has been declared by defconstant to be constant� any further

assignment to or binding of that special variable is an error� This is the case for

such system�supplied constants as t and mostpositivefixnum� A compiler

may also choose to issue warnings about bindings of the lexical variable of the
same name�

X�J�� voted in January ���� h��i to clarify the preceding paragraph by
specifying that it is an error to rebind constant symbols as either lexical or

special variables� Consequently� a valid reference to a symbol declared with

defconstant always refers to its global value�
Unfortunately� this violates

the principle of referential transparency� for one cannot always choose names
for lexical variables without regard to surrounding context��

For any of these constructs� the documentation should be a string� The
string is attached to the name of the variable� parameter� or constant under

the variable documentation type� see the documentation function�

X�J�� voted in March ���� h��i to clarify that the documentation�string

is not evaluated but must appear as a literal string when the defvar�

defparameter� or defconstant form is evaluated�

For example� the form

�defvar
avoidregisters
 nil �Compilation control switch �������

�� COMMON LISP

is legitimate� but

�defvar
avoidregisters
 nil

�format nil �Compilation control switch ��� D�

�incf
compilerswitchnumber
���

is erroneous because the call to format is not a literal string�

On the other hand� the form

�defvar
avoidregisters
 nil

�����format nil �Compilation control switch ��� D�

�incf
compilerswitchnumber
���

might be used to accomplish the same purpose� because the call to format is
evaluated at read time� when the defvar form is evaluated� only the result

of the call to format� a string� appears in the defvar form��

These constructs are normally used only as top�level forms� The value

returned by each of these constructs is the name declared�

������ Control of Time of Evaluation

The evalwhen special form allows pieces of code to be executed only at
���

compile time� only at load time� or when interpreted but not compiled� Its

uses are relatively esoteric�

��

�Special form�evalwhen � fsituationg� � f formg�

The body of an evalwhen form is processed as an implicit progn� but only in
the situations listed� Each situation must be a symbol� either compile� load�

or eval�

eval speci�es that the interpreter should process the body� compile spec�

i�es that the compiler should evaluate the body at compile time in the com�

pilation context� load speci�es that the compiler should arrange to evaluate
the forms in the body when the compiled �le containing the evalwhen form

is loaded�

The evalwhen construct may be more precisely understood in terms of a

model of how the compiler processes forms in a �le to be compiled� Successive
forms are read from the �le using the function read� These top�level forms

are normally processed in what we shall call not�compile�time mode� There

is another mode called compile�time�too mode� The evalwhen special form

controls which of these two modes to use�

Every form is processed as follows�

��

PROGRAM STRUCTURE �	

� If the form is an evalwhen form�

� If the situation load is speci�ed�

If the situation compile is speci�ed� or if the current processing mode

is compile�time�too and the situation eval is speci�ed� then process

each of the forms in the body in compile�time�too mode�

Otherwise� process each of the forms in the body in not�compile�time

mode�

� If the situation load is not speci�ed�

If the situation compile is speci�ed� or if the current processing mode

is compile�time�too and the situation eval is speci�ed� then evaluate
each of the forms in the body in the compiler�s executing environment�

Otherwise� ignore the evalwhen form entirely�

� If the form is not an evalwhen form� then do two things� First� if the

current processing mode is compile�time�too mode� evaluate the form in

the compiler�s executing environment� Second� perform normal compiler

processing of the form
compiling functions de�ned by defun forms� and so
on��

One example of the use of evalwhen is that if the compiler is to be able
to properly read a �le that uses user�de�ned reader macro characters� it is

necessary to write

�evalwhen �compile load eval�

�setmacrocharacter ����! ��� �lambda �stream char�

�declare �ignore char��

�list dollar �read stream�����

This causes the call to setmacrocharacter to be executed in the compiler�s
execution environment� thereby modifying its reader syntax table�

X�J�� voted in March ���� h��i to completely redesign the evalwhen con�

struct to solve some problems concerning its treatment in other than top�level

contexts� The new de�nition is upward compatible with the old de�nition�

but the old keywords are deprecated�

�
 COMMON LISP

�Special form�evalwhen � fsituationg� � f formg�

The body of an evalwhen form is processed as an implicit progn� but

only in the situations listed� Each situation must be a symbol� either

�compiletoplevel� �loadtoplevel� or �execute�

The use of �compiletoplevel and �loadtoplevel controls whether and
when processing occurs for top�level forms� The use of �execute controls

whether processing occurs for non�top�level forms�

The evalwhen construct may be more precisely understood in terms of a

model of how the �le compiler� compilefile� processes forms in a �le to be

compiled�

Successive forms are read from the �le by the �le compiler using read�
These top�level forms are normally processed in what we call �not�compile�

time� mode� There is one other mode� called �compile�time�too� mode� which

can come into play for top�level forms� The evalwhen special form is used to

annotate a program in a way that allows the program doing the processing to
select the appropriate mode�

Processing of top�level forms in the �le compiler works as follows�

� If the form is a macro call� it is expanded and the result is processed as

a top�level form in the same processing mode
compile�time�too or not�

compile�time��

� If the form is a progn
or locally h���i� form� each of its body forms is

sequentially processed as top�level forms in the same processing mode�

� If the form is a compilerlet� macrolet� or symbolmacrolet� the �le com�
piler makes the appropriate bindings and recursively processes the body

forms as an implicit top�level progn with those bindings in e	ect� in the

same processing mode�

� If the form is an evalwhen form� it is handled according to the following
table�

LT CT EX CTTM Action

yes yes � � process body in compile�time�too mode

yes no yes yes process body in compile�time�too mode
yes no � no process body in not�compile�time mode

yes no no � process body in not�compile�time mode

no yes � � evaluate body

no no yes yes evaluate body

no no � no do nothing
no no no � do nothing

PROGRAM STRUCTURE ��

In the preceding table the column LT asks whether �loadtoplevel is one

of the situations speci�ed in the evalwhen form� CT similarly refers to

�compiletoplevel and EX to �execute� The column CTTM asks whether

the evalwhen form was encountered while in compile�time�too mode� The

phrase �process body� means to process the body as an implicit top�level
progn in the indicated mode� and �evaluate body� means to evaluate the

body forms sequentially as an implicit progn in the dynamic execution con�

text of the compiler and in the lexical environment in which the evalwhen

appears�

� Otherwise� the form is a top�level form that is not one of the special cases�

If in compile�time�too mode� the compiler �rst evaluates the form and then
performs normal compiler processing on it� If in not�compile�time mode�

only normal compiler processing is performed
see section ������ Any sub�

forms are treated as non�top�level forms�

Note that top�level forms are guaranteed to be processed in the order in

which they textually appear in the �le� and that each top�level form read

by the compiler is processed before the next is read� However� the order of
processing
including� in particular� macro expansion� of subforms that are

not top�level forms is unspeci�ed�

For an evalwhen form that is not a top�level form in the �le compiler
that

is� either in the interpreter� in compile� or in the �le compiler but not at top
level�� if the �execute situation is speci�ed� its body is treated as an implicit

progn� Otherwise� the body is ignored and the evalwhen form has the value

nil�

For the sake of backward compatibility� a situation may also be compile�

load� or eval� Within a top�level evalwhen form these have the same meaning

as �compiletoplevel� �loadtoplevel� and �execute� respectively� but their

e	ect is unde�ned when used in an evalwhen form that is not at top level�

The following e	ects are logical consequences of the preceding speci�cation�

� It is never the case that the execution of a single evalwhen expression will

execute the body code more than once�

� The old keyword eval was a misnomer because execution of the body need

not be done by eval� For example� when the function de�nition

�defun foo �� �evalwhen ��execute� �print foo���

is compiled the call to print should be compiled� not evaluated at compile

time�

�� COMMON LISP

� Macros intended for use in top�level forms should arrange for all side�e	ects

to be done by the forms in the macro expansion� The macro�expander itself

should not perform the side�e	ects�

�defmacro foo ��

�reallyfoo� �Wrong

�reallyfoo��

�defmacro foo ��

�evalwhen ��compiletoplevel

�loadtoplevel �execute� �Right

�reallyfoo���

Adherence to this convention will mean that such macros will behave intu�

itively when called in non�top�level positions�

� Placing a variable binding around an evalwhen reliably captures the binding

because the �compile�time�too� mode cannot occur
because the evalwhen

could not be a top�level form�� For example�

�let ��x ���

�evalwhen ��compiletoplevel �loadtoplevel �execute�

�print x���

will print � at execution
that is� load� time and will not print anything at

compile time� This is important so that expansions of defun and defmacro

can be done in terms of evalwhen and can correctly capture the lexical

environment� For example� an implementation might expand a defun form

such as

�defun bar �x� �defun foo �� �� x ����

into

PROGRAM STRUCTURE ��

�progn �evalwhen ��compiletoplevel�

�compiler��noticefunction bar �x���

�evalwhen ��loadtoplevel �execute�

�setf �symbolfunction bar�

��� �lambda �x�

�progn �evalwhen ��compiletoplevel�

�compiler��noticefunction foo

����

�evalwhen ��loadtoplevel �execute�

�setf �symbolfunction foo�

��� �lambda �� �� x ����������

which by the preceding rules would be treated the same as

�progn �evalwhen ��compiletoplevel�

�compiler��noticefunction bar �x���

�evalwhen ��loadtoplevel �execute�

�setf �symbolfunction bar�

��� �lambda �x�

�progn �evalwhen ��loadtoplevel �execute�

�setf �symbolfunction foo�

��� �lambda �� �� x ����������

Here are some additional examples�

�let ��x
��

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�setf �symbolfunction foo
� ��� �lambda �� x����

The evalwhen in the preceding expression is not at top level� so only the

�execute keyword is considered� At compile time� this has no e	ect� At

load time
if the let is at top level�� or at execution time
if the let is

embedded in some other form which does not execute until later�� this sets
�symbolfunction foo
� to a function that returns
�

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�let ��x ���

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�setf �symbolfunction foo�� ��� �lambda �� x�����

If the preceding expression occurs at the top level of a �le to be compiled� it

has both a compile time and a load�time e	ect of setting �symbolfunction

foo�� to a function that returns ��

��� COMMON LISP

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�setf �symbolfunction foo�� ��� �lambda �� ����

If the preceding expression occurs at the top level of a �le to be compiled� it

has both a compile time and a load�time e	ect of setting the function cell of

foo� to a function that returns ��

�evalwhen ��compiletoplevel�

�evalwhen ��compiletoplevel�

�print foo����

The preceding expression always does nothing� it simply returns nil�

�evalwhen ��compiletoplevel�

�evalwhen ��execute�

�print foo����

If the preceding form occurs at the top level of a �le to be compiled� foo�

is printed at compile time� If this form occurs in a non�top�level position�
nothing is printed at compile time� Regardless of context� nothing is ever

printed at load time or execution time�

�evalwhen ��execute �loadtoplevel�

�evalwhen ��compiletoplevel�

�print foo����

If the preceding form occurs at the top level of a �le to be compiled� foo�

is printed at compile time� If this form occurs in a non�top�level position�

nothing is printed at compile time� Regardless of context� nothing is ever
printed at load time or execution time�

�

Predicates

A predicate is a function that tests for some condition involving its arguments

and returns nil if the condition is false� or some non�nil value if the condition

is true� One may think of a predicate as producing a Boolean value� where
nil stands for false and anything else stands for true� Conditional control

structures such as cond� if� when� and unless test such Boolean values� We

say that a predicate is true when it returns a non�nil value� and is false when

it returns nil� that is� it is true or false according to whether the condition
being tested is true or false�

By convention� the names of predicates usually end in the letter p
which
stands for �predicate��� Common Lisp uses a uniform convention in hyphen�

ating names of predicates� If the name of the predicate is formed by adding

a p to an existing name� such as the name of a data type� a hyphen is placed

before the �nal p if and only if there is a hyphen in the existing name� For
example� number begets numberp but standardchar begets standardcharp�

On the other hand� if the name of a predicate is formed by adding a pre�x�

ing quali�er to the front of an existing predicate name� the two names are

joined with a hyphen and the presence or absence of a hyphen before the �nal

p is not changed� For example� the predicate stringlessp has no hyphen
before the p because it is the string version of lessp
a MacLisp function

that has been renamed � in Common Lisp�� The name stringlessp would

incorrectly imply that it is a predicate that tests for a kind of object called

a stringless� and the name stringlessp would connote a predicate that
tests whether something has no strings
is �stringless���

The control structures that test Boolean values only test for whether or not

the value is nil� which is considered to be false� Any other value is considered

to be true� Often a predicate will return nil if it �fails� and some useful value

if it �succeeds�� such a function can be used not only as a test but also for

the useful value provided in case of success� An example is member�

���

��� COMMON LISP

If no better non�nil value is available for the purpose of indicating success�

by convention the symbol t is used as the �standard� true value�

���� Logical Values

The names nil and t are constants in Common Lisp� Although they are

symbols like any other symbols� and appear to be treated as variables when

evaluated� it is not permitted to modify their values� See defconstant�

�Constant �nil

The value of nil is always nil� This object represents the logical false value

and also the empty list� It can also be written ���

�Constant �t

The value of t is always t�

���� Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data

types� that is� given a data object one can determine whether or not it belongs

to a given type� or one can compare two type speci�ers�

������ General Type Predicates

If a data type is viewed as the set of all objects belonging to the type� then
the typep function is a set membership test� while subtypep is a subset test�

�Function�typep object type

typep is a predicate that is true if object is of type type� and is false otherwise�

Note that an object can be �of� more than one type� since one type can
include another� The type may be any of the type speci�ers mentioned in

chapter � except that it may not be or contain a type speci�er list whose �rst

element is function or values� A speci�er of the form �satisfies fn� is

handled simply by applying the function fn to object
see funcall�� the object

is considered to be of the speci�ed type if the result is not nil�

PREDICATES ���

X�J�� voted in January ���� h�i to change typep to give specialized array

and complex type speci�ers the same meaning for purposes of type discrimi�

nation as they have for declaration purposes� Of course� this also applies to

such type speci�ers as vector and simplearray
see section ����� Thus

�typep foo �array bignum��

in the �rst edition asked the question� Is foo an array specialized to hold
bignums$ but under the new interpretation asks the question� Could the

array foo have resulted from giving bignum as the �elementtype argument

to makearray$

�Function�subtypep type� type�

The arguments must be type speci�ers that are acceptable to typep� The

two type speci�ers are compared� this predicate is true if type� is de�nitely a

not necessarily proper� subtype of type�� If the result is nil� however� then

type� may or may not be a subtype of type�
sometimes it is impossible to tell�
especially when satisfies type speci�ers are involved�� A second returned

value indicates the certainty of the result� if it is true� then the �rst value is an

accurate indication of the subtype relationship� Thus there are three possible

result combinations�

t t type� is de�nitely a subtype of type�

nil t type� is de�nitely not a subtype of type�

nil nil subtypep could not determine the relationship

X�J�� voted in January ���� h���i to place certain requirements upon the

implementation of subtypep� for it noted that implementations in many cases

simply �give up� and return the two values nil and nil when in fact it would
have been possible to determine the relationship between the given types�

The requirements are as follows� where it is understood that a type speci�er

s involves a type speci�er u if either s contains an occurrence of u directly or

s contains a type speci�er w de�ned by deftype whose expansion involves u�

� subtypep is not permitted to return a second value of nil unless one or

both of its arguments involves satisfies� and� or� not� or member�

� subtypep should signal an error when one or both of its arguments involves

values or the list form of the function type speci�er�

� subtypep must always return the two values t and t in the case where its

arguments� after expansion of speci�ers de�ned by deftype� are equal�

��� COMMON LISP

In addition� X�J�� voted to clarify that in some cases the relationships be�

tween types as re
ected by subtypep may be implementation�speci�c� For

example� in an implementation supporting only one type of
oating�point

number� �subtypep float longfloat� would return t and t� since the

two types would be identical�

Note that satisfies is an exception because relationships between types

involving satisfies are undecidable in general� but
as X�J�� noted� and�

or� not� and member are merely very messy to deal with� In all likelihood

these will not be addressed unless and until someone is willing to write a

careful speci�cation that covers all the cases for the processing of these type
speci�ers by subtypep� The requirements stated above were easy to state and

probably su�ce for most cases of interest�

X�J�� voted in January ���� h�i to change subtypep to give specialized

array and complex type speci�ers the same meaning for purposes of type

discrimination as they have for declaration purposes� Of course� this also
applies to such type speci�ers as vector and simplearray
see section �����

If A and B are type speci�ers
other than
� which technically is not a

type speci�er anyway�� then �array A� and �array B� represent the same

type in a given implementation if and only if they denote arrays of the same

specialized representation in that implementation� otherwise they are dis�
joint� To put it another way� they represent the same type if and only if

�upgradedarrayelementtype A� and �upgradedarrayelementtype B�

are the same type� Therefore

�subtypep �array A� �array B��

is true if and only if �upgradedarrayelementtype A� is the same type as

�upgradedarrayelementtype B��

The complex type speci�er is treated in a similar but subtly di	erent man�

ner� If A and B are two type speci�ers
but not
� which technically is not

a type speci�er anyway�� then �complex A� and �complex B� represent the
same type in a given implementation if and only if they refer to complex num�

bers of the same specialized representation in that implementation� otherwise

they are disjoint� Note� however� that there is no function called makecomplex

that allows one to specify a particular element type
then to be upgraded��
instead� one must describe specialized complex numbers in terms of the actual

types of the parts from which they were constructed� There is no number of

type
or rather� representation� float as such� there are only numbers of type

singlefloat� numbers of type doublefloat� and so on� Therefore we want

�complex singlefloat� to be a subtype of �complex float��

PREDICATES ��	

The rule� then� is that �complex A� and �complex B� represent the same

type
and otherwise are disjoint� in a given implementation if and only if

either the type A is a subtype of B� or �upgradedcomplexparttype A�

and �upgradedcomplexparttype B� are the same type� In the latter case

�complex A� and �complex B� in fact refer to the same specialized repre�
sentation� Therefore

�subtypep �complex A� �complex B��

is true if and only if the results of �upgradedcomplexparttype A� and

�upgradedcomplexparttype B� are the same type�

Under this interpretation

�subtypep �complex singlefloat� �complex float��

must be true in all implementations� but

�subtypep �array singlefloat� �array float��

is true only in implementations that do not have a specialized array repre�

sentation for singlefloat elements distinct from that for float elements in
general�

������ Speci
c Data Type Predicates

The following predicates test for individual data types�

�Function�null object

null is true if its argument is ��� and otherwise is false� This is the same
operation performed by the function not� however� not is normally used to

invert a Boolean value� whereas null is normally used to test for an empty

list� The programmer can therefore express intent by the choice of function

name�

�null x� � �typep x null� � �eq x ���

�Function�symbolp object

symbolp is true if its argument is a symbol� and otherwise is false�

�symbolp x� � �typep x symbol�

��
 COMMON LISP

Compatibility note� The Interlisp equivalent of symbolp is called litatom�

�Function�atom object

The predicate atom is true if its argument is not a cons� and otherwise is false�

Note that �atom ��� is true� because �� � nil�

�atom x� � �typep x atom� � �not �typep x cons��

Compatibility note� In some Lisp dialects� notably Interlisp� only symbols and
numbers are considered to be atoms� arrays and strings are considered to be neither
atoms nor lists �conses��

�Function�consp object

The predicate consp is true if its argument is a cons� and otherwise is false�
Note that the empty list is not a cons� so �consp ��� � �consp nil� �
nil�

�consp x� � �typep x cons� � �not �typep x atom��

Compatibility note� Some Lisp implementations call this function pairp or listp�
The name pairp was rejected for Common Lisp because it emphasizes too strongly
the dotted
pair notion rather than the usual usage of conses in lists� On the other
hand� listp too strongly implies that the cons is in fact part of a list� which after
all it might not be� moreover� �� is a list� though not a cons� The name consp seems
to be the appropriate compromise�

�Function�listp object

listp is true if its argument is a cons or the empty list ��� and otherwise is
false� It does not check for whether the list is a �true list�
one terminated

by nil� or a �dotted list�
one terminated by a non�null atom��

�listp x� � �typep x list� � �typep x �or cons null��

�Function�numberp object

numberp is true if its argument is any kind of number� and otherwise is false�

PREDICATES ���

�numberp x� � �typep x number�

�Function�integerp object

integerp is true if its argument is an integer� and otherwise is false�

�integerp x� � �typep x integer�

Compatibility note� In MacLisp this is called fixp� Users have been confused as
to whether this meant integerp or fixnump� and so the name integerp has been
adopted here�

�Function�rationalp object

rationalp is true if its argument is a rational number
a ratio or an integer��

and otherwise is false�

�rationalp x� � �typep x rational�

�Function�floatp object

floatp is true if its argument is a
oating�point number� and otherwise is

false�

�floatp x� � �typep x float�

�Function�realp object

X�J�� voted in March ���� h���i to add the function realp� realp is true if

its argument is a real number� and otherwise is false�

�realp x� � �typep x real�

�Function�complexp object

complexp is true if its argument is a complex number� and otherwise is false�

�complexp x� � �typep x complex�

�Function�characterp object

characterp is true if its argument is a character� and otherwise is false�

��� COMMON LISP

�characterp x� � �typep x character�

�Function�stringp object

stringp is true if its argument is a string� and otherwise is false�

�stringp x� � �typep x string�

�Function�bitvectorp object

bitvectorp is true if its argument is a bit�vector� and otherwise is false�

�bitvectorp x� � �typep x bitvector�

�Function�vectorp object

vectorp is true if its argument is a vector� and otherwise is false�

�vectorp x� � �typep x vector�

�Function�simplevectorp object

vectorp is true if its argument is a simple general vector� and otherwise is

false�

�simplevectorp x� � �typep x simplevector�

�Function�simplestringp object

simplestringp is true if its argument is a simple string� and otherwise is
false�

�simplestringp x� � �typep x simplestring�

�Function�simplebitvectorp object

simplebitvectorp is true if its argument is a simple bit�vector� and otherwise

is false�

�simplebitvectorp x� � �typep x simplebitvector�

�Function�arrayp object

arrayp is true if its argument is an array� and otherwise is false�

PREDICATES ���

�arrayp x� � �typep x array�

�Function�packagep object

packagep is true if its argument is a package� and otherwise is false�

�packagep x� � �typep x package�

�Function�functionp object

functionp is true if its argument is suitable for applying to arguments�
���

using for example the funcall or apply function� Otherwise functionp is
false�

functionp is always true of symbols� lists whose car is the symbol lambda�

any value returned by the function special form� and any values returned by

the function compile when the �rst argument is nil�

X�J�� voted in June ���� h��i to de�ne

�functionp x� � �typep x function�

Because the vote also speci�es that types cons and symbol are disjoint from

the type function� this is an incompatible change� now functionp is in fact

always false of symbols and lists�

�Function�compiledfunctionp object

compiledfunctionp is true if its argument is any compiled code object� and
otherwise is false�

�compiledfunctionp x� � �typep x compiledfunction�

�Function�commonp object
���

commonp is true if its argument is any standard Common Lisp data type� and

otherwise is false�

�commonp x� � �typep x common�

X�J�� voted in March ���� h��i to remove the predicate commonp
and the
type common� from the language�

See also standardcharp� stringcharp� streamp� randomstatep�

readtablep� hashtablep� and pathnamep�

��� COMMON LISP

���� Equality Predicates

Common Lisp provides a spectrum of predicates for testing for equality of two

objects� eq
the most speci�c�� eql� equal� and equalp
the most general��

eq and equal have the meanings traditional in Lisp� eql was added because

it is frequently needed� and equalp was added primarily in order to have a
version of equal that would ignore type di	erences when comparing numbers

and case di	erences when comparing characters� If two objects satisfy any

one of these equality predicates� then they also satisfy all those that are more

general�

�Function�eq x y

�eq x y� is true if and only if x and y are the same identical object�
Im�

plementationally� x and y are usually eq if and only if they address the same
identical memory location��

It should be noted that things that print the same are not necessarily eq to

each other� Symbols with the same print name usually are eq to each other

because of the use of the intern function� However� numbers with the same
value need not be eq� and two similar lists are usually not eq� For example�

�eq a b� is false�

�eq a a� is true�

�eq � �� might be true or false� depending on the implementation�
�eq � ���� is false�

�eq ��� ���� might be true or false� depending on the implementation�

�eq ���c�� �� ���c�� ���

might be true or false� depending on the implementation�
�eq ���c�� ���� ���c�� ��� is false�

�eq �cons a b� �cons a c�� is false�

�eq �cons a b� �cons a b�� is false�

�eq �a � b� �a � b�� might be true or false�

�progn �setq x �cons a b�� �eq x x�� is true�
�progn �setq x �a � b�� �eq x x�� is true�

�eq ����A ����A� might be true or false� depending on the implementation�

�eq �Foo� �Foo�� might be true or false�

�eq �Foo� �copyseq �Foo��� is false�
�eq �FOO� �foo�� is false�

In Common Lisp� unlike some other Lisp dialects� the implementation is per�

mitted to make �copies� of characters and numbers at any time�
This per�

mission is granted because it allows tremendous performance improvements

PREDICATES ���

in many common situations�� The net e	ect is that Common Lisp makes no

guarantee that eq will be true even when both its arguments are �the same

thing� if that thing is a character or number� For example�

�let ��x ��� �eq x x�� might be true or false�

The predicate eql is the same as eq� except that if the arguments are charac�

ters or numbers of the same type then their values are compared� Thus eql
tells whether two objects are conceptually the same� whereas eq tells whether

two objects are implementationally identical� It is for this reason that eql�

not eq� is the default comparison predicate for the sequence functions de�ned

in chapter ���

Implementation note� eq simply compares the two given pointers� so any kind
of object that is represented in an �immediate� fashion will indeed have like
valued
instances satisfy eq� In some implementations� for example� �xnums and characters
happen to �work�� However� no program should depend on this� as other implemen

tations of Common Lisp might not use an immediate representation for these data
types�

An additional problem with eq is that the implementation is permitted to
���

�collapse� constants
or portions thereof� appearing in code to be compiled
if they are equal� An object is considered to be a constant in code to be

compiled if it is a self�evaluating form or is contained in a quote form� This

is why �eq �Foo� �Foo�� might be true or false� in interpreted code it would

normally be false� because reading in the form �eq �Foo� �Foo�� would con�

struct distinct strings for the two arguments to eq� but the compiler might
choose to use the same identical string or two distinct copies as the two ar�

guments in the call to eq� Similarly� �eq �a � b� �a � b�� might be true

or false� depending on whether the constant conses appearing in the quote

forms were collapsed by the compiler� However� �eq �cons a b� �cons

a b�� is always false� because every distinct call to the cons function nec�

essarily produces a new and distinct cons�

X�J�� voted in March ���� h���i to clarify that eval and compile are
not permitted either to copy or to coalesce
�collapse�� constants
see eq�

appearing in the code they process� the resulting program behavior must refer

to objects that are eql to the corresponding objects in the source code� Only

the compilefile�load process is permitted to copy or coalesce constants
see

section ������

��� COMMON LISP

�Function�eql x y

The eql predicate is true if its arguments are eq� or if they are numbers of the

same type with the same value� or if they are character objects that represent

the same character� For example�

�eql a b� is false�
�eql a a� is true�

�eql � �� is true�

�eql � ���� is false�

�eql ��� ���� is true�

�eql ���c�� �� ���c�� ��� is true�
�eql ���c�� ���� ���c�� ��� is false�

�eql �cons a b� �cons a c�� is false�

�eql �cons a b� �cons a b�� is false�

�eql �a � b� �a � b�� might be true or false�
�progn �setq x �cons a b�� �eql x x�� is true�

�progn �setq x �a � b�� �eql x x�� is true�

�eql ����A ����A� is true�

�eql �Foo� �Foo�� might be true or false�

�eql �Foo� �copyseq �Foo��� is false�
�eql �FOO� �foo�� is false�

Normally �eql
��s�
��d�� would be false� under the assumption that

��s� and
��d� are of distinct data types� However� implementations that

do not provide four distinct
oating�point formats are permitted to �collapse�
the four formats into some smaller number of them� in such an implementation

�eql
��s�
��d�� might be true� The predicate will compare the values

of two numbers even if the numbers are of di	erent types�

If an implementation supports positive and negative zeros as distinct val�

ues
as in the IEEE proposed standard
oating�point format�� then �eql ���

���� will be false� Otherwise� when the syntax ��� is read it will be inter�

preted as the value ���� and so �eql ��� ���� will be true� The predicate

di	ers from eql in that � ��� ���� will always be true� because compares

the mathematical values of its operands� whereas eql compares the represen�

tational values� so to speak�

Two complex numbers are considered to be eql if their real parts are eql

and their imaginary parts are eql� For example� �eql ���C�� �� ���C�� ��� is

true and �eql ���C�� �� ���C���� ����� is false� Note that while �eql ���C����

���� ���� is false� �eql ���C�� �� �� is true� In the case of �eql ���C����

���� ���� the two arguments are of di	erent types and so cannot satisfy

PREDICATES ���

eql� that�s all there is to it� In the case of �eql ���C�� �� ��� however� ���C��

�� is not a complex number but is always automatically reduced by the rule

of complex canonicalization to the integer �� just as the apparent ratio �� �

is always simpli�ed to ��

The case of �eql �Foo� �Foo�� is discussed above in the description of

eq� While eql compares the values of numbers and characters� it does not

compare the contents of strings� To compare the characters of two strings�

one should use equal� equalp� string� or stringequal�

Compatibility note� The Common Lisp function eql is similar to the Interlisp
function eqp� However� eql considers � and ��
 to be di�erent� whereas eqp con

siders them to be the same� eqp behaves like the Common Lisp function� not like
eql� when both arguments are numbers�

�Function�equal x y

The equal predicate is true if its arguments are structurally similar
isomor�

phic� objects� A rough rule of thumb is that two objects are equal if and
only if their printed representations are the same�

Numbers and characters are compared as for eql� Symbols are compared

as for eq� This method of comparing symbols can violate the rule of thumb
for equal and printed representations� but only in the infrequently occurring

case of two distinct symbols with the same print name�

Certain objects that have components are equal if they are of the same
type and corresponding components are equal� This test is implemented in

a recursive manner and may fail to terminate for circular structures�

For conses� equal is de�ned recursively as the two car�s being equal and
the two cdr�s being equal�

Two arrays are equal only if they are eq� with one exception� strings and

bit�vectors are compared element�by�element� If either argument has a �ll

pointer� the �ll pointer limits the number of elements examined by equal�
Uppercase and lowercase letters in strings are considered by equal to be

distinct�
In contrast� equalp ignores case distinctions in strings��

Compatibility note� In Lisp Machine Lisp� equal ignores the di�erence between
uppercase and lowercase letters in strings� This violates the rule of thumb about
printed representations� however� which is very useful� especially to novices� It is
also inconsistent with the treatment of single characters� which in Lisp Machine Lisp
are represented as �xnums�

��� COMMON LISP

Two pathname objects are equal if and only if all the corresponding com�

ponents
host� device� and so on� are equivalent�
Whether or not uppercase

and lowercase letters are considered equivalent in strings appearing in com�

ponents depends on the �le name conventions of the �le system�� Pathnames

that are equal should be functionally equivalent�

X�J�� voted in June ���� h��i to clarify that equal never recursively de�

scends any structure or data type other than the ones explicitly described
above� conses� bit�vectors� strings� and pathnames� Numbers and characters

are compared as if by eql� and all other data objects are compared as if by

eq�

�equal a b� is false�

�equal a a� is true�
�equal � �� is true�

�equal � ���� is false�

�equal ��� ���� is true�

�equal ���c�� �� ���c�� ��� is true�
�equal ���c�� ���� ���c�� ��� is false�

�equal �cons a b� �cons a c�� is false�

�equal �cons a b� �cons a b�� is true�

�equal �a � b� �a � b�� is true�

�progn �setq x �cons a b�� �equal x x�� is true�
�progn �setq x �a � b�� �equal x x�� is true�

�equal ����A ����A� is true�

�equal �Foo� �Foo�� is true�

�equal �Foo� �copyseq �Foo��� is true�
�equal �FOO� �foo�� is false�

To compare a tree of conses using eql
or any other desired predicate� on the

leaves� use treeequal�

�Function�equalp x y

Two objects are equalp if they are equal� if they are characters and sat�

isfy charequal� which ignores alphabetic case and certain other attributes of

characters� if they are numbers and have the same numerical value� even if

they are of di	erent types� or if they have components that are all equalp�

Objects that have components are equalp if they are of the same type and

corresponding components are equalp� This test is implemented in a recursive

manner and may fail to terminate for circular structures� For conses� equalp

PREDICATES ��	

is de�ned recursively as the two car�s being equalp and the two cdr�s being

equalp�

Two arrays are equalp if and only if they have the same number of dimen�

sions� the dimensions match� and the corresponding components are equalp�

The specializations need not match� for example� a string and a general array

that happens to contain the same characters will be equalp
though de��
nitely not equal�� If either argument has a �ll pointer� the �ll pointer lim�

its the number of elements examined by equalp� Because equalp performs

element�by�element comparisons of strings and ignores the alphabetic case of

characters� case distinctions are therefore also ignored when equalp compares

strings�

Two symbols can be equalp only if they are eq� that is� the same identical

object�

X�J�� voted in June ���� h��i to specify that equalp compares compo�
nents of hash tables
see below�� and to clarify that otherwise equalp never

recursively descends any structure or data type other than the ones explicitly

described above� conses� arrays
including bit�vectors and strings�� and path�

names� Numbers are compared for numerical equality
see �� characters are

compared as if by charequal� and all other data objects are compared as if
by eq�

Two hash tables are considered the same by equalp if and only if they

satisfy a four�part test�

� They must be of the same kind� that is� equivalent �test arguments were

given to makehashtable when the two hash tables were created�

� They must have the same number of entries
see hashtablecount��

� For every entry
key�� value� � in one hash table there must be a corre�

sponding entry
key�� value� � in the other� such that key� and key� are

considered to be the same by the �test function associated with the hash

tables�

� For every entry
key�� value� � in one hash table and its corresponding entry

key�� value� � in the other� such that key� and key� are the same� equalp
must be true of value� and value��

The four parts of this test are carried out in the order shown� and if some

part of the test fails� equalp returns nil and the other parts of the test are

not attempted�

If equalp must compare two structures and the defstruct de�nition for

one used the �type option and the other did not� then equalp returns nil�

��
 COMMON LISP

If equalp must compare two structures and neither defstruct de�nition

used the �type option� then equalp returns t if and only if the structures

have the same type
that is� the same defstruct name� and the values of all

corresponding slots
slots having the same name� are equalp�

As part of the X�J�� discussion of this issue the following observations
were made� Object equality is not a concept for which there is a uniquely

determined correct algorithm� The appropriateness of an equality predicate

can be judged only in the context of the needs of some particular program�

Although these functions take any type of argument and their names sound

very generic� equal and equalp are not appropriate for every application�
Any decision to use or not use them should be determined by what they

are documented to do rather than by any abstract characterization of their

function� If neither equal nor equalp is found to be appropriate in a particu�

lar situation� programmers are encouraged to create another operator that is
appropriate rather than blame equal or equalp for �doing the wrong thing��

Note that one consequence of the vote to change the rules of
oating�point

contagion h��i
described in section ����� is to make equalp a true equivalence

relation on numbers�

�equalp a b� is false�
�equalp a a� is true�

�equalp � �� is true�

�equalp � ���� is true�

�equalp ��� ���� is true�

�equalp ���c�� �� ���c�� ��� is true�
�equalp ���c�� ���� ���c�� ��� is true�

�equalp �cons a b� �cons a c�� is false�

�equalp �cons a b� �cons a b�� is true�

�equalp �a � b� �a � b�� is true�
�progn �setq x �cons a b�� �equalp x x�� is true�

�progn �setq x �a � b�� �equalp x x�� is true�

�equalp ����A ����A� is true�

�equalp �Foo� �Foo�� is true�

�equalp �Foo� �copyseq �Foo��� is true�
�equalp �FOO� �foo�� is true�

���� Logical Operators

Common Lisp provides three operators on Boolean values� and� or� and not�

Of these� and and or are also control structures because their arguments

PREDICATES ���

are evaluated conditionally� The function not necessarily examines its single

argument� and so is a simple function�

�Function�not x

not returns t if x is nil� and otherwise returns nil� It therefore inverts its

argument considered as a Boolean value�

null is the same as not� both functions are included for the sake of clarity�

As a matter of style� it is customary to use null to check whether something

is the empty list and to use not to invert the sense of a logical value�

�Macro�and f formg�

�and form� form� ��� � evaluates each form� one at a time� from left to

right� If any form evaluates to nil� the value nil is immediately returned
without evaluating the remaining forms� If every form but the last evaluates

to a non�nil value� and returns whatever the last form returns� Therefore

in general and can be used both for logical operations� where nil stands for

false and non�nil values stand for true� and as a conditional expression� An

example follows�

�if �and �� n ��

�� n �length asimplevector��

�eq �elt asimplevector n� foo��

�princ �Foo����

The above expression prints Foo� if element n of asimplevector is the symbol

foo� provided also that n is indeed a valid index for asimplevector� Because
and guarantees left�to�right testing of its parts� elt is not called if n is out of

range�

To put it another way� the and special form does short�circuit Boolean

evaluation� like the and then operator in Ada and what in some Pascal�

like languages is called cand
for �conditional and��� the Lisp and special

form is unlike the Pascal or Ada and operator� which always evaluates both
arguments�

In the previous example writing

�and �� n ��

�� n �length asimplevector��

�eq �elt asimplevector n� foo�

�princ �Foo����

��� COMMON LISP

would accomplish the same thing� The di	erence is purely stylistic� Some pro�

grammers never use expressions containing side e	ects within and� preferring

to use if or when for that purpose�

From the general de�nition� one can deduce that �and x� � x� Also� �and�

evaluates to t� which is an identity for this operation�
One can de�ne and in terms of cond in this way�

�and x y z ��� w� � �cond ��not x� nil�

��not y� nil�

��not z� nil�

� � �

�t w��

See if and when� which are sometimes stylistically more appropriate than

and for conditional purposes� If it is necessary to test whether a predicate is
true of all elements of a list or vector
element � and element � and element

� and � � ��� then the function every may be useful�

�Macro�or f formg�

�or form� form� ��� � evaluates each form� one at a time� from left to

right� If any form other than the last evaluates to something other than nil�

or immediately returns that non�nil value without evaluating the remaining
forms� If every form but the last evaluates to nil� or returns whatever

evaluation of the last of the forms returns� Therefore in general or can be

used both for logical operations� where nil stands for false and non�nil values

stand for true� and as a conditional expression�
To put it another way� the or special form does short�circuit Boolean evalua�

tion� like the or else operator in Ada and what in some Pascal�like languages

is called cor
for �conditional or��� the Lisp or special form is unlike the

Pascal or Ada or operator� which always evaluates both arguments�

From the general de�nition� one can deduce that �or x� � x� Also� �or�
evaluates to nil� which is the identity for this operation�

One can de�ne or in terms of cond in this way�

�or x y z ��� w� � �cond �x� �y� �z� ��� �t w��

See if and unless� which are sometimes stylistically more appropriate than

or for conditional purposes� If it is necessary to test whether a predicate is

true of one or more elements of a list or vector
element � or element � or

element � or � � ��� then the function some may be useful�

�

Control Structure

Common Lisp provides a variety of special structures for organizing programs�

Some have to do with
ow of control
control structures�� while others con�
trol access to variables
environment structures�� Some of these features are

implemented as special forms� others are implemented as macros� which typ�

ically expand into complex program fragments expressed in terms of special

forms or other macros�

Function application is the primary method for construction of Lisp pro�
grams� Operations are written as the application of a function to its ar�

guments� Usually� Lisp programs are written as a large collection of small

functions� each of which implements a simple operation� These functions op�

erate by calling one another� and so larger operations are de�ned in terms
of smaller ones� Lisp functions may call upon themselves recursively� either

directly or indirectly�

Locally de�ned functions
flet� labels� and macros
macrolet� are quite

versatile� The new symbol macro facility allows even more syntactic
exibility�

While the Lisp language is more applicative in style than statement�

oriented� it nevertheless provides many operations that produce side e	ects

and consequently requires constructs for controlling the sequencing of side

e	ects� The construct progn� which is roughly equivalent to an Algol begin�
end block with all its semicolons� executes a number of forms sequentially�

discarding the values of all but the last� Many Lisp control constructs include

sequencing implicitly� in which case they are said to provide an �implicit

progn�� Other sequencing constructs include prog
 and prog��

For looping� Common Lisp provides the general iteration facility do as well
as a variety of special�purpose iteration facilities for iterating or mapping over

various data structures�

Common Lisp provides the simple one�way conditionals when and unless�

the simple two�way conditional if� and the more general multi�way condition�

���

��� COMMON LISP

als such as cond and case� The choice of which form to use in any particular

situation is a matter of taste and style�

Constructs for performing non�local exits with various scoping disciplines

are provided� block� return� returnfrom� catch� and throw�

The multiple�value constructs provide an e�cient way for a function to

return more than one value� see values�

���� Constants and Variables

Because some Lisp data objects are used to represent programs� one cannot
always notate a constant data object in a program simply by writing the

notation for the object unadorned� it would be ambiguous whether a constant

object or a program fragment was intended� The quote special form resolves

this ambiguity�

There are two kinds of variables in Common Lisp� in e	ect� ordinary vari�
ables and function names� There are some similarities between the two kinds�

and in a few cases there are similar functions for dealing with them� for ex�

ample boundp and fboundp� However� for the most part the two kinds of

variables are used for very di	erent purposes� one to name de�ned functions�
macros� and special forms� and the other to name data objects�

X�J�� voted in March ���� h��i to introduce the concept of a function�

name� which may be either a symbol or a two�element list whose �rst element

is the symbol setf and whose second element is a symbol� The primary pur�

pose of this is to allow setf expander functions to be CLOS generic functions

with user�de�ned methods� Many places in Common Lisp that used to re�
quire a symbol for a function name are changed to allow ��lists as well� for

example� defun is changed so that one may write �defun �setf foo� �����

and the function special form is changed to accept any function�name� See

also fdefinition�

By convention� any function named �setf f � should return its �rst argu�
ment as its only value� in order to preserve the speci�cation that setf returns

its newvalue� See setf�

Implementations are free to extend the syntax of function�names to include

lists beginning with additional symbols other than setf or lambda�

������ Reference

The value of an ordinary variable may be obtained simply by writing the

name of the variable as a form to be executed� Whether this is treated as the

CONTROL STRUCTURE ���

name of a special variable or a lexical variable is determined by the presence

or absence of an applicable special declaration� see chapter ��

The following functions and special forms allow reference to the values of

constants and variables in other ways�

�Special form�quote object

�quote x� simply returns x� The object is not evaluated and may be any Lisp
object whatsoever� This construct allows any Lisp object to be written as a

constant value in a program� For example�

�setq a ���

�list a �cons a ��� � ��� ��� � ���

�list �quote a� �quote �cons a ��� � �a �cons a ���

Since quote forms are so frequently useful but somewhat cumbersome to type�

a standard abbreviation is de�ned for them� any form f preceded by a single

quote
 � character is assumed to have �quote � wrapped around it to

make �quote f�� For example�

�setq x �the magic quote hack��

is normally interpreted by read to mean

�setq x �quote �the magic quote hack���

See section �������

X�J�� voted in January ���� h��i to clarify that it is an error to de�
structively modify any object that appears as a constant in executable code�

whether within a quote special form or as a self�evaluating form�

See section ���� for a discussion of how quoted constants are treated by the

compiler�

X�J�� voted in March ���� h���i to clarify that eval and compile are

not permitted either to copy or to coalesce
�collapse�� constants
see eq�
appearing in the code they process� the resulting program behavior must

refer to objects that are eql to the corresponding objects in the source code�

Moreover� the constraints introduced by the votes on issues h��i and h��i on
what kinds of objects may appear as constants apply only to compilefile

see section ������

��� COMMON LISP

�Special form�function fn

The value of function is always the functional interpretation of fn� fn is inter�

preted as if it had appeared in the functional position of a function invocation�

In particular� if fn is a symbol� the functional de�nition associated with that
symbol is returned� see symbolfunction� If fn is a lambda�expression� then a

�lexical closure� is returned� that is� a function that when invoked will execute

the body of the lambda�expression in such a way as to observe the rules of

lexical scoping properly�

X�J�� voted in June ���� h��i to specify that the result of a function spe�

cial form is always of type function� This implies that a form �function fn�

may be interpreted as �the �function fn���

It is an error to use the function special form on a symbol that does not

denote a function in the lexical or global environment in which the special
form appears� Speci�cally� it is an error to use the function special form on

a symbol that denotes a macro or special form� Some implementations may

choose not to signal this error for performance reasons� but implementations

are forbidden to extend the semantics of function in this respect� that is� an
implementation is not allowed to de�ne the failure to signal an error to be a

�useful� behavior�

X�J�� voted in March ���� h��i to extend function to accept any function�

name
a symbol or a list whose car is setf!see section ���� as well as lambda�

expressions� Thus one may write �function �setf cadr�� to refer to the
setf expansion function for cadr�

For example�

�defun adder �x� �function �lambda �y� �� x y����

The result of �adder �� is a function that will add � to its argument�

�setq add� �adder ���

�funcall add� �� � �

This works because function creates a closure of the inner lambda�expression
that is able to refer to the value � of the variable x even after control has

returned from the function adder�

More generally� a lexical closure in e	ect retains the ability to refer to

lexically visible bindings� not just values� Consider this code�

�defun twofuns �x�

�list �function �lambda �� x��

�function �lambda �y� �setq x y�����

CONTROL STRUCTURE ���

�setq funs �twofuns ���

�funcall �car funs�� � �

�funcall �cadr funs� ��� � ��

�funcall �car funs�� � ��

The function twofuns returns a list of two functions� each of which refers to

the binding of the variable x created on entry to the function twofuns when it

was called with argument �� This binding has the value � initially� but setq
can alter a binding� The lexical closure created for the �rst lambda�expression

does not �snapshot� the value � for x when the closure is created� The second

function can be used to alter the binding
to ��� in the example�� and this

altered value then becomes accessible to the �rst function�

In situations where a closure of a lambda�expression over the same set of
bindings may be produced more than once� the various resulting closures may

or may not be eq� at the discretion of the implementation� For example�

�let ��x �� �funs ����

�dotimes �j
��

�push ��� �lambda �z�

�if �null z� �setq x �� �� x z���

funs��

funs�

The result of the above expression is a list of ten closures� Each logically
requires only the binding of x� It is the same binding in each case� so the

ten closures may or may not be the same identical
eq� object� On the other

hand� the result of the expression

�let ��funs ����

�dotimes �j
��

�let ��x ���

�push �function �lambda �z�

�if �null z� �setq x �� �� x z����

funs���

funs�

is also a list of ten closures� However� in this case no two of the closures may

be eq� because each closure is over a distinct binding of x� and these bindings

can be behaviorally distinguished because of the use of setq�

The question of distinguishable behavior is important� the result of the

simpler expression

��� COMMON LISP

�let ��funs ����

�dotimes �j
��

�let ��x ���

�push �function �lambda �z� �� x z���

funs���

funs�

is a list of ten closures that may be pairwise eq� Although one might think
that a di	erent binding of x is involved for each closure
which is indeed the

case�� the bindings cannot be distinguished because their values are identical

and immutable� there being no occurrence of setq on x� A compiler would

therefore be justi�ed in transforming the expression to

�let ��funs ����

�dotimes �j
��

�push �function �lambda �z� �� � z���

funs��

funs�

where clearly the closures may be the same after all� The general rule� then�

is that the implementation is free to have two distinct evaluations of the same

function form produce identical
eq� closures if it can prove that the two
conceptually distinct resulting closures must in fact be behaviorally identical

with respect to invocation� This is merely a permitted optimization� a per�

fectly valid implementation might simply cause every distinct evaluation of a

function form to produce a new closure object not eq to any other�

Frequently a compiler can deduce that a closure in fact does not need to
close over any variable bindings� For example� in the code fragment

�mapcar �function �lambda �x� �� x ���� y�

the function �lambda �x� �� x ��� contains no references to any outside

entity� In this important special case� the same �closure� may be used as
the value for all evaluations of the function special form� Indeed� this value

need not be a closure object at all� it may be a simple compiled function

containing no environment information� This example is simply a special case

of the foregoing discussion and is included as a hint to implementors familiar
with previous methods of implementing Lisp� The distinction between closures

and other kinds of functions is somewhat pointless� actually� as Common Lisp

de�nes no particular representation for closures and no way to distinguish

between closures and non�closure functions� All that matters is that the rules

of lexical scoping be obeyed�

CONTROL STRUCTURE ��	

Since function forms are so frequently useful but somewhat cumbersome

to type� a standard abbreviation is de�ned for them� any form f preceded by

���
��� followed by an apostrophe� is assumed to have �function � wrapped

around it to make �function f�� For example�

�removeif ��� numberp �
 a b ���

is normally interpreted by read to mean

�removeif �function numberp� �
 a b ���

See section �������

�Function�symbolvalue symbol

symbolvalue returns the current value of the dynamic
special� variable

named by symbol� An error occurs if the symbol has no value� see boundp

and makunbound� Note that constant symbols are really variables that cannot

be changed� and so symbolvalue may be used to get the value of a named

constant� In particular� symbolvalue of a keyword will return that keyword�
symbolvalue cannot access the value of a lexical variable�

This function is particularly useful for implementing interpreters for lan�

guages embedded in Lisp� The corresponding assignment primitive is set�

alternatively� symbolvalue may be used with setf�

�Function�symbolfunction symbol

symbolfunction returns the current global function de�nition named by sym�
bol� An error is signalled if the symbol has no function de�nition� see fboundp�

Note that the de�nition may be a function or may be an object representing

a special form or macro� In the latter case� however� it is an error to attempt

to invoke the object as a function� If it is desired to process macros� special

forms� and functions equally well� as when writing an interpreter� it is best
�rst to test the symbol with macrofunction and specialformp and then to

invoke the functional value only if these two tests both yield false�

This function is particularly useful for implementing interpreters for lan�

guages embedded in Lisp�
symbolfunction cannot access the value of a lexical function name pro�

duced by flet or labels� it can access only the global function value�

The global function de�nition of a symbol may be altered by using setf

with symbolfunction� Performing this operation causes the symbol to have

only the speci�ed de�nition as its global function de�nition� any previous

��
 COMMON LISP

de�nition� whether as a macro or as a function� is lost� It is an error to

attempt to rede�ne the name of a special form
see table �����

X�J�� voted in June ���� h��i to clarify the behavior of symbolfunction

in the light of the rede�nition of the type function�

� It is permissible to call symbolfunction on any symbol for which fboundp

returns true� Note that fboundp must return true for a symbol naming a
macro or a special form�

� If fboundp returns true for a symbol but the symbol denotes a macro or

special form� then the value returned by symbolfunction is not well�de�ned

but symbolfunction will not signal an error�

� When symbolfunction is used with setf the new value must be of type
function� It is an error to set the symbolfunction of a symbol to a symbol�

a list� or the value returned by symbolfunction on the name of a macro or

a special form�

�Function�fdefinition functionname

X�J�� voted in March ���� h��i to add the function fdefinition to the

language� It is exactly like symbolfunction except that its argument may be
any function�name
a symbol or a list whose car is setf!see section ����� it

returns the current global function de�nition named by the argument function�

name� One may use fdefinition with setf to change the current global

function de�nition associated with a function�name�

�Function�boundp symbol

boundp is true if the dynamic
special� variable named by symbol has a value�
otherwise� it returns nil�

See also set and makunbound�

�Function�fboundp symbol

fboundp is true if the symbol has a global function de�nition� Note

that fboundp is true when the symbol names a special form or macro�
macrofunction and specialformp may be used to test for these cases�

X�J�� voted in June ���� h��i to emphasize that� despite the tightening

of the de�nition of the type function� fboundp must return true when the

argument names a special form or macro�

See also symbolfunction and fmakunbound�

CONTROL STRUCTURE ���

X�J�� voted in March ���� h��i to extend fboundp to accept any function�

name
a symbol or a list whose car is setf!see section ����� Thus one

may write �fboundp �setf cadr�� to determine whether a setf expansion

function has been globally de�ned for cadr�

�Function�specialformp symbol

The function specialformp takes a symbol� If the symbol globally names a

special form� then a non�nil value is returned� otherwise nil is returned� A

returned non�nil value is typically a function of implementation�dependent

nature that can be used to interpret
evaluate� the special form�

It is possible for both specialformp and macrofunction to be true of a

symbol� This is possible because an implementation is permitted to implement
any macro also as a special form for speed� On the other hand� the macro

de�nition must be available for use by programs that understand only the

standard special forms listed in table ����

������ Assignment

The following facilities allow the value of a variable
more speci�cally� the

value associated with the current binding of the variable� to be altered� Such

alteration is di	erent from establishing a new binding� Constructs for estab�

lishing new bindings of variables are described in section ����

�Special form�setq fvar formg�

The special form �setq var� form� var� form� ���� is the �simple variable

assignment statement� of Lisp� First form� is evaluated and the result is

stored in the variable var�� then form� is evaluated and the result stored in

var�� and so forth� The variables are represented as symbols� of course� and
are interpreted as referring to static or dynamic instances according to the

usual rules� Therefore setq may be used for assignment of both lexical and

special variables�

setq returns the last value assigned� that is� the result of the evaluation of

its last argument� As a boundary case� the form �setq� is legal and returns

nil� There must be an even number of argument forms� For example� in

�setq x �� � �
� y �cons x nil��

��� COMMON LISP

x is set to �� y is set to ���� and the setq returns ���� Note that the �rst

assignment is performed before the second form is evaluated� allowing that

form to use the new value of x�

See also the description of setf� the Common Lisp �general assignment

statement� that is capable of assigning to variables� array elements� and other
locations�

Some programmers choose to avoid setq as a matter of style� always using

setf for any kind of structure modi�cation� Others use setq with simple

variable names and setf with all other generalized variables�

X�J�� voted in March ���� h���i to specify that if any var refers not to an
ordinary variable but to a binding made by symbolmacrolet� then that var

is handled as if setf had been used instead of setq�

�Macro�psetq fvar formg�

A psetq form is just like a setq form� except that the assignments happen in

parallel� First all of the forms are evaluated� and then the variables are set to

the resulting values� The value of the psetq form is nil� For example�

�setq a
�

�setq b ��

�psetq a b b a�

a � �

b �

In this example� the values of a and b are exchanged by using parallel assign�
ment�
If several variables are to be assigned in parallel in the context of a

loop� the do construct may be appropriate��

See also the description of psetf� the Common Lisp �general parallel as�

signment statement� that is capable of assigning to variables� array elements�

and other locations�
X�J�� voted in March ���� h���i to specify that if any var refers not to an

ordinary variable but to a binding made by symbolmacrolet� then that var

is handled as if psetf had been used instead of psetq�

�Function�set symbol value

set allows alteration of the value of a dynamic
special� variable� set causes

the dynamic variable named by symbol to take on value as its value�

X�J�� voted in January ���� h�i to clarify that the value may be any Lisp

datum whatsoever�

CONTROL STRUCTURE ���

Only the value of the current dynamic binding is altered� if there are no

bindings in e	ect� the most global value is altered� For example�

�set �if �eq a b� c d� foo�

will either set c to foo or set d to foo� depending on the outcome of the test

�eq a b��

set returns value as its result�

set cannot alter the value of a local
lexically bound� variable� The special

form setq is usually used for altering the values of variables
lexical or dy�

namic� in programs� set is particularly useful for implementing interpreters
for languages embedded in Lisp� See also progv� a construct that performs

binding rather than assignment of dynamic variables�

�Function�makunbound symbol

�Function�fmakunbound symbol

makunbound causes the dynamic
special� variable named by symbol to become

unbound
have no value�� fmakunbound does the analogous thing for the
global function de�nition named by symbol� For example�

�setq a
�

a �

�makunbound a�

a � causes an error

�defun foo �x� �� x
��

�foo �� � �

�fmakunbound foo�

�foo �� � causes an error

Both functions return symbol as the result value�

X�J�� voted in March ���� h��i to extend fmakunbound to accept any
function�name
a symbol or a list whose car is setf!see section ����� Thus

one may write �fmakunbound �setf cadr�� to remove any global de�nition

of a setf expansion function for cadr�

���� Generalized Variables

In Lisp� a variable can remember one piece of data� that is� one Lisp object�

The main operations on a variable are to recover that object and to alter the

��� COMMON LISP

variable to remember a new object� these operations are often called access

and update operations� The concept of variables named by symbols can be

generalized to any storage location that can remember one piece of data� no

matter how that location is named� Examples of such storage locations are

the car and cdr of a cons� elements of an array� and components of a structure�

For each kind of generalized variable� typically there are two functions that

implement the conceptual access and update operations� For a variable� merely

mentioning the name of the variable accesses it� while the setq special form

can be used to update it� The function car accesses the car of a cons� and the
function rplaca updates it� The function symbolvalue accesses the dynamic

value of a variable named by a given symbol� and the function set updates

it�

Rather than thinking about two distinct functions that respectively access
and update a storage location somehow deduced from their arguments� we

can instead simply think of a call to the access function with given arguments

as a name for the storage location� Thus� just as x may be considered a name

for a storage location
a variable�� so �car x� is a name for the car of some
cons
which is in turn named by x�� Now� rather than having to remember

two functions for each kind of generalized variable
having to remember� for

example� that rplaca corresponds to car�� we adopt a uniform syntax for

updating storage locations named in this way� using the setf macro� This is

analogous to the way we use the setq special form to convert the name of a
variable
which is also a form that accesses it� into a form that updates it�

The uniformity of this approach is illustrated in the following table�

Access Function Update Function Update Using setf

x �setq x datum� �setf x datum�

�car x� �rplaca x datum� �setf �car x� datum�

�symbolvalue x� �set x datum� �setf �symbolvalue x� datum�

setf is actually a macro that examines an access form and produces a call to

the corresponding update function�

Given the existence of setf in Common Lisp� it is not necessary to have
setq� rplaca� and set� they are redundant� They are retained in Common

Lisp because of their historical importance in Lisp� However� most other

update functions
such as putprop� the update function for get� have been

eliminated from Common Lisp in the expectation that setf will be uniformly

used in their place�

CONTROL STRUCTURE ���

�Macro�setf fplace newvalueg�

�setf place newvalue� takes a form place that when evaluated accesses a

data object in some location and �inverts� it to produce a corresponding

form to update the location� A call to the setf macro therefore expands into
an update form that stores the result of evaluating the form newvalue into

the place referred to by the access form�

If more than one place�newvalue pair is speci�ed� the pairs are processed

sequentially� that is�

�setf place� newvalue�

place� newvalue��
���

placen newvaluen�

is precisely equivalent to

�progn �setf place� newvalue��

�setf place� newvalue��

���

�setf placen newvaluen��

For consistency� it is legal to write �setf�� which simply returns nil�

The form place may be any one of the following�

� The name of a variable
either lexical or dynamic��

� A function call form whose �rst element is the name of any one of the
following functions�

aref car svref

nth cdr get

elt caar getf symbolvalue

rest cadr gethash symbolfunction

first cdar documentation symbolplist

second cddr fillpointer macrofunction

third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr

��� COMMON LISP

X�J�� voted in March ���� h�i to add rowmajoraref to this list�

X�J�� voted in June ���� h��i to add compilermacrofunction to this list�

X�J�� voted in March ���� h��i to clarify that this rule applies only when

the function name refers to a global function de�nition and not to a locally
de�ned function or macro�

� A function call form whose �rst element is the name of a selector function

constructed by defstruct�

X�J�� voted in March ���� h��i to clarify that this rule applies only when
the function name refers to a global function de�nition and not to a locally

de�ned function or macro�

� A function call form whose �rst element is the name of any one of the

following functions� provided that the new value is of the speci�ed type so

CONTROL STRUCTURE ���

that it can be used to replace the speci�ed �location�
which is in each of

these cases not truly a generalized variable��

Function Name Required Type

char stringchar

schar stringchar

bit bit

sbit bit

subseq sequence
���

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

rede�ne string to be the union of one or more specialized vector types�

the types of whose elements are subtypes of the type character� In the

preceding table� the type stringchar should be replaced by some such
phrase as �the element�type of the argument vector��

X�J�� voted in March ���� h��i to clarify that this rule applies only when

the function name refers to a global function de�nition and not to a locally

de�ned function or macro�

In the case of subseq� the replacement value must be a sequence whose

elements may be contained by the sequence argument to subseq�
Note

that this is not so stringent as to require that the replacement value be

a sequence of the same type as the sequence of which the subsequence is

speci�ed�� If the length of the replacement value does not equal the length
of the subsequence to be replaced� then the shorter length determines the

number of elements to be stored� as for the function replace�

� A function call form whose �rst element is the name of any one of the

following functions� provided that the speci�ed argument to that function

is in turn a place form� in this case the new place has stored back into it

the result of applying the speci�ed �update� function
which is in each of
these cases not a true update function��

Function Name Argument That Is a place Update Function Used

charbit �rst setcharbit

ldb second dpb

maskfield second depositfield

X�J�� voted in March ���� h��i to eliminate charbit and setcharbit�

X�J�� voted in March ���� h��i to clarify that this rule applies only when

the function name refers to a global function de�nition and not to a locally

��� COMMON LISP

de�ned function or macro�

� A the type declaration form� in which case the declaration is transferred to

the newvalue form� and the resulting setf form is analyzed� For example�

�setf �the integer �cadr x�� �� y ���

is processed as if it were

�setf �cadr x� �the integer �� y ����

� A call to apply where the �rst argument form is of the form ��� name� that
is� �function name�� where name is the name of a function� calls to which

are recognized as places by setf� Suppose that the use of setf with apply

looks like this�

�setf �apply ��� name x� x� ��� xn rest� x��

The setf method for the function name must be such that

�setf �name z� z� ��� zm� z��

expands into a store form

�storefn zi� zi� ��� zik zm�

That is� it must expand into a function call such that all arguments but

the last may be any permutation or subset of the new value z� and the

arguments of the access form� but the last argument of the storing call must
be the same as the last argument of the access call� See definesetfmethod

for more details on accessing and storing forms�

Given this� the setf�of�apply form shown above expands into

�apply ��� storefn xi� xi� ��� xik rest�

As an example� suppose that the variable indexes contains a list of sub�
scripts for a multidimensional array foo whose rank is not known until run

time� One may access the indicated element of the array by writing

�apply ��� aref foo indexes�

and one may alter the value of the indicated element to that of newvalue

by writing

�setf �apply ��� aref foo indexes� newvalue�

CONTROL STRUCTURE ��	

X�J�� voted in March ���� h��i to clarify that this rule applies only when

the function name apply refers to the global function de�nition and not to

a locally de�ned function or macro named apply�

� A macro call� in which case setf expands the macro call and then analyzes

the resulting form�

X�J�� voted in March ���� h��i to clarify that this step uses macroexpand
�

not macroexpand� This allows the chance to apply any of the rules preceding
this one to any of the intermediate expansions�

� Any form for which a defsetf or definesetfmethod declaration has been

made�

X�J�� voted in March ���� h��i to clarify that this rule applies only when

the function name in the form refers to a global function de�nition and not

to a locally de�ned function or macro�

X�J�� voted in March ���� h��i to add one more rule to the preceding list�
coming after all those listed above�

� Any other list whose �rst element is a symbol
call it f �� In this case� the

call to setf expands into a call to the function named by the list �setf f �

see section ����� The �rst argument is the new value and the remaining

arguments are the values of the remaining elements of place� This expansion
occurs regardless of whether either f or �setf f � is de�ned as a function

locally� globally� or not at all� For example�

�setf �f arg� arg� ���� newvalue�

expands into a form with the same e	ect and value as

�let ������temp
 arg�� �Force correct order of evaluation

�����temp� arg��

���

�����temp� newvalue��

�funcall �function �setf f ��

����temp�

����temp

����temp� �����

By convention� any function named �setf f � should return its �rst ar�

gument as its only value� in order to preserve the speci�cation that setf

returns its newvalue�

X�J�� voted in March ���� h���i to add this case as well�

��
 COMMON LISP

� A variable reference that refers to a symbol macro de�nition made by

symbolmacrolet� in which case setf expands the reference and then ana�

lyzes the resulting form�

CONTROL STRUCTURE ���

setf carefully arranges to preserve the usual left�to�right order in which

the various subforms are evaluated� On the other hand� the exact expansion

for any particular form is not guaranteed and may even be implementation�

dependent� all that is guaranteed is that the expansion of a setf form will be

an update form that works for that particular implementation� and that the
left�to�right evaluation of subforms is preserved�

The ultimate result of evaluating a setf form is the value of newvalue�

Therefore �setf �car x� y� does not expand into precisely �rplaca x y��

but into something more like

�let ��G
 x� �G� y�� �rplaca G
 G�� G��

the precise expansion being implementation�dependent�

The user can de�ne new setf expansions by using defsetf�

X�J�� voted in June ���� h���i to extend the speci�cation of setf to

allow a place whose setf method has more than one store variable
see
definesetfmethod�� In such a case as many values are accepted from the

newvalue form as there are store variables� extra values are ignored and miss�

ing values default to nil� as is usual in situations involving multiple values�

A proposal was submitted to X�J�� in September ���� to add a setf

method for values so that one could in fact write� for example�

�setf �values quotient remainder�

�truncate linewidth tabstop��

but unless this proposal is accepted users will have to de�ne a setf method

for values themselves
not a di�cult task��

�Macro�psetf fplace newvalueg�

psetf is like setf except that if more than one place�newvalue pair is speci�ed�

then the assignments of new values to places are done in parallel� More

precisely� all subforms that are to be evaluated are evaluated from left to
right� after all evaluations have been performed� all of the assignments are

performed in an unpredictable order�
The unpredictability matters only if

more than one place form refers to the same place�� psetf always returns

nil�
X�J�� voted in June ���� h���i to extend the speci�cation of psetf to

allow a place whose setf method has more than one store variable
see

definesetfmethod�� In such a case as many values are accepted from the

newvalue form as there are store variables� extra values are ignored and miss�

ing values default to nil� as is usual in situations involving multiple values�

��� COMMON LISP

�Macro�shiftf fplaceg� newvalue

Each place form may be any form acceptable as a generalized variable to

setf� In the form �shiftf place� place� ��� placen newvalue�� the values
in place� through placen are accessed and saved� and newvalue is evaluated�

for a total of n # � values in all� Values � through n # � are then stored into

place� through placen� and value �
the original value of place�� is returned�

It is as if all the places form a shift register� the newvalue is shifted in from

the right� all values shift over to the left one place� and the value shifted out
of place� is returned� For example�

�setq x �list a b c�� � �a b c�

�shiftf �cadr x� z� � b

and now x � �a z c�

�shiftf �cadr x� �cddr x� q� � z

and now x � �a �c� � q�

The e	ect of �shiftf place� place� ��� placen newvalue� is equivalent to

�let ��var� place��
�var� place��

���

�varn placen��

�setf place� var��

�setf place� var��
���

�setf placen newvalue�

var��

except that the latter would evaluate any subforms of each place twice�

whereas shiftf takes care to evaluate them only once� For example�

�setq n ��

�setq x �a b c d��

�shiftf �nth �setq n �� n
�� x� z� � b

and now x � �a z c d�

but

�setq n ��

�setq x �a b c d��

CONTROL STRUCTURE ���

�prog
 �nth �setq n �� n
�� x�

�setf �nth �setq n �� n
�� x� z�� � b

and now x � �a b z d�

Moreover� for certain place forms shiftf may be signi�cantly more e�cient

than the prog
 version�

X�J�� voted in June ���� h���i to extend the speci�cation of shiftf

to allow a place whose setf method has more than one store variable
see

definesetfmethod�� In such a case as many values are accepted from the
newvalue form as there are store variables� extra values are ignored and miss�

ing values default to nil� as is usual in situations involving multiple values�

Rationale� shiftf and rotatef have been included in Common Lisp as generaliza

tions of two
argument versions formerly called swapf and exchf� The two
argument
versions have been found to be very useful� but the names were easily confused� The
generalization to many argument forms and the change of names were both inspired
by the work of Suzuki ����� which indicates that use of these primitives can make
certain complex pointer
manipulation programs clearer and easier to prove correct�

�Macro�rotatef fplaceg�

Each place form may be any form acceptable as a generalized variable to

setf� In the form �rotatef place� place� ��� placen�� the values in place�

through placen are accessed and saved� Values � through n and value � are

then stored into place� through placen� It is as if all the places form an end�
around shift register that is rotated one place to the left� with the value of

place� being shifted around the end to placen� Note that �rotatef place�

place�� exchanges the contents of place� and place��

The e	ect of �rotatef place� place� ��� placen� is roughly equivalent to

�psetf place� place�
place� place�

���

placen place��

except that the latter would evaluate any subforms of each place twice�

whereas rotatef takes care to evaluate them only once� Moreover� for certain

place forms rotatef may be signi�cantly more e�cient�

rotatef always returns nil�

X�J�� voted in June ���� h���i to extend the speci�cation of rotatef

to allow a place whose setf method has more than one store variable
see

��� COMMON LISP

definesetfmethod�� In such a case as many values are accepted from the

newvalue form as there are store variables� extra values are ignored and miss�

ing values default to nil� as is usual in situations involving multiple values�

Other macros that manipulate generalized variables include getf� remf�

incf� decf� push� pop� assert� ctypecase� and ccase�

Macros that manipulate generalized variables must guarantee the �obvious�

semantics� subforms of generalized�variable references are evaluated exactly
as many times as they appear in the source program� and they are evaluated

in exactly the same order as they appear in the source program�

In generalized�variable references such as shiftf� incf� push� and setf of

ldb� the generalized variables are both read and written in the same refer�

ence� Preserving the source program order of evaluation and the number of

evaluations is particularly important�

As an example of these semantic rules� in the generalized�variable refer�

ence �setf reference value� the value form must be evaluated after all the
subforms of the reference because the value form appears to the right of them�

The expansion of these macros must consist of code that follows these rules

or has the same e	ect as such code� This is accomplished by introducing tem�

porary variables bound to the subforms of the reference� As an optimization

in the implementation� temporary variables may be eliminated whenever it

can be proved that removing them has no e	ect on the semantics of the pro�
gram� For example� a constant need never be saved in a temporary variable�

A variable� or for that matter any form that does not have side e	ects� need

not be saved in a temporary variable if it can be proved that its value will not

change within the scope of the generalized�variable reference�

Common Lisp provides built�in facilities to take care of these semantic com�

plications and optimizations� Since the required semantics can be guaranteed
by these facilities� the user does not have to worry about writing correct code

for them� especially in complex cases� Even experts can become confused and

make mistakes while writing this sort of code�

X�J�� voted in March ���� h���i to clarify the preceding discussion about

the order of evaluation of subforms in calls to setf and related macros� The

general intent is clear� evaluation proceeds from left to right whenever possi�
ble� However� the left�to�right rule does not remove the obligation on writers

of macros and definesetfmethod to work to ensure left�to�right order of

evaluation�

Let it be emphasized that� in the following discussion� a form is something

whose syntactic use is such that it will be evaluated� A subform means a form

that is nested inside another form� not merely any Lisp object nested inside

CONTROL STRUCTURE ���

a form regardless of syntactic context�

The evaluation ordering of subforms within a generalized variable refer�

ence is determined by the order speci�ed by the second value returned by

getsetfmethod� For all prede�ned generalized variable references
getf�

ldb�� this order of evaluation is exactly left�to�right� When a generalized

variable reference is derived from a macro expansion� this rule is applied after
the macro is expanded to �nd the appropriate generalized variable reference�

This is intended to make it clear that if the user writes a defmacro or

definesetfmethodmacro that doesn�t preserve left�to�right evaluation order�

the order speci�ed in the user�s code holds� For example� given

�defmacro wrongorder �x y� �getf �y �x��

then

�push value �wrongorder place� place���

will evaluate place� �rst and then place� because that is the order they are

evaluated in the macro expansion�

For the macros that manipulate generalized variables
push� pushnew� getf�
remf� incf� decf� shiftf� rotatef� psetf� setf� pop� and those de�ned

with definemodifymacro� the subforms of the macro call are evaluated ex�

actly once in left�to�right order� with the subforms of the generalized variable

references evaluated in the order speci�ed above�

Each of push� pushnew� getf� remf� incf� decf� shiftf� rotatef� psetf�

and pop evaluates all subforms before modifying any of the generalized vari�
able locations� Moreover� setf itself� in the case when a call on it has more

than two arguments� performs its operation on each pair in sequence� That

is� in

�setf place� value� place� value� ����

the subforms of place� and value� are evaluated� the location speci�ed by

place� is modi�ed to contain the value returned by value�� and then the rest
of the setf form is processed in a like manner�

For the macros checktype� ctypecase� and ccase� subforms of the general�

ized variable reference are evaluated once per test of a generalized variable� but

they may be evaluated again if the type check fails
in the case of checktype�

or if none of the cases holds
in ctypecase or ccase��

For the macro assert� the order of evaluation of the generalized variable

references is not speci�ed�

��� COMMON LISP

Another reason for building in these functions is that the appropriate opti�

mizations will di	er from implementation to implementation� In some imple�

mentations most of the optimization is performed by the compiler� while in

others a simpler compiler is used and most of the optimization is performed

in the macros� The cost of binding a temporary variable relative to the cost of
other Lisp operations may di	er greatly between one implementation and an�

other� and some implementations may �nd it best never to remove temporary

variables except in the simplest cases�

A good example of the issues involved can be seen in the following

generalized�variable reference�

�incf �ldb bytefield variable��

This ought to expand into something like

�setq variable

�dpb �
� �ldb bytefield variable��

bytefield

variable��

In this expansion example we have ignored the further complexity of return�
ing the correct value� which is the incremented byte� not the new value of

variable� Note that the variable bytefield is evaluated twice� and the vari�

able variable is referred to three times� once as the location in which to

store a value� and twice during the computation of that value�

Now consider this expression�

�incf �ldb �aref bytefields �incf i��

�aref �determinewordsarray� i���

It ought to expand into something like this�

�let ��temp
 �aref bytefields �incf i���

�temp� �determinewordsarray���

�setf �aref temp� i�

�dpb �
� �ldb temp
 �aref temp� i���

temp

�aref temp� i����

Again we have ignored the complexity of returning the correct

value� What is important here is that the expressions �incf i� and

�determinewordsarray� must not be duplicated because each may have a

side e	ect or be a	ected by side e	ects�

CONTROL STRUCTURE ���

X�J�� voted in January ���� h���i to specify more precisely the order of

evaluation of subforms when setf is used with an access function that itself

takes a place as an argument� for example� ldb� maskfield� and getf�
The

vote also discussed the function charbit� but another vote h��i removed that

function from the language�� The setf methods for such accessors produce
expansions that e	ectively require explicit calls to getsetfmethod�

The code produced as the macro expansion of a setf form that itself admits

a generalized variable as an argument must essentially do the following major

steps�

� It evaluates the value�producing subforms� in left�to�right order� and binds

the temporary variables to them� this is called binding the temporaries�

� It reads the value from the generalized variable� using the supplied accessing

form� to get the old value� this is called doing the access� Note that this

is done after all the evaluations of the preceding step� including any side
e	ects they may have�

� It binds the store variable to a new value� and then installs this new value

into the generalized variable using the supplied storing form� this is called

doing the store�

Doing the access for a generalized variable reference is not part of the series

of evaluations that must be done in left�to�right order�

The place�speci�er forms ldb� maskfield� and getf admit
other� place

speci�ers as arguments� During the setf expansion of these forms� it is nec�

essary to call getsetfmethod to determine how the inner� nested generalized
variable must be treated�

In a form such as

�setf �ldb byte�spec place�form� newvalue�form�

the place referred to by the place�form must always be both accessed and

updated� note that the update is to the generalized variable speci�ed by place�

form� not to any object of type integer�

Thus this call to setf should generate code to do the following�

� Evaluate byte�spec and bind into a temporary

� Bind the temporaries for place�form

� Evaluate newvalue�form and bind into the store variable

� Do the access to place�form

��� COMMON LISP

� Do the store into place�form with the given bit��eld of the accessed integer

replaced with the value in the store variable

If the evaluation of newvalue�form alters what is found in the given place!

such as setting a di	erent bit��eld of the integer!then the change of the bit�

�eld denoted by byte�spec will be to that altered integer� because the access
step must be done after the newvalue�form evaluation� Nevertheless� the eval�

uations required for binding the temporaries are done before the evaluation

of the newvalue�form� thereby preserving the required left�to�right evaluation

order�

The treatment of maskfield is similar to that of ldb�

In a form such as�

�setf �getf place�form ind�form� newvalue�form�

the place referred to by the place�form must always be both accessed and

updated� note that the update is to the generalized variable speci�ed by
place�form� not necessarily to the particular list which is the property list

in question�

Thus this call to setf should generate code to do the following�

� Bind the temporaries for place�form

� Evaluate ind�form and bind into a temporary

� Evaluate the newvalue�form and bind into the store variable

� Do the access to place�form

� Do the store into place�form with a possibly new property list obtained by
combining the results of the evaluations and the access

If the evaluation of newvalue�form alters what is found in the given place!

such as setting a di	erent named property in the list!then the change of the

property denoted by ind�form will be to that altered list� because the access

step is done after the newvalue�form evaluation� Nevertheless� the evaluations
required for binding the temporaries are done before the evaluation of the

newvalue�form� thereby preserving the required left�to�right evaluation order�

Note that the phrase �possibly new property list� treats the implementation
of property lists as a �black box�� it can mean that the former property list

is somehow destructively re�used� or it can mean partial or full copying of it�

A side e	ect may or may not occur� therefore setf must proceed as if the

resultant property list were a di	erent copy needing to be stored back into

the generalized variable�

CONTROL STRUCTURE ��	

The Common Lisp facilities provided to deal with these semantic issues

include�

� Built�in macros such as setf and push that follow the semantic rules�

� The definemodifymacromacro� which allows new generalized�variable ma�

nipulating macros
of a certain restricted kind� to be de�ned easily� It takes

care of the semantic rules automatically�

� The defsetf macro� which allows new types of generalized�variable refer�

ences to be de�ned easily� It takes care of the semantic rules automatically�

� The definesetfmethod macro and the getsetfmethod function� which

provide access to the internal mechanisms when it is necessary to de�ne

a complicated new type of generalized�variable reference or generalized�

variable�manipulating macro�

Also important are the changes that allow lexical environments to be used

in appropriate ways in setf methods�

�Macro�definemodifymacro name lambda�list function �doc�string�

This macro de�nes a read�modify�write macro named name� An example of
such a macro is incf� The �rst subform of the macro will be a generalized�

variable reference� The function is literally the function to apply to the old

contents of the generalized�variable to get the new contents� it is not evaluated�

lambda�list describes the remaining arguments for the function� these argu�
ments come from the remaining subforms of the macro after the generalized�

variable reference� lambda�list may contain �optional and �rest markers�

The �key marker is not permitted here� �rest su�ces for the purposes of

definemodifymacro�� doc�string is documentation for the macro name being

de�ned�

The expansion of a definemodifymacro is equivalent to the following� ex�

cept that it generates code that follows the semantic rules outlined above�

�defmacro name �reference � lambda�list�

doc�string

�setf �reference
�function �reference �arg� �arg� ������

where arg�� arg�� ���� are the parameters appearing in lambda�list� appropriate

provision is made for a �rest parameter�

As an example� incf could have been de�ned by�

��
 COMMON LISP

�definemodifymacro incf ��optional �delta
�� ��

An example of a possibly useful macro not prede�ned in Common Lisp is

�definemodifymacro unionf �otherset �rest keywords� union�

X�J�� voted in March ���� h��i to specify that definemodifymacro creates

macros that take �environment arguments and perform the equivalent of
correctly passing such lexical environments to getsetfmethod in order to

correctly maintain lexical references�

�Macro�defsetf access�fn fupdate�fn �doc�string� j
lambda�list �store�variable�
�� fdeclarationg� j doc�string �� f formg� g

This de�nes how to setf a generalized�variable reference of the form �accessfn

����� The value of a generalized�variable reference can always be obtained

simply by evaluating it� so access�fn should be the name of a function or a

macro�

The user of defsetf provides a description of how to store into the

generalized�variable reference and return the value that was stored
because
setf is de�ned to return this value�� The implementation of defsetf takes

care of ensuring that subforms of the reference are evaluated exactly once and

in the proper left�to�right order� In order to do this� defsetf requires that

access�fn be a function or a macro that evaluates its arguments� behaving like

a function� Furthermore� a setf of a call on access�fn will also evaluate all of
access�fn�s arguments� it cannot treat any of them specially� This means that

defsetf cannot be used to describe how to store into a generalized variable

that is a byte� such as �ldb field reference�� To handle situations that do

not �t the restrictions imposed by defsetf� use definesetfmethod� which
gives the user additional control at the cost of increased complexity�

A defsetf declaration may take one of two forms� The simple form is

�defsetf access�fn update�fn �docstring � �

The update�fn must name a function
or macro� that takes one more argument

than access�fn takes� When setf is given a place that is a call on access�fn� it

expands into a call on update�fn that is given all the arguments to access�fn
and also� as its last argument� the new value
which must be returned by

update�fn as its value�� For example� the e	ect of

�defsetf symbolvalue set�

CONTROL STRUCTURE ���

is built into the Common Lisp system� This causes the expansion

�setf �symbolvalue foo� fu� � �set foo fu�

for example� Note that

�defsetf car rplaca�

would be incorrect because rplaca does not return its last argument�

The complex form of defsetf looks like

�defsetf access�fn lambda�list �store�variable� � body�

and resembles defmacro� The body must compute the expansion of a setf of

a call on access�fn�

The lambda�list describes the arguments of access�fn� �optional� �rest�

and �keymarkers are permitted in lambda�list� Optional arguments may have
defaults and �supplied�p�
ags� The store�variable describes the value to be

stored into the generalized�variable reference�

Rationale� The store�variable is enclosed in parentheses to provide for an exten

sion to multiple store variables that would receive multiple values from the second
subform of setf� The rules given below for coding setf methods discuss the proper
handling of multiple store variables to allow for the possibility that this extension
may be incorporated into Common Lisp in the future�

The body forms can be written as if the variables in the lambda�list were

bound to subforms of the call on access�fn and the store�variable were bound to

the second subform of setf� However� this is not actually the case� During the
evaluation of the body forms� these variables are bound to names of temporary

variables� generated as if by gensym or gentemp� that will be bound by the

expansion of setf to the values of those subforms� This binding permits

the body forms to be written without regard for order�of�evaluation issues�
defsetf arranges for the temporary variables to be optimized out of the �nal

result in cases where that is possible� In other words� an attempt is made by

defsetf to generate the best code possible in a particular implementation�

Note that the code generated by the body forms must include provision for

returning the correct value
the value of store�variable�� This is handled by

the body forms rather than by defsetf because in many cases this value can

be returned at no extra cost� by calling a function that simultaneously stores
into the generalized variable and returns the correct value�

An example of the use of the complex form of defsetf�

��� COMMON LISP

�defsetf subseq �sequence start �optional end� �newsequence�

�progn �replace �sequence �newsequence

�start
 �start �end
 �end�

�newsequence��

X�J�� voted in March ���� h��i to specify that the body of the expander

function de�ned by the complex form of defsetf is implicitly enclosed in

a block construct whose name is the same as the name of the access�fn�

Therefore returnfrom may be used to exit from the function�

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level
contexts� the complex form of defsetf must de�ne the expander function

within the enclosing lexical environment� not within the global environment�

The underlying theory by which setf and related macros arrange to con�

form to the semantic rules given above is that from any generalized�variable

reference one may derive its �setf method�� which describes how to store

into that reference and which subforms of it are evaluated�

Compatibility note� To avoid confusion� it should be noted that the use of the
word �method� here in connection with setf has nothing to do with its use in Lisp
Machine Lisp in connection with message
passing and the Lisp Machine Lisp ��avor
system��
And of course it also has nothing to do with the methods in the Common Lisp

Object System h��i�

Given knowledge of the subforms of the reference� it is possible to avoid

evaluating them multiple times or in the wrong order� A setf method for a

given access form can be expressed as �ve values�

� A list of temporary variables

� A list of value forms
subforms of the given form� to whose values the
temporary variables are to be bound

� A second list of temporary variables� called store variables

� A storing form

� An accessing form

The temporary variables will be bound to the values of the value forms as if

by let
� that is� the value forms will be evaluated in the order given and may

refer to the values of earlier value forms by using the corresponding variables�

CONTROL STRUCTURE ���

The store variables are to be bound to the values of the newvalue form� that

is� the values to be stored into the generalized variable� In almost all cases

only a single value is to be stored� and there is only one store variable�

The storing form and the accessing form may contain references to the

temporary variables
and also� in the case of the storing form� to the store
variables�� The accessing form returns the value of the generalized variable�

The storing form modi�es the value of the generalized variable and guarantees

to return the values of the store variables as its values� these are the correct

values for setf to return�
Again� in most cases there is a single store variable

and thus a single value to be returned�� The value returned by the accessing
form is� of course� a	ected by execution of the storing form� but either of these

forms may be evaluated any number of times and therefore should be free of

side e	ects
other than the storing action of the storing form��

The temporary variables and the store variables are generated names� as if

by gensym or gentemp� so that there is never any problem of name clashes
among them� or between them and other variables in the program� This is

necessary to make the special forms that do more than one setf in parallel

work properly� these are psetf� shiftf� and rotatef� Computation of the

setf method must always create new variable names� it may not return the
same ones every time�

Some examples of setf methods for particular forms�

� For a variable x�

��

��

�g���
�

�setq x g���
�

x

� For �car exp��

�g�����

�exp�

�g�����

�progn �rplaca g���� g����� g�����

�car g�����

� For �subseq seq s e��

�g���� g���� g�����

�seq s e�

�g���	�

�	� COMMON LISP

�progn �replace g���� g���	 �start
 g���� �end
 g�����

g���	�

�subseq g���� g���� g�����

�Macro�definesetfmethod access�fn lambda�list

�� fdeclarationg� j doc�string �� f formg�

This de�nes how to setf a generalized�variable reference that is of the form
�accessfn����� The value of a generalized�variable reference can always be

obtained simply by evaluating it� so access�fn should be the name of a function

or a macro�

The lambda�list describes the subforms of the generalized�variable reference�

as with defmacro� The result of evaluating the forms in the body must be

�ve values representing the setf method� as described above� Note that
definesetfmethod di	ers from the complex form of defsetf in that while

the body is being executed the variables in lambda�list are bound to parts

of the generalized�variable reference� not to temporary variables that will be

bound to the values of such parts� In addition� definesetfmethod does not

have defsetf�s restriction that access�fn must be a function or a function�like
macro� an arbitrary defmacro destructuring pattern is permitted in lambda�

list�

By de�nition there are no good small examples of definesetfmethod be�

cause the easy cases can all be handled by defsetf� A typical use is to de�ne

the setf method for ldb�

��� SETF method for the form �LDB bytespec int��

��� Recall that the int form must itself be suitable for SETF�

�definesetfmethod ldb �bytespec int�

�multiplevaluebind �temps vals stores

storeform accessform�

�getsetfmethod int� �Get SETF method for int

�let ��btemp �gensym�� �Temp var for byte specifier

�store �gensym�� �Temp var for byte to store

�stemp �first stores��� �Temp var for int to store

�� Return the SETF method for LDB as five values�

�values �cons btemp temps� �Temporary variables

�cons bytespec vals� �Value forms

�list store� �Store variables

��

CONTROL STRUCTURE �	�

�let ���stemp �dpb �store �btemp �accessform���

�storeform

�store� �Storing form

�ldb �btemp �accessform� �Accessing form

����

X�J�� voted in March ���� h��i to specify that the �environment lambda�

list keyword may appear in the lambda�list in the same manner as for defmacro

in order to obtain the lexical environment of the call to the setf macro� The
preceding example should be modi�ed to take advantage of this new feature�

The setfmethod must accept an �environment parameter� which will receive

the lexical environment of the call to setf� this environment must then be

given to getsetfmethod in order that it may correctly use any locally bound

setf method that might be applicable to the place form that appears as the
second argument to ldb in the call to setf�

��� SETF method for the form �LDB bytespec int��

��� Recall that the int form must itself be suitable for SETF�

��� Note the use of an �environment parameter to receive the

��� lexical environment of the call for use with GETSETFMETHOD�

�definesetfmethod ldb �bytespec int �environment env�

�multiplevaluebind �temps vals stores

storeform accessform�

�getsetfmethod int env� �Get SETF method for int

�let ��btemp �gensym�� �Temp var for byte specifier

�store �gensym�� �Temp var for byte to store

�stemp �first stores��� �Temp var for int to store

�� Return the SETF method for LDB as five values�

�values �cons btemp temps� �Temporary variables

�cons bytespec vals� �Value forms

�list store� �Store variables

�let ���stemp �dpb �store �btemp �accessform���

�storeform

�store� �Storing form

�ldb �btemp �accessform� �Accessing form

����

X�J�� voted in March ���� h��i to specify that the body of the expander

function de�ned by definesetfmethod is implicitly enclosed in a block con�

struct whose name is the same as the name of the access�fn� Therefore

returnfrom may be used to exit from the function�

�	� COMMON LISP

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level

contexts� definesetfmethod must de�ne the expander function within the

enclosing lexical environment� not within the global environment�

�Function�getsetfmethod form
��

getsetfmethod returns �ve values constituting the setf method for form�

The form must be a generalized�variable reference� getsetfmethod takes
care of error�checking and macro expansion and guarantees to return exactly

one store variable�

As an example� an extremely simpli�ed version of setf� allowing no more

and no fewer than two subforms� containing no optimization to remove unnec�

essary variables� and not allowing storing of multiple values� could be de�ned
by�

�defmacro setf �reference value�

�multiplevaluebind �vars vals stores storeform accessform�

�getsetfmethod reference�

�declare �ignore accessform��

�let
 ��mapcar ��� list

�append vars stores�

�append vals �list value���

�storeform���

X�J�� voted in March ���� h��i to add an optional environment argument
to getsetfmethod� The revised de�nition and example are as follows�

�Function�getsetfmethod form �optional env

getsetfmethod returns �ve values constituting the setf method for form�
The form must be a generalized�variable reference� The env must be an en�

vironment of the sort obtained through the �environment lambda�list key�

word� if env is nil or omitted� the null lexical environment is assumed�

getsetfmethod takes care of error checking and macro expansion and guar�
antees to return exactly one store variable�

As an example� an extremely simpli�ed version of setf� allowing no more

and no fewer than two subforms� containing no optimization to remove unnec�

essary variables� and not allowing storing of multiple values� could be de�ned

by�

CONTROL STRUCTURE �	�

�defmacro setf �reference value �environment env�

�multiplevaluebind �vars vals stores storeform accessform�

�getsetfmethod reference env� �Note use of environment

�declare �ignore accessform��

�let
 ��mapcar ��� list

�append vars stores�

�append vals �list value���

�storeform���

�Function�getsetfmethodmultiplevalue form
���

getsetfmethodmultiplevalue returns �ve values constituting the setf

method for form� The form must be a generalized�variable reference� This is

the same as getsetfmethod except that it does not check the number of store

variables� use this in cases that allow storing multiple values into a generalized
variable� There are no such cases in standard Common Lisp� but this function

is provided to allow for possible extensions�

X�J�� voted in March ���� h��i to add an optional environment argument
to getsetfmethod� The revised de�nition is as follows�

�Function�getsetfmethodmultiplevalue form �optional env

getsetfmethodmultiplevalue returns �ve values constituting the setf

method for form� The form must be a generalized�variable reference� The
env must be an environment of the sort obtained through the �environment

lambda�list keyword� if env is nil or omitted� the null lexical environment is

assumed�

This is the same as getsetfmethod except that it does not check the number

of store variables� use this in cases that allow storing multiple values into a

generalized variable� There are no such cases in standard Common Lisp� but

this function is provided to allow for possible extensions�

X�J�� voted in March ���� h��i to clarify that a setf method for a func�

tional name is applicable only when the global binding of that name is lexically
visible� If such a name has a local binding introduced by flet� labels� or

macrolet� then global de�nitions of setf methods for that name do not apply

and are not visible� All of the standard Common Lisp macros that modify a

setf place
for example� incf� decf� pop� and rotatef� obey this convention�

�	� COMMON LISP

���� Function Invocation

The most primitive form for function invocation in Lisp of course has no

name� any list that has no other interpretation as a macro call or special form
is taken to be a function call� Other constructs are provided for less common

but nevertheless frequently useful situations�

�Function�apply function arg �rest moreargs

This applies function to a list of arguments�

The function may be a compiled�code object� or a lambda�expression� or a
��

symbol� in the latter case the global functional value of that symbol is used

but it is illegal for the symbol to be the name of a macro or special form��

X�J�� voted in June ���� h��i to allow the function to be only of type

symbol or function� a lambda�expression is no longer acceptable as a func�
tional argument� One must use the function special form or the abbreviation

��� before a lambda�expression that appears as an explicit argument form�

The arguments for the function consist of the last argument to apply ap�

pended to the end of a list of all the other arguments to apply but the function

itself� it is as if all the arguments to apply except the function were given to

list
 to create the argument list� For example�

�setq f �� �apply f �
 ��� � �

�setq f ��� � �apply f �
 ��� �

�apply ��� max � � �� 	 ��� � 	

�apply cons ��� � �� ��� �
��� � �� � �� not �� � ��

�apply ��� � ��� � �

Note that if the function takes keyword arguments� the keywords as well as
the corresponding values must appear in the argument list�

�apply ��� �lambda ��key a b� �list a b�� ��b ��� � �nil ��

This can be very useful in conjunction with the �allowotherkeys feature�

�defun foo �size �rest keys �key double �allowotherkeys�

�let ��v �apply ��� makearray size �allowotherkeys t keys���

�if double �concatenate �typeof v� v v� v���

�foo � �initialcontents �a b c d� �double t�

� ����a b c d a b c d�

CONTROL STRUCTURE �		

�Function�funcall fn �rest arguments

�funcall fn a� a� ��� an� applies the function fn to the arguments a��

a�� ���� an� The fn may not be a special form or a macro� this would not be

meaningful�

X�J�� voted in June ���� h��i to allow the fn to be only of type symbol

or function� a lambda�expression is no longer acceptable as a functional

argument� One must use the function special form or the abbreviation ���
before a lambda�expression that appears as an explicit argument form�

For example�

�cons
 �� � �
 � ��

�setq cons �symbolfunction ���

�funcall cons
 �� � �

The di	erence between funcall and an ordinary function call is that the

function is obtained by ordinary Lisp evaluation rather than by the special
interpretation of the function position that normally occurs�

Compatibility note� The Common Lisp function funcall corresponds roughly to
the Interlisp primitive apply��

�Constant �callargumentslimit

The value of callargumentslimit is a positive integer that is the upper exclu�

sive bound on the number of arguments that may be passed to a function� This

bound depends on the implementation but will not be smaller than ���
Im�
plementors are encouraged to make this limit as large as practicable without

sacri�cing performance�� The value of callargumentslimitmust be at least

as great as that of lambdaparameterslimit� See also multiplevalueslimit�

���� Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms

in order� They di	er only in what results are returned�

�Special form�progn f formg�

The progn construct takes a number of forms and evaluates them sequentially�

in order� from left to right� The values of all the forms but the last are

�	
 COMMON LISP

discarded� whatever the last form returns is returned by the progn form�

One says that all the forms but the last are evaluated for e�ect� because

their execution is useful only for the side e	ects caused� but the last form is

executed for value�

progn is the primitive control structure construct for �compound state�
ments�� such as begin�end blocks in Algol�like languages� Many Lisp con�

structs are �implicit progn� forms� as part of their syntax each allows many

forms to be written that are to be evaluated sequentially� discarding the results

of all forms but the last and returning the results of the last form�

If the last form of the progn returns multiple values� then those multiple
values are returned by the progn form� If there are no forms for the progn�

then the result is nil� These rules generally hold for implicit progn forms as

well�

�Macro�prog

rst f formg�

prog
 is similar to progn� but it returns the value of its
rst form� All the

argument forms are executed sequentially� the value of the �rst form is saved

while all the others are executed and is then returned�

prog
 is most commonly used to evaluate an expression with side e	ects

and to return a value that must be computed before the side e	ects happen�

For example�

�prog
 �car x� �rplaca x foo��

alters the car of x to be foo and returns the old car of x�

prog
 always returns a single value� even if the �rst form tries to return
multiple values� As a consequence� �prog
 x� and �progn x� may behave

di	erently if x can produce multiple values� See multiplevalueprog
� A

point of style� although prog
 can be used to force exactly a single value to

be returned� it is conventional to use the function values for this purpose�

�Macro�prog�
rst second f formg�

prog� is similar to prog
� but it returns the value of its second form� All

the argument forms are executed sequentially� the value of the second form is
saved while all the other forms are executed and is then returned� prog� is

provided mostly for historical compatibility�

�prog� a b c ��� z� � �progn a �prog
 b c ��� z��

CONTROL STRUCTURE �	�

Occasionally it is desirable to perform one side e	ect� then a value�producing

operation� then another side e	ect� In such a peculiar case� prog� is fairly

perspicuous� For example�

�prog� �openafile� �processthefile� �closethefile��

�value is that of processthefile

prog�� like prog
� always returns a single value� even if the second form

tries to return multiple values� As a consequence of this� �prog� x y� and

�progn x y� may behave di	erently if y can produce multiple values�

���� Establishing New Variable Bindings

During the invocation of a function represented by a lambda�expression
or a

closure of a lambda�expression� as produced by function�� new bindings are

established for the variables that are the parameters of the lambda�expression�
These bindings initially have values determined by the parameter�binding

protocol discussed in section ������

The following constructs may also be used to establish bindings of variables�

both ordinary and functional�

�Special form�let � fvar j �var value�g� � fdeclarationg� f formg�

A let form can be used to execute a series of forms with speci�ed variables
bound to speci�ed values�

More precisely� the form

�let ��var� value��

�var� value��

���

�varm valuem��

declaration�

declaration�

���

declarationp

body�

body�

���

bodyn�

�	� COMMON LISP

�rst evaluates the expressions value�� value�� and so on� in that order� saving

the resulting values� Then all of the variables varj are bound to the corre�

sponding values in parallel� each binding will be a lexical binding unless there

is a special declaration to the contrary� The expressions bodyk are then eval�

uated in order� the values of all but the last are discarded
that is� the body
of a let form is an implicit progn�� The let form returns what evaluating

bodyn produces
if the body is empty� which is fairly useless� let returns nil

as its value�� The bindings of the variables have lexical scope and inde�nite

extent�
Instead of a list �varj valuej�� one may write simply varj� In this case varj

is initialized to nil� As a matter of style� it is recommended that varj be

written only when that variable will be stored into
such as by setq� before

its �rst use� If it is important that the initial value be nil rather than some

unde�ned value� then it is clearer to write out �varj nil� if the initial value
is intended to mean �false�� or �varj ��� if the initial value is intended to

be an empty list� Note that the code

�let �x�

�declare �integer x��

�setq x �gcd y z��

����

is incorrect� although x is indeed set before it is used� and is set to a value

of the declared type integer� nevertheless x momentarily takes on the value

nil in violation of the type declaration�

Declarations may appear at the beginning of the body of a let� See
declare�

See also destructuringbind�

X�J�� voted in January ���� h���i to regularize the binding formats for do�

do
� let� let
� prog� prog
� and compilerlet� The new syntactic de�nition
for let makes the value optional�

�Macro�let � fvar j �var �value� �g� � fdeclarationg� f formg�

This changes let to allow a list �var� to appear� meaning the same as simply

var�

�Special form�let
 � fvar j �var value�g� � fdeclarationg� f formg�

let
 is similar to let� but the bindings of variables are performed sequentially

rather than in parallel� This allows the expression for the value of a variable

to refer to variables previously bound in the let
 form�

CONTROL STRUCTURE �	�

More precisely� the form

�let
 ��var� value��

�var� value��

���

�varm valuem��

declaration�
declaration�

���

declarationp

body�
body�

���

bodyn�

�rst evaluates the expression value�� then binds the variable var� to that

value� then it evaluates value� and binds var�� and so on� The expressions

bodyj are then evaluated in order� the values of all but the last are discarded

that is� the body of a let
 form is an implicit progn�� The let
 form returns
the results of evaluating bodyn
if the body is empty� which is fairly useless�

let
 returns nil as its value�� The bindings of the variables have lexical

scope and inde�nite extent�

Instead of a list �varj valuej�� one may write simply varj� In this case varj

is initialized to nil� As a matter of style� it is recommended that varj be

written only when that variable will be stored into
such as by setq� before

its �rst use� If it is important that the initial value be nil rather than some

unde�ned value� then it is clearer to write out �varj nil� if the initial value
is intended to mean �false�� or �varj ��� if the initial value is intended to

be an empty list�

Declarations may appear at the beginning of the body of a let
� See

declare�

X�J�� voted in January ���� h���i to regularize the binding formats for do�

do
� let� let
� prog� prog
� and compilerlet� The new syntactic de�nition

for let
 makes the value optional�

�Macro�let
 � fvar j �var �value� �g� � fdeclarationg� f formg�

This changes let
 to allow a list �var� to appear� meaning the same as simply

var�

��

�
� COMMON LISP

��

�Special form�compilerlet � fvar j �var value�g� � f formg�

When executed by the Lisp interpreter� compilerlet behaves exactly like let

with all the variable bindings implicitly declared special� When the compiler
processes this form� however� no code is compiled for the bindings� instead� the

processing of the body by the compiler
including� in particular� the expansion

of any macro calls within the body� is done with the special variables bound to

the indicated values in the execution context of the compiler� This is primarily
useful for communication among complicated macros�

Declarations may not appear at the beginning of the body of a compilerlet�

Rationale� Because of the unorthodox handling by compilerlet of its variable
bindings� it would be complicated and confusing to permit declarations that ap

parently referred to the variables bound by compilerlet� Disallowing declarations
eliminates the problem�

X�J�� voted in January ���� h���i to regularize the binding formats for do�

do
� let� let
� prog� prog
� and compilerlet� The new syntactic de�nition

for compilerlet makes the value optional�

��

�Macro�compilerlet � fvar j �var �value� �g� � f formg�

This changes compilerlet to allow a list �var� to appear� meaning the same

as simply var�

X�J�� voted in June ���� h��i to remove compilerlet from the language�
Many uses of compilerlet can be replaced with more portable code that uses

macrolet or symbolmacrolet�

�Special form�progv symbols values f formg�

progv is a special form that allows binding one or more dynamic variables

whose names may be determined at run time� The sequence of forms
an

implicit progn� is evaluated with the dynamic variables whose names are in

the list symbols bound to corresponding values from the list values�
If too few
values are supplied� the remaining symbols are bound and then made to have

no value� see makunbound� If too many values are supplied� the excess values

are ignored�� The results of the progv form are those of the last form� The

bindings of the dynamic variables are undone on exit from the progv form�

The lists of symbols and values are computed quantities� this is what makes

CONTROL STRUCTURE �
�

progv di	erent from� for example� let� where the variable names are stated

explicitly in the program text�

progv is particularly useful for writing interpreters for languages embedded

in Lisp� it provides a handle on the mechanism for binding dynamic variables�

�Special form�flet � f�name lambda�list
�� fdeclarationg� j doc�string �� f formg� �g� �

f formg�
�Special form�labels � f�name lambda�list

�� fdeclarationg� j doc�string �� f formg� �g� �
f formg�

�Special form�macrolet � f�name varlist
�� fdeclarationg� j doc�string �� f formg� �g� �

f formg�

flet may be used to de�ne locally named functions� Within the body of the
flet form� function names matching those de�ned by the flet refer to the

locally de�ned functions rather than to the global function de�nitions of the

same name�

Any number of functions may be simultaneously de�ned� Each de�nition
is similar in format to a defun form� �rst a name� then a parameter list

which may contain �optional� �rest� or �key parameters�� then optional

declarations and documentation string� and �nally a body�

�flet ��safesqrt �x� �sqrt �abs x����

�� The safesqrt function is used in two places�

�safesqrt �apply ��� � �map list ��� safesqrt longlist����

The labels construct is identical in form to the flet construct� These

constructs di	er in that the scope of the de�ned function names for flet

encompasses only the body� whereas for labels it encompasses the function

de�nitions themselves� That is� labels can be used to de�ne mutually recur�

sive functions� but flet cannot� This distinction is useful� Using flet one

can locally rede�ne a global function name� and the new de�nition can refer

to the global de�nition� the same construction using labels would not have
that e	ect�

�defun integerpower �n k� �A highly �bummed� integer

�declare �integer n�� � exponentiation routine

�declare �type �integer �
� k��

�
� COMMON LISP

�labels ��expt� �x k a�

�declare �integer x a� �type �integer �
� k��

�cond ��zerop k� a�

��evenp k� �expt
 �
 x x� �floor k �� a��

�t �expt� �
 x x� �floor k �� �
 x a�����

�expt
 �x k a�

�declare �integer x a� �type �integer

� k��

�cond ��evenp k� �expt
 �
 x x� �floor k �� a��

�t �expt� �
 x x� �floor k �� �
 x a������

�expt� n k
���

macrolet is similar in form to flet but de�nes local macros� using the same

format used by defmacro� The names established by macrolet as names for

macros are lexically scoped�

I have observed that� while most Common Lisp users pronounce macrolet

to rhyme with �silhouette�� a small but vocal minority pronounce it to rhyme

with �Chevrolet�� A very few extremists furthermore adjust their pronuncia�

tion of flet similarly� they say �
ay�� Hey� hey� Tr
es outr�e�

Macros often must be expanded at �compile time�
more generally� at a

time before the program itself is executed�� and so the run�time values of

variables are not available to macros de�ned by macrolet�

The precise rule is that the macro�expansion functions de�ned by macrolet
��

are de�ned in the global environment� lexically scoped entities that would

ordinarily be lexically apparent are not visible within the expansion functions�

X�J�� voted in March ���� h��i to retract the previous sentence and specify

that the macro�expansion functions created by macrolet are de�ned in the
lexical environment in which the macrolet form appears� not in the null lex�

ical environment� Declarations� macrolet de�nitions� and symbolmacrolet

de�nitions a	ect code within the expansion functions in a macrolet� but the

consequences are unde�ned if such code attempts to refer to any local variable

or function bindings that are visible in that lexical environment�

However� lexically scoped entities are visible within the body of the

macrolet form and are visible to the code that is the expansion of a macro

call� The following example should make this clear�

CONTROL STRUCTURE �
�

��� Example of scoping in macrolet�

�defun foo �x flag�

�macrolet ��fudge �z�

��The parameters x and flag are not accessible
�� at this point� a reference to flag would be to

�� the global variable of that name�

�if flag

�
 �z �z�

�z���

��The parameters x and flag are accessible here�

�� x

�fudge x�

�fudge �� x
�����

The body of the macrolet becomes

�� x

�if flag

�
 x x�

x��

�if flag

�
 �� x
� �� x
��

�� x
���

after macro expansion� The occurrences of x and flag legitimately refer to

the parameters of the function foo because those parameters are visible at
the site of the macro call which produced the expansion�

X�J�� voted in March ���� h��i to specify that the body of each function or

expander function de�ned by flet� labels� or macrolet is implicitly enclosed

in a block construct whose name is the same as the name of the function�

Therefore returnfrom may be used to exit from the function�

X�J�� voted in March ���� h��i to extend flet and labels to accept any

function�name
a symbol or a list whose car is setf!see section ���� as a
name for a function to be locally de�ned� In this way one can create local

de�nitions for setf expansion functions�
X�J�� explicitly declined to extend

macrolet in the same manner��

X�J�� voted in March ���� h��i to change flet� labels� and macrolet

to allow declarations to appear before the body� The new descriptions are

therefore as follows�

�
� COMMON LISP

�Macro�flet � f�name lambda�list
�� fdeclarationg� j doc�string �� f formg� �g� �

fdeclarationg� f formg�
�Macro�labels � f�name lambda�list

�� fdeclarationg� j doc�string �� f formg� �g� �
fdeclarationg� f formg�

�Macro�macrolet � f�name varlist
�� fdeclarationg� j doc�string �� f formg� �g� �

fdeclarationg� f formg�

These are now syntactically more similar to such other binding forms as let�

For flet and labels� the bodies of the locally de�ned functions are part of

the scope of pervasive declarations appearing before the main body�
This is

consistent with the treatment of initialization forms in let�� For macrolet�
however� the bodies of the locally de�ned macro expander functions are not

included in the scope of pervasive declarations appearing before the main

body�
This is consistent with the rule� stated below� that the bodies of

macro expander functions are in the global environment� not the local lexical
environment�� Here is an example�

�flet ��stretch �x� �
 x
stretchfactor
��

�chop �x� � x
chopmargin
���

�declare �inline stretch chop�� �Illegal in original Common Lisp

�if �� x
chopmargin
� �stretch �chop x�� �chop �stretch x����

X�J�� voted to permit declarations of the sort noted above�

�Special form�symbolmacrolet � f�var expansion�g� �
fdeclarationg� f formg�

X�J�� voted in June ���� h��i to adopt the Common Lisp Object System�

Part of this proposal is a general mechanism� symbolmacrolet� for treating

certain variable names as if they were parameterless macro calls� This facility
may be useful independent of CLOS� X�J�� voted in March ���� h���i to

modify the de�nition of symbolmacrolet substantially and also voted h���i
to allow declarations before the body of symbolmacrolet but with peculiar

treatment of special and type declarations�
The forms are executed as an implicit progn in a lexical environment that

causes every reference to any de�ned var to be replaced by the corresponding

expansion� It is as if the reference to the var were a parameterless macro call�

the expansion is evaluated or otherwise processed in place of the reference

in particular� the expansion form is itself subject to further expansion!

CONTROL STRUCTURE �
	

this is one of the changes h���i from the original de�nition in the CLOS

proposal�� Note� however� that the names of such symbol macros occupy

the name space of variables� not the name space of functions� just as one

may have a function
or macro� or special form� and a variable with the

same name without interference� so one may have an ordinary macro
or
function� or special form� and a symbol macro with the same name� The use

of symbolmacrolet can therefore be shadowed by let or other constructs that

bind variables� symbolmacrolet does not substitute for all occurrences of a

var as a variable but only for those occurrences that would be construed as
references in the scope of a lexical binding of var as a variable� For example�

�symbolmacrolet ��pollyanna goody��

�list pollyanna �let ��pollyanna twoshoes�� pollyanna���

� �goody twoshoes�� not �goody goody�

One might think that goody simply replaces all occurrences of pollyanna�

and so the value of the let would be goody� but this is not so� A little

re
ection shows that under this incorrect interpretation the body in expanded

form would be

�list goody �let �� goody twoshoes�� goody��

which is syntactically malformed� The correct expanded form is

�list goody �let ��pollyanna twoshoes�� pollyanna��

because the rebinding of pollyanna by the let form shadows the symbol

macro de�nition�

The expansion for each var is not evaluated at binding time but only after

it has replaced a reference to the var� The setf macro allows a symbol macro
to be used as a place� in which case its expansion is used� moreover� setq of

a variable that is really a symbol macro will be treated as if setf had been

used� The values of the last form are returned� or nil if there is no value�

See macroexpand and macroexpand
� they will expand symbol macros as

well as ordinary macros�
Certain declarations before the body are handled in a peculiar manner� see

section ����

���� Conditionals

The traditional conditional construct in Lisp is cond� However� if is much

simpler and is directly comparable to conditional constructs in other program�

ming languages� so it is considered to be primitive in Common Lisp and is

�

 COMMON LISP

described �rst� Common Lisp also provides the dispatching constructs case

and typecase� which are often more convenient than cond�

�Special form�if test then �else�

The if special form corresponds to the if�then�else construct found in most
algebraic programming languages� First the form test is evaluated� If the

result is not nil� then the form then is selected� otherwise the form else

is selected� Whichever form is selected is then evaluated� and if returns

whatever is returned by evaluation of the selected form�

�if test then else� � �cond �test then� �t else��

but if is considered more readable in some situations�

The else form may be omitted� in which case if the value of test is nil then

nothing is done and the value of the if form is nil� If the value of the if

form is important in this situation� then the and construct may be stylistically

preferable� depending on the context� If the value is not important� but only

the e	ect� then the when construct may be stylistically preferable�

�Macro�when test f formg�

�when test form� form� ��� � �rst evaluates test� If the result is nil� then

no form is evaluated� and nil is returned� Otherwise the forms constitute an

implicit progn and are evaluated sequentially from left to right� and the value

of the last one is returned�

�when p a b c� � �and p �progn a b c��

�when p a b c� � �cond �p a b c��

�when p a b c� � �if p �progn a b c� nil�

�when p a b c� � �unless �not p� a b c�

As a matter of style� when is normally used to conditionally produce some

side e	ects� and the value of the when form is normally not used� If the value

is relevant� then it may be stylistically more appropriate to use and or if�

�Macro�unless test f formg�

�unless test form� form� ��� � �rst evaluates test� If the result is not nil�

then the forms are not evaluated� and nil is returned� Otherwise the forms

constitute an implicit progn and are evaluated sequentially from left to right�

and the value of the last one is returned�

CONTROL STRUCTURE �
�

�unless p a b c� � �cond ��not p� a b c��

�unless p a b c� � �if p nil �progn a b c��

�unless p a b c� � �when �not p� a b c�

As a matter of style� unless is normally used to conditionally produce some

side e	ects� and the value of the unless form is normally not used� If the

value is relevant� then it may be stylistically more appropriate to use if�

�Macro�cond f�test f formg� �g�

A cond form has a number
possibly zero� of clauses� which are lists of forms�

Each clause consists of a test followed by zero or more consequents� For

example�

�cond �test�� consequent���� consequent���� ����

�test���

�test�� consequent���� ����

��� �

The �rst clause whose test evaluates to non�nil is selected� all other clauses

are ignored� and the consequents of the selected clause are evaluated in order

as an implicit progn��

More speci�cally� cond processes its clauses in order from left to right�

For each clause� the test is evaluated� If the result is nil� cond advances

to the next clause� Otherwise� the cdr of the clause is treated as a list of
forms� or consequents� these forms are evaluated in order from left to right�

as an implicit progn� After evaluating the consequents� cond returns without

inspecting any remaining clauses� The cond special form returns the results

of evaluating the last of the selected consequents� if there were no consequents

in the selected clause� then the single
and necessarily non�null� value of the
test is returned� If cond runs out of clauses
every test produced nil� and

therefore no clause was selected�� the value of the cond form is nil�

If it is desired to select the last clause unconditionally if all others fail� the

standard convention is to use t for the test� As a matter of style� it is desirable

to write a last clause �t nil� if the value of the cond form is to be used for

something� Similarly� it is in questionable taste to let the last clause of a cond
be a �singleton clause�� an explicit t should be provided�
Note moreover that

�cond ��� �x�� may behave di	erently from �cond ��� �t x�� if x might

produce multiple values� the former always returns a single value� whereas the

latter returns whatever values x returns� However� as a matter of style it is

preferable to obtain this behavior by writing �cond ��� �t �values x����

�
� COMMON LISP

using the values function explicitly to indicate the discarding of any excess

values�� For example�

�setq z �cond �a foo� �b bar��� �Possibly confusing

�setq z �cond �a foo� �b bar� �t nil��� �Better
�cond �a b� �c d� �e�� �Possibly confusing

�cond �a b� �c d� �t e�� �Better

�cond �a b� �c d� �t �values e��� �Better
if one value

� needed�
�cond �a b� �c�� �Possibly confusing

�cond �a b� �t c�� �Better

�if a b c� �Also better

A Lisp cond form may be compared to a continued if�then�else as found in

many algebraic programming languages�

�cond �p ���� if p then ���

�q ���� roughly else if q then ���

�r ���� corresponds else if r then ���

��� to ���

�t ����� else ���

�Macro�case keyform f� f� fkeyg� � j keyg f formg� �g�

case is a conditional that chooses one of its clauses to execute by comparing

a value to various constants� which are typically keyword symbols� integers�

or characters
but may be any objects�� Its form is as follows�

�case keyform

�keylist�� consequent���� consequent���� ����

�keylist�� consequent���� ����

�keylist�� consequent���� ����

����

Structurally case is much like cond� and it behaves like cond in selecting

one clause and then executing all consequents of that clause� However� case
di	ers in the mechanism of clause selection�

The �rst thing case does is to evaluate the form keyform to produce an

object called the key object� Then case considers each of the clauses in turn�

If key is in the keylist
that is� is eql to any item in the keylist� of a clause� the

consequents of that clause are evaluated as an implicit progn� case returns

CONTROL STRUCTURE �
�

what was returned by the last consequent
or nil if there are no consequents

in that clause�� If no clause is satis�ed� case returns nil�

The keys in the keylists are not evaluated� literal key values must appear in

the keylists� It is an error for the same key to appear in more than one clause�

a consequence is that the order of the clauses does not a	ect the behavior of
the case construct�

Instead of a keylist� one may write one of the symbols t and otherwise� A

clause with such a symbol always succeeds and must be the last clause
this

is an exception to the order�independence of clauses�� See also ecase and
ccase� each of which provides an implicit otherwise clause to signal an error

if no clause is satis�ed�

If there is only one key for a clause� then that key may be written in place of

a list of that key� provided that no ambiguity results� Such a �singleton key�

may not be nil
which is confusable with ��� a list of no keys�� t� otherwise�
or a cons�

Compatibility note� The Lisp Machine Lisp caseq construct uses eq for the com

parison� In Lisp Machine Lisp caseq therefore works for �xnums but not bignums�
The MacLisp caseq construct simply prohibits the use of bignums� indeed� it permits
only �xnums and symbols as clause keys� In the interest of hiding the �xnum
bignum
distinction� and for general language consistency� case uses eql in Common Lisp�
The Interlisp selectq construct is similar to case�

�Macro�typecase keyform f�type f formg� �g�

typecase is a conditional that chooses one of its clauses by examining the
type of an object� Its form is as follows�

�typecase keyform
�type�� consequent���� consequent���� ����

�type�� consequent���� ����

�type�� consequent���� ����

����

Structurally typecase is much like cond or case� and it behaves like them

in selecting one clause and then executing all consequents of that clause� It
di	ers in the mechanism of clause selection�

The �rst thing typecase does is to evaluate the form keyform to produce

an object called the key object� Then typecase considers each of the clauses

in turn� The type that appears in each clause is a type speci�er� it is not

evaluated but is a literal type speci�er� The �rst clause for which the key is

��� COMMON LISP

of that clause�s speci�ed type is selected� the consequents of this clause are

evaluated as an implicit progn� and typecase returns what was returned by

the last consequent
or nil if there are no consequents in that clause�� If no

clause is satis�ed� typecase returns nil�

As for case� the symbol t or otherwisemay be written for type to indicate

that the clause should always be selected� See also etypecase and ctypecase�

each of which provides an implicit otherwise clause to signal an error if no
clause is satis�ed�

It is permissible for more than one clause to specify a given type� partic�

ularly if one is a subtype of another� the earliest applicable clause is chosen�

Thus for typecase� unlike case� the order of the clauses may a	ect the be�

havior of the construct� For example�

�typecase anobject

�string ���� �This clause handles strings

��array t� ���� �This clause handles general arrays
��array bit� ���� �This clause handles bit arrays

�array ���� �This handles all other arrays

��or list number� ���� �This handles lists and numbers

�t ����� �This handles all other objects

A Common Lisp compiler may choose to issue a warning if a clause cannot

be selected because it is completely shadowed by earlier clauses�

���� Blocks and Exits

The block and returnfrom constructs provide a structured lexical non�local

exit facility� At any point lexically within a block construct� a returnfrom

with the same name may be used to perform an immediate transfer of control

that exits from the block� In the most common cases this mechanism is

more e�cient than the dynamic non�local exit facility provided by catch and

throw� described in section �����

�Special form�block name f formg�

The block construct executes each form from left to right� returning whatever

is returned by the last form� If� however� a return or returnfrom form that

speci�es the same name is executed during the execution of some form� then

the results speci�ed by the return or returnfrom are immediately returned as

the value of the block construct� and execution proceeds as if the block had

CONTROL STRUCTURE ���

terminated normally� In this� block di	ers from progn� the progn construct

has nothing to do with return�

The name is not evaluated� it must be a symbol� The scope of the name

is lexical� only a return or returnfrom textually contained in some form

can exit from the block� The extent of the name is dynamic� Therefore it is

only possible to exit from a given run�time incarnation of a block once� either

normally or by explicit return�

The defun form implicitly puts a block around the body of the function

de�ned� the block has the same name as the function� Therefore one may
use returnfrom to return prematurely from a function de�ned by defun�

The lexical scoping of the block name is fully general and has consequences

that may be surprising to users and implementors of other Lisp systems�

For example� the returnfrom in the following example actually does work in

Common Lisp as one might expect�

�block loser

�catch stuff

�mapcar ��� �lambda �x� �if �numberp x�

�hairyfun x�

�returnfrom loser nil���

items���

Depending on the situation� a return in Common Lisp may not be simple�

A return can break up catchers if necessary to get to the block in question�

It is possible for a �closure� created by function for a lambda�expression to
refer to a block name as long as the name is lexically apparent�

�Special form�returnfrom name �result�

returnfrom is used to return from a block or from such constructs as do and

prog that implicitly establish a block� The name is not evaluated and must

be a symbol� A block construct with the same name must lexically enclose

the occurrence of returnfrom� whatever the evaluation of result produces is
immediately returned from the block�
If the result form is omitted� it defaults

to nil� As a matter of style� this form ought to be used to indicate that the

particular value returned doesn�t matter��

The returnfrom form itself never returns and cannot have a value� it causes

results to be returned from a block construct� If the evaluation of result

produces multiple values� those multiple values are returned by the construct

exited�

��� COMMON LISP

�Macro�return �result�

�return form� is identical in meaning to �returnfrom nil form�� it returns

from a block named nil� Blocks established implicitly by iteration constructs

such as do are named nil� so that return will exit properly from such a
construct�

��
� Iteration

Common Lisp provides a number of iteration constructs� The loop construct

provides a trivial iteration facility� it is little more than a progn with a branch

from the bottom back to the top� The do and do
 constructs provide a general

iteration facility for controlling the variation of several variables on each cycle�

For specialized iterations over the elements of a list or n consecutive integers�
dolist and dotimes are provided� The tagbody construct is the most general�

permitting arbitrary go statements within it�
The traditional prog construct

is a synthesis of tagbody� block� and let�� Most of the iteration constructs

permit statically de�ned non�local exits
see returnfrom and return��

��
��� Inde
nite Iteration

The loop construct is the simplest iteration facility� It controls no variables�
and simply executes its body repeatedly�

�Macro�loop f formg�

Each form is evaluated in turn from left to right� When the last form has

been evaluated� then the �rst form is evaluated again� and so on� in a never�

ending cycle� The loop construct never returns a value� Its execution must

be terminated explicitly� using return or throw� for example�
loop� like most iteration constructs� establishes an implicit block named

nil� Thus return may be used to exit from a loop with speci�ed results�

A loop construct has this meaning only if every form is non�atomic
a list��
��

The case where some form is atomic is reserved for future extensions�

Implementation note� There have been several proposals for a powerful iteration
mechanism to be called loop� One version is provided in Lisp Machine Lisp� Im

plementors are encouraged to experiment with extensions to the loop syntax� but
users should be advised that in all likelihood some speci�c set of extensions to loop
will be adopted in a future revision of Common Lisp�

CONTROL STRUCTURE ���

X�J�� voted in January ���� h���i to include just such an extension of

loop� See chapter ���

��
��� General Iteration

In contrast to loop� do and do
 provide a powerful and general mechanism
for repetitively recalculating many variables�

�Macro�do � f�var �init �step� � �g� �
�end�test fresultg� �
fdeclarationg� ftag j statementg�

�Macro�do
 � f�var �init �step� � �g� �
�end�test fresultg� �
fdeclarationg� ftag j statementg�

The do special form provides a generalized iteration facility� with an arbitrary
number of �index variables�� These variables are bound within the iteration

and stepped in parallel in speci�ed ways� They may be used both to generate

successive values of interest
such as successive integers� or to accumulate re�

sults� When an end condition is met� the iteration terminates with a speci�ed
value�

In general� a do loop looks like this�

�do ��var� init� step��

�var� init� step��
���

�varn initn stepn��

�end�test � result�

fdeclarationg�
� tagbody�

A do
 loop looks exactly the same except that the name do is replaced by

do
�

The �rst item in the form is a list of zero or more index�variable speci�ers�
Each index�variable speci�er is a list of the name of a variable var� an initial

value init� and a stepping form step� If init is omitted� it defaults to nil� If

step is omitted� the var is not changed by the do construct between repetitions

though code within the do is free to alter the value of the variable by using

setq��

��� COMMON LISP

An index�variable speci�er can also be just the name of a variable� In this

case� the variable has an initial value of nil and is not changed between rep�

etitions� As a matter of style� it is recommended that an unadorned variable

name be written only when that variable will be stored into
such as by setq�

before its �rst use� If it is important that the initial value be nil rather than
some unde�ned value� then it is clearer to write out �varj nil� if the initial

value is intended to mean �false�� or �varj ��� if the initial value is intended

to be an empty list�

X�J�� voted in January ���� h���i to regularize the binding formats for
do� do
� let� let
� prog� prog
� and compilerlet� In the case of do and

do
 the �rst edition was inconsistent� the formal syntax fails to re
ect the

fact that a simple variable name may appear� as described in the preceding

paragraph� The de�nitions should read

�Macro�do � fvar j �var �init �step� � �g� �
�end�test fresultg� �
fdeclarationg� ftag j statementg�

�Macro�do
 � fvar j �var �init �step� � �g� �
�end�test fresultg� �
fdeclarationg� ftag j statementg�

for consistency with the reading of the �rst edition and the X�J�� vote�

Before the �rst iteration� all the init forms are evaluated� and each var is

bound to the value of its respective init� This is a binding� not an assignment�

when the loop terminates� the old values of those variables will be restored�

For do� all of the init forms are evaluated before any var is bound� hence all
the init forms may refer to the old bindings of all the variables
that is� to

the values visible before beginning execution of the do construct�� For do
�

the �rst init form is evaluated� then the �rst var is bound to that value� then

the second init form is evaluated� then the second var is bound� and so on�

in general� the initj form can refer to the new binding vark if k � j � and
otherwise to the old binding of vark�

The second element of the loop is a list of an end�testing predicate form

end�test and zero or more result forms� This resembles a cond clause� At

the beginning of each iteration� after processing the variables� the end�test is
evaluated� If the result is nil� execution proceeds with the body of the do
or

do
� form� If the result is not nil� the result forms are evaluated in order as

an implicit progn� and then do returns� do returns the results of evaluating

the last result form� If there are no result forms� the value of do is nil� Note

that this is not quite analogous to the treatment of clauses in a cond form�

CONTROL STRUCTURE ��	

because a cond clause with no result forms returns the
non�nil� result of the

test�

At the beginning of each iteration other than the �rst� the index variables
are updated as follows� All the step forms are evaluated� from left to right�

and the resulting values are assigned to the respective index variables� Any

variable that has no associated step form is not assigned to� For do� all the

step forms are evaluated before any variable is updated� the assignment of

values to variables is done in parallel� as if by psetq� Because all of the step
forms are evaluated before any of the variables are altered� a step form when

evaluated always has access to the old values of all the index variables� even

if other step forms precede it� For do
� the �rst step form is evaluated� then

the value is assigned to the �rst var� then the second step form is evaluated�
then the value is assigned to the second var� and so on� the assignment of

values to variables is done sequentially� as if by setq� For either do or do
�

after the variables have been updated� the end�test is evaluated as described

above� and the iteration continues�

If the end�test of a do form is nil� the test will never succeed� Therefore this

provides an idiom for �do forever�� the body of the do is executed repeatedly�

stepping variables as usual�
The loop construct performs a �do forever� that

steps no variables�� The in�nite loop can be terminated by the use of return�
returnfrom� go to an outer level� or throw� For example�

�do ��j � �� j
���

�nil� �Do forever

�format t � "Input D�� j�

�let ��item �read���

�if �null item� �return� �Process items until nil seen

�format t � �Output D� S� j �process item�����

The remainder of the do form constitutes an implicit tagbody� Tags may

appear within the body of a do loop for use by go statements appearing in

the body
but such go statements may not appear in the variable speci�ers�

the end�test� or the result forms�� When the end of a do body is reached� the
next iteration cycle
beginning with the evaluation of step forms� occurs�

An implicit block named nil surrounds the entire do form� A return

statement may be used at any point to exit the loop immediately�

declare forms may appear at the beginning of a do body� They apply to

code in the do body� to the bindings of the do variables� to the init forms� to

the step forms� to the end�test� and to the result forms�

��
 COMMON LISP

Compatibility note� �Old
style� MacLisp do loops� that is� those of the form �do

var init step endtest � body�� are not supported in Common Lisp� Such old
style
loops are considered obsolete and in any case are easily converted to a new
style do
with the insertion of three pairs of parentheses� In practice the compiler can catch
nearly all instances of old
style do loops because they will not have a legal format
anyway�

Here are some examples of the use of do�

�do ��i � �� i
�� �Sets every null element of avector to zero

�n �length avector���

�� i n��

�when �null �aref avector i��

�setf �aref avector i� ����

The construction

�do ��x e �cdr x��

�oldx x x��

��null x��

body�

exploits parallel assignment to index variables� On the �rst iteration� the value

of oldx is whatever value x had before the do was entered� On succeeding

iterations� oldx contains the value that x had on the previous iteration�

Very often an iterative algorithm can be most clearly expressed entirely in
the step forms of a do� and the body is empty� For example�

�do ��x foo �cdr x��

�y bar �cdr y��

�z �� �cons �f �car x� �car y�� z���

��or �null x� �null y��

�nreverse z���

does the same thing as �mapcar ��� f foo bar�� Note that the step compu�

tation for z exploits the fact that variables are stepped in parallel� Also� the

body of the loop is empty� Finally� the use of nreverse to put an accumulated

do loop result into the correct order is a standard idiom� Another example�

CONTROL STRUCTURE ���

�defun listreverse �list�

�do ��x list �cdr x��

�y �� �cons �car x� y���

��endp x� y���

Note the use of endp rather than null or atom to test for the end of a list�

this may result in more robust code�

As an example of nested loops� suppose that env holds a list of conses� The
car of each cons is a list of symbols� and the cdr of each cons is a list of equal

length containing corresponding values� Such a data structure is similar to an

association list but is divided into �frames�� the overall structure resembles a

rib cage� A lookup function on such a data structure might be

�defun ribcagelookup �sym ribcage�

�do ��r ribcage �cdr r���

��null r� nil�

�do ��s �caar r� �cdr s��

�v �cdar r� �cdr v���

��null s��

�when �eq �car s� sym�

�returnfrom ribcagelookup �car v������

Notice the use of indentation in the above example to set o	 the bodies of

the do loops��

A do loop may be explained in terms of the more primitive constructs block�

return� let� loop� tagbody� and psetq as follows�

�block nil

�let ��var� init��

�var� init��
���

�varn initn��

fdeclarationg�
�loop �when end�test �return �progn � result���

�tagbody � tagbody�

�psetq var� step�

var� step�

���

varn stepn����

do
 is exactly like do except that the bindings and steppings of the variables

are performed sequentially rather than in parallel� It is as if� in the above

��� COMMON LISP

explanation� let were replaced by let
 and psetq were replaced by setq�

��
��� Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each

value taken by a single variable� They are expressible in terms of do� but
capture very common patterns of use�

Both dolist and dotimes perform a body of statements repeatedly� On

each iteration a speci�ed variable is bound to an element of interest that

the body may examine� dolist examines successive elements of a list� and

dotimes examines integers from � to n � � for some speci�ed positive integer
n�

The value of any of these constructs may be speci�ed by an optional result

form� which if omitted defaults to the value nil�

The return statement may be used to return immediately from a dolist

or dotimes form� discarding any following iterations that might have been

performed� in e	ect� a block named nil surrounds the construct� The body

of the loop is implicitly a tagbody construct� it may contain tags to serve as
the targets of go statements� Declarations may appear before the body of the

loop�

�Macro�dolist �var listform �resultform� �
fdeclarationg� ftag j statementg�

dolist provides straightforward iteration over the elements of a list� First

dolist evaluates the form listform� which should produce a list� It then

executes the body once for each element in the list� in order� with the variable

var bound to the element� Then resultform
a single form� not an implicit
progn� is evaluated� and the result is the value of the dolist form�
When

the resultform is evaluated� the control variable var is still bound and has the

value nil�� If resultform is omitted� the result is nil�

�dolist �x �a b c d�� �prin
 x� �princ � ��� � nil

after printing �a b c d �
note the trailing space�

An explicit return statement may be used to terminate the loop and return

a speci�ed value�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

CONTROL STRUCTURE ���

�Macro�dotimes �var countform �resultform� �

fdeclarationg� ftag j statementg�

dotimes provides straightforward iteration over a sequence of integers� The

expression �dotimes �var countform resultform� � progbody� evaluates the

form countform� which should produce an integer� It then performs progbody

once for each integer from zero
inclusive� to count
exclusive�� in order� with

the variable var bound to the integer� if the value of countform is zero or
negative� then the progbody is performed zero times� Finally� resultform
a

single form� not an implicit progn� is evaluated� and the result is the value of

the dotimes form�
When the resultform is evaluated� the control variable var

is still bound and has as its value the number of times the body was executed��
If resultform is omitted� the result is nil�

An explicit return statement may be used to terminate the loop and return

a speci�ed value�

Here is an example of the use of dotimes in processing strings�

��� True if the specified subsequence of the string is a

��� palindrome �reads the same forwards and backwards��

�defun palindromep �string �optional

�start ��

�end �length string���

�dotimes �k �floor � end start� �� t�

�unless �charequal �char string �� start k��

�char string � end k
���

�return nil����

�palindromep �Able was I ere I saw Elba�� � t

�palindromep �A man� a plan� a canalPanama��� � nil

�removeifnot ��� alphacharp �Remove punctuation

�A man� a plan� a canalPanama���

� �AmanaplanacanalPanama�

�palindromep

�removeifnot ��� alphacharp

�A man� a plan� a canalPanama���� � t

��� COMMON LISP

�palindromep

�removeifnot

��� alphacharp

�Unremarkable was I ere I saw Elba Kramer� nu���� � t

�palindromep

�removeifnot

��� alphacharp

�A man� a plan� a cat� a ham� a yak�

a yam� a hat� a canalPanama���� � t

�palindromep

�removeifnot

��� alphacharp

�Jada� jada� jada jada jing jing jing��� � nil

Altering the value of var in the body of the loop
by using setq� for ex�

ample� will have unpredictable� possibly implementation�dependent results�
A Common Lisp compiler may choose to issue a warning if such a variable

appears in a setq�

Compatibility note� The dotimes construct is the closest thing in Common Lisp
to the Interlisp rptq construct�

See also dosymbols� doexternalsymbols� and doallsymbols�

��
��� Mapping

Mapping is a type of iteration in which a function is successively applied to

pieces of one or more sequences� The result of the iteration is a sequence con�

taining the respective results of the function applications� There are several
options for the way in which the pieces of the list are chosen and for what is

done with the results returned by the applications of the function�

The function map may be used to map over any kind of sequence� The

following functions operate only on lists�

CONTROL STRUCTURE ���

�Function�mapcar function list �rest morelists

�Function�maplist function list �rest morelists

�Function�mapc function list �rest morelists

�Function�mapl function list �rest morelists

�Function�mapcan function list �rest morelists
�Function�mapcon function list �rest morelists

For each of these mapping functions� the �rst argument is a function and the

rest must be lists� The function must take as many arguments as there are

lists�

mapcar operates on successive elements of the lists� First the function

is applied to the car of each list� then to the cadr of each list� and so on�

Ideally all the lists are the same length� if not� the iteration terminates when
the shortest list runs out� and excess elements in other lists are ignored�� The

value returned by mapcar is a list of the results of the successive calls to the

function� For example�

�mapcar ��� abs �� � � � ��� � �� � � � ��

�mapcar ��� cons �a b c� �
 � ��� � ��a �
� �b � �� �c � ���

maplist is like mapcar except that the function is applied to the lists and

successive cdr�s of those lists rather than to successive elements of the lists�

For example�

�maplist ��� �lambda �x� �cons foo x��

�a b c d��

� ��foo a b c d� �foo b c d� �foo c d� �foo d��

�maplist ��� �lambda �x� �if �member �car x� �cdr x�� �
���

�a b a c d b c��

� �� �
 �

�

�An entry is
 if the corresponding element of the input

� list was the last instance of that element in the input list�

mapl and mapc are like maplist and mapcar� respectively� except that they

do not accumulate the results of calling the function�

Compatibility note� In all Lisp systems since Lisp ���� mapl has been called map�
In the chapter on sequences it is explained why this was a bad choice� Here the name
map is used for the far more useful generic sequence mapper� in closer accordance with
the computer science literature� especially the growing body of papers on functional
programming�

��� COMMON LISP

Note that this remark� predating the design of the Common Lisp Object System�
uses the term �generic� in a generic sense and not necessarily in the technical sense
used by CLOS �see chapter ���

These functions are used when the function is being called merely for its

side e	ects rather than for its returned values� The value returned by mapl

or mapc is the second argument� that is� the �rst sequence argument�

mapcan and mapcon are like mapcar and maplist� respectively� except that

they combine the results of the function using nconc instead of list� That

is�

�mapcon f x� ��� xn�

� �apply ��� nconc �maplist f x� ��� xn��

and similarly for the relationship between mapcan and mapcar� Conceptually�

these functions allow the mapped function to return a variable number of
items to be put into the output list� This is particularly useful for e	ectively

returning zero or one item�

�mapcan ��� �lambda �x� �and �numberp x� �list x���

�a
 b c � � d ���

� �
 � � ��

In this case the function serves as a �lter� this is a standard Lisp idiom using

mapcan�
The function removeifnotmight have been useful in this particular

context� however�� Remember that nconc is a destructive operation� and
therefore so are mapcan and mapcon� the lists returned by the function are

altered in order to concatenate them�

Sometimes a do or a straightforward recursion is preferable to a mapping
operation� however� the mapping functions should be used wherever they

naturally apply because this increases the clarity of the code�

The functional argument to a mapping function must be acceptable to

apply� it cannot be a macro or the name of a special form� Of course� there is
nothing wrong with using a function that has �optional and �rest parame�

ters as the functional argument�

X�J�� voted in June ���� h��i to allow the function to be only of type

symbol or function� a lambda�expression is no longer acceptable as a func�
tional argument� One must use the function special form or the abbreviation

��� before a lambda�expression that appears as an explicit argument form�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

CONTROL STRUCTURE ���

��
��� The �Program Feature�

Lisp implementations since Lisp ��� have had what was originally called �the

program feature�� as if it were impossible to write programs without it� The

prog construct allows one to write in an Algol�like or Fortran�like statement�

oriented style� using go statements that can refer to tags in the body of the

prog� Modern Lisp programming style tends to use prog rather infrequently�
The various iteration constructs� such as do� have bodies with the character�

istics of a prog�
However� the ability to use go statements within iteration

constructs is very seldom called upon in practice��

Three distinct operations are performed by prog� it binds local variables� it
permits use of the return statement� and it permits use of the go statement�

In Common Lisp� these three operations have been separated into three dis�

tinct constructs� let� block� and tagbody� These three constructs may be

used independently as building blocks for other types of constructs�

�Special form�tagbody ftag j statementg�

The part of a tagbody after the variable list is called the body� An item in

the body may be a symbol or an integer� in which case it is called a tag� or
an item in the body may be a list� in which case it is called a statement�

Each element of the body is processed from left to right� A tag is ignored�

a statement is evaluated� and its results are discarded� If the end of the body

is reached� the tagbody returns nil�
If �go tag� is evaluated� control jumps to the part of the body labelled with

the tag�

Compatibility note� The �computed go� feature of MacLisp is not supported�
The syntax of a computed go is idiosyncratic� and the feature is not supported by
Lisp Machine Lisp� NIL �New Implementation of Lisp�� or Interlisp� The computed
go has been infrequently used in MacLisp anyway and is easily simulated with no
loss of e�ciency by using a case statement each of whose clauses performs a �non

computed� go�

The scope of the tags established by a tagbody is lexical� and the extent is

dynamic� Once a tagbody construct has been exited� it is no longer legal to
go to a tag in its body� It is permissible for a go to jump to a tagbody that is

not the innermost tagbody construct containing that go� the tags established

by a tagbody will only shadow other tags of like name�

The lexical scoping of the go targets named by tags is fully general and has

consequences that may be surprising to users and implementors of other Lisp

��� COMMON LISP

systems� For example� the go in the following example actually does work in

Common Lisp as one might expect�

�tagbody

�catch stuff

�mapcar ��� �lambda �x� �if �numberp x�

�hairyfun x�

�go lose���

items��

�return�

lose

�error �I lost big����

Depending on the situation� a go in Common Lisp does not necessarily corre�

spond to a simple machine �jump� instruction� A go can break up catchers

if necessary to get to the target� It is possible for a �closure� created by

function for a lambda�expression to refer to a go target as long as the tag is

lexically apparent� See chapter � for an elaborate example of this�

There are some holes in this speci�cation
and that of go� that leave some
room for interpretation� For example� there is no explicit prohibition against

the same tag appearing more than once in the same tagbody body� Every

implementation I know of will complain in the compiler� if not in the inter�

preter� if there is a go to such a duplicated tag� but some implementors take

the position that duplicate tags are permitted provided there is no go to such
a tag�
�If a tree falls in the forest� and there is no one there to hear it� then

no one needs to yell %Timber�� �� Also� some implementations allow objects

other than symbols� integers� and lists in the body and typically ignore them�

Consequently� some programmers use redundant tags such as for formatting
purposes� and strings as comments�

�defun diningphilosopher �j�

�tagbody

think �unless �hungry� �go think��

�Can t eat without chopsticks��

�snatch �chopstick j��

�snatch �chopstick �mod �� j
� ����

CONTROL STRUCTURE ��	

eat �when �hungry�

�mapc ��� gobbledown

�twicecookedpork kungpaochiding

wudiphar orangeflavorbeef

twosideyellownoodles twinkies��

�go eat��

�Can t think with my neighbors stomachs rumbling��

�relinquish �chopstick j��

�relinquish �chopstick �mod �� j
� ����

�if �happy� �go think�

�become insurancesalesman����

In certain implementations of Common Lisp they get away with it� Others

abhor what they view as an abuse of unintended ambiguity in the language

speci�cation� For maximum portability� I advise users to steer clear of these
issues� Similarly� it is best to avoid using nil as a tag� even though it is a

symbol� because a few implementations treat nil as a list to be executed� To

be extra careful� avoid calling from within a tagbody a macro whose expansion

might not be a non�nil list� wrap such a call in �progn ����� or rewrite the
macro to return �progn ���� if possible�

�Macro�prog � fvar j �var �init� �g� � fdeclarationg� ftag j statementg�
�Macro�prog
 � fvar j �var �init� �g� � fdeclarationg� ftag j statementg�

The prog construct is a synthesis of let� block� and tagbody� allowing bound

variables and the use of return and go within a single construct� A typical

prog construct looks like this�

�prog �var� var� �var� init�� var� �var� init���

fdeclarationg�
statement�

tag�

statement�

statement�
statement�

tag�

statement�

���

�

��
 COMMON LISP

The list after the keyword prog is a set of speci�cations for binding var��

var�� etc�� which are temporary variables bound locally to the prog� This list

is processed exactly as the list in a let statement� �rst all the init forms are

evaluated from left to right
where nil is used for any omitted init form��

and then the variables are all bound in parallel to the respective results� Any
declaration appearing in the prog is used as if appearing at the top of the let

body�

The body of the prog is executed as if it were a tagbody construct� the go

statement may be used to transfer control to a tag�

A prog implicitly establishes a block named nil around the entire prog

construct� so that return may be used at any time to exit from the prog

construct�

Here is a �ne example of what can be done with prog�

�defun kingofconfusion �w�

�Take a cons of two lists and make a list of conses�

Think of this function as being like a zipper��

�prog �x y z� �Initialize x� y� z to nil

�setq y �car w� z �cdr w��

loop

�cond ��null y� �return x��

��null z� �go err���

rejoin

�setq x �cons �cons �car y� �car z�� x��

�setq y �cdr y� z �cdr z��

�go loop�

err

�cerror �Will selfpair extraneous items�

�Mismatch gleep� S� y�

�setq z y�

�go rejoin���

which is accomplished somewhat more perspicuously by

�defun princeofclarity �w�

�Take a cons of two lists and make a list of conses�

Think of this function as being like a zipper��

�do ��y �car w� �cdr y��

�z �cdr w� �cdr z��

�x �� �cons �cons �car y� �car z�� x���

��null y� x�

CONTROL STRUCTURE ���

�when �null z�

�cerror �Will selfpair extraneous items�

�Mismatch gleep� S� y�

�setq z y����

The prog construct may be explained in terms of the simpler constructs

block� let� and tagbody as follows�

�prog variable�list fdeclarationg� � body�
� �block nil �let variable�list fdeclarationg� �tagbody � body���

The prog
 special form is almost the same as prog� The only di	erence is

that the binding and initialization of the temporary variables is done sequen�
tially� so that the init form for each one can use the values of previous ones�

Therefore prog
 is to prog as let
 is to let� For example�

�prog
 ��y z� �x �car y���

�return x��

returns the car of the value of z�

I haven�t seen prog used very much in the last several years� Apparently

splitting it into functional constituents
let� block� tagbody� has been a suc�
cess� Common Lisp programmers now tend to use whichever speci�c construct

is appropriate�

�Special form�go tag

The �go tag� special form is used to do a �go to� within a tagbody construct�

The tag must be a symbol or an integer� the tag is not evaluated� go transfers
control to the point in the body labelled by a tag eql to the one given� If

there is no such tag in the body� the bodies of lexically containing tagbody

constructs
if any� are examined as well� It is an error if there is no matching

tag lexically visible to the point of the go�

The go form does not ever return a value�

As a matter of style� it is recommended that the user think twice before

using a go� Most purposes of go can be accomplished with one of the iteration

primitives� nested conditional forms� or returnfrom� If the use of go seems

to be unavoidable� perhaps the control structure implemented by go should
be packaged as a macro de�nition�

��� COMMON LISP

���� Structure Traversal and Side E�ects

X�J�� voted in January ���� h���i to restrict side e	ects during the course
of a built�in operation that can execute user�supplied code while traversing a

data structure�

Consider the following example�

�let ��x �apples peaches pumpkin pie���

�dolist �z x�

�when �eq z peaches�

�setf �cddr x� �mango kumquat���

�format t � S � �car z����

Depending on the details of the implementation of dolist� this bit of code
could easily print

apples peaches mango kumquat

which is perhaps what was intended�� but it might as easily print

apples peaches pumpkin pie

Here is a plausible implementation of dolist that produces the �rst result�

�defmacro dolist ��var listform �optional �resultform nil��

�body body�

�let ��tailvar �gensym �DOLIST����

�do ���tailvar �listform �cdr �tailvar���

��null �tailvar� �resultform�

�let ���var �car �tailvar��� �#body��

But here is a plausible implementation of dolist that produces the second

result�

�defmacro dolist ��var listform �optional �resultform nil��

�body body�

�let ��tailvar �gensym �DOLIST����

�do ���tailvar �listform��

��null �tailvar� �resultform�

�let ���var �pop �tailvar��� �#body��

The X�J�� recognizes and legitimizes varying implementation practices�

in general it is an error for code executed during a �structure�traversing�

operation to destructively modify the structure in a way that might a	ect

CONTROL STRUCTURE ���

the ongoing traversal operation� The committee identi�ed in particular the

following special cases�

For list traversal operations� the cdr chain may not be destructively modi�

�ed�

For array traversal operations� the array may not be adjusted
see

adjustarray� and its �ll pointer� if any� may not be modi�ed�

For hash table operations
such as withhashtableiterator and maphash��
new entries may not be added or deleted� except that the very entry being

processed by user code may be changed or deleted�

For package symbol operations
for example� withpackageiterator and

dosymbols�� new symbols may not be interned in� nor symbols uninterned

from� the packages being traversed or any packages they use� except that the
very symbol being processed by user code may be uninterned�

X�J�� noted that this vote is intended to clarify restrictions on the use of

structure traversal operations that are not themselves inherently destructive�

for example� it applies to map and dolist� Destructive operators such as

delete require even more complicated restrictions and are addressed by a
separate proposal�

The X�J�� vote did not specify a complete list of the operations to which

these restrictions apply� Table ��� shows what I believe to be a complete list

of operations that traverse structures and take user code as a body
in the

case of macros� or as a functional argument
in the case of functions��

In addition� note that user code should not modify list structure that might
be undergoing interpretation by the evaluator� whether explicitly invoked via

eval or implicitly invoked� for example as in the case of a hook function
a

defstruct print function� the value of
evalhook
 or
applyhook
� etc��

that happens to be a closure of interpreted code� Similarly� defstruct print
functions and other hooks should not perform side e	ects on data struc�

tures being printed or being processed by format� or on a string given to

makestringinputstream� You get the idea� be sensible�

Note that an operation such as mapcar or dolist traverses not only cdr

pointers
in order to chase down the list� but also car pointers
in order to
obtain the elements themselves�� The restriction against modi�cation appears

to apply to all these pointers�

����� Multiple Values

Ordinarily the result of calling a Lisp function is a single Lisp object� Some�

times� however� it is convenient for a function to compute several objects and

��� COMMON LISP

Table ���� Structure Traversal Operations Subject to Side E�ect Restrictions

adjoin maphash reduce

assoc mapl remove

associf maplist removeduplicates

associfnot member removeif

count memberif removeifnot

countif memberifnot search

countifnot merge setdifference

delete mismatch setexclusiveor

deleteduplicates nintersection some

deleteif notany sort

deleteifnot notevery stablesort

doallsymbols nsetdifference sublis

doexternalsymbols nsetexclusiveor subsetp

dosymbols nsublis subst

dolist nsubst substif

eval nsubstif substifnot

every nsubstifnot substitute

find nsubstitute substituteif

findif nsubstituteif substituteifnot

findifnot nsubstituteifnot treeequal

intersection nunion union

certain loop clauses position withhashtableiterator

map positionif withinputfromstring

mapc positionifnot withoutputtostring

mapcan rassoc withpackageiterator

mapcar rassocif

mapcon rassocifnot

return them� Common Lisp provides a mechanism for handling multiple val�
ues directly� This mechanism is cleaner and more e�cient than the usual tricks

involving returning a list of results or stashing results in global variables�

������� Constructs for Handling Multiple Values

Normally multiple values are not used� Special forms are required both to

produce multiple values and to receive them� If the caller of a function does

not request multiple values� but the called function produces multiple values�

then the �rst value is given to the caller and all others are discarded� if the

called function produces zero values� then the caller gets nil as a value�

CONTROL STRUCTURE ���

The primary primitive for producing multiple values is values� which takes

any number of arguments and returns that many values� If the last form in

the body of a function is a values with three arguments� then a call to that

function will return three values� Other special forms also produce multiple

values� but they can be described in terms of values� Some built�in Common
Lisp functions� such as floor� return multiple values� those that do are so

documented�

The special forms and macros for receiving multiple values are as follows�

multiplevaluelist

multiplevaluecall

multiplevalueprog

multiplevaluebind

multiplevaluesetq

These specify a form to evaluate and an indication of where to put the values

returned by that form�

�Function�values �rest args

All of the arguments are returned� in order� as values� For example�

�defun polar �x y�

�values �sqrt �� �
 x x� �
 y y��� �atan y x���

�multiplevaluebind �r theta� �polar ��� ����

�vector r theta��

� ������� ����	�����

The expression �values� returns zero values� This is the standard idiom
for returning no values from a function�

Sometimes it is desirable to indicate explicitly that a function will return
exactly one value� For example� the function

�defun foo �x y�

�floor �� x y� y��

will return two values because floor returns two values� It may be that the

second value makes no sense� or that for e�ciency reasons it is desired not

to compute the second value� The values function is the standard idiom for

indicating that only one value is to be returned� as shown in the following

example�

��� COMMON LISP

�defun foo �x y�

�values �floor �� x y� y���

This works because values returns exactly one value for each of its argument

forms� as for any function call� if any argument form to values produces more
than one value� all but the �rst are discarded�

There is absolutely no way in Common Lisp for a caller to distinguish

between returning a single value in the ordinary manner and returning exactly

one �multiple value�� For example� the values returned by the expressions
��
 �� and �values ��
 ��� are identical in every respect� the single

value ��

�Constant �multiplevalueslimit

The value of multiplevalueslimit is a positive integer that is the upper

exclusive bound on the number of values that may be returned from a func�
tion� This bound depends on the implementation but will not be smaller

than ���
Implementors are encouraged to make this limit as large as prac�

ticable without sacri�cing performance�� See lambdaparameterslimit and

callargumentslimit�

�Function�valueslist list

All of the elements of list are returned as multiple values� For example�

�valueslist �list a b c�� � �values a b c�

In general�

�valueslist list� � �apply ��� values list�

but valueslist may be clearer or more e�cient�

�Macro�multiplevaluelist form

multiplevaluelist evaluates form and returns a list of the multiple values
it returned� For example�

�multiplevaluelist �floor � ��� � �

�

multiplevaluelist and valueslist are therefore inverses of each other�

CONTROL STRUCTURE ���

�Special form�multiplevaluecall function f formg�

multiplevaluecall �rst evaluates function to obtain a function and then

evaluates all of the forms� All the values of the forms are gathered together

not just one value from each� and are all given as arguments to the function�

The result of multiplevaluecall is whatever is returned by the function�

For example�

�� �floor � �� �floor
� ���

� ��
 �� � �

�multiplevaluecall ��� � �floor � �� �floor
� ���

� ��
 � � �� �
�

�multiplevaluelist form� � �multiplevaluecall ��� list form�

�Special form�multiplevalueprog
 form f formg�

multiplevalueprog
 evaluates the �rst form and saves all the values pro�

duced by that form� It then evaluates the other forms from left to right�

discarding their values� The values produced by the �rst form are returned

by multiplevalueprog
� See prog
� which always returns a single value�

�Macro�multiplevaluebind � fvarg� � values�form

fdeclarationg� f formg�

The values�form is evaluated� and each of the variables var is bound to the

respective value returned by that form� If there are more variables than values

returned� extra values of nil are given to the remaining variables� If there
are more values than variables� the excess values are simply discarded� The

variables are bound to the values over the execution of the forms� which make

up an implicit progn� For example�

�multiplevaluebind �x� �floor � �� �list x�� � �
�

�multiplevaluebind �x y� �floor � �� �list x y�� � �
 ��

�multiplevaluebind �x y z� �floor � �� �list x y z��

� �
 � nil�

�Macro�multiplevaluesetq variables form

The variables must be a list of variables� The form is evaluated� and the

variables are set
not bound� to the values returned by that form� If there are

more variables than values returned� extra values of nil are assigned to the

��� COMMON LISP

remaining variables� If there are more values than variables� the excess values

are simply discarded�

Compatibility note� In Lisp Machine Lisp this is called multiplevalue� The
added clarity of the name multiplevaluesetq in Common Lisp was deemed worth
the incompatibility with Lisp Machine Lisp�

CONTROL STRUCTURE ��	

multiplevaluesetq always returns a single value� which is the �rst value

returned by form� or nil if form produces zero values�

X�J�� voted in March ���� h���i to specify that if any var refers not to an

ordinary variable but to a binding made by symbolmacrolet� then that var

is handled as if setq were used to assign the appropriate value to it�

�Macro�nthvalue n form

X�J�� voted in January ���� h���i to add a new macro named nthvalue�

The argument forms n and form are both evaluated� The value of n must be

a non�negative integer� and the form may produce any number of values� The

integer n is used as a zero�based index into the list of values� Value n of the
form is returned as the single value of the nthvalue form� nil is returned if

the form produces no more than n values�

As an example� mod could be de�ned as

�defun mod �number divisor�

�nthvalue
 �floor number divisor���

Value number � is the second value returned by floor� the �rst value being
value number ��

One could de�ne nthvalue simply as

�defmacro nthvalue �n form�

�nth �n �multiplevaluelist �form���

but the clever implementor will doubtless �nd an implementation technique

for nthvalue that avoids constructing an intermediate list of all the values of
the form�

������� Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is de�ned to

be the value of one of its subforms� For example� the value of a cond is the

value of the last form in the selected clause�

In most such cases� if the subform produces multiple values� then the orig�
inal form will also produce all of those values� This passing back of multiple

values of course has no e	ect unless eventually one of the special forms for

receiving multiple values is reached�

To be explicit� multiple values can result from a special form under precisely

these circumstances�

��
 COMMON LISP

Evaluation and application

� eval returns multiple values if the form given it to evaluate produces mul�

tiple values�

� apply� funcall� and multiplevaluecall pass back multiple values from

the function applied or called�

Implicit progn contexts

� The special form progn passes back multiple values resulting from evalua�
tion of the last subform� Other situations referred to as �implicit progn��

where several forms are evaluated and the results of all but the last form

are discarded� also pass back multiple values from the last form� These

situations include the body of a lambda�expression� in particular those

constructed by defun� defmacro� and deftype� Also included are bod�
ies of the constructs evalwhen� progv� let� let
� when� unless� block�

multiplevaluebind� and catch� as well as clauses in such conditional con�

structs as case� typecase� ecase� etypecase� ccase� and ctypecase�

X�J�� has voted to add many new constructs to the language that contain

implicit progn contexts� I won�t attempt to list them all here� Of particu�
lar interest� however� is locally� which may be regarded as simply a version

of progn that permits declarations before its body� This provides a useful

building block for constructing macros that permit declarations
but not doc�

umentation strings� before their bodies and pass back any multiple values

produced by the last sub�form of a body�
If a body can contain a documen�
tation string� most likely lambda is the correct building block to use��

Conditional constructs

� if passes back multiple values from whichever subform is selected
the then

form or the else form��

� and and or pass back multiple values from the last subform but not from

subforms other than the last�

� cond passes back multiple values from the last subform of the implicit progn
of the selected clause� If� however� the clause selected is a singleton clause�

then only a single value
the non�nil predicate value� is returned� This is

true even if the singleton clause is the last clause of the cond� It is not

permitted to treat a �nal clause �x� as being the same as �t x� for this

reason� the latter passes back multiple values from the form x�

CONTROL STRUCTURE ���

Returning from a block

� The block construct passes back multiple values from its last subform when

it exits normally� If returnfrom
or return� is used to terminate the block

prematurely� then returnfrom passes back multiple values from its subform

as the values of the terminated block� Other constructs that create implicit
blocks� such as do� dolist� dotimes� prog� and prog
� also pass back

multiple values speci�ed by returnfrom
or return��

� do passes back multiple values from the last form of the exit clause� exactly

as if the exit clause were a cond clause� Similarly� dolist and dotimes

pass back multiple values from the resultform if that is executed� These

situations are all examples of implicit uses of returnfrom�

Throwing out of a catch

� The catch construct returns multiple values if the result form in a throw

exiting from such a catch produces multiple values�

Miscellaneous situations

� multiplevalueprog
 passes back multiple values from its �rst subform�
However� prog
 always returns a single value�

� unwindprotect returns multiple values if the form it protects returns mul�
tiple values�

� the returns multiple values if the form it contains returns multiple values�

Among special forms that never pass back multiple values are prog
� prog��

setq� and multiplevaluesetq� The conventional way to force only one value

to be returned from a form x is to write �values x��

The most important rule about multiple values is� No matter how many

values a form produces� if the form is an argument form in a function
call� then exactly one value
the �rst one� is used�

For example� if you write �cons �floor x��� then cons will always receive

exactly one argument
which is of course an error�� even though floor returns

two values� To pass both values from floor to cons� one must write something
like �multiplevaluecall ��� cons �floor x��� In an ordinary function call�

each argument form produces exactly one argument� if such a form returns

zero values� nil is used for the argument� and if more than one value� all but

the �rst are discarded� Similarly� conditional constructs such as if that test

the value of a form will use exactly one value� the �rst one� from that form

��� COMMON LISP

and discard the rest� such constructs will use nil as the test value if zero

values are returned�

����� Dynamic Non	Local Exits

Common Lisp provides a facility for exiting from a complex process in a non�

local� dynamically scoped manner� There are two classes of special forms for

this purpose� called catch forms and throw forms� or simply catches and throws�
A catch form evaluates some subforms in such a way that� if a throw form is

executed during such evaluation� the evaluation is aborted at that point and

the catch form immediately returns a value speci�ed by the throw� Unlike

block and return
section ����� which allow for exiting a block form from
any point lexically within the body of the block� the catch�throw mechanism

works even if the throw form is not textually within the body of the catch

form� The throw need only occur within the extent
time span� of the evalu�

ation of the body of the catch� This is analogous to the distinction between

dynamically bound
special� variables and lexically bound
local� variables�

�Special form�catch tag f formg�

The catch special form serves as a target for transfer of control by throw�

The form tag is evaluated �rst to produce an object that names the catch� it
may be any Lisp object� A catcher is then established with the object as the

tag� The forms are evaluated as an implicit progn� and the results of the last

form are returned� except that if during the evaluation of the forms a throw

should be executed such that the tag of the throw matches
is eq to� the tag

of the catch and the catcher is the most recent outstanding catcher with that
tag� then the evaluation of the forms is aborted and the results speci�ed by

the throw are immediately returned from the catch expression� The catcher

established by the catch expression is disestablished just before the results

are returned�
The tag is used to match throws with catches� �catch foo form� will

catch a �throw foo form� but not a �throw bar form�� It is an error if

throw is done when there is no suitable catch ready to catch it�

Catch tags are compared using eq� not eql� therefore numbers and charac�

ters should not be used as catch tags�

Compatibility note� The name catch comes from MacLisp� but the syntax of
catch in Common Lisp is di�erent� The MacLisp syntax was �catch form tag��
where the tag was not evaluated�

CONTROL STRUCTURE ���

�Special form�unwindprotect protected�form fcleanup�formg�

Sometimes it is necessary to evaluate a form and make sure that certain side

e	ects take place after the form is evaluated� a typical example is

�progn �startmotor�

�drillhole�

�stopmotor��

The non�local exit facility of Common Lisp creates a situation in which the

above code won�t work� however� if drillhole should do a throw to a catch
that is outside of the progn form
perhaps because the drill bit broke�� then

�stopmotor� will never be evaluated
and the motor will presumably be left

running�� This is particularly likely if drillhole causes a Lisp error and the

user tells the error�handler to give up and abort the computation�
A possibly
more practical example might be

�prog� �openafile�

�processfile�

�closethefile��

where it is desired always to close the �le when the computation is terminated

for whatever reason� This case is so important that Common Lisp provides

the special form withopenfile for this purpose��

In order to allow the example hole�drilling program to work� it can be

rewritten using unwindprotect as follows�

�� Stop the motor no matter what �even if it failed to start��

�unwindprotect

�progn �startmotor�

�drillhole��

�stopmotor��

If drillhole does a throw that attempts to quit out of the unwindprotect�
then �stopmotor� will be executed�

This example assumes that it is correct to call stopmotor even if the motor

has not yet been started� Remember that an error or interrupt may cause

an exit even before any initialization forms have been executed� Any state

restoration code should operate correctly no matter where in the protected

code an exit occurred� For example� the following code is not correct�

��� COMMON LISP

�unwindprotect

�progn �incf
accesscount
�

�performaccess��

�decf
accesscount
��

If an exit occurs before completion of the incf operation the decf operation

will be executed anyway� resulting in an incorrect value for
accesscount
�

The correct way to code this is as follows�

�let ��oldcount
accesscount
��

�unwindprotect

�progn �incf
accesscount
�

�performaccess��

�setq
accesscount
 oldcount���

As a general rule� unwindprotect guarantees to execute the cleanup�forms

before exiting� whether it terminates normally or is aborted by a throw of

some kind�
If� however� an exit occurs during execution of the cleanup�
forms� no special action is taken� The cleanup�forms of an unwindprotect are

not protected by that unwindprotect� though they may be protected if that

unwindprotect occurs within the protected form of another unwindprotect��

unwindprotect returns whatever results from evaluation of the protected�form
and discards all the results from the cleanup�forms�

It should be emphasized that unwindprotect protects against all attempts

to exit from the protected form� including not only �dynamic exit� facilities

such as throw but also �lexical exit� facilities such as go and returnfrom�

Consider this situation�

�tagbody

�let ��x ���

�unwindprotect

�if �numberp x� �go out��

�print x���

out

����

When the go is executed� the call to print is executed �rst� and then the
transfer of control to the tag out is completed�

X�J�� voted in March ���� h��i to clarify the interaction of unwindprotect

with constructs that perform exits�

Let an exit be a point out of which control can be transferred� For a throw

the exit is the matching catch� for a returnfrom the exit is the corresponding

CONTROL STRUCTURE ���

block� For a go the exit is the statement within the tagbody
the one to

which the target tag belongs� which is being executed at the time the go is

performed�

The extent of an exit is dynamic� it is not inde�nite� The extent of an exit

begins when the corresponding form
catch� block� or tagbody statement� is

entered� When the extent of an exit has ended� it is no longer legal to return

from it�

Note that the extent of an exit is not the same thing as the scope or extent

of the designator by which the exit is identi�ed� For example� a block name
has lexical scope but the extent of its exit is dynamic� The extent of a catch

tag could di	er from the extent of the exit associated with the catch
which is

exactly what is at issue here�� The di	erence matters when there are transfers

of control from the cleanup clauses of an unwindprotect�

When a transfer of control out of an exit is initiated by throw� returnfrom�

or go� a variety of events occur before the transfer of control is complete�

� The cleanup clauses of any intervening unwindprotect clauses are evalu�

ated�

� Intervening dynamic bindings of special variables and catch tags are undone�

� Intervening exits are abandoned� that is� their extent ends and it is no longer
legal to attempt to transfer control from them�

� The extent of the exit being invoked ends�

� Control is �nally passed to the target�

The �rst edition left the order of these events in some doubt� The implemen�

tation note for throw hinted that the �rst two processes are interwoven� but
it was unclear whether it is permissible for an implementation to abandon all

intervening exits before processing any intervening unwindprotect cleanup

clauses�

The clari�cation adopted by X�J�� is as follows� Intervening exits are

abandoned as soon as the transfer of control is initiated� in the case of a

throw� this occurs at the beginning of the �second pass� mentioned in the
implementation note� It is an error to attempt a transfer of control to an exit

whose dynamic extent has ended�

Next the evaluation of unwindprotect cleanup clauses and the undoing

of dynamic bindings and catch tags are performed together� in the order

corresponding to the reverse of the order in which they were established� The

e	ect of this is that the cleanup clauses of an unwindprotect will see the

same dynamic bindings of variables and catch tags as were visible when the

��� COMMON LISP

unwindprotect was entered�
However� some of those catch tags may not be

useable because they correspond to abandoned exit points��

Finally control is transferred to the originally invoked exit and simultane�

ously that exit is abandoned�

The e	ect of this speci�cation is that once a program has attempted to
transfer control to a particular exit� an unwindprotect cleanup form cannot

step in and decide to transfer control to a more recent
nested� exit� blithely

forgetting the original exit request� However� a cleanup form may restate the

request to transfer to the same exit that started the cleanup process�
Here is an example based on a nautical metaphor� The function gently

moves an oar in the water with low force� but if an oar gets stuck� the caller

will catch a crab� The function row takes a boat� an oar�stroking function�

a stream� and a count� an oar is constructed for the boat and stream and

the oar�stroking function is called �count times� The function life rows a
particular boat� Merriment follows� except that if the oarsman is winded he

must stop to catch his breath�

�defun gently �oar�

�stroke oar �force ����

�when �stuck oar�

�throw crab nil���

�defun row �boat strokefn stream �key count�

�let ��oar �makeoar boat stream���

�loop repeat count do �funcall strokefn oar����

�defun life ��

�catch crab

�catch breath

�unwindprotect

�row
yourboat
 ��� gently
queryio
 �count ���

�when �winded� �throw breath nil���

�loop repeat � �setmode �merry��

�dream����

Suppose that the oar gets stuck� causing gently to call throw with the tag
crab� The program is then committed to exiting from the outer catch
the

one with the tag crab�� As control breaks out of the unwindprotect form�

the winded test is executed� Suppose it is true� then another call to throw

occurs� this time with the tag breath� The inner catch
the one with the tag

breath� has been abandoned as a result of the �rst throw operation
still in

CONTROL STRUCTURE ���

progress�� The clari�cation voted by X�J�� speci�es that the program is in

error for attempting to transfer control to an abandoned exit point� To put

it in terms of the example� once you have begun to catch a crab� you cannot

rely on being able to catch your breath�

Implementations may support longer extents for exits than is required by
this speci�cation� but portable programs may not rely on such extended ex�

tents�

This speci�cation is somewhat controversial� An alternative proposal was

that the abandoning of exits should be lumped in with the evaluation of
unwindprotect cleanup clauses and the undoing of dynamic bindings and

catch tags� performing all in reverse order of establishment� X�J�� agreed

that this approach is theoretically cleaner and more elegant but also more

stringent and of little additional practical use� There was some concern that

a more stringent speci�cation might be a great added burden to some imple�
mentors and would achieve only a small gain for users��

�Special form�throw tag result

The throw special form transfers control to a matching catch construct� The

tag is evaluated �rst to produce an object called the throw tag� then the

result form is evaluated� and its results are saved
if the result form produces

multiple values� then all the values are saved�� The most recent outstanding

catch whose tag matches the throw tag is exited� the saved results are returned
as the value
s� of the catch� A catch matches only if the catch tag is eq to

the throw tag�

In the process� dynamic variable bindings are undone back to the point

of the catch� and any intervening unwindprotect cleanup code is executed�
The result form is evaluated before the unwinding process commences� and

whatever results it produces are returned from the catch�

If there is no outstanding catcher whose tag matches the throw tag� no

unwinding of the stack is performed� and an error is signalled� When the

error is signalled� the outstanding catchers and the dynamic variable bindings
are those in force at the point of the throw�

Implementation note� These requirements imply that throwing should typi

cally make two passes over the control stack� In the �rst pass it simply searches
for a matching catch� In this search every catch must be considered� but every
unwindprotect should be ignored� On the second pass the stack is actually unwound�
one frame at a time� undoing dynamic bindings and outstanding unwindprotect

constructs in reverse order of creation until the matching catch is reached�

��� COMMON LISP

Compatibility note� The name throw comes from MacLisp� but the syntax of
throw in Common Lisp is di�erent� The MacLisp syntax was �throw form tag��
where the tag was not evaluated�

�

Macros

The Common Lisp macro facility allows the user to de�ne arbitrary functions

that convert certain Lisp forms into di	erent forms before evaluating or com�

piling them� This is done at the expression level� not at the character�string

level as in most other languages� Macros are important in the writing of good

code� they make it possible to write code that is clear and elegant at the user
level but that is converted to a more complex or more e�cient internal form

for execution�

When eval is given a list whose car is a symbol� it looks for local de�ni�

tions of that symbol
by flet� labels� and macrolet�� if that fails� it looks
for a global de�nition� If the de�nition is a macro de�nition� then the orig�

inal list is said to be a macro call� Associated with the de�nition will be a

function of two arguments� called the expansion function� This function is

called with the entire macro call as its �rst argument
the second argument

is a lexical environment�� it must return some new Lisp form� called the ex�
pansion of the macro call�
Actually� a more general mechanism is involved�

see macroexpand�� This expansion is then evaluated in place of the original

form�

When a function is being compiled� any macros it contains are expanded
at compilation time� This means that a macro de�nition must be seen by the

compiler before the �rst use of the macro�

More generally� an implementation of Common Lisp has great latitude in

deciding exactly when to expand macro calls within a program� For example�

it is acceptable for the defun special form to expand all macro calls within
its body at the time the defun form is executed and record the fully ex�

panded body as the body of the function being de�ned�
An implementation

might even choose always to compile functions de�ned by defun� even when

operating in an �interpretive� mode��

Macros should be written so as to depend as little as possible on the ex�

��	

��
 COMMON LISP

ecution environment to produce a correct expansion� To ensure consistent

behavior� it is best to ensure that all macro de�nitions are available� whether

to the interpreter or compiler� before any code containing calls to those macros

is introduced�

In Common Lisp� macros are not functions� In particular� macros cannot

be used as functional arguments to such functions as apply� funcall� or map�

in such situations� the list representing the �original macro call� does not
exist� and cannot exist� because in some sense the arguments have already

been evaluated�

��� Macro De
nition

The function macrofunction determines whether a given symbol is the name

of a macro� The defmacro construct provides a convenient way to de�ne new

macros�

�Function�macrofunction symbol
��

The argument must be a symbol� If the symbol has a global function de��

nition that is a macro de�nition� then the expansion function
a function of

two arguments� the macro�call form and an environment� is returned� If the

symbol has no global function de�nition� or has a de�nition as an ordinary
function or as a special form but not as a macro� then nil is returned� The

function macroexpand is the best way to invoke the expansion function�

It is possible for both macrofunction and specialformp to be true of a

symbol� This is possible because an implementation is permitted to implement

any macro also as a special form for speed� On the other hand� the macro

de�nition must be available for use by programs that understand only the
standard special forms listed in table ����

macrofunction cannot be used to determine whether a symbol names a
locally de�ned macro established by macrolet� macrofunction can examine

only global de�nitions�

setf may be used with macrofunction to install a macro as a symbol�s

global function de�nition�

�setf �macrofunction symbol� fn�

The value installed must be a function that accepts two arguments� an entire

macro call and an environment� and computes the expansion for that call�

Performing this operation causes the symbol to have only that macro de�nition

��

MACROS ���

as its global function de�nition� any previous de�nition� whether as a macro

or as a function� is lost� It is an error to attempt to rede�ne the name of a

special form�

X�J�� voted in March ���� h���i to add an optional environment argument

to macrofunction�

�Function�macrofunction symbol �optional env

The �rst argument must be a symbol� If the symbol has a function de�nition

that is a macro de�nition� whether a local one established in the environment

env by macrolet or a global one established as if by defmacro� then the
expansion function
a function of two arguments� the macro�call form and an

environment� is returned� If the symbol has no function de�nition� or has a

de�nition as an ordinary function or as a special form but not as a macro�

then nil is returned� The function macroexpand or macroexpand
 is the best
way to invoke the expansion function�

It is possible for both macrofunction and specialformp to be true of a
symbol� This is possible because an implementation is permitted to implement

any macro also as a special form for speed� On the other hand� the macro

de�nition must be available for use by programs that understand only the

standard special forms listed in table ����

setf may be used with macrofunction to install a macro as a symbol�s

global function de�nition�

�setf �macrofunction symbol� fn�

The value installed must be a function that accepts two arguments� an entire

macro call and an environment� and computes the expansion for that call�

Performing this operation causes the symbol to have only that macro de�nition
as its global function de�nition� any previous de�nition� whether as a macro

or as a function� is lost� One cannot use setf to establish a local macro

de�nition� it is an error to supply a second argument to macrofunctionwhen

using it with setf� It is an error to attempt to rede�ne the name of a special

form�

See also compilermacrofunction�

�Macro�defmacro name lambda�list �� fdeclarationg� j doc�string �� f formg�

defmacro is a macro�de�ning macro that arranges to decompose the macro�

call form in an elegant and useful way� defmacro has essentially the same

��� COMMON LISP

syntax as defun� name is the symbol whose macro de�nition we are creating�

lambda�list is similar in form to a lambda�list� and the forms constitute the

body of the expander function� The defmacro construct arranges to install

this expander function� as the global macro de�nition of name�

The expander function is e	ectively de�ned in the global environment� lex�
���

ically scoped entities established outside the defmacro form that would ordi�

narily be lexically apparent are not visible within the body of the expansion

function�

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�
mally appear at top level� it is meaningful to place them in non�top�level

contexts� Furthermore� defmacro should de�ne the expander function within

the enclosing lexical environment� not within the global environment�

X�J�� voted in March ���� h��i to specify that the body of the expander

function de�ned by defmacro is implicitly enclosed in a block construct whose
name is the same as the name of the de�ned macro� Therefore returnfrom

may be used to exit from the function�

The name is returned as the value of the defmacro form�

If we view the macro call as a list containing a function name and some
argument forms� in e	ect the expander function and the list of
unevaluated�

argument forms is given to apply� The parameter speci�ers are processed

as for any lambda�expression� using the macro�call argument forms as the

arguments� Then the body forms are evaluated as an implicit progn� and the

value of the last form is returned as the expansion of the macro call�

If the optional documentation string doc�string is present
if not followed

by a declaration� it may be present only if at least one form is also speci�ed�

as it is otherwise taken to be a form�� then it is attached to the name as a

documentation string of type function� see documentation�

Like the lambda�list in a defun� a defmacro lambda�list may contain the
���

lambda�list keywords �optional� �rest� �key� �allowotherkeys� and �aux�

For �optional and �key parameters� initialization forms and supplied�p pa�

rameters may be speci�ed� just as for defun� Three additional markers are

allowed in defmacro variable lists only�

These three markers are now allowed in other constructs as well�

�body This is identical in function to �rest� but it informs certain

output�formatting and editing functions that the remainder

of the form is treated as a body and should be indented ac�

cordingly�
Only one of �body or �rest may be used��

�whole This is followed by a single variable that is bound to the

entire macro�call form� this is the value that the macro def�

MACROS ���

inition function receives as its single argument� �whole and

the following variable should appear �rst in the lambda�list�

before any other parameter or lambda�list keyword�

�environment This is followed by a single variable that is bound to an en�

vironment representing the lexical environment in which the

macro call is to be interpreted� This environment may not

be the complete lexical environment� it should be used only

with the function macroexpand for the sake of any local macro
de�nitions that the macrolet construct may have established

within that lexical environment� This is useful primarily in

the rare cases where a macro de�nition must explicitly ex�

pand any macros in a subform of the macro call before com�
puting its own expansion�

See lambdalistkeywords�

Notice of correction� In the �rst edition� the symbol �environment at the

left margin above was inadvertently omitted�

X�J�� voted in March ���� h���i to specify that macro environment objects
received with the �environment argument of a macro function have only

dynamic extent� The consequences are unde�ned if such objects are referred to

outside the dynamic extent of that particular invocation of the macro function�

This allows implementations to use somewhat more e�cient techniques for
representing environment objects�

X�J�� voted in March ���� h��i to clarify the permitted uses of �body�

�whole� and �environment�

� �body may appear at any level of a defmacro lambda�list�

� �whole may appear at any level of a defmacro lambda�list� At inner levels

a �whole variable is bound to that part of the argument that matches the

sub�lambda�list in which �whole appears� No matter where �whole is used�
other parameters or lambda�list keywords may follow it�

� �environmentmay occur only at the outermost level of a defmacro lambda�

list� and it may occur at most once� but it may occur anywhere within that

lambda�list� even before an occurrence of �whole�

defmacro� unlike any other Common Lisp construct that has a lambda�list

as part of its syntax� provides an additional facility known as destructuring�

See destructuringbind� which provides the destructuring facility sepa�

rately�

��� COMMON LISP

Anywhere in the lambda�list where a parameter name may appear� and

where ordinary lambda�list syntax
as described in section ������ does not

otherwise allow a list� a lambda�list may appear in place of the parameter

name� When this is done� then the argument form that would match the

parameter is treated as a
possibly dotted� list� to be used as an argument
forms list for satisfying the parameters in the embedded lambda�list� As an

example� one could write the macro de�nition for dolist in this manner�

�defmacro dolist ��var listform �optional resultform�

�rest body�

����

More examples of embedded lambda�lists in defmacro are shown below�

Another destructuring rule is that defmacro allows any lambda�list

whether top�level or embedded� to be dotted� ending in a parameter name�

This situation is treated exactly as if the parameter name that ends the list

had appeared preceded by �rest� For example� the de�nition skeleton for

dolist shown above could instead have been written

�defmacro dolist ��var listform �optional resultform�

� body�

����

If the compiler encounters a defmacro� the new macro is added to the
compilation environment� and a compiled form of the expansion function is

also added to the output �le so that the new macro will be operative at run

time� If this is not the desired e	ect� the defmacro form can be wrapped in

an evalwhen construct�

It is permissible to use defmacro to rede�ne a macro
for example� to install

a corrected version of an incorrect de�nition�� or to rede�ne a function as a

macro� It is an error to attempt to rede�ne the name of a special form
see
table ���� as a macro� See macrolet� which establishes macro de�nitions over

a restricted lexical scope�

See also definecompilermacro�

Suppose� for the sake of example� that it were desirable to implement a

conditional construct analogous to the Fortran arithmetic IF statement�
This
of course requires a certain stretching of the imagination and suspension of

disbelief�� The construct should accept four forms� a test�value� a neg�form�

a zero�form� and a pos�form� One of the last three forms is chosen to be

executed according to whether the value of the test�form is positive� negative�

or zero� Using defmacro� a de�nition for such a construct might look like this�

MACROS ���

�defmacro arithmeticif �test negform zeroform posform�

�let ��var �gensym���

�let ���var �test��

�cond ��� �var �� �negform�

�� �var �� �zeroform�

�t �posform�����

Note the use of the backquote facility in this de�nition
see section ��������

Also note the use of gensym to generate a new variable name� This is necessary

to avoid con
ict with any variables that might be referred to in neg�form� zero�

form� or pos�form�

If the form is executed by the interpreter� it will cause the function de�nition

of the symbol arithmeticif to be a macro associated with which is a two�

argument expansion function roughly equivalent to

�lambda �callingform environment�

�declare �ignore environment��

�let ��var �gensym���

�list let

�list �list var �cadr callingform���

�list cond

�list �list � var �� �caddr callingform��

�list �list var �� �cadddr callingform��

�list t �fifth callingform������

The lambda�expression is produced by the defmacro declaration� The calls to

list are the
hypothetical� result of the backquote
 � macro character and

its associated commas� The precise macro expansion function may depend

on the implementation� for example providing some degree of explicit error
checking on the number of argument forms in the macro call�

Now� if eval encounters

�arithmeticif � x ����

� x�

�error �Strange zero��

x�

this will be expanded into something like

�let ��g��	 � x ������

�cond ��� g��	 �� � x��

�� g��	 �� �error �Strange zero���

��� COMMON LISP

�t x���

and eval tries again on this new form�
It should be clear now that the back�
quote facility is very useful in writing macros� since the form to be returned

is normally a complex list structure� typically consisting of a mostly constant

template with a few evaluated forms here and there� The backquote template

provides a �picture� of the resulting code� with places to be �lled in indicated
by preceding commas��

To expand on this example� stretching credibility to its limit� we might allow

the pos�form and zero�form to be omitted� allowing their values to default to

nil� in much the same way that the else form of a Common Lisp if construct

may be omitted�

�defmacro arithmeticif �test negform

�optional zeroform posform�

�let ��var �gensym���

�let ���var �test��

�cond ��� �var �� �negform�

�� �var �� �zeroform�

�t �posform�����

Then one could write

�arithmeticif � x ���� �print x��

which would be expanded into something like

�let ��g��� � x ������

�cond ��� g��� �� �print x��

�� g��� �� nil�

�t nil���

The resulting code is correct but rather silly�looking� One might rewrite the

macro de�nition to produce better code when pos�form and possibly zero�form

are omitted� or one might simply rely on the Common Lisp implementation

to provide a compiler smart enough to improve the code itself�

Destructuring is a very powerful facility that allows the defmacro lambda�
list to express the structure of a complicated macro�call syntax� If no lambda�

list keywords appear� then the defmacro lambda�list is simply a list� nested

to some extent� containing parameter names at the leaves� The macro�call

form must have the same list structure� For example� consider this macro

de�nition�

MACROS ���

�defmacro halibut ��mouth eye
 eye��

��fin
 length
� �fin� length���

tail�

����

Now consider this macro call�

�halibut �m �car eyes� �cdr eyes��

��f
 �countscales f
�� �f� �countscales f����

myfavoritetail�

This would cause the expansion function to receive the following values for its

parameters�

Parameter Value

mouth m

eye
 �car eyes�

eye� �cdr eyes�

fin
 f

length
 �countscales f
�

fin� f�

length� �countscales f��

tail myfavoritetail

The following macro call would be in error because there would be no argu�

ment form to match the parameter length
�

�halibut �m �car eyes� �cdr eyes��

��f
� �f� �countscales f����

myfavoritetail�

The following macro call would be in error because a symbol appears in the
call where the structure of the lambda�list requires a list�

�halibut myfavoritehead

��f
 �countscales f
�� �f� �countscales f����

myfavoritetail�

The fact that the value of the variable myfavoritehead might happen to be

a list is irrelevant here� It is the macro call itself whose structure must match

that of the defmacro lambda�list�

The use of lambda�list keywords adds even greater
exibility� For example�

suppose it is convenient within the expansion function for halibut to be able

��� COMMON LISP

to refer to the list whose components are called mouth� eye
� and eye� as

head� One may write this�

�defmacro halibut ���whole head mouth eye
 eye��

��fin
 length
� �fin� length���

tail�

Now consider the same valid macro call as before�

�halibut �m �car eyes� �cdr eyes��

��f
 �countscales f
�� �f� �countscales f����

myfavoritetail�

This would cause the expansion function to receive the same values for its

parameters and also a value for the parameter head�

Parameter Value

head �m �car eyes� �cdr eyes��

The stipulation that an embedded lambda�list is permitted only where or�

dinary lambda�list syntax would permit a parameter name but not a list is

made to prevent ambiguity� For example� one may not write

�defmacro loser �x �optional �a b �rest c� �rest z�

����

because ordinary lambda�list syntax does permit a list following �optional�

the list �a b �rest c� would be interpreted as describing an optional pa�
rameter named a whose default value is that of the form b� with a supplied�p

parameter named �rest
not legal�� and an extraneous symbol c in the list

also not legal�� An almost correct way to express this is

�defmacro loser �x �optional ��a b �rest c�� �rest z�

����

The extra set of parentheses removes the ambiguity� However� the de�nition is

now incorrect because a macro call such as �loser �car pool�� would not

provide any argument form for the lambda�list �a b �rest c�� and so the
default value against which to match the lambda�list would be nil because

no explicit default value was speci�ed� This is in error because nil is an

empty list� it does not have forms to satisfy the parameters a and b� The

fully correct de�nition would be either

�defmacro loser �x �optional ��a b �rest c� �nil nil�� �rest z�

MACROS ��	

����

or

�defmacro loser �x �optional ���optional a b �rest c�� �rest z�

����

These di	er slightly� the �rst requires that if the macro call speci�es a explic�

itly then it must also specify b explicitly� whereas the second does not have

this requirement� For example�

�loser �car pool� ��� x
���

would be a valid call for the second de�nition but not for the �rst�

��� Macro Expansion

The macroexpand function is the conventional means for expanding a macro

call� A hook is provided for a user function to gain control during the expan�
sion process�

�Function�macroexpand form �optional env

�Function�macroexpand
 form �optional env

If form is a macro call� then macroexpand
 will expand the macro call once

and return two values� the expansion and t� If form is not a macro call� then

the two values form and nil are returned�

A form is considered to be a macro call only if it is a cons whose car is
a symbol that names a macro� The environment env is similar to that used

within the evaluator
see evalhook�� it defaults to a null environment� Any

local macro de�nitions established within env by macrolet will be considered�

If only form is given as an argument� then the environment is e	ectively

null� and only global macro de�nitions
as established by defmacro� will be
considered�

Macro expansion is carried out as follows� Once macroexpand
 has deter�

mined that a symbol names a macro� it obtains the expansion function for

that macro� The value of the variable
macroexpandhook
 is then called as a
function of three arguments� the expansion function� the form� and the envi�

ronment env� The value returned from this call is taken to be the expansion

of the macro call� The initial value of
macroexpandhook
 is funcall� and

the net e	ect is to invoke the expansion function� giving it form and env as

its two arguments�

��
 COMMON LISP

X�J�� voted in June ���� h��i to specify that the value of

macroexpandhook
 is �rst coerced to a function before being called as the

expansion interface hook� Therefore its value may be a symbol� a lambda�

expression� or any object of type function�

X�J�� voted in March ���� h���i to specify that macro environment ob�

jects received by a
macroexpandhook
 function have only dynamic extent�

The consequences are unde�ned if such objects are referred to outside the dy�

namic extent of that particular invocation of the hook function� This allows
implementations to use somewhat more e�cient techniques for representing

environment objects�

The purpose of
macroexpandhook
 is to facilitate various techniques for
���

improving interpretation speed by caching macro expansions��

X�J�� voted in June ���� h���i to clarify that� while
macroexpandhook

may be useful for debugging purposes� despite the original design intent there

is currently no correct portable way to use it for caching macro expansions�

� Caching by displacement
performing a side e	ect on the macro�call form�
won�t work because the same
eq� macro�call form may appear in distinct

lexical contexts� In addition� the macro�call form may be a read�only con�

stant
see quote and also section ������

� Caching by table lookup won�t work because such a table would have to be

keyed by both the macro�call form and the environment� but X�J�� voted

in March ���� h���i to permit macro environments to have only dynamic
extent�

� Caching by storing macro�call forms and expansions within the environment

object itself would work� but there are no portable primitives that would

allow users to do this�

X�J�� also noted that� although there seems to be no correct portable way to

use
macroexpandhook
 to cache macro expansions� there is no requirement

that an implementation call the macro expansion function more than once for
a given form and lexical environment�

X�J�� voted in March ���� h���i to specify that macroexpand
 will also

expand symbol macros de�ned by symbolmacrolet� therefore a form may also
be a macro call if it is a symbol� The vote did not address the interaction of this

feature with the
macroexpandhook
 function� An obvious implementation

choice is that the hook function is indeed called and given a special expansion

function that� when applied to the form
a symbol� and env� will produce the

expansion� just as for an ordinary macro� but this is only my suggestion�

MACROS ���

The evaluator expands macro calls as if through the use of macroexpand
�

the point is that eval also uses
macroexpandhook
�

macroexpand is similar to macroexpand
� but repeatedly expands form

until it is no longer a macro call�
In e	ect� macroexpand simply calls

macroexpand
 repeatedly until the second value returned is nil�� A sec�
ond value of t or nil is returned as for macroexpand
� indicating whether the

original form was a macro call�

�Variable�
macroexpandhook

The value of
macroexpandhook
 is used as the expansion interface hook by

macroexpand
�

��� Destructuring

X�J�� voted in March ���� h��i to make the destructuring feature of

defmacro available as a separate facility�

�Macro�destructuringbind lambda�list expression fdeclarationg� f formg�

This macro binds the variables speci�ed in lambda�list to the corresponding

values in the tree structure resulting from evaluating the expression� then

executes the forms as an implicit progn�
A destructuringbind lambda�list may contain the lambda�list keywords

�optional� �rest� �key� �allowotherkeys� and �aux� �body and �whole

may also be used as they are in defmacro� but �environment may not be

used� Nested and dotted lambda�lists are also permitted as for defmacro�
The idea is that a destructuringbind lambda�list has the same format as

inner levels of a defmacro lambda�list�

If the result of evaluating the expression does not match the destructuring

pattern� an error should be signaled�

��� Compiler Macros

X�J�� voted in June ���� h��i to add a facility for de�ning compiler macros
that take e	ect only when compiling code� not when interpreting it�

The purpose of this facility is to permit selective source�code transforma�

tions only when the compiler is processing the code� When the compiler is

about to compile a non�atomic form� it �rst calls compilermacroexpand
 re�

peatedly until there is no more expansion
there might not be any to begin

��� COMMON LISP

with�� Then it continues its remaining processing� which may include calling

macroexpand
 and so on�

The compiler is required to expand compiler macros� It is unspeci�ed

whether the interpreter does so� The intention is that only the compiler will

do so� but the range of possible �compiled�only� implementation strategies

precludes any �rm speci�cation�

�Macro�definecompilermacro name lambda�list

fdeclaration j doc�stringg� f formg�

This is just like defmacro except the de�nition is not stored in the symbol

function cell of name and is not seen by macroexpand
� It is� however� seen

by compilermacroexpand
� As with defmacro� the lambda�list may include
�environment and �whole and may include destructuring� The de�nition is

global�
There is no provision for de�ning local compiler macros in the way

that macrolet de�nes local macros��

A top�level call to definecompilermacro in a �le being compiled by

compilefile has an e	ect on the compilation environment similar to that of

a call to defmacro� except it is noticed as a compiler macro
see section ������

Note that compiler macro de�nitions do not appear in information

returned by functioninformation� they are global� and their interac�
tion with other lexical and global de�nitions can be reconstructed by

compilermacrofunction� It is up to code�walking programs to decide

whether to invoke compiler macro expansion�

X�J�� voted in March ���� h��i to specify that the body of the expander

function de�ned by defmacro is implicitly enclosed in a block construct whose

name is the same as the name of the de�ned macro� presumably this applies
also to definecompilermacro� Therefore returnfrom may be used to exit

from the function�

�Function�compilermacrofunction name �optional env

The name must be a symbol� If it has been de�ned as a compiler macro� then

compilermacrofunction returns the macro expansion function� otherwise it
returns nil� The lexical environment env may override any global de�nition

for name by de�ning a local function or local macro
such as by flet� labels�

or macrolet� in which case nil is returned�

setf may be used with compilermacrofunction to install a function as

the expansion function for the compiler macro name� in the same manner

as for macrofunction� Storing the value nil removes any existing compiler

MACROS ���

macro de�nition� As with macrofunction� a non�nil stored value must be a

function of two arguments� the entire macro call and the environment� The

second argument to compilermacrofunctionmust be omitted when it is used

with setf�

�Function�compilermacroexpand form �optional env

�Function�compilermacroexpand
 form �optional env

These are just like macroexpand and macroexpand
 except that the ex�

pander function is obtained as if by a call to compilermacrofunction

on the car of the form rather than by a call to macrofunction�

Note that compilermacroexpand performs repeated expansion but

compilermacroexpand
 performs at most one expansion� Two values are

returned� the expansion
or the original form� and a value that is true if any

expansion occurred and nil otherwise�

There are three cases where no expansion happens�

� There is no compiler macro de�nition for the car of form�

� There is such a de�nition but there is also a notinline declaration� either

globally or in the lexical environment env�

� A global compiler macro de�nition is shadowed by a local function or macro

de�nition
such as by flet� labels� or macrolet��

Note that if there is no expansion� the original form is returned as the �rst
value� and nil as the second value�

Any macro expansion performed by the function compilermacroexpand or
by the function compilermacroexpand
 is carried out by calling the function

that is the value of
macroexpandhook
�

A compiler macro may decline to provide any expansion merely by returning

the original form� This is useful when using the facility to put �compiler

optimizers� on various function names� For example� here is a compiler macro

that �optimizes�
one would hope� the zero�argument and one�argument cases

of a function called plus�

�definecompilermacro plus ��whole form �rest args�

�case �length args�

�� ��

�
 �car args��

�t form���

��� COMMON LISP

��� Environments

X�J�� voted in June ���� h���i to add some facilities for obtaining in�
formation from environment objects of the kind received as arguments by

macro expansion functions�
macroexpandhook
 functions� and
evalhook

functions� There is a minimal set of accessors
variableinformation�

functioninformation� and declarationinformation� and a constructor

augmentenvironment� for environments�

All of the standard declaration speci�ers� with the exception of special�
can be de�ned fairly easily using definedeclaration� It also seems to be

able to handle most extended declarations�

The function parsemacro is provided so that users don�t have to write their

own code to destructure macro arguments� This function is not entirely neces�

sary since X�J�� voted in March ���� h��i to add destructuringbind to the
language� However� parsemacro is worth having anyway� since any program�

analyzing program is going to need to de�ne it� and the implementation isn�t

completely trivial even with destructuringbind to build upon�

The function enclose allows expander functions to be de�ned in a non�null

lexical environment� as required by the vote of X�J�� in March ���� h��i�
It also provides a mechanism by which a program processing the body of an
�evalwhen ��compiletoplevel� ���� form can execute it in the enclosing

environment
see issue h��i��
In all of these functions the argument named env is an environment ob�

ject�
It is not required that implementations provide a distinguished repre�

sentation for such objects�� Optional env arguments default to nil� which
represents the local null lexical environment
containing only global de�ni�

tions and proclamations that are present in the run�time environment�� All

of these functions should signal an error of type typeerror if the value of an

environment argument is not a syntactic environment object�

The accessor functions variableinformation� functioninformation� and

declarationinformation retrieve information about declarations that are in
e	ect in the environment� Since implementations are permitted to ignore dec�

larations
except for special declarations and optimize safety declarations

if they ever compile unsafe code�� these accessors are required only to return

information about declarations that were explicitly added to the environment
using augmentenvironment� They might also return information about dec�

larations recognized and added to the environment by the interpreter or the

compiler� but that is at the discretion of the implementor� Implementations

are also permitted to canonicalize declarations� so the information returned

by the accessors might not be identical to the information that was passed to

MACROS ���

augmentenvironment�

�Function�variableinformation variable �optional env

This function returns information about the interpretation of the symbol vari�

able when it appears as a variable within the lexical environment env� Three

values are returned�
The �rst value indicates the type of de�nition or binding for variable in

env �

nil There is no apparent de�nition or binding for variable�

�special The variable refers to a special variable� either declared or

proclaimed�

�lexical The variable refers to a lexical variable�

�symbol�macro The variable refers to a symbolmacrolet binding�

�constant Either the variable refers to a named constant de�ned by
defconstant or the variable is a keyword symbol�

The second value indicates whether there is a local binding of the name�

If the name is locally bound� the second value is true� otherwise� the second

value is nil�

The third value is an a�list containing information about declarations that
apply to the apparent binding of the variable� The keys in the a�list are

symbols that name declaration speci�ers� and the format of the corresponding

value in the cdr of each pair depends on the particular declaration name

involved� The standard declaration names that might appear as keys in this

a�list are�

dynamic�extent A non�nil value indicates that the variable has been de�
clared dynamicextent� If the value is nil� the pair might

be omitted�

ignore A non�nil value indicates that the variable has been de�

clared ignore� If the value is nil� the pair might be omit�

ted�

type The value is a type speci�er associated with the variable by

a type declaration or an abbreviated declaration such as

�fixnum variable�� If no explicit association exists� either

by proclaim or declare� then the type speci�er is t� It

is permissible for implementations to use a type speci�er

��� COMMON LISP

that is equivalent to or a supertype of the one appearing

in the original declaration� If the value is t� the pair might

be omitted�

If an implementation supports additional declaration speci�ers that apply to
variable bindings� those declaration names might also appear in the a�list�

However� the corresponding key must not be a symbol that is external in

any package de�ned in the standard or that is otherwise accessible in the

commonlispuser package�

The a�list might contain multiple entries for a given key� The consequences

of destructively modifying the list structure of this a�list or its elements
ex�

cept for values that appear in the a�list as a result of definedeclaration�
are unde�ned�

Note that the global binding might di	er from the local one and can be
retrieved by calling variableinformation with a null lexical environment�

�Function�functioninformation function �optional env

This function returns information about the interpretation of the function�

name function when it appears in a functional position within lexical environ�
ment env� Three values are returned�

The �rst value indicates the type of de�nition or binding of the function�
name which is apparent in env�

nil There is no apparent de�nition for function�

�function The function refers to a function�

�macro The function refers to a macro�

�special�form The function refers to a special form�

Some function�names can refer to both a global macro and a global special

form� In such a case the macro takes precedence and �macro is returned as
the �rst value�

The second value speci�es whether the de�nition is local or global� If local�
the second value is true� it is nil when the de�nition is global�

The third value is an a�list containing information about declarations that
apply to the apparent binding of the function� The keys in the a�list are

symbols that name declaration speci�ers� and the format of the corresponding

values in the cdr of each pair depends on the particular declaration name

involved� The standard declaration names that might appear as keys in this

a�list are�

MACROS ���

dynamic�extent A non�nil value indicates that the function has been de�

clared dynamicextent� If the value is nil� the pair might

be omitted�

inline The value is one of the symbols inline� notinline� or nil
to indicate whether the function�name has been declared

inline� declared notinline� or neither� respectively� If

the value is nil� the pair might be omitted�

ftype The value is the type speci�er associated with the function�

name in the environment� or the symbol function if there

is no functional type declaration or proclamation associ�

ated with the function�name� This value might not include
all the apparent ftype declarations for the function�name�

It is permissible for implementations to use a type speci�

�er that is equivalent to or a supertype of the one that ap�

peared in the original declaration� If the value is function�

the pair might be omitted�

If an implementation supports additional declaration speci�ers that apply to

function bindings� those declaration names might also appear in the a�list�

However� the corresponding key must not be a symbol that is external in

any package de�ned in the standard or that is otherwise accessible in the
commonlispuser package�

The a�list might contain multiple entries for a given key� In this case the

value associated with the �rst entry has precedence� The consequences of

destructively modifying the list structure of this a�list or its elements
except
for values that appear in the a�list as a result of definedeclaration� are

unde�ned�

Note that the global binding might di	er from the local one and can be

retrieved by calling functioninformation with a null lexical environment�

�Function�declarationinformation declname �optional env

This function returns information about declarations named by the symbol

decl�name that are in force in the environment env� Only declarations that do
not apply to function or variable bindings can be accessed with this function�

The format of the information that is returned depends on the decl�name

involved�

It is required that this function recognize optimize and declaration as

decl�names� The values returned for these two cases are as follows�

��� COMMON LISP

optimize A single value is returned� a list whose entries

are of the form �quality value�� where quality is

one of the standard optimization qualities
speed�

safety� compilationspeed� space� debug� or some

implementation�speci�c optimization quality� and value is
an integer in the range � to �
inclusive�� The returned list

always contains an entry for each of the standard qualities

and for each of the implementation�speci�c qualities� In

the absence of any previous declarations� the associated
values are implementation�dependent� The list might con�

tain multiple entries for a quality� in which case the �rst

such entry speci�es the current value� The consequences

of destructively modifying this list or its elements are un�

de�ned�

declaration A single value is returned� a list of the declaration names

that have been proclaimed as valid through the use of the

declaration proclamation� The consequences of destruc�

tively modifying this list or its elements are unde�ned�

If an implementation is extended to recognize additional declaration
speci�ers in declare or proclaim� it is required that either the

declarationinformation function should recognize those declarations also

or the implementation should provide a similar accessor that is specialized

for that declaration speci�er� If declarationinformation is used to return

the information� the corresponding decl�name must not be a symbol that is
external in any package de�ned in the standard or that is otherwise accessible

in the commonlispuser package�

�Function�augmentenvironment env �key �variable �symbolmacro

�function �macro �declare

This function returns a new environment containing the information present
in env augmented with the information provided by the keyword arguments�

It is intended to be used by program analyzers that perform a code walk�

The arguments are supplied as follows�

�variable

The argument is a list of symbols that will be visible as bound variables in

the new environment� Whether each binding is to be interpreted as special

MACROS ��	

or lexical depends on special declarations recorded in the environment or

provided in the �declare argument�

�symbol�macro

The argument is a list of symbol macro de�nitions� each of the form �name

de
nition�� that is� the argument is in the same format as the cadr of a

symbolmacrolet special form� The new environment will have local symbol�

macro bindings of each symbol to the corresponding expansion� so that
macroexpand will be able to expand them properly� A type declaration in

the �declare argument that refers to a name in this list implicitly modi�es

the de�nition associated with the name� The e	ect is to wrap a the form

mentioning the type around the de�nition�

�function

The argument is a list of function�names that will be visible as local function
bindings in the new environment�

�macro

The argument is a list of local macro de�nitions� each of the form �name

de
nition�� Note that the argument is not in the same format as the cadr of a

macrolet special form� Each de
nition must be a function of two arguments

a form and an environment�� The new environment will have local macro
bindings of each name to the corresponding expander function� which will be

returned by macrofunction and used by macroexpand�

�declare

The argument is a list of declaration

speci�ers� Information about these declarations can be retrieved from the

resulting environment using variableinformation� functioninformation�

and declarationinformation�

The consequences of subsequently destructively modifying the list structure

of any of the arguments to this function are unde�ned�

An error is signaled if any of the symbols naming a symbol macro in the

�symbolmacro argument is also included in the �variable argument� An
error is signaled if any symbol naming a symbol macro in the �symbolmacro

argument is also included in a special declaration speci�er in the �declare

argument� An error is signaled if any symbol naming a macro in the �macro

argument is also included in the �function argument� The condition type of

each of these errors is programerror�

��
 COMMON LISP

The extent of the returned environment is the same as the extent of the

argument environment env� The result might share structure with env but

env is not modi�ed�

While an environment argument received by an
evalhook
 function is

permitted to be used as the environment argument to augmentenvironment�

the consequences are unde�ned if an attempt is made to use the result of

augmentenvironment as the environment argument for evalhook� The en�
vironment returned by augmentenvironment can be used only for syntactic

analysis� that is� as an argument to the functions de�ned in this section and

functions such as macroexpand�

�Macro�definedeclaration decl�name lambda�list f formg�

This macro de�nes a handler for the named declaration� It is the mechanism

by which augmentenvironment is extended to support additional declaration

speci�ers� The function de�ned by this macro will be called with two argu�

ments� a declaration speci�er whose car is decl�name and the env argument to
augmentenvironment� This function must return two values� The �rst value

must be one of the following keywords�

�variable The declaration applies to variable bindings�

�function The declaration applies to function bindings�

�declare The declaration does not apply to bindings�

If the �rst value is �variable or �function then the second value must be
a list� the elements of which are lists of the form �bindingname key value��

If the corresponding information function
either variableinformation or

functioninformation� is applied to the binding�name and the augmented

environment� the a�list returned by the information function as its third value
will contain the value under the speci�ed key�

If the �rst value is �declare� the second value must be a cons of the form

�key � value�� The function declarationinformation will return value
when applied to the key and the augmented environment�

definedeclaration causes decl�name to be proclaimed to be a declara�
tion� it is as if its expansion included a call �proclaim �declaration de�

clname��� As is the case with standard declaration speci�ers� the evaluator

and compiler are permitted� but not required� to add information about dec�

laration speci�ers de�ned with definedeclaration to the macro expansion

and
evalhook
 environments�

MACROS ���

The consequences are unde�ned if decl�name is a symbol that can appear

as the car of any standard declaration speci�er�

The consequences are also unde�ned if the return value from a declaration

handler de�ned with definedeclaration includes a key name that is used

by the corresponding accessor to return information about any standard dec�
laration speci�er�
For example� if the �rst return value from the handler is

�variable� the second return value may not use the symbols dynamicextent�

ignore� or type as key names��

The definedeclarationmacro does not have any special compile�time side
e	ects
see section ������

�Function�parsemacro name lambdalist body �optional env

This function is used to process a macro de�nition in the same way as

defmacro and macrolet� It returns a lambda�expression that accepts two

arguments� a form and an environment� The name� lambda�list� and body

arguments correspond to the parts of a defmacro or macrolet de�nition�
The lambda�list argument may include �environment and �whole and may

include destructuring� The name argument is used to enclose the body in an

implicit block and might also be used for implementation�dependent purposes

such as including the name of the macro in error messages if the form does
not match the lambda�list��

�Function�enclose lambdaexpression �optional env

This function returns an object of type function that is equivalent to what

would be obtained by evaluating �function �lambdaexpression� in a syn�

tactic environment env� The lambda�expression is permitted to reference only

the parts of the environment argument env that are relevant only to syntactic
processing� speci�cally declarations and the de�nitions of macros and symbol

macros� The consequences are unde�ned if the lambda�expression contains any

references to variable or function bindings that are lexically visible in env� any

go to a tag that is lexically visible in env� or any returnfrom mentioning a

block name that is lexically visible in env�

�

Declarations

Declarations allow you to specify extra information about your program to

the Lisp system� With one exception� declarations are completely optional
and correct declarations do not a	ect the meaning of a correct program� The

exception is that special declarations do a	ect the interpretation of variable

bindings and references and so must be speci�ed where appropriate� All other

declarations are of an advisory nature� and may be used by the Lisp system to

aid the programmer by performing extra error checking or producing more ef�
�cient compiled code� Declarations are also a good way to add documentation

to a program�

Note that it is considered an error for a program to violate a declaration

such as a type declaration�� but an implementation is not required to detect

such errors
though such detection� where feasible� is to be encouraged��

���� Declaration Syntax

The declare construct is used for embedding declarations within executable

code� Global declarations and declarations that are computed by a program

are established by the proclaim construct�

X�J�� voted in June ���� h���i to introduce the new macro declaim� which

is guaranteed to be recognized appropriately by the compiler and is often more
convenient than proclaim for establishing global declarations�

�Special form�declare fdecl�specg�

A declare form is known as a declaration� Declarations may occur only at

the beginning of the bodies of certain special forms� that is� a declaration may

occur only as a statement of such a special form� and all statements preceding

it
if any� must also be declare forms
or possibly documentation strings� in

���

DECLARATIONS ���

some cases�� Declarations may occur in lambda�expressions and in the forms

listed here�

definesetfmethod labels

defmacro let

defsetf let

deftype locally

defun macrolet

do multiplevaluebind

do
 prog

doallsymbols prog

doexternalsymbols withinputfromstring

dosymbols withopenfile

dolist withopenstream

dotimes withoutputtostring

flet

Notice of correction� In the �rst edition� the above list failed to men�

tion the forms definesetfmethod� withinputfromstring� withopenfile�
withopenstream� and withoutputtostring� even though their individual de�

scriptions in the �rst edition speci�ed that declarations may appear in those

forms�

X�J�� voted in June ���� h��i to add withconditionrestarts and also

h��i to add printunreadableobject and withstandardiosyntax� The
X�J�� vote left it unclear whether these macros permit declarations to appear

at the heads of their bodies� I believe that was the intent� but this is only my

interpretation�

X�J�� voted in June ���� h��i to adopt the Common Lisp Object System�

which includes the following additional forms in which declarations may occur�

defgeneric genericfunction

definemethodcombination genericlabels

defmethod withaddedmethods

genericflet

Furthermore X�J�� voted in January ���� h���i to allow declarations to occur

before the bodies of these forms�

symbolmacrolet withslots

withaccessors

��� COMMON LISP

There are certain aspects peculiar to symbolmacrolet
and therefore also to

withaccessors and withslots� which expand into uses of symbolmacrolet��

An error is signaled if a name de�ned by symbolmacrolet is declared special�

and a type declaration of a name de�ned by symbolmacrolet is equivalent in

e	ect to wrapping a the form mentioning that type around the expansion of
the de�ned symbol�

It is an error to attempt to evaluate a declaration� Those special forms that
permit declarations to appear perform explicit checks for their presence�

Compatibility note� In MacLisp� declare is a special form that does nothing but
return the symbol declare as its result� The MacLisp interpreter knows nothing
about declarations but just blindly evaluates them� e�ectively ignoring them� The
MacLisp compiler recognizes declarations but processes them simply by evaluating
the subforms of the declaration in the compilation context� In Common Lisp it is
important that both the interpreter and compiler recognize declarations �especially
special declarations� and treat them consistently� and so the rules about the struc

ture and use of declarations have been made considerably more stringent� The odd
tricks played in MacLisp by writing arbitrary forms to be evaluated within a declare
form are better done in both MacLisp and Common Lisp by using evalwhen�

It is permissible for a macro call to expand into a declaration and be rec�
ognized as such� provided that the macro call appears where a declaration

may legitimately appear�
However� a macro call may not appear in place of

a decl�spec��

X�J�� voted in March ���� h��i to eliminate the recognition of a declaration

resulting from the expansion of a macro call� This feature proved to be seldom

used and awkward to implement in interpreters� compilers� and other code�

analyzing programs�

Under this change� a declaration is recognized only as such if it appears

explicitly� as a list whose car is the symbol declare� in the body of a relevant
special form�
Note� however� that it is still possible for a macro to expand

into a call to the proclaim function��

Each decl�spec is a list whose car is a symbol specifying the kind of decla�

ration to be made� Declarations may be divided into two classes� those that

concern the bindings of variables� and those that do not�
The special dec�

laration is the sole exception� it e	ectively falls into both classes� as explained
below�� Those that concern variable bindings apply only to the bindings made

by the form at the head of whose body they appear� For example� in

�defun foo �x�

�declare �type float x�� ���

DECLARATIONS ���

�let ��x a�� ����

����

the type declaration applies only to the outer binding of x� and not to the

binding made in the let�

Compatibility note� This represents a di�erence from MacLisp� in which type
declarations are pervasive�

Declarations that do not concern themselves with variable bindings are
pervasive� a	ecting all code in the body of the special form� As an example

of a pervasive declaration�

�defun foo �x y� �declare �notinline floor�� ����

advises that everywhere within the body of foo the function floor should

not be open�coded but called as an out�of�line subroutine�

Some special forms contain pieces of code that� properly speaking� are not

part of the body of the special form� Examples of this are initialization forms

that provide values for bound variables� and the result forms of iteration con�

structs� In all cases such additional code is within the scope of any pervasive

declarations appearing before the body of the special form� Non�pervasive
declarations have no e	ect on such code� except
of course� in those situa�

tions where the code is de�ned to be within the scope of the variables a	ected

by such non�pervasive declarations� For example�

�defun few �x �optional �y
printcircle
��

�declare �special
printcircle
��

����

The reference to
printcircle
 in the �rst line of this example is special

because of the declaration in the second line�

�defun nonsense �k x z�

�foo z x� �First call to foo

�let ��j �foo k x�� �Second call to foo

�x �
 k k���

�declare �inline foo� �special x z��

�foo x j z��� �Third call to foo

In this rather nonsensical example� the inline declaration applies to the

second and third calls to foo� but not to the �rst one� The special declaration

��� COMMON LISP

of x causes the let form to make a special binding for x and causes the

reference to x in the body of the let to be a special reference� The reference

to x in the second call to foo is also a special reference� The reference to x

in the �rst call to foo is a local reference� not a special one� The special

declaration of z causes the reference to z in the call to foo to be a special
reference� it will not refer to the parameter to nonsense named z� because

that parameter binding has not been declared to be special�
The special

declaration of z does not appear in the body of the defun� but in an inner

construct� and therefore does not a	ect the binding of the parameter��

X�J�� voted in January ���� h��i to replace the rules concerning the scope
of declarations occurring at the head of a special form or lambda�expression�

� The scope of a declaration always includes the body forms� as well as any

�stepper� or �result� forms
which are logically part of the body�� of the

special form or lambda�expression�

� If the declaration applies to a name binding� then the scope of the declara�

tion also includes the scope of the name binding�

Note that the distinction between pervasive and non�pervasive declarations is
eliminated� An important change from the �rst edition is that �initialization�

forms are speci�cally not included as part of the body under the �rst rule� on

the other hand� in many cases initialization forms may fall within the scope

of certain declarations under the second rule�

X�J�� also voted in January ���� h��i to change the interpretation of type
declarations
see section �����

These changes a	ect the interpretation of some of the examples from the

�rst edition�

�defun foo �x�

�declare �type float x�� ���

�let ��x a�� ����

����

Under the interpretation approved by X�J��� the type declaration applies to

both bindings of x� More accurately� the type declaration is considered to

apply to variable references rather than bindings� and the type declaration

refers to every reference in the body of foo to a variable named x� no matter

to what binding it may refer�

�defun foo �x y� �declare �notinline floor�� ����

DECLARATIONS ���

This example of the use of notinline stands unchanged� but the following

slight extension of it would change�

�defun foo �x �optional �y �floor x���

�declare �notinline floor�� ����

Under �rst edition rules� the notinline declaration would be considered to
apply to the call to floor in the initialization form for y� Under the interpre�

tation approved by X�J��� the notinline would not apply to that particular

call to floor� Instead the user must write something like

�defun foo �x �optional �y �locally �declare �notinline floor��

�floor x����

�declare �notinline floor�� ����

or perhaps

�locally �declare �notinline floor��

�defun foo �x �optional �y �floor x��� �����

Similarly� the special declaration in

�defun few �x �optional �y
printcircle
��

�declare �special
printcircle
��

����

is not considered to apply to the reference in the initialization form for y in

few� As for the nonsense example�

�defun nonsense �k x z�

�foo z x� �First call to foo

�let ��j �foo k x�� �Second call to foo

�x �
 k k���

�declare �inline foo� �special x z��

�foo x j z��� �Third call to foo

under the interpretation approved by X�J��� the inline declaration is no

longer considered to apply to the second call to foo� because it is in an ini�

tialization form� which is no longer considered in the scope of the declaration�

Similarly� the reference to x in that second call to foo is no longer taken to be

a special reference� but a local reference to the second parameter of nonsense�

��

��� COMMON LISP

��

�Macro�locally fdeclarationg� f formg�

This macro may be used to make local pervasive declarations where desired�

It does not bind any variables and therefore cannot be used meaningfully for

declarations of variable bindings�
Note that the special declaration may be
used with locally to pervasively a	ect references to� rather than bindings of�

variables�� For example�

�locally �declare �inline floor� �notinline car cdr��

�declare �optimize space��

�floor �car x� �cdr y���

X�J�� voted in January ���� h���i to specify that locally executes the
forms as an implicit progn and returns the value
s� of the last form�

X�J�� voted in March ���� h���i to make locally be a special form rather

than a macro� It still has the same syntax�

�Special form�locally fdeclarationg� f formg�

This change was made to accommodate the new compilation model for top�

level forms in a �le
see section ������ When a locally form appears at top

level� the forms in its body are processed as top�level forms� This means that
one may� for example� meaningfully use locally to wrap declarations around

a defun or defmacro form�

�locally

�declare �optimize �safety �� �space �� �debug �� �speed
���

�defun foo �x �optional �y �abs x�� �z �sqrt y���

�bar x y z���

Without assurance that this works one must write something cumbersome

such as

�defun foo �x �optional �y �locally

�declare �optimize �safety ��

�space ��

�debug ��

�speed
���

�abs x���

�z �locally

�declare �optimize �safety ��

�space ��

DECLARATIONS ��	

�debug ��

�speed
���

�sqrt y����

�locally

�declare �optimize �safety �� �space �� �debug �� �speed
���

�bar x y z���

��
 COMMON LISP

�Function�proclaim declspec

The function proclaim takes a decl�spec as its argument and puts it into ef�

fect globally�
Such a global declaration is called a proclamation�� Because
proclaim is a function� its argument is always evaluated� This allows a pro�

gram to compute a declaration and then put it into e	ect by calling proclaim�

Any variable names mentioned are assumed to refer to the dynamic values
of the variable� For example� the proclamation

�proclaim �type float tolerance��

once executed� speci�es that the dynamic value of tolerance should always

be a
oating�point number� Similarly� any function�names mentioned are

assumed to refer to the global function de�nition�

A proclamation constitutes a universal declaration� always in force unless

locally shadowed� For example�

�proclaim �inline floor��

advises that floor should normally be open�coded in�line by the compiler

but in the situation

�defun foo �x y� �declare �notinline floor�� ����

it will be compiled out�of�line anyway in the body of foo� because of the

shadowing local declaration to that e	ect��

X�J�� voted in January ���� h���i to clarify that such shadowing does not

occur in the case of type declarations� If there is a local type declaration for a

special variable and there is also a global proclamation for that same variable�

then the value of the variable within the scope of the local declaration must be
a member of the intersection of the two declared types� This is consistent with

the treatment of nested local type declarations on which X�J�� also voted in

January ���� h��i�
As a special case
so to speak�� proclaim treats a special decl�spec as

applying to all bindings as well as to all references of the mentioned variables�

Notice of correction� In the �rst edition� this sentence referred to a

�special declaration�form�� That was incorrect� proclaim accepts only a
decl�spec� not a declaration�form�

For example� after

�proclaim �special x��

in a function de�nition such as

DECLARATIONS ���

�defun example �x� ����

the parameter x will be bound as a special
dynamic� variable rather than as a
lexical
static� variable� This facility should be used with caution� The usual

way to de�ne a globally special variable is with defvar or defparameter�

X�J�� voted in June ���� h���i to clarify that the compiler is not required

to treat calls to proclaim any di	erently from the way it treats any other
function call� If a top�level call to proclaim is to take e	ect at compile time�

it should be surrounded by an appropriate evalwhen form� Better yet� the

new macro declaim may be used instead�

�Macro�declaim fdecl�specg�

This macro is syntactically like declare and semantically like proclaim� It

is an executable form and may be used anywhere proclaim may be called�

However� each decl�spec is not evaluated�
If a call to this macro appears at top level in a �le being processed by the

�le compiler� the proclamations are also made at compile time� As with other

de�ning macros� it is unspeci�ed whether or not the compile�time side e	ects

of a declaim persist after the �le has been compiled
see section ������

���� Declaration Speci
ers

Here is a list of valid declaration speci�ers for use in declare� A construct

is said to be �a	ected� by a declaration if it occurs within the scope of a

declaration�

special

�special var� var� ���� speci�es that all of the variables named are to be

considered special� This speci�er a	ects variable bindings but also pervasively

a	ects references� All variable bindings a	ected are made to be dynamic
bindings� and a	ected variable references refer to the current dynamic binding

rather than to the current local binding� For example�

�defun hack �thing
mod
� �The binding of the parameter
�declare �special
mod
�� �
mod
 is visible to hack
�

�hack
 �car thing��� � but not that of thing

�defun hack
 �arg�

�declare �special
mod
�� �Declare references to
mod

��� COMMON LISP

� within hack
 to be special

�if �atom arg�
mod

�cons �hack
 �car arg�� �hack
 �cdr arg�����

Note that it is conventional� though not required� to give special variables

names that begin and end with an asterisk�

A special declaration does not a	ect bindings pervasively� Inner bindings
of a variable implicitly shadow a special declaration and must be explicitly

re�declared to be special�
However� a special proclamation does pervasively

a	ect bindings� this exception is made for reasons of convenience and com�

patibility with MacLisp�� For example�

�proclaim �special x�� �x is always special

�defun example �x y�

�declare �special y��

�let ��y �� �x �
 x ����

�print �� y �locally �declare �special y�� y���

�let ��y ��� �declare �special y�� �foo x����

In the contorted code above� the outermost and innermost bindings of y are
special and therefore dynamically scoped� but the middle binding is lexically

scoped� The two arguments to � are di	erent� one being the value� which is ��

of the lexically bound variable y� and the other being the value of the special

variable named y
a binding of which happens� coincidentally� to lexically

surround it at an outer level�� All the bindings of x and references to x are
special� however� because of the proclamation that x is always special�

As a matter of style� use of special proclamations should be avoided� The

defvar and defparametermacros are the conventional means for proclaiming

special variables in a program�

type

�type type var� var� ���� a	ects only variable bindings and speci�es that

the variables mentioned will take on values only of the speci�ed type� In
particular� values assigned to the variables by setq� as well as the initial

values of the variables� must be of the speci�ed type�

X�J�� voted in January ���� h��i to alter the interpretation of type decla�

rations� They are not to be construed to a	ect �only variable bindings�� The

new rule for a declaration of a variable to have a speci�ed type is threefold�

DECLARATIONS ���

� It is an error if� during the execution of any reference to that variable within

the scope of the declaration� the value of the variable is not of the declared

type�

� It is an error if� during the execution of a setq of that variable within the

scope of the declaration� the new value for the variable is not of the declared

type�

� It is an error if� at any moment that execution enters the scope of the
declaration� the value of the variable is not of the declared type�

One may think of a type declaration �declare �type face bodoni�� as
implicitly changing every reference to bodoni within the scope of the dec�

laration to �the face bodoni�� changing every expression exp assigned to

bodoni within the scope of the declaration to �the face exp�� and implic�

itly executing �the face bodoni� every time execution enters the scope of

the declaration�

These new rules make type declarations much more useful� Under �rst
edition rules� a type declaration was useless if not associated with a variable

binding� declarations such as in

�locally

�declare �type �byte �� x y��

�� x y��

at best had no e	ect and at worst were erroneous� depending on one�s inter�

pretation of the �rst edition� Under the interpretation approved by X�J���

such declarations have �the obvious natural interpretation��

X�J�� noted that if nested type declarations refer to the same variable�

then all of them have e	ect� the value of the variable must be a member of
the intersection of the declared types�

Nested type declarations could occur as a result of either macro expansion

or carefully crafted code� There are three cases� First� the inner type might

be a subtype of the outer one�

�defun compare �apples oranges�

�declare �type number apples oranges��

��� COMMON LISP

�cond ��typep apples fixnum�

�� The programmer happens to know that� thanks to

�� constraints imposed by the caller� if APPLES

�� is a fixnum� then ORANGES will be also� and

�� therefore wishes to avoid the unnecessary cost

�� of checking ORANGES� Nevertheless the compiler

�� should be informed to allow it to optimize code�

�locally �declare �type fixnum apples oranges���

�� Maybe the compiler could have figured

�� out by flow analysis that APPLES must

�� be a fixnum here� but it doesn t hurt

�� to say it explicitly�

�� apples oranges���

��or �complex apples�

�complex oranges��

�error �Not yet implemented� Sorry����

�����

This is the case most likely to arise in code written completely by hand�

Second� the outer type might be a subtype of the inner one� In this case the

inner declaration has no additional practical e	ect� but it is harmless� This

is likely to occur if code declares a variable to be of a very speci�c type and
then passes it to a macro that then declares it to be of a less speci�c type�

Third� the inner and outer declarations might be for types that overlap�

neither being a subtype of the other� This is likely to occur only as a result

of macro expansion� For example� user code might declare a variable to be of

type integer� and a macro might later declare it to be of type �or fixnum

package�� in this case a compiler could intersect the two types to determine

that in this instance the variable may hold only �xnums�

The reader should note that the following code fragment is� perhaps aston�

ishingly� not in error under the interpretation approved by X�J���

DECLARATIONS ���

�let ��james ���	�

�maxwell ����

�flet ��spyswap ��

�rotatef james maxwell���

�locally �declare �integer maxwell��

�spyswap�

�viewmovie �The Sound of Music��

�spyswap�

maxwell���

� ��
after a couple of hours of Julie Andrews�

The variable maxwell is declared to be an integer over the scope of the type

declaration� not over its extent� Indeed maxwell takes on the non�integer value

���	 while the Trapp family make their escape� but because no reference to

maxwell within the scope of the declaration ever produces a non�integer value�
the code is correct�

Now the assignment to maxwell during the �rst call to spyswap� and the

reference to maxwell during the second call� do involve non�integer values�

but they occur within the body of spyswap� which is not in the scope of the

type declaration� One could put the declaration in a di	erent place so as to
include spyswap in the scope�

�let ��james ���	�

�maxwell ����

�locally �declare �integer maxwell��

�flet ��spyswap ��

�rotatef james maxwell���

�spyswap� �Bug�

�viewmovie �The Sound of Music��

�spyswap�

maxwell���

and then the code is indeed in error�

X�J�� also voted in January ���� h��i to alter the meaning of the function

type speci�er when used in type declarations
see section �����

type

�type var� var� ���� is an abbreviation for �type type var� var� �����

provided that type is one of the symbols appearing in table ����

��� COMMON LISP

Observe that this covers the particularly common case of declaring numeric

variables�

�declare �singlefloat mass dx dy dz�

�doublefloat acceleration sum��

In many implementations there is also some advantage to declaring variables
to have certain specialized vector types such as basestring�

ftype

�ftype type functionname� functionname� ���� speci�es that the named

functions will be of the functional type type� an example of which follows�

For example�

�declare �ftype �function �integer list� t� nth�

�ftype �function �number� float� sin cos��

Note that rules of lexical scoping are observed� if one of the functions men�

tioned has a lexically apparent local de�nition
as made by flet or labels��

then the declaration applies to that local de�nition and not to the global
function de�nition�

X�J�� voted in March ���� h��i to extend ftype declaration speci�ers to

accept any function�name
a symbol or a list whose car is setf!see sec�

tion ����� Thus one may write

�declaim �ftype �function �list� t� �setf cadr���

to indicate the type of the setf expansion function for cadr�

X�J�� voted in January ���� h��i to alter the meaning of the function

type speci�er when used in ftype declarations
see section �����

function��

�function name arglist resulttype� resulttype� ���� is entirely equivalent

to

�ftype �function arglist resulttype� resulttype� ���� name�

but may be more convenient for some purposes� For example�

�declare �function nth �integer list� t�

��

DECLARATIONS ���

�function sin �number� float�

�function cos �number� float��

The syntax mildly resembles that of defun� a function�name� then an argu�

ment list� then a speci�cation of results�
Note that rules of lexical scoping are observed� if one of the functions men�

tioned has a lexically apparent local de�nition
as made by flet or labels��

then the declaration applies to that local de�nition and not to the global

function de�nition�

X�J�� voted in January ���� h��i to remove this interpretation of the

function declaration speci�er from the language� Instead� a declaration spec�

i�er

�function var� var� ����

is to be treated simply as an abbreviation for

�type function var� var� ����

just as for all other symbols appearing in table ����

X�J�� noted that although function appears in table ���� the �rst edition
also discussed it explicitly� with a di	erent meaning� without noting whether

the di	ering interpretation was to replace or augment the interpretation re�

garding table ���� Unfortunately there is an ambiguous case� the declaration

�declare �function foo nil string��

can be construed to abbreviate either

�declare �ftype �function �� string� foo��

or

�declare �type function foo nil string��

The latter could perhaps be rejected on semantic grounds� it would be an
error to declare nil� a constant� to be of type function� In any case� X�J��

determined that the ice was too thin here� the possibility of confusion is not

worth the convenience of an abbreviation for ftype declarations� The change

also makes the language more consistent�

inline

�inline function� function� ���� speci�es that it is desirable for the com�

��� COMMON LISP

piler to open�code calls to the speci�ed functions� that is� the code for a

speci�ed function should be integrated into the calling routine� appearing in�

line in place of a procedure call� This may achieve extra speed at the expense

of debuggability
calls to functions compiled in�line cannot be traced� for ex�

ample�� This declaration is pervasive� Remember that a compiler is free to
ignore this declaration�

Note that rules of lexical scoping are observed� if one of the functions men�
tioned has a lexically apparent local de�nition
as established by flet or

labels�� then the declaration applies to that local de�nition and not to the

global function de�nition�

X�J�� voted in October ���� h���i to clarify that during compilation the

inline declaration speci�er serves two distinct purposes� it indicates not only

that a	ected calls to the speci�ed functions should be expanded in�line� but

also that a	ected de�nitions of the speci�ed functions must be recorded for

possible use in performing such expansions�

Looking at it the other way� the compiler is not required to save function

de�nitions against the possibility of future expansions unless the functions
have already been proclaimed to be inline� If a function is proclaimed
or

declaimed� inline before some call to that function but the current de�ni�

tion of that function was established before the proclamation was processed�

it is implementation�dependent whether that call will be expanded in�line�

Of course� it is implementation�dependent anyway� because a compiler is al�
ways free to ignore inline declaration speci�ers� However� the intent of the

committee is clear� for best results� the user is advised to put any inline

proclamation of a function before any de�nition of or call to that function��

Consider these examples�

�defun huey �x� �� x
���� �Compiler need not remember this

�declaim �inline huey dewey��

�defun dewey �y� �huey �sqrt y��� �Call to huey unlikely to be expanded

�defun louie �z� �dewey � z��� �Call to dewey likely to be expanded

X�J�� voted in March ���� h��i to extend inline declaration speci�ers

to accept any function�name
a symbol or a list whose car is setf!see sec�

tion ����� Thus one may write �declare �inline �setf cadr��� to indicate

that the setf expansion function for cadr should be compiled in�line�

notinline

�notinline function� function� ���� speci�es that it is undesirable to com�

DECLARATIONS ��	

pile the speci�ed functions in�line� This declaration is pervasive� A compiler

is not free to ignore this declaration�

Note that rules of lexical scoping are observed� if one of the functions men�

tioned has a lexically apparent local de�nition
as made by flet or labels��

then the declaration applies to that local de�nition and not to the global
function de�nition�

X�J�� voted in March ���� h��i to extend notinline declaration speci�

�ers to accept any function�name
a symbol or a list whose car is setf!see

section ����� Thus one may write �declare �notinline �setf cadr��� to
indicate that the setf expansion function for cadr should not be compiled

in�line�

X�J�� voted in January ���� h�i to clarify that the proper way to de�ne

a function gnards that is not inline by default� but for which a local decla�

ration �declare �inline gnards�� has half a chance of actually compiling
gnards in�line� is as follows�

�declaim �inline gnards��

�defun gnards ����

�declaim �notinline gnards��

The point is that the �rst declamation informs the compiler that the de��
nition of gnards may be needed later for in�line expansion� and the second

declamation prevents any expansions unless and until it is overridden�

While an implementation is never required to perform in�line expansion�

many implementations that do support such expansion will not process
inline requests successfully unless de�nitions are written with these procla�

mations in the manner shown above�

ignore

�ignore var� var� ��� varn� a	ects only variable bindings and speci�es

that the bindings of the speci�ed variables are never used� It is desirable
for a compiler to issue a warning if a variable so declared is ever referred to

or is also declared special� or if a variable is lexical� never referred to� and not

declared to be ignored�

optimize

�optimize �quality� value�� �quality� value������ advises the compiler

that each quality should be given attention according to the speci�ed cor�

��
 COMMON LISP

responding value� A quality is a symbol� standard qualities include speed
of

the object code�� space
both code size and run�time space�� safety
run�time

error checking�� and compilationspeed
speed of the compilation process��

X�J�� voted in October ���� h���i to add the standard quality debug
ease

of debugging��
Other qualities may be recognized by particular implementations� A value

should be a non�negative integer� normally in the range � to �� The value

� means that the quality is totally unimportant� and � that the quality is

extremely important�
 and � are intermediate values� with
 the �normal�
or �usual� value� One may abbreviate �quality �� to simply quality� This

declaration is pervasive� For example�

�defun oftenusedsubroutine �x y�

�declare �optimize �safety ����

�errorcheck x y�

�hairysetup x�

�do ��i � �� i
��

�z x �cdr z���

��null z� i�

�� This inner loop really needs to burn�

�declare �optimize speed��

�declare �fixnum i��

���

declaration

�declaration name� name� ���� advises the compiler that each namej is

a valid but non�standard declaration name� The purpose of this is to tell one

compiler not to issue warnings for declarations meant for another compiler or
other program processor�

This kind of declaration may be used only as a proclamation� For example�
���

�proclaim �declaration author

targetlanguage

targetmachine��

�proclaim �targetlanguage ada��

�proclaim �targetmachine IBM�����

��

DECLARATIONS ���

�defun strangep �x�

�declare �author �Harry Tweeker���

�member x �strange weird odd peculiar���

X�J�� voted in June ���� h���i to introduce the new macro declaim� which

is guaranteed to be recognized appropriately by the compiler and is often more

convenient than proclaim for establishing global declarations�

The declaration declaration speci�er may be used with declaim as well as
proclaim� The preceding examples would be better written using declaim�

to ensure that the compiler will process them properly�

�declaim �declaration author

targetlanguage

targetmachine��

�declaim �targetlanguage ada�

�targetmachine IBM�����

�defun strangep �x�

�declare �author �Harry Tweeker���

�member x �strange weird odd peculiar���

X�J�� voted in March ���� h��i to introduce a new declaration speci�er

dynamicextent for variables� and voted in June ���� h��i to extend it to

handle function�names as well�

dynamic�extent

�dynamicextent item� item� ��� itemn� declares that certain variables or

function�names refer to data objects whose extents may be regarded as dy�

namic� that is� the declaration may be construed as a guarantee on the part

of the programmer that the program will behave correctly even if the data
objects have only dynamic extent rather than the usual inde�nite extent�

Each item may be either a variable name or �function f � where f is a

function�name
see section �����
Of course� �function f � may be abbrevi�

ated in the usual way as ��� f��

It is permissible for an implementation simply to ignore this declaration�

In implementations that do not ignore it� the compiler
or interpreter� is

free to make whatever optimizations are appropriate given this information�

the most common optimization is to stack�allocate the initial value of the

��� COMMON LISP

object� The data types that can be optimized in this manner may vary from

implementation to implementation�

The meaning of this declaration can be stated more precisely� We say

that object x is an otherwise inaccessible part of y if and only if making y

inaccessible would make x inaccessible�
Note that every object is an oth�
erwise inaccessible part of itself�� Now suppose that construct c contains a

dynamicextent declaration for variable
or function� v
which need not be

bound by c�� Consider the values w�� � � � �wn taken on by v during the course

of some execution of c� The declaration asserts that if some object x is an
otherwise inaccessible part of wj whenever wj becomes the value of v� then

just after execution of c terminates x will be either inaccessible or still an

otherwise inaccessible part of the value of v� If this assertion is ever violated�

the consequences are unde�ned�

In some implementations� it is possible to allocate data structures in a
way that will make them easier to reclaim than by general�purpose garbage

collection
for example� on the stack or in some temporary area�� The

dynamicextent declaration is designed to give the implementation the in�

formation necessary to exploit such techniques�

For example� in the code fragment

�let ��x �list a
 b
 c
��

�y �cons a� �cons b� �cons c� d������

�declare �dynamicextent x y��

����

it is not di�cult to prove that the otherwise inaccessible parts of x include the

three conses constructed by list� and that the otherwise inaccessible parts of
y include three other conses manufactured by the three calls to cons� Given

the presence of the dynamicextent declaration� a compiler would be justi�ed

in stack�allocating these six conses and reclaiming their storage on exit from

the let form�

Since stack allocation of the initial value entails knowing at the object�s

creation time that the object can be stack�allocated� it is not generally useful

to declare dynamicextent for variables that have no lexically apparent initial

value� For example�

�defun f ��

�let ��x �list
 � ����

�declare �dynamicextent x��

�����

DECLARATIONS ���

would permit a compiler to stack�allocate the list in x� However�

�defun g �x� �declare �dynamicextent x�� ����

�defun f �� �g �list
 � ����

could not typically permit a similar optimization in f because of the possibility

of later rede�nition of g� Only an implementation careful enough to recompile

f if the de�nition of g were to change incompatibly could stack�allocate the
list argument to g in f�

Other interesting cases are

�declaim �inline g��

�defun g �x� �declare �dynamicextent x�� ����

�defun f �� �g �list
 � ����

and

�defun f ��

�flet ��g �x� �declare �dynamicextent x�� �����

�g �list
 � �����

In each case some compilers might realize the optimization is possible and
others might not�

An interesting variant of this is the so�called stack�allocated rest list� which

can be achieved
in implementations supporting the optimization� by

�defun f ��rest x�

�declare �dynamicextent x��

����

Note here that although the initial value of x is not explicitly present� nev�

ertheless in the usual implementation strategy the function f is responsible

for assembling the list for x from the passed arguments� so the f function

can be optimized by a compiler to construct a stack�allocated list instead of
a heap�allocated list�

Some Common Lisp functions take other functions as arguments� frequently

the argument function is a so�called downward funarg� that is� a functional

argument that is passed only downward and whose extent may therefore be

dynamic�

�	� COMMON LISP

�flet ��gd �x� �atan �sinh x����

�declare �dynamicextent ��� gd�� �mapcar won�t hang on to gd

�mapcar ��� gd mylistofnumbers��

The following three examples are in error� since in each case the value of x

is used outside of its extent�

�length �let ��x �list
 � ����

�declare �dynamicextent x��

x�� �Wrong

The preceding code is obviously incorrect� because the cons cells making up

the list in x might be deallocated
thanks to the declaration� before length

is called�

�length �list �let ��x �list
 � ����

�declare �dynamicextent x��

x��� �Wrong

In this second case it is less obvious that the code is incorrect� because one

might argue that the cons cells making up the list in x have no e	ect on

the result to be computed by length� Nevertheless the code brie
y violates

the assertion implied by the declaration and is therefore incorrect�
It is not

di�cult to imagine a perfectly sensible implementation of a garbage collector
that might become confused by a cons cell containing a dangling pointer to a

list that was once stack�allocated but then deallocated��

�progn �let ��x �list
 � ����

�declare �dynamicextent x��

x� �Wrong

�print �Six dollars is your change have a nice day NEXT����

In this third case it is even less obvious that the code is incorrect� because

the value of x returned from the let construct is discarded right away by

the progn� Indeed it is� but �right away� isn�t fast enough� The code brie
y

violates the assertion implied by the declaration and is therefore incorrect�

If the code is being interpreted� the interpreter might hang on to the value

returned by the let for some time before it is eventually discarded��

Here is one last example� one that has little practical import but is theo�

retically quite instructive�

DECLARATIONS �	�

�dotimes �j
��

�declare �dynamicextent j��

�setq foo �� �Correct

�setq foo j�� �Erroneous!but why$
see text�

Since j is an integer by the de�nition of dotimes� but eq and eql are not nec�

essarily equivalent for integers� what are the otherwise inaccessible parts of j�

which this declaration requires the body of the dotimes not to �save�$ If the
value of j is �� and the body does �setq foo ��� is that an error$ The an�

swer is no� but the interesting thing is that it depends on the implementation�

dependent behavior of eq on numbers� In an implementation where eq and

eql are equivalent for �� then � is not an otherwise inaccessible part because
�eq j �� �
�� is true� and therefore there is another way to access the ob�

ject besides going through j� On the other hand� in an implementation where

eq and eql are not equivalent for �� then the particular � that is the value of j

is an otherwise inaccessible part� but any other � is not� Thus �setq foo ��

is valid but �setq foo j� is erroneous� Since �setq foo j� is erroneous
in some implementations� it is erroneous in all portable programs� but some

other implementations may not be able to detect the error�
If this conclusion

seems strange� it may help to replace � everywhere in the preceding argument

with some obvious bignum such as �	��	������	��������� and to replace

� with some even larger bignum��

The dynamicextent declaration should be used with great care� It makes
possible great performance improvements in some situations� but if the user

misdeclares something and consequently the implementation returns a pointer

into the stack
or stores it in the heap�� an unde�ned situation may result and

the integrity of the Lisp storage mechanism may be compromised� Debugging

these situations may be tricky� Users who have asked for this feature have
indicated a willingness to deal with such problems� nevertheless� I do not

encourage casual users to use this declaration�

An implementation is free to support other
implementation�dependent�

declaration speci�ers as well� On the other hand� a Common Lisp com�

piler is free to ignore entire classes of declaration speci�ers
for example�

implementation�dependent declaration speci�ers not supported by that com�
piler�s implementation�� except for the declaration declaration speci�er�

Compiler implementors are encouraged� however� to program the compiler

to issue by default a warning if the compiler �nds a declaration speci�er of

a kind it never uses� Such a warning is required in any case if a declaration

speci�er is not one of those de�ned above and has not been declared in a

�	� COMMON LISP

declaration declaration�

���� Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation

of some form will be of a particular type� Using declare one can declare the

type of the value held by a bound variable� but there is no easy way to declare
the type of the value of an unnamed form� For this purpose the the special

form is de�ned� �the type form� means that the value of form is declared to

be of type type�

�Special form�the value�type form

The form is evaluated� whatever it produces is returned by the the form� In

addition� it is an error if what is produced by the form does not conform
to the data type speci�ed by value�type
which is not evaluated��
A given

implementation may or may not actually check for this error� Implementations

are encouraged to make an explicit error check when running interpretively��

In e	ect� this declares that the user undertakes to guarantee that the values
of the form will always be of the speci�ed type� For example�

�the string �copyseq x�� �The result will be a string

�the integer �� x ��� �The result of � will be an integer

�� �the integer x� �� �The value of x will be an integer

�the �complex rational� �
 z ���

�the �unsignedbyte �� �logand x mask��

The values type speci�er may be used to indicate the types of multiple values�

�the �values integer integer� �floor x y��

�the �values string t�

�gethash thekey thestringtable��

X�J�� voted in June ���� h���i to clarify that value�type may be any valid

type speci�er whatsoever� The point is that a type speci�er need not be one

suitable for discrimination but only for declaration�

In the case that the form produces exactly one value and value�type is not a

values type speci�er� one may describe a the form as being entirely equivalent

to

�let �����
����temp form�� �declare �type value�type ���
����� ���
����

DECLARATIONS �	�

A more elaborate expression could be written to describe the case where

value�type is a values type speci�er�

Compatibility note� This construct is borrowed from the Interlisp DECL package�
Interlisp� however� allows an implicit progn after the type speci�er rather than just
a single form� The MacLisp fixnumidentity and flonumidentity constructs can
be expressed as �the fixnum x� and �the singlefloat x��

�	

Symbols

A Lisp symbol is a data object that has three user�visible components�

� The property list is a list that e	ectively provides each symbol with many

modi�able named components�

� The print name must be a string� which is the sequence of characters used

to identify the symbol� Symbols are of great use because a symbol can

be located once its name is given
typed� say� on a keyboard�� One may
ordinarily not alter a symbol�s print name�

X�J�� voted in March ���� h��i to specify it is an error to alter a print

name�

� The package cell must refer to a package object� A package is a data struc�

ture used to locate a symbol once given the symbol�s name� A symbol is

uniquely identi�ed by its name only when considered relative to a package�

A symbol may appear in many packages� but it can be owned by at most
one package� The package cell points to the owner� if any� Package cells are

discussed along with packages in chapter ���

A symbol may actually have other components for use by the implemen�

tation� One of the more important uses of symbols is as names for program
variables� it is frequently desirable for the implementor to use certain compo�

nents of a symbol to implement the semantics of variables� See symbolvalue

and symbolfunction� However� there are several possible implementation

strategies� and so such possible components are not described here�

����� The Property List

Since its inception� Lisp has associated with each symbol a kind of tabular

data structure called a property list
plist for short�� A property list contains

�	�

SYMBOLS �		

zero or more entries� each entry associates with a key
called the indicator��

which is typically a symbol� an arbitrary Lisp object
called the value or�

sometimes� the property�� There are no duplications among the indicators� a

property list may only have one property at a time with a given name� In this

way� given a symbol and an indicator
another symbol�� an associated value
can be retrieved�

A property list is very similar in purpose to an association list� The di	er�
ence is that a property list is an object with a unique identity� the operations

for adding and removing property�list entries are destructive operations that

alter the property list rather than making a new one� Association lists� on the

other hand� are normally augmented non�destructively
without side e	ects�

by adding new entries to the front
see acons and pairlis��

A property list is implemented as a memory cell containing a list with

an even number
possibly zero� of elements�
Usually this memory cell is
the property�list cell of a symbol� but any memory cell acceptable to setf

can be used if getf and remf are used�� Each pair of elements in the list

constitutes an entry� the �rst item is the indicator� and the second is the

value� Because property�list functions are given the symbol and not the list

itself� modi�cations to the property list can be recorded by storing back into
the property�list cell of the symbol�

When a symbol is created� its property list is initially empty� Properties
are created by using get within a setf form�

Common Lisp does not use a symbol�s property list as extensively as earlier

Lisp implementations did� Less�used data� such as compiler� debugging� and
documentation information� is kept on property lists in Common Lisp�

Compatibility note� In older Lisp implementations� the print name� value� and
function de�nition of a symbol were kept on its property list� The value cell was
introduced into MacLisp and Interlisp to speed up access to variables� similarly
for the print
name cell and function cell �MacLisp does not use a function cell��
Recent Lisp implementations such as Spice Lisp� Lisp Machine Lisp� and NIL have
introduced all of these cells plus the package cell� None of the MacLisp system
property names �expr� fexpr� macro� array� subr� lsubr� fsubr� and in former
times value and pname� exist in Common Lisp�

In Common Lisp� the notion of �disembodied property list� introduced in MacLisp
is eliminated� It tended to be used for rather kludgy things� and in Lisp Machine
Lisp is often associated with the use of locatives �to make it �o� by one� for searching
alternating keyword lists�� In Common Lisp special setf
like property
list functions
are introduced� getf and remf�

�	
 COMMON LISP

�Function�get symbol indicator �optional default

get searches the property list of symbol for an indicator eq to indicator� The

�rst argument must be a symbol� If one is found� then the corresponding
value is returned� otherwise default is returned�

If default is not speci�ed� then nil is used for default�

Note that there is no way to distinguish an absent property from one whose
value is default�

�get x y� � �getf �symbolplist x� y�

Suppose that the property list of foo is �bar t baz � hunoz �Huh���� Then�

for example�

�get foo baz� � �

�get foo hunoz� � �Huh��

�get foo zoo� � nil

Compatibility note� In MacLisp� the �rst argument to get could be a list� in
which case the cdr of the list was treated as a so
called �disembodied property list��
The �rst argument to get could also be any other object� in which case get would
always return nil� In Common Lisp� it is an error to give anything but a symbol as
the �rst argument to get�
What Common Lisp calls get� Interlisp calls getprop�
What MacLisp and Interlisp call putprop is accomplished in Common Lisp by

using get with setf�

setf may be used with get to create a new property�value pair� possibly
replacing an old pair with the same property name� For example�

�get clyde species� � nil

�setf �get clyde species� elephant� � elephant

and now �get clyde species� � elephant

The default argument may be speci�ed to get in this context� it is ignored by

setf but may be useful in such macros as push that are related to setf�

�push item �get sym tokenstack �initialitem���

means approximately the same as

�setf �get sym tokenstack �initialitem��

�cons item �get sym tokenstack �initialitem����

SYMBOLS �	�

which in turn would be treated as simply

�setf �get sym tokenstack�

�cons item �get sym tokenstack �initialitem����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� �setf �get symbol indicator� newvalue� is required to

behave exactly the same as �setf �getf �symbolplist symbol� indicator�

newvalue��

�Function�remprop symbol indicator

This removes from symbol the property with an indicator eq to indicator� The

property indicator and the corresponding value are removed by destructively

splicing the property list� It returns nil if no such property was found� or

non�nil if a property was found�

�remprop x y� � �remf �symbolplist x� y�

For example� if the property list of foo is initially

�color blue height ��� nearto bar�

then the call

�remprop foo height�

returns a non�nil value after altering foo�s property list to be

�color blue nearto bar�

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of
certain operations� �remprop symbol indicator� is required to behave exactly

the same as �remf �symbolplist symbol� indicator��

�Function�symbolplist symbol

This returns the list that contains the property pairs of symbol� the contents

of the property�list cell are extracted and returned�
Note that using get on the result of symbolplist does not work� One must

give the symbol itself to get or else use the function getf�

setf may be used with symbolplist to destructively replace the entire

property list of a symbol� This is a relatively dangerous operation� as it may

destroy important information that the implementation may happen to store

�	� COMMON LISP

in property lists� Also� care must be taken that the new property list is in

fact a list of even length�

Compatibility note� In MacLisp� this function is called plist� in Interlisp� it is
called getproplist�

�Function�getf place indicator �optional default

getf searches the property list stored in place for an indicator eq to indicator�

If one is found� then the corresponding value is returned� otherwise default is
returned� If default is not speci�ed� then nil is used for default� Note that

there is no way to distinguish an absent property from one whose value is

default� Often place is computed from a generalized variable acceptable to

setf�

setf may be used with getf� in which case the place must indeed be ac�
ceptable as a place to setf� The e	ect is to add a new property�value pair�

or update an existing pair� in the property list kept in the place� The de�

fault argument may be speci�ed to getf in this context� it is ignored by setf

but may be useful in such macros as push that are related to setf� See the
description of get for an example of this�

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� setf used with getf is permitted to perform a setf on

the place or on any part� car or cdr� of the top�level list structure held by that

place�
X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����

Compatibility note� The Interlisp function listget is similar to getf� The
Interlisp function listput is similar to using getf with setf�

�Macro�remf place indicator

This removes from the property list stored in place the property with an

indicator eq to indicator� The property indicator and the corresponding value

are removed by destructively splicing the property list� remf returns nil if no
such property was found� or some non�nil value if a property was found� The

form place may be any generalized variable acceptable to setf� See remprop�

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� remf is permitted to perform a setf on the place or on

any part� car or cdr� of the top�level list structure held by that place�

SYMBOLS �	�

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����

�Function�getproperties place indicatorlist

getproperties is like getf� except that the second argument is a list of

indicators� getproperties searches the property list stored in place for any

of the indicators in indicator�list until it �nds the �rst property in the property

list whose indicator is one of the elements of indicator�list� Normally place is
computed from a generalized variable acceptable to setf�

getproperties returns three values� If any property was found� then the
�rst two values are the indicator and value for the �rst property whose indi�

cator was in indicator�list� and the third is that tail of the property list whose

car was the indicator
and whose cadr is therefore the value�� If no property

was found� all three values are nil� Thus the third value serves as a
ag indi�

cating success or failure and also allows the search to be restarted� if desired�
after the property was found�

����� The Print Name

Every symbol has an associated string called the print name� This string is

used as the external representation of the symbol� if the characters in the

string are typed in to read
with suitable escape conventions for certain char�

acters�� it is interpreted as a reference to that symbol
if it is interned�� and if
the symbol is printed� print types out the print name� For more information�

see the sections on the reader
section ������� and printer
section ��������

�Function�symbolname sym

This returns the print name of the symbol sym� For example�

�symbolname xyz� � �XYZ�

It is an extremely bad idea to modify a string being used as the print name of

a symbol� Such a modi�cation may tremendously confuse the function read

and the package system�

X�J�� voted in March ���� h��i to specify that it is an error to modify a
string being used as the print name of a symbol�

�
� COMMON LISP

����� Creating Symbols

Symbols can be used in two rather di	erent ways� An interned symbol is one

that is indexed by its print name in a catalogue called a package� A request to

locate a symbol with that print name results in the same
eq� symbol� Every

time input is read with the function read� and that print name appears� it is

read as the same symbol� This property of symbols makes them appropriate
to use as names for things and as hooks on which to hang permanent data

objects
using the property list� for example��

Interned symbols are normally created automatically� the �rst time some�

thing
such as the function read� asks the package system for a symbol with

a given print name� that symbol is automatically created� The function used
to ask for an interned symbol is intern� or one of the functions related to

intern�

Although interned symbols are the most commonly used� they will not be

discussed further here� For more information� see chapter ���

An uninterned symbol is a symbol used simply as a data object� with no spe�

cial cataloguing
it belongs to no particular package�� An uninterned symbol

is printed as ���� followed by its print name� The following are some functions
for creating uninterned symbols�

�Function�makesymbol printname

�makesymbol printname� creates a new uninterned symbol� whose print name

is the string print�name� The value and function bindings will be unbound

and the property list will be empty�

The string actually installed in the symbol�s print�name component may be
the given string print�name or may be a copy of it� at the implementation�s

discretion� The user should not assume that �symbolname �makesymbol x��

is eq to x� but also should not alter a string once it has been given as an

argument to makesymbol�

Implementation note� An implementation might choose� for example� to copy
the string to some read
only area� in the expectation that it will never be altered�

�Function�copysymbol sym �optional copyprops

This returns a new uninterned symbol with the same print name as sym�

X�J�� voted in March ���� h��i that the print name of the new symbol

is required to be the same only in the sense of string� in other words� an

SYMBOLS �
�

implementation is permitted
but not required� to make a copy of the print

name� User programs should not assume that the print names of the old

and new symbols will be eq� although they may happen to be eq in some

implementations�

If copy�props is non�nil� then the initial value and function de�nition of
the new symbol will be the same as those of sym� and the property list of the

new symbol will be a copy of sym�s�

X�J�� voted in March ���� h��i to clarify that only the top�level conses of

the property list are copied� it is as if �copylist �symbolplist sym�� were
used as the property list of the new symbol�

If copy�props is nil
the default�� then the new symbol will be unbound

and unde�ned� and its property list will be empty�

�Function�gensym �optional x

gensym invents a print name and creates a new symbol with that print name�

It returns the new� uninterned symbol�

The invented print name consists of a pre�x
which defaults to G�� followed

by the decimal representation of a number�
The number is increased by � every time gensym is called�

��

If the argument x is present and is an integer� then x must be non�negative�

and the internal counter is set to x for future use� otherwise the internal

counter is incremented� If x is a string� then that string is made the de�
fault pre�x for this and future calls to gensym� After handling the argument�

gensym creates a symbol as it would with no argument� For example�

�gensym� � G	

�gensym �FOO�� � FOO�

�gensym ��� � FOO��

�gensym� � FOO��

�gensym �GARBAGE�� � GARBAGE��

gensym is usually used to create a symbol that should not normally be

seen by the user and whose print name is unimportant except to allow easy
distinction by eye between two such symbols� The optional argument is rarely

supplied� The name comes from �generate symbol�� and the symbols produced

by it are often called �gensyms��

Compatibility note� In earlier versions of Lisp� such as MacLisp and Interlisp�
the print name of a gensym was of �xed length� consisting of a single letter and
a �xed
length decimal representation with leading zeros if necessary� for example�

�
� COMMON LISP

G

� This convention was motivated by an implementation consideration� namely
that the name should �t into a single machine word� allowing a quick and clever im

plementation� Such considerations are less relevant in Common Lisp� The consistent
use of mnemonic pre�xes can make it easier for the programmer� when debugging�
to determine what code generated a particular symbol� The elimination of the �xed

length decimal representation prevents the same name from being used twice unless
the counter is explicitly reset�

If it is desirable for the generated symbols to be interned� and yet guaranteed
to be symbols distinct from all others� then the function gentempmay be more

appropriate to use�

X�J�� voted in March ���� h��i to alter the speci�cation of gensym so

that supplying an optional argument
whether a string or a number� does not
alter the internal state maintained by gensym� Instead� the internal counter

is made explicitly available as a variable named
gensymcounter
�

If a string argument is given to gensym� that string is used as the pre�x�

otherwise �G� is used� If a number is provided� its decimal representation is

used� but the internal counter is una	ected� X�J�� deprecates the use of a
number as an argument�

�Variable�
gensymcounter

X�J�� voted in March ���� h��i to add
gensymcounter
� which holds the

state of the gensym counter� that is� gensym uses the decimal representation

of its value as part of the generated name and then increments its value�

The initial value of this variable is implementation�dependent but will be a

non�negative integer�
The user may assign to or bind this variable at any time� but its value must

always be a non�negative integer�

�Function�gentemp �optional pre
x package

gentemp� like gensym� creates and returns a new symbol� gentemp di	ers

from gensym in that it interns the symbol
see intern� in the package
which

defaults to the current package� see
package
�� gentemp guarantees the

symbol will be a new one not already existing in the package� It does this
by using a counter as gensym does� but if the generated symbol is not really

new� then the process is repeated until a new one is created� There is no

provision for resetting the gentemp counter� Also� the pre�x for gentemp is

not remembered from one call to the next� if pre
x is omitted� the default

pre�x T is used�

SYMBOLS �
�

�Function�symbolpackage sym

Given a symbol sym� symbolpackage returns the contents of the package cell

of that symbol� This will be a package object or nil�

�Function�keywordp object

The argument may be any Lisp object� The predicate keywordp is true if
the argument is a symbol and that symbol is a keyword
that is� belongs to

the keyword package�� Keywords are those symbols that are written with

a leading colon� Every keyword is a constant� in the sense that it always

evaluates to itself� See constantp�

��

Packages

One problem with earlier Lisp systems is the use of a single name space for

all symbols� In large Lisp systems� with modules written by many di	erent

programmers� accidental name collisions become a serious problem� Common
Lisp addresses this problem through the package system� derived from an

earlier package system developed for Lisp Machine Lisp ����� In addition

to preventing name�space con
icts� the package system makes the modular

structure of large Lisp systems more explicit�

A package is a data structure that establishes a mapping from print names

strings� to symbols� The package thus replaces the �oblist� or �obarray�
machinery of earlier Lisp systems� At any given time one package is current�

and this package is used by the Lisp reader in translating strings into symbols�

The current package is� by de�nition� the one that is the value of the global

variable
package
� It is possible to refer to symbols in packages other than
the current one through the use of package quali
ers in the printed representa�

tion of the symbol� For example� foo�bar� when seen by the reader� refers to

the symbol whose name is bar in the package whose name is foo�
Actually�

this is true only if bar is an external symbol of foo� that is� a symbol that
is supposed to be visible outside of foo� A reference to an internal symbol

requires the intentionally clumsier syntax foo��bar��

The string�to�symbol mappings available in a given package are divided

into two classes� external and internal� We refer to the symbols accessible

via these mappings as being external and internal symbols of the package

in question� though really it is the mappings that are di	erent and not the
symbols themselves� Within a given package� a name refers to one symbol or

to none� if it does refer to a symbol� then it is either external or internal in

that package� but not both�

External symbols are part of the package�s public interface to other pack�

ages� External symbols are supposed to be chosen with some care and are

�
�

PACKAGES �
	

advertised to users of the package� Internal symbols are for internal use only�

and these symbols are normally hidden from other packages� Most symbols

are created as internal symbols� they become external only if they appear

explicitly in an export command for the package�

A symbol may appear in many packages� It will always have the same name

wherever it appears� but it may be external in some packages and internal in

others� On the other hand� the same name
string� may refer to di	erent
symbols in di	erent packages�

Normally� a symbol that appears in one or more packages will be owned by
one particular package� called the home package of the symbol� that package

is said to own the symbol� Every symbol has a component called the package

cell that contains a pointer to its home package� A symbol that is owned by

some package is said to be interned� Some symbols are not owned by any
package� such a symbol is said to be uninterned� and its package cell contains

nil�

Packages may be built up in layers� From the point of view of a package�s

user� the package is a single collection of mappings from strings into internal

and external symbols� However� some of these mappings may be established

within the package itself� while other mappings are inherited from other pack�

ages via the usepackage construct�
The mechanisms responsible for this
inheritance are described below�� In what follows� we will refer to a symbol as

being accessible in a package if it can be referred to without a package qual�

i�er when that package is current� regardless of whether the mapping occurs

within that package or via inheritance� We will refer to a symbol as being
present in a package if the mapping is in the package itself and is not inherited

from somewhere else� Thus a symbol present in a package is accessible� but

an accessible symbol is not necessarily present�

A symbol is said to be interned in a package if it is accessible in that

package and also is owned
by either that package or some other package��

Normally all the symbols accessible in a package will in fact be owned by some

package� but the terminology is useful when discussing the pathological case
of an accessible but unowned
uninterned� symbol�

As a verb� to intern a symbol in a package means to cause the symbol to be
interned in the package if it was not already� this process is performed by the

function intern� If the symbol was previously unowned� then the package it

is being interned in becomes its owner
home package�� but if the symbol was

previously owned by another package� that other package continues to own

the symbol�

To unintern a symbol from the package means to cause it to be not present

in the package and� additionally� to cause the symbol to be uninterned if

�

 COMMON LISP

the package was the home package
owner� of the symbol� This process is

performed by the function unintern�

����� Consistency Rules

Package�related bugs can be very subtle and confusing� things are not what

they appear to be� The Common Lisp package system is designed with a

number of safety features to prevent most of the common bugs that would

otherwise occur in normal use� This may seem over�protective� but experience
with earlier package systems has shown that such safety features are needed�

In dealing with the package system� it is useful to keep in mind the following

consistency rules� which remain in force as long as the value of
package
 is

not changed by the user�

� Read�read consistency� Reading the same print name always results in the

same
eq� symbol�

� Print�read consistency� An interned symbol always prints as a sequence of

characters that� when read back in� yields the same
eq� symbol�

� Print�print consistency� If two interned symbols are not eq� then their

printed representations will be di	erent sequences of characters�

These consistency rules remain true in spite of any amount of implicit in�

terning caused by typing in Lisp forms� loading �les� etc� This has the impor�

tant implication that� as long as the current package is not changed� results
are reproducible regardless of the order of loading �les or the exact history

of what symbols were typed in when� The rules can only be violated by

explicit action� changing the value of
package
� forcing some action by con�

tinuing from an error� or calling one of the �dangerous� functions unintern�

unexport� shadow� shadowingimport� or unusepackage�

����� Package Names

Each package has a name
a string� and perhaps some nicknames� These are
assigned when the package is created� though they can be changed later� A

package�s name should be something long and self�explanatory� like editor�

there might be a nickname that is shorter and easier to type� such as ed�

There is a single name space for packages� The function findpackage trans�

lates a package name or nickname into the associated package� The function

packagename returns the name of a package� The function packagenicknames

PACKAGES �
�

returns a list of all nicknames for a package� The function renamepackage

removes a package�s current name and nicknames and replaces them with new

ones speci�ed by the user� Package renaming is occasionally useful when� for

development purposes� it is desirable to load two versions of a package into

the same Lisp� One can load the �rst version� rename it� and then load the
other version� without getting a lot of name con
icts�

When the Lisp reader sees a quali�ed symbol� it handles the package�name

part in the same way as the symbol part with respect to capitalization� Lower�

case characters in the package name are converted to corresponding uppercase

characters unless preceded by the escape character � or surrounded by � char�
acters� The lookup done by the findpackage function is case�sensitive� like

that done for symbols� Note that �Foo���Bar� refers to a symbol whose

name is Bar in a package whose name is Foo� By contrast� �Foo�Bar� refers

to a seven�character symbol that has a colon in its name
as well as two
uppercase letters and four lowercase letters� and is interned in the current

package� Following the convention used in this book for symbols� we show

ordinary package names using lowercase letters� even though the name string

is internally represented with uppercase letters�

Most of the functions that require a package�name argument from the user
accept either a symbol or a string� If a symbol is supplied� its print name

will be used� the print name will already have undergone case�conversion by

the usual rules� If a string is supplied� it must be so capitalized as to match

exactly the string that names the package�

X�J�� voted in January ���� h���i to clarify that one may use either a
package object or a package name
symbol or string� in any of the following

situations�

� the �use argument to makepackage

� the �rst argument to packageuselist� packageusedbylist� package

name� packagenicknames� inpackage� findpackage� renamepackage� or
deletepackage�

� the second argument to intern� findsymbol� unintern� export� unexport�
import� shadowingimport� or shadow

� the �rst argument� or a member of the list that is the �rst argument� to
usepackage or unusepackage

� the value of the package given to dosymbols� doexternalsymbols� or
doallsymbols

� a member of the package�list given to withpackageiterator

�
� COMMON LISP

Note that the �rst argument to makepackage must still be a package name

and not an actual package� it makes no sense to create an already existing

package� Similarly� package nicknames must always be expressed as package

names and not as package objects� If findpackage is given a package object

instead of a name� it simply returns that package�

����� Translating Strings to Symbols

The value of the special variable
package
 must always be a package object

not a name�� Whatever package object is currently the value of
package

is referred to as the current package�

When the Lisp reader has� by parsing� obtained a string of characters

thought to name a symbol� that name is looked up in the current package�
This lookup may involve looking in other packages whose external symbols

are inherited by the current package� If the name is found� the corresponding

symbol is returned� If the name is not found
that is� there is no symbol of

that name accessible in the current package�� a new symbol is created for it
and is placed in the current package as an internal symbol� Moreover� the

current package becomes the owner
home package� of the symbol� and so the

symbol becomes interned in the current package� If the name is later read

again while this same package is current� the same symbol will then be found

and returned�
Often it is desirable to refer to an external symbol in some package other

than the current one� This is done through the use of a quali
ed name�

consisting of a package name� then a colon� then the name of the symbol�

This causes the symbol�s name to be looked up in the speci�ed package� rather
than in the current one� For example� editor�buffer refers to the external

symbol named buffer accessible in the package named editor� regardless of

whether there is a symbol named buffer in the current package� If there

is no package named editor� or if no symbol named buffer is accessible in

editor� or if buffer is an internal symbol in editor� the Lisp reader will
signal a correctable error to ask the user for instructions�

On rare occasions� a user may need to refer to an internal symbol of some

package other than the current one� It is illegal to do this with the colon

quali�er� since accessing an internal symbol of some other package is usually
a mistake� However� this operation is legal if a doubled colon �� is used as

the separator in place of the usual single colon� If editor��buffer is seen�

the e	ect is exactly the same as reading buffer with
package
 temporarily

rebound to the package whose name is editor� This special�purpose quali�er

should be used with caution�

PACKAGES �
�

The package named keyword contains all keyword symbols used by the

Lisp system itself and by user�written code� Such symbols must be easily

accessible from any package� and name con
icts are not an issue because these

symbols are used only as labels and never to carry package�speci�c values or

properties� Because keyword symbols are used so frequently� Common Lisp
provides a special reader syntax for them� Any symbol preceded by a colon

but no package name
for example �foo� is added to
or looked up in� the

keyword package as an external symbol� The keyword package is also treated

specially in that whenever a symbol is added to the keyword package the
symbol is always made external� the symbol is also automatically declared to

be a constant
see defconstant� and made to have itself as its value� This is

why every keyword evaluates to itself� As a matter of style� keywords should

always be accessed using the leading�colon convention� the user should never

import or inherit keywords into any other package� It is an error to try to
apply usepackage to the keyword package�

Each symbol contains a package cell that is used to record the home package

of the symbol� or nil if the symbol is uninterned� This cell may be accessed

by using the function symbolpackage� When an interned symbol is printed�
if it is a symbol in the keyword package� then it is printed with a preceding

colon� otherwise� if it is accessible
directly or by inheritance� in the current

package� it is printed without any quali�cation� otherwise� it is printed with

the name of the home package as the quali�er� using � as the separator if the

symbol is external and �� if not�

A symbol whose package slot contains nil
that is� has no home package�

is printed preceded by ����� It is possible� by the use of import and unintern�

to create a symbol that has no recorded home package but that in fact is

accessible in some package� The system does not check for this pathological
case� and such symbols will always be printed preceded by �����

In summary� the following four uses of symbol quali�er syntax are de�ned�

foo�bar

When read� looks up BAR among the external symbols of the package named

FOO� Printed when symbol bar is external in its home package foo and is not
accessible in the current package�

foo��bar

When read� interns BAR as if FOO were the current package� Printed when

symbol bar is internal in its home package foo and is not accessible in the

current package�

��� COMMON LISP

�bar

When read� interns BAR as an external symbol in the keyword package and
makes it evaluate to itself� Printed when the home package of symbol bar is

keyword�

����bar

When read� creates a new uninterned symbol named BAR� Printed when the

symbol bar is uninterned
has no home package�� even in the pathological
case that bar is uninterned but nevertheless somehow accessible in the current

package�

All other uses of colons within names of symbols are not de�ned by Common
Lisp but are reserved for implementation�dependent use� this includes names

that end in a colon� contain two or more colons� or consist of just a colon�

����� Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two

ways�

First� any individual symbol may be added to a package by use of the

function import� The form �import editor�buffer� takes the external
symbol named buffer in the editor package
this symbol was located when

the form was read by the Lisp reader� and adds it to the current package as

an internal symbol� The symbol is then present in the current package� The

imported symbol is not automatically exported from the current package� but

if it is already present and external� then the fact that it is external is not
changed� After the call to import it is possible to refer to buffer in the

importing package without any quali�er� The status of buffer in the package

named editor is unchanged� and editor remains the home package for this

symbol� Once imported� a symbol is present in the importing package and
can be removed only by calling unintern�

If the symbol is already present in the importing package� import has no
e	ect� If a distinct symbol with the name buffer is accessible in the importing

package
directly or by inheritance�� then a correctable error is signaled� as

described in section ����� because import avoids letting one symbol shadow

another�

A symbol is said to be shadowed by another symbol in some package if

the �rst symbol would be accessible by inheritance if not for the presence of

the second symbol� To import a symbol without the possibility of getting an

PACKAGES ���

error because of shadowing� use the function shadowingimport� This inserts

the symbol into the speci�ed package as an internal symbol� regardless of

whether another symbol of the same name will be shadowed by this action�

If a di	erent symbol of the same name is already present in the package� that

symbol will �rst be uninterned from the package
see unintern�� The new
symbol is added to the package�s shadowing�symbols list� shadowingimport

should be used with caution� It changes the state of the package system in

such a way that the consistency rules do not hold across the change�

The second mechanism is provided by the function usepackage� This causes

a package to inherit all of the external symbols of some other package� These
symbols become accessible as internal symbols of the using package� That

is� they can be referred to without a quali�er while this package is current�

but they are not passed along to any other package that uses this package�

Note that usepackage� unlike import� does not cause any new symbols to be
present in the current package but only makes them accessible by inheritance�

usepackage checks carefully for name con
icts between the newly imported

symbols and those already accessible in the importing package� This is de�

scribed in detail in section �����

Typically a user� working by default in the user package� will load a number

of packages into Lisp to provide an augmented working environment� and then
call usepackage on each of these packages to allow easy access to their external

symbols� unusepackage undoes the e	ects of a previous usepackage� The

external symbols of the used package are no longer inherited� However� any

symbols that have been imported into the using package continue to be present
in that package�

There is no way to inherit the internal symbols of another package� to refer

to an internal symbol� the user must either make that symbol�s home package

current� use a quali�er� or import that symbol into the current package�

The distinction between external and internal symbols is a primary means

of hiding names so that one program does not tread on the namespace of
another�

When intern or some other function wants to look up a symbol in a given

package� it �rst looks for the symbol among the external and internal symbols

of the package itself� then it looks through the external symbols of the used

packages in some unspeci�ed order� The order does not matter� according to
the rules for handling name con
icts
see below�� if con
icting symbols appear

in two or more packages inherited by package X� a symbol of this name must

also appear in X itself as a shadowing symbol� Of course� implementations

are free to choose other� more e�cient ways of implementing this search� as

long as the user�visible behavior is equivalent to what is described here�

��� COMMON LISP

The function export takes a symbol that is accessible in some speci�ed

package
directly or by inheritance� and makes it an external symbol of that

package� If the symbol is already accessible as an external symbol in the

package� export has no e	ect� If the symbol is directly present in the package

as an internal symbol� it is simply changed to external status� If it is accessible
as an internal symbol via usepackage� the symbol is �rst imported into the

package� then exported�
The symbol is then present in the speci�ed package

whether or not the package continues to use the package through which the

symbol was originally inherited�� If the symbol is not accessible at all in the
speci�ed package� a correctable error is signaled that� upon continuing� asks

the user whether the symbol should be imported�

The function unexport is provided mainly as a way to undo erroneous calls

to export� It works only on symbols directly present in the current package�

switching them back to internal status� If unexport is given a symbol already

accessible as an internal symbol in the current package� it does nothing� if it
is given a symbol not accessible in the package at all� it signals an error�

����� Name Con�icts

A fundamental invariant of the package system is that within one package any
particular name can refer to at most one symbol� A name con	ict is said to

occur when there is more than one candidate symbol and it is not obvious

which one to choose� If the system does not always choose the same way� the

read�read consistency rule would be violated� For example� some programs
or data might have been read in under a certain mapping of the name to

a symbol� If the mapping changes to a di	erent symbol� and subsequently

additional programs or data are read� then the two programs will not access

the same symbol even though they use the same name� Even if the system did
always choose the same way� a name con
ict is likely to result in a mapping

from names to symbols di	erent from what was expected by the user� causing

programs to execute incorrectly� Therefore� any time a name con
ict is about

to occur� an error is signaled� The user may continue from the error and tell

the package system how to resolve the con
ict�

It may be that the same symbol is accessible to a package through more
than one path� For example� the symbol might be an external symbol of

more than one used package� or the symbol might be directly present in a

package and also inherited from another package� In such cases there is no

name con
ict� The same identical symbol cannot con
ict with itself� Name

con
icts occur only between distinct symbols with the same name�

PACKAGES ���

The creator of a package can tell the system in advance how to resolve a

name con
ict through the use of shadowing� Every package has a list of shad�

owing symbols� A shadowing symbol takes precedence over any other symbol

of the same name that would otherwise be accessible to the package� A name

con
ict involving a shadowing symbol is always resolved in favor of the shad�
owing symbol� without signaling an error
except for one instance involving

import described below�� The functions shadow and shadowingimport may

be used to declare shadowing symbols�

Name con
icts are detected when they become possible� that is� when the

package structure is altered� There is no need to check for name con
icts
during every name lookup�

The functions usepackage� import� and export check for name con
icts�

usepackage makes the external symbols of the package being used accessible

to the using package� each of these symbols is checked for name con
icts with

the symbols already accessible� import adds a single symbol to the internals
of a package� checking for a name con
ict with an existing symbol either

present in the package or accessible to it� import signals a name con
ict

error even if the con
ict is with a shadowing symbol� the rationale being that

the user has given two explicit and inconsistent directives� export makes a

single symbol accessible to all the packages that use the package from which
the symbol is exported� All of these packages are checked for name con
icts�

�export s p� does �findsymbol �symbolname s� q� for each package q in

�packageusedbylist p�� Note that in the usual case of an export during

the initial de�nition of a package� the result of packageusedbylist will be
nil and the name�con
ict checking will take negligible time�

The function intern� which is the one used most frequently by the Lisp

reader for looking up names of symbols� does not need to do any name�con
ict

checking� because it never creates a new symbol if there is already an accessible

symbol with the name given�

shadow and shadowingimport never signal a name�con
ict error because
the user� by calling these functions� has speci�ed how any possible con
ict

is to be resolved� shadow does name�con
ict checking to the extent that it

checks whether a distinct existing symbol with the speci�ed name is accessible

and� if so� whether it is directly present in the package or inherited� In the
latter case� a new symbol is created to shadow it� shadowingimport does

name�con
ict checking to the extent that it checks whether a distinct existing

symbol with the same name is accessible� if so� it is shadowed by the new

symbol� which implies that it must be uninterned if it was directly present in

the package�

unusepackage� unexport� and unintern
when the symbol being unin�

��� COMMON LISP

terned is not a shadowing symbol� do not need to do any name�con
ict check�

ing because they only remove symbols from a package� they do not make any

new symbols accessible�

Giving a shadowing symbol to unintern can uncover a name con
ict that

had previously been resolved by the shadowing� If package A uses packages B
and C� A contains a shadowing symbol x� and B and C each contain external

symbols named x� then removing the shadowing symbol x from A will reveal

a name con
ict between b�x and c�x if those two symbols are distinct� In

this case unintern will signal an error�

Aborting from a name�con
ict error leaves the original symbol accessible�

Package functions always signal name�con
ict errors before making any change

to the package structure� When multiple changes are to be made� however�

for example when export is given a list of symbols� it is permissible for the
implementation to process each change separately� so that aborting from a

name con
ict caused by the second symbol in the list will not unexport the

�rst symbol in the list� However� aborting from a name�con
ict error caused

by export of a single symbol will not leave that symbol accessible to some

packages and inaccessible to others� with respect to each symbol processed�
export behaves as if it were an atomic operation�

Continuing from a name�con
ict error should o	er the user a chance to

resolve the name con
ict in favor of either of the candidates� The package

structure should be altered to re
ect the resolution of the name con
ict� via
shadowingimport� unintern� or unexport�

A name con
ict in usepackage between a symbol directly present in the

using package and an external symbol of the used package may be resolved in

favor of the �rst symbol by making it a shadowing symbol� or in favor of the

second symbol by uninterning the �rst symbol from the using package� The
latter resolution is dangerous if the symbol to be uninterned is an external

symbol of the using package� since it will cease to be an external symbol�

A name con
ict in usepackage between two external symbols inherited

by the using package from other packages may be resolved in favor of either
symbol by importing it into the using package and making it a shadowing

symbol�

A name con
ict in export between the symbol being exported and a symbol

already present in a package that would inherit the newly exported symbol
may be resolved in favor of the exported symbol by uninterning the other one�

or in favor of the already�present symbol by making it a shadowing symbol�

A name con
ict in export or unintern due to a package inheriting two

distinct symbols with the same name from two other packages may be resolved

in favor of either symbol by importing it into the using package and making

PACKAGES ��	

it a shadowing symbol� just as with usepackage�

A name con
ict in import between the symbol being imported and a symbol

inherited from some other package may be resolved in favor of the symbol

being imported by making it a shadowing symbol� or in favor of the symbol
already accessible by not doing the import� A name con
ict in import with

a symbol already present in the package may be resolved by uninterning that

symbol� or by not doing the import�

Good user�interface style dictates that usepackage and export� which can
cause many name con
icts simultaneously� �rst check for all of the name

con
icts before presenting any of them to the user� The user may then choose

to resolve all of them wholesale or to resolve each of them individually� the

latter requiring a lot of interaction but permitting di	erent con
icts to be
resolved di	erent ways�

Implementations may o	er other ways of resolving name con
icts� For in�

stance� if the symbols that con
ict are not being used as objects but only

as names for functions� it may be possible to �merge� the two symbols by
putting the function de�nition onto both symbols� References to either sym�

bol for purposes of calling a function would be equivalent� A similar merging

operation can be done for variable values and for things stored on the prop�

erty list� In Lisp Machine Lisp� for example� one can also forward the value�
function� and property cells so that future changes to either symbol will prop�

agate to the other one� Some other implementations are able to do this with

value cells but not with property lists� Only the user can know whether this

way of resolving a name con
ict is adequate� because it will work only if the

use of two non�eq symbols with the same name will not prevent the correct
operation of the program� The value of o	ering symbol merging as a way of

resolving name con
icts is that it can avoid the need to throw away the whole

Lisp world� correct the package�de�nition forms that caused the error� and

start over from scratch�

����� Built	in Packages

The following packages� at least� are built into every Common Lisp system�
���

lisp

The package named lisp contains the primitives of the Common Lisp sys�

tem� Its external symbols include all of the user�visible functions and global

variables that are present in the Common Lisp system� such as car� cdr� and

package
� Almost all other packages will want to use lisp so that these

symbols will be accessible without quali�cation�

��

��
 COMMON LISP

user

The user package is� by default� the current package at the time a Common
Lisp system starts up� This package uses the lisp package�

X�J�� voted in March ���� h���i to specify that the forthcoming ANSI

Common Lisp will use the package name commonlisp instead of lisp and

the package name commonlispuser instead of user� The purpose is to allow

a single Lisp system to support both �old� Common Lisp and �new� ANSI
Common Lisp simultaneously despite the fact that in some cases the two lan�

guages use the same names for incompatible purposes�
That�s what packages

are for��

common�lisp

The package named commonlisp contains the primitives of the ANSI Com�

mon Lisp system
as opposed to a Common Lisp system based on the ����
speci�cation�� Its external symbols include all of the user�visible functions

and global variables that are present in the ANSI Common Lisp system� such

as car� cdr� and
package
� Note� however� that the home package of such

symbols is not necessarily the commonlisp package
this makes it easier for
symbols such as t and lambda to be shared between the commonlisp package

and another package� possibly one named lisp�� Almost all other packages

ought to use commonlisp so that these symbols will be accessible without

quali�cation� This package has the nickname cl�

common�lisp�user

The commonlispuser package is� by default� the current package at the time

an ANSI Common Lisp system starts up� This package uses the commonlisp
package and has the nickname cluser� It may contain other implementation�

dependent symbols and may use other implementation�speci�c packages�

keyword

This package contains all of the keywords used by built�in or user�de�ned

Lisp functions� Printed symbol representations that start with a colon are

interpreted as referring to symbols in this package� which are always external

symbols� All symbols in this package are treated as constants that evaluate
to themselves� so that the user can type �foo instead of �foo�

system��

This package name is reserved to the implementation� Normally this is used to

��

PACKAGES ���

contain names of implementation�dependent system�interface functions� This

package uses lisp and has the nickname sys�

X�J�� voted in January ���� h���i to modify the requirements on the built�
in packages so as to limit what may appear in the commonlisp package and to

lift the requirement that every implementation have a package named system�

The details are as follows�

Not only must the commonlisp package in any given implementation contain

all the external symbols prescribed by the standard� the commonlisp package

moreover may not contain any external symbol that is not prescribed by the

standard� However� the commonlisp package may contain additional internal
symbols� depending on the implementation�

An external symbol of the commonlisp package may not have a function�

macro� or special form de�nition� or a top�level value� or a special procla�
mation� or a type de�nition� unless speci�cally permitted by the standard�

Programmers may validly rely on this fact� for example� fboundp is guaran�

teed to be false for all external symbols of the commonlisp package except

those explicitly speci�ed in the standard to name functions� macros� and spe�
cial forms� Similarly� boundp will be false of all such external symbols except

those documented to be variables or constants�

Portable programs may use external symbols in the commonlisp package
that are not documented to be constants or variables as names of local lexical

variables with the presumption that the implementation has not proclaimed

such variables to be special� this legitimizes the common practice of using

such names as list and string as names for local variables�

A valid implementation may initially have properties on any symbol� or

dynamically put new properties on symbols
even user�created symbols�� as

long as no property indicator used for this purpose is an external symbol of
any package de�ned by the standard or a symbol that is accessible from the

commonlispuser package or any package de�ned by the user�

This vote eliminates the requirement that every implementation have a pre�

de�ned package named system� An implementation may provide any number

of prede�ned packages� these should be described in the documentation for

that implementation�

The commonlispuser package may contain symbols not described by the

standard and may use other implementation�speci�c packages�

X�J�� voted in March ���� h���i to restrict user programs from performing

certain actions that might interfere with built�in facilities or interact badly

with them� Except where explicitly allowed� the consequences are unde�ned

if any of the following actions are performed on a symbol in the commonlisp

��� COMMON LISP

package�

� binding or altering its value
lexically or dynamically�

� de�ning or binding it as a function

� de�ning or binding it as a macro

� de�ning it as a type speci�er
defstruct� defclass� deftype�

� de�ning it as a structure
defstruct�

� de�ning it as a declaration

� dsing it as a symbol macro

� altering its print name

� altering its package

� tracing it

� declaring or proclaiming it special or lexical

� declaring or proclaiming its type or ftype

� removing it from the package commonlisp

X�J�� also voted in June ���� h��i to add to this list the item

� de�ning it as a compiler macro

If such a symbol is not globally de�ned as a variable or a constant� a user

program is allowed to lexically bind it and declare the type of that binding�

If such a symbol is not de�ned as a function� macro� or special form� a user

program is allowed to
lexically� bind it as a function and to declare the ftype

of that binding and to trace that binding�

If such a symbol is not de�ned as a function� macro� or special form� a user
program is allowed to
lexically� bind it as a macro�

As an example� the behavior of the code fragment

�flet ��open �filename �key direction�

�format t � "OPEN was called���

�open filename �direction direction���

�withopenfile �x �frob� �direction �output�

�format t � "Was OPEN called�����

PACKAGES ���

is unde�ned� Even in a �reasonable� implementation� for example� the macro

expansion of withopenfile might refer to the open function and might not�

However� the preceding rules eliminate the burden of deciding whether an

implementation is reasonable� The code fragment violates the rules� o�cially

its behavior is therefore completely unde�ned� and that�s that�

Note that �altering the property list� is not in the list of proscribed actions�
so a user program is permitted to add properties to or remove properties from

symbols in the commonlisp package�

����� Package System Functions and Variables

Some of the functions and variables in this section are described in previous

sections but are included here for completeness�

It is up to each implementation�s compiler to ensure that when a compiled
���

�le is loaded� all of the symbols in the �le end up in the same packages that
they would occupy if the Lisp source �le were loaded� In most compilers� this

will be accomplished by treating certain package operations as though they

are surrounded by �evalwhen �compile load eval� ����� see evalwhen�

These operations are makepackage� inpackage� shadow� shadowingimport�
export� unexport� usepackage� unusepackage� and import� To guaran�

tee proper compilation in all Common Lisp implementations� these functions

should appear only at top level within a �le� As a matter of style� it is sug�

gested that each �le contain only one package� and that all of the package

setup forms appear near the start of the �le� This is discussed in more detail�
with examples� in section �����

X�J�� voted in March ���� h���i to cancel the speci�cations of the pre�

ceding paragraph in order to support a model of �le compilation in which the

compiler need never take special note of ordinary function calls� only special

forms and macros are recognized as a	ecting the state of the compilation pro�

cess� As part of this change inpackage was changed to be a macro rather
than a function and its functionality was restricted� The actions of shadow�

shadowingimport� usepackage� import� intern� and export for compilation

purposes may be accomplished with the new macro defpackage�

Implementation note� In the past� some Lisp compilers have read the entire �le
into Lisp before processing any of the forms� Other compilers have arranged for
the loader to do all of its intern operations before evaluating any of the top
level
forms� Neither of these techniques will work in a straightforward way in Common
Lisp because of the presence of multiple packages�

��� COMMON LISP

For the functions described here� all optional arguments named package de�

fault to the current value of
package
� Where a function takes an argument

that is either a symbol or a list of symbols� an argument of nil is treated as

an empty list of symbols� Any argument described as a package name may be

either a string or a symbol� If a symbol is supplied� its print name will be used
as the package name� if a string is supplied� the user must take care to specify

the same capitalization used in the package name� normally all uppercase�

�Variable�
package

The value of this variable must be a package� this package is said to be the

current package� The initial value of
package
 is the user package�
X�J�� voted in March ���� h���i to specify that the forthcoming ANSI

Common Lisp will use the package name commonlispuser instead of user�

The function load rebinds
package
 to its current value� If some form in

the �le changes the value of
package
 during loading� the old value will be
restored when the loading is completed�

X�J�� voted in October ���� h��i to require compilefile to rebind

package
 to its current value�

�Function�makepackage packagename �key �nicknames �use

This creates and returns a new package with the speci�ed package name�
As described above� this argument may be either a string or a symbol� The

�nicknames argument must be a list of strings to be used as alternative names

for the package� Once again� the user may supply symbols in place of the

strings� in which case the print names of the symbols are used� These names

and nicknames must not con
ict with any existing package names� if they do�
a correctable error is signaled�

The �use argument is a list of packages or the names
strings or symbols�

of packages whose external symbols are to be inherited by the new package�

These packages must already exist� If not supplied� �use defaults to a list of
one package� the lisp package�

X�J�� voted in March ���� h���i to specify that the forthcoming ANSI

Common Lisp will use the package name commonlisp instead of lisp�

X�J�� voted in January ���� h���i to change the speci�cation of
makepackage so that the default value for the �use argument is unspeci�ed�

Portable code should specify �use ��COMMONLISP�� explicitly�

Rationale� Many existing implementations of Common Lisp happen to have vi

olated the �rst edition speci�cation� providing as the default not only the lisp

PACKAGES ���

package but also �or instead� a package containing implementation
dependent lan

guage extensions� This is for good reason� usually it is much more convenient to
the user for the default �use list to be the entire� implementation
dependent� ex

tended language rather than only the facilities speci�ed in this book� The X�J��
vote simply legitimizes existing practice�

�Function�inpackage packagename �key �nicknames �use
��

The inpackage function is intended to be placed at the start of a �le contain�
ing a subsystem that is to be loaded into some package other than user�

If there is not already a package named package�name� this function is sim�

ilar to makepackage� except that after the new package is created�
package

is set to it� This binding will remain in force until changed by the user
per�

haps with another inpackage call� or until the
package
 variable reverts to

its old value at the completion of a load operation�

If there is an existing package whose name is package�name� the assumption
is that the user is re�loading a �le after making some changes� The existing

package is augmented to re
ect any new nicknames or new packages in the

�use list
with the usual error checking�� and
package
 is then set to this

package�

X�J�� voted in January ���� h���i to specify that inpackage returns the

new package� that is� the value of
package
 after the operation has been

executed�

X�J�� voted in March ���� h���i to specify that the forthcoming ANSI

Common Lisp will use the package name commonlispuser instead of user�

X�J�� voted in March ���� h���i to restrict the functionality of inpackage

and to make it a macro� This is an incompatible change�

Making inpackage a macro rather than a function means that there is no
need to require compilefile to handle it specially� Since defpackage is also

de�ned to have side e	ects on the compilation environment� there is no need

to require any of the package functions to be treated specially by the compiler�

�Macro�inpackage name

This macro causes
package
 to be set to the package named name� which

must be a symbol or string� The name is not evaluated� An error is signaled

if the package does not already exist� Everything this macro does is also

performed at compile time if the call appears at top level�

��� COMMON LISP

�Function�findpackage name

The name must be a string that is the name or nickname for a package�

This argument may also be a symbol� in which case the symbol�s print name

is used� The package with that name or nickname is returned� if no such

package exists� findpackage returns nil� The matching of names observes
case
as in string��

X�J�� voted in January ���� h���i to allow findpackage to accept a pack�
age object� in which case the package is simply returned
see section ������

�Function�packagename package

The argument must be a package� This function returns the string that names

that package�

X�J�� voted in January ���� h���i to allow packagename to accept a pack�

age name or nickname� in which case the primary name of the package so
speci�ed is returned
see section ������

X�J�� voted in January ���� h���i to add a function to delete packages�

One consequence of this vote is that packagename will return nil instead of

a package name if applied to a deleted package object� See deletepackage�

�Function�packagenicknames package

The argument must be a package� This function returns the list of nickname
strings for that package� not including the primary name�

X�J�� voted in January ���� h���i to allow packagenicknames to accept

a package name or nickname� in which case the nicknames of the package so

speci�ed are returned
see section ������

�Function�renamepackage package newname �optional newnicknames

The old name and all of the old nicknames of package are eliminated and
are replaced by new�name and new�nicknames� The new�name argument is

a string or symbol� the new�nicknames argument� which defaults to nil� is a

list of strings or symbols�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

X�J�� voted in January ���� h���i to specify that renamepackage returns

package�

PACKAGES ���

�Function�packageuselist package

A list of other packages used by the argument package is returned�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�packageusedbylist package

A list of other packages that use the argument package is returned�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�packageshadowingsymbols package

A list is returned of symbols that have been declared as shadowing symbols

in this package by shadow or shadowingimport� All symbols on this list are

present in the speci�ed package�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�listallpackages

This function returns a list of all packages that currently exist in the Lisp

system�

�Function�deletepackage package

X�J�� voted in January ���� h���i to add the deletepackage function� which
deletes the speci�ed package from all package system data structures� The

package argument may be either a package or the name of a package�

If package is a name but there is currently no package of that name� a

correctable error is signaled� Continuing from the error makes no deletion

attempt but merely returns nil from the call to deletepackage�

If package is a package object that has already been deleted� no error is

signaled and no deletion is attempted� instead� deletepackage immediately

returns nil�

If the package speci�ed for deletion is currently used by other packages�

a correctable error is signaled� Continuing from this error� the e	ect of the

function unusepackage is performed on all such other packages so as to re�

move their dependency on the speci�ed package� after which deletepackage

��� COMMON LISP

proceeds to delete the speci�ed package as if no other package had been using

it�

If any symbol had the speci�ed package as its home package before the call

to deletepackage� then its home package is unspeci�ed
that is� the contents

of its package cell are unspeci�ed� after the deletepackage operation has
been completed� Symbols in the deleted package are not modi�ed in any

other way�

The name and nicknames of the package cease to be recognized package

names� The package object is still a package� but anonymous� packagep will

be true of it� but packagename applied to it will return nil�

The e	ect of any other package operation on a deleted package object is

unde�ned� In particular� an attempt to locate a symbol within a deleted

package
using intern or findsymbol� for example� will have unspeci�ed

results�

deletepackage returns t if the deletion succeeds� and nil otherwise�

�Function�intern string �optional package

The package� which defaults to the current package� is searched for a symbol

with the name speci�ed by the string argument� This search will include

inherited symbols� as described in section ����� If a symbol with the speci�ed
name is found� it is returned� If no such symbol is found� one is created

and is installed in the speci�ed package as an internal symbol
as an external

symbol if the package is the keyword package�� the speci�ed package becomes

the home package of the created symbol�

X�J�� voted in March ���� h��i to specify that intern may in e	ect per�
form the search using a copy of the argument string in which some or all of

the implementation�de�ned attributes have been removed from the characters

of the string� It is implementation�dependent which attributes are removed�

Two values are returned� The �rst is the symbol that was found or created�
The second value is nil if no pre�existing symbol was found� and takes on one

of three values if a symbol was found�

�internal The symbol was directly present in the package as an internal

symbol�

�external The symbol was directly present as an external symbol�

�inherited The symbol was inherited via usepackage
which implies

that the symbol is internal��

PACKAGES ��	

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

Compatibility note� Conceptually� intern translates a string to a symbol� In
MacLisp and several other dialects of Lisp� intern can take either a string or a
symbol as its argument� in the latter case� the symbol�s print name is extracted
and used as the string� However� this leads to some confusing issues about what to
do if intern �nds a symbol that is not eq to the argument symbol� To avoid such
confusion� Common Lisp requires the argument to be a string�

�Function�findsymbol string �optional package

This is identical to intern� but it never creates a new symbol� If a symbol with
the speci�ed name is found in the speci�ed package� directly or by inheritance�

the symbol found is returned as the �rst value and the second value is as

speci�ed for intern� If the symbol is not accessible in the speci�ed package�

both values are nil�
X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�unintern symbol �optional package

If the speci�ed symbol is present in the speci�ed package� it is removed from

that package and also from the package�s shadowing�symbols list if it is present

there� Moreover� if the package is the home package for the symbol� the symbol

is made to have no home package� Note that in some circumstances the
symbol may continue to be accessible in the speci�ed package by inheritance�

unintern returns t if it actually removed a symbol� and nil otherwise�

unintern should be used with caution� It changes the state of the package

system in such a way that the consistency rules do not hold across the change�

X�J�� voted in January ���� h���i to clarify that the package argument
may be either a package object or a package name
see section ������

Compatibility note� The equivalent of this in MacLisp is remob�

�Function�export symbols �optional package

The symbols argument should be a list of symbols� or possibly a single sym�

bol� These symbols become accessible as external symbols in package
see

section ������ export returns t�

��
 COMMON LISP

By convention� a call to export listing all exported symbols is placed near

the start of a �le to advertise which of the symbols mentioned in the �le are

intended to be used by other programs�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�unexport symbols �optional package

The argument should be a list of symbols� or possibly a single symbol� These

symbols become internal symbols in package� It is an error to unexport a

symbol from the keyword package
see section ������ unexport returns t�

X�J�� voted in January ���� h���i to clarify that the package argument
may be either a package object or a package name
see section ������

�Function�import symbols �optional package

The argument should be a list of symbols� or possibly a single symbol� These

symbols become internal symbols in package and can therefore be referred

to without having to use quali�ed�name
colon� syntax� import signals a
correctable error if any of the imported symbols has the same name as some

distinct symbol already accessible in the package
see section ������ import

returns t�

X�J�� voted in June ���� h���i to clarify that if any symbol to be imported
has no home package then import sets the home package of the symbol to the

package to which the symbol is being imported�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�shadowingimport symbols �optional package

This is like import� but it does not signal an error even if the importation

of a symbol would shadow some symbol already accessible in the package� In

addition to being imported� the symbol is placed on the shadowing�symbols

list of package
see section ������ shadowingimport returns t�

shadowingimport should be used with caution� It changes the state of the

package system in such a way that the consistency rules do not hold across

the change�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

PACKAGES ���

�Function�shadow symbols �optional package

The argument should be a list of symbols� or possibly a single symbol� The

print name of each symbol is extracted� and the speci�ed package is searched

for a symbol of that name� If such a symbol is present in this package
directly�
not by inheritance�� then nothing is done� Otherwise� a new symbol is created

with this print name� and it is inserted in the package as an internal symbol�

The symbol is also placed on the shadowing�symbols list of the package
see

section ������ shadow returns t�
X�J�� voted in March ���� h���i to change shadow to accept strings as well

as well as symbols
a string in the symbols list being treated as a print name��

and to clarify that if a symbol of speci�ed name is already in the package but

is not yet on the shadowing�symbols list for that package� then shadow does

add it to the shadowing�symbols list rather than simply doing nothing�
shadow should be used with caution� It changes the state of the package

system in such a way that the consistency rules do not hold across the change�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�usepackage packagestouse �optional package

The packages�to�use argument should be a list of packages or package names�

or possibly a single package or package name� These packages are added to
the use�list of package if they are not there already� All external symbols

in the packages to use become accessible in package as internal symbols
see

section ������ It is an error to try to use the keyword package� usepackage

returns t�
X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

�Function�unusepackage packagestounuse �optional package

The packages�to�unuse argument should be a list of packages or package

names� or possibly a single package or package name� These packages are

removed from the use�list of package� unusepackage returns t�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

X�J�� voted in January ���� h��i to add a macro defpackage to the lan�

guage to make it easier to create new packages� alleviating the burden on the

programmer to perform the various setup operations in exactly the correct

sequence�

��� COMMON LISP

�Macro�defpackage de
ned�package�name foptiong�

This creates a new package� or modi�es an existing one� whose name is de
ned�

package�name� The de
ned�package�name may be a string or a symbol� if it

is a symbol� only its print name matters� and not what package� if any� the
symbol happens to be in� The newly created or modi�ed package is returned

as the value of the defpackage form�

Each standard option is a list of a keyword
the name of the option� and

associated arguments� No part of a defpackage form is evaluated� Except for

the �size option� more than one option of the same kind may occur within
the same defpackage form�

The standard options for defpackage are as follows� In every case� any

option argument called package�name or symbol�name may be a string or a

symbol� if it is a symbol� only its print name matters� and not what package�

if any� the symbol happens to be in�

��size integer�

This speci�es approximately the number of symbols expected to be in the
package� This is purely an e�ciency hint to the storage allocator� so that

implementations using hash tables as part of the package data structure
the

usual technique� will not have to incrementally expand the package as new

symbols are added to it
for example� as a large �le is read while �in� that
package��

��nicknames fpackage�nameg� �
The speci�ed names become nicknames of the package being de�ned� If any

of the speci�ed nicknames already refers to an existing package� a continuable

error is signaled exactly as for the function makepackage�

��shadow fsymbol�nameg� �
Symbols with the speci�ed names are created as shadows in the package being

de�ned� just as with the function shadow�

��shadowing�import�from package�name fsymbol�nameg� �
Symbols with the speci�ed names are located in the speci�ed package� These
symbols are imported into the package being de�ned� shadowing other sym�

bols if necessary� just as with the function shadowingimport� In no case will

symbols be created in a package other than the one being de�ned� a continu�

able error is signaled if for any symbol�name there is no symbol of that name

accessible in the package named package�name�

PACKAGES ���

��use fpackage�nameg� �
The package being de�ned is made to �use�
inherit from� the packages spec�

i�ed by this option� just as with the function usepackage� If no �use option

is supplied� then a default list is assumed as for makepackage�

X�J�� voted in January ���� h���i to change the speci�cation of

makepackage so that the default value for the �use argument is unspeci�
�ed� This change a	ects defpackage as well� Portable code should specify

��use ��COMMONLISP��� explicitly�

��import�from package�name fsymbol�nameg� �
Symbols with the speci�ed names are located in the speci�ed package� These
symbols are imported into the package being de�ned� just as with the function

import� In no case will symbols be created in a package other than the one

being de�ned� a continuable error is signaled if for any symbol�name there is

no symbol of that name accessible in the package named package�name�

��intern fsymbol�nameg� �
Symbols with the speci�ed names are located or created in the package being

de�ned� just as with the function intern� Note that the action of this option

may be a	ected by a �use option� because an inherited symbol will be used

in preference to creating a new one�

��export fsymbol�nameg� �
Symbols with the speci�ed names are located or created in the package be�

ing de�ned and then exported� just as with the function export� Note

that the action of this option may be a	ected by a �use� �importfrom� or
�shadowingimportfrom option� because an inherited or imported symbol will

be used in preference to creating a new one�

The order in which options appear in a defpackage form does not matter�

part of the convenience of defpackage is that it sorts out the options into the

correct order for processing� Options are processed in the following order�

�� �shadow and �shadowingimportfrom

�� �use

�� �importfrom and �intern

�� �export

Shadows are established �rst in order to avoid spurious name con
icts when

use links are established� Use links must occur before importing and interning

��� COMMON LISP

so that those operations may refer to normally inherited symbols rather than

creating new ones� Exports are performed last so that symbols created by

any of the other options� in particular� shadows and imported symbols� may

be exported� Note that exporting an inherited symbol implicitly imports it

�rst
see section ������
If no package named de
ned�package�name already exists� defpackage cre�

ates it� If such a package does already exist� then no new package is created�

The existing package is modi�ed� if possible� to re
ect the new de�nition� The

results are unde�ned if the new de�nition is not consistent with the current
state of the package�

An error is signaled if more than one �size option appears�

An error is signaled if the same symbolname argument
in the sense of com�

paring names with string� appears more than once among the arguments

to all the �shadow� �shadowingimportfrom� �importfrom� and �intern op�
tions�

An error is signaled if the same symbolname argument
in the sense of

comparing names with string� appears more than once among the arguments

to all the �intern and �export options�
Other kinds of name con
icts are handled in the same manner that the

underlying operations usepackage� import� and export would handle them�

Implementations may support other defpackage options� Every implemen�

tation should signal an error on encountering a defpackage option it does not

support�
The function compilefile should treat top�level defpackage forms in the

same way it would treat top�level calls to package�a	ecting functions
as de�

scribed at the beginning of section ������

Here is an example of a call to defpackage that �plays it safe� by using
only strings as names�

�cl�defpackage �MYVERYOWNPACKAGE�

��size ����

��nicknames �MYPKG� �MYPKG� �MVOP��

��use �COMMONLISP��

��shadow �CAR� �CDR��

��shadowingimportfrom �BRANDXLISP� �CONS��

��importfrom �BRANDXLISP� �GC� �BLINKFRONTPANELLIGHTS��

��export �EQ� �CONS� �MYVERYOWNFUNCTION���

The preceding defpackage example is designed to operate correctly even if the

package current when the form is read happens not to �use� the commonlisp

package�
Note the use in this example of the nickname cl for the commonlisp

PACKAGES ���

package�� Moreover� neither reading in nor evaluating this defpackage form

will ever create any symbols in the current package� Note too the use of

uppercase letters in the strings�

Here� for the sake of contrast� is a rather similar use of defpackage that
�plays the whale� by using all sorts of permissible syntax�

�defpackage myveryownpackage

��export �EQ commonlisp�cons myveryownfunction�

��nicknames �MYPKG� ����MyPkg�

��use �COMMONLISP��

��shadow �CAR��

��size ����

��nicknames mvop�

��importfrom �BRANDXLISP� �GC� BlinkFrontPanelLights�

��shadow commonlisp��cdr�

��shadowingimportfrom �BRANDXLISP� CONS��

This example has exactly the same e	ect on the newly created package but

may create useless symbols in other packages� The use of explicit package
tags is particularly confusing� for example� this defpackage form will cause

the symbol cdr to be shadowed in the new package� it will not be shadowed

in the package commonlisp� The fact that the name �CDR� was speci�ed

by a package�quali�ed reference to a symbol in the commonlisp package is

a red herring� The moral is that the syntactic
exibility of defpackage� as
in other parts of Common Lisp� yields considerable convenience when used

with commonsense competence� but unutterable confusion when used with

Malthusian profusion�

Implementation note� An implementation of defpackage might choose to trans

form all the package�name and symbol�name arguments into strings at macro ex

pansion time� rather than at the time the resulting expansion is executed� so that
even if source code is expressed in terms of strange symbols in the defpackage form�
the binary �le resulting from compiling the source code would contain only strings�
The purpose of this is simply to minimize the creation of useless symbols in produc

tion code� This technique is permitted as an implementation strategy but is not a
behavior required by the speci�cation of defpackage�

Note that defpackage is not capable by itself of de�ning mutually recursive

packages� for example two packages each of which uses the other� However�

nothing prevents one from using defpackage to perform much of the initial

��� COMMON LISP

setup and then using functions such as usepackage� import� and export to

complete the links�

The purpose of defpackage is to encourage the user to put the entire de��

nition of a package and its relationships to other packages in a single place� It

may also encourage the designer of a large system to place the de�nitions of

all relevant packages into a single �le
say� that can be loaded before loading
or compiling any code that depends on those packages� Such a �le� if carefully

constructed� can simply be loaded into the commonlispuser package�

Implementations and programming environments may also be better able to

support the programming process
if only by providing better error checking�

through global knowledge of the intended package setup�

�Function�findallsymbols stringorsymbol

findallsymbols searches every package in the Lisp system to �nd every sym�
bol whose print name is the speci�ed string� A list of all such symbols found

is returned� This search is case�sensitive� If the argument is a symbol� its

print name supplies the string to be searched for�

�Macro�dosymbols �var �package �result�form� � �
fdeclarationg� ftag j statementg�

dosymbols provides straightforward iteration over the symbols of a package�

The body is performed once for each symbol accessible in the package� in no

particular order� with the variable var bound to the symbol� Then result�

form
a single form� not an implicit progn� is evaluated� and the result is
the value of the dosymbols form�
When the result�form is evaluated� the

control variable var is still bound and has the value nil�� If the result�form

is omitted� the result is nil� return may be used to terminate the iteration

prematurely� If execution of the body a	ects which symbols are contained in
the package� other than possibly to remove the symbol currently the value of

var by using unintern� the e	ects are unpredictable�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

X�J�� voted in March ���� h��i to specify that the body of a dosymbols

form may be executed more than once for the same accessible symbol� and

users should take care to allow for this possibility�

The point is that the same symbol might be accessible via more than one

chain of inheritance� and it is implementationally costly to eliminate such

duplicates� Here is an example�

PACKAGES ���

�setq
a
 �makepackage a�� �Implicitly uses package commonlisp

�setq
b
 �makepackage b�� �Implicitly uses package commonlisp

�setq
c
 �makepackage c �use �a b���

�dosymbols �x
c
� �print x�� �Symbols in package commonlisp
� might be printed once or twice here

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Note that the loop construct provides a kind of for clause that can iterate

over the symbols of a package
see chapter ����

�Macro�doexternalsymbols �var �package �result� � �

fdeclarationg� ftag j statementg�

doexternalsymbols is just like dosymbols� except that only the external

symbols of the speci�ed package are scanned�
The clari�cation voted by X�J�� in March ���� for dosymbols h��i� re�

garding redundant executions of the body for the same symbol� applies also

to doexternalsymbols�

X�J�� voted in January ���� h���i to clarify that the package argument
may be either a package object or a package name
see section ������

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Macro�doallsymbols �var �result�form� �

fdeclarationg� ftag j statementg�

This is similar to dosymbols but executes the body once for every symbol

contained in every package�
This will not process every symbol whatsoever�

because a symbol not accessible in any package will not be processed� Nor�

mally� uninterned symbols are not accessible in any package�� It is not in
general the case that each symbol is processed only once� because a symbol

may appear in many packages�

The clari�cation voted by X�J�� in March ���� for dosymbols h��i� re�
garding redundant executions of the body for the same symbol� applies also
to doallsymbols�

X�J�� voted in January ���� h���i to clarify that the package argument

may be either a package object or a package name
see section ������

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

��� COMMON LISP

X�J��

voted in January ���� h��i to add a new macro withpackageiterator to

the language�

�Macro�withpackageiterator �mname package�list fsymbol�typeg� �

f formg�

The namemname is bound and de�ned as if by macrolet� with the body forms
as its lexical scope� to be a �generator macro� such that each invocation of

�mname� will return a symbol and that successive invocations will eventually

deliver� one by one� all the symbols from the packages that are elements of the

list that is the value of the expression package�list
which is evaluated exactly
once��

Each element of the package�list value may be either a package or the name
of a package� As a further convenience� if the package�list value is itself a

package or the name of a package� it is treated as if a singleton list containing

that value had been provided� If the package�list value is nil� it is considered

to be an empty list of packages�

At each invocation of the generator macro� there are two possibilities� If

there is yet another unprocessed symbol� then four values are returned� t�

the symbol� a keyword indicating the accessibility of the symbol within the
package
see below�� and the package from which the symbol was accessed� If

there are no more unprocessed symbols in the list of packages� then one value

is returned� nil�

When the generator macro returns a symbol as its second value� the fourth

value is always one of the packages present or named in the package�list value�

and the third value is a keyword indicating accessibility� �internal means

present in the package and not exported� �external means present and ex�
ported� and �inheritedmeans not present
thus not shadowed� but inherited

from some package used by the package that is the fourth value�

Each symbol�type in an invocation of withpackageiterator is not evalu�

ated� More than one may be present� their order does not matter� They

indicate the accessibility types of interest� A symbol is not returned by the

generator macro unless its actual accessibility matches one of the symbol�type
indicators� The standard symbol�type indicators are �internal� �external�

and �inherited� but implementations are permitted to extend the syntax of

withpackageiterator by recognizing additional symbol accessibility types�

An error is signaled if no symbol�type is supplied� or if any supplied symbol�type

is not recognized by the implementation�

PACKAGES ��	

The order in which symbols are produced by successive invocations of the

generator macro is not necessarily correlated in any way with the order of the

packages in the package�list� When more than one package is in the package�

list� symbols accessible from more than one package may be produced once or

more than once� Even when only one package is speci�ed� symbols inherited
in multiple ways via used packages may be produced once or more than once�

The implicit interior state of the iteration over the list of packages and

the symbols within them has dynamic extent� It is an error to invoke the

generator macro once the withpackageiterator form has been exited�

Any number of invocations of withpackageiterator and related macros

may be nested� and the generator macro of an outer invocation may be called

from within an inner invocation
provided� of course� that its name is visible
or otherwise made available��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Rationale� This facility is a bit more �exible in some ways than dosymbols and
friends� In particular� it makes it possible to implement loop clauses for iterating
over packages in a way that is both portable and e�cient �see chapter �	��

���
� Modules

A module is a Common Lisp subsystem that is loaded from one or more �les�

A module is normally loaded as a single unit� regardless of how many �les

are involved� A module may consist of one package or several packages� The
�le�loading process is necessarily implementation�dependent� but Common

Lisp provides some very simple portable machinery for naming modules� for

keeping track of which modules have been loaded� and for loading modules as

a unit�

X�J�� voted in January ���� h���i to eliminate the entire module facility

from the language� that is� the variable
modules
 and the functions provide
and require are deleted� X�J�� commented that the �le�loading feature

of require is not portable� and that the remaining functionality is easily

implemented by user code�
I will add that in any case the speci�cation of

require is so vague that di	erent implementations are likely to have di	ering

behavior��

��
 COMMON LISP

�Variable�
modules

The variable
modules
 is a list of names of the modules that have been

loaded into the Lisp system so far� This list is used by the functions provide

and require�

�Function�provide modulename

�Function�require modulename �optional pathname

Each module has a unique name
a string�� The provide and require func�
tions accept either a string or a symbol as the module�name argument� If a

symbol is provided� its print name is used as the module name� If the module

consists of a single package� it is customary for the package and module names

to be the same�

The provide function adds a new module name to the list of modules
maintained in the variable
modules
� thereby indicating that the module in

question has been loaded�

The require function tests whether a module is already present
using a

case�sensitive comparison�� if the module is not present� require proceeds to

load the appropriate �le or set of �les� The pathname argument� if present� is
a single pathname or a list of pathnames whose �les are to be loaded in order�

left to right� If the pathname argument is nil or is not provided� the system

will attempt to determine� in some system�dependent manner� which �les to

load� This will typically involve some central registry of module names and

the associated �le lists�
X�J�� voted in March ���� not to permit symbols as pathnames h���i

and to specify exactly which streams may be used as pathnames h���i
see
section �������� Of course� this is moot if require is not in the language�

X�J�� voted in January ���� h���i to specify that the values returned by

provide and require are implementation�dependent� Of course� this is moot

if provide and require are not in the language�

Implementation note� One way to implement such a registry on many operating
systems is simply to use a distinguished �library� directory within the �le system�
where the name of each �le is the same as the module it contains�

����� An Example

Most users will want to load and use packages but will never need to build one�
��

Often a user will load a number of packages into the user package whenever

��

PACKAGES ���

Table ����� An Initialization File

���� Lisp init file for I� Newton�

��� Set up the USER package the way I like it�

�require calculus� �I use CALCULUS a lot� load it�

�usepackage calculus� �Get easy access to its

� exported symbols�

�require newtonianmechanics� �Same thing for NEWTONIANMECHANICS

�usepackage newtonianmechanics�

��� I just want a few things from RELATIVITY�

��� and other things conflict�

��� Import only what I need into the USER package�

�require relativity�

�import �relativity�speedoflight

relativity�ignoresmallerrors��

��� These are worth loading� but I will use qualified names�

��� such as PHLOGISTON�MAKEFIREBOTTLE� to get at any symbols

��� I might need from these packages�

�require phlogiston�

�require alchemy�

��� End of Lisp init file for I� Newton�

using Common Lisp� Typically an implementation might provide some sort

of initialization �le mechanism to make such setup automatic when the Lisp
starts up� Table ���� shows such an initialization �le� one that simply causes

other facilities to be loaded�

X�J�� voted in March ���� h���i to specify that the forthcoming ANSI

Common Lisp will use the package name commonlispuser instead of user�

When each of two �les uses some symbols from the other� the author of

those �les must be careful to arrange the contents of the �le in the proper

order� Typically each �le contains a single package that is a complete module�
The contents of such a �le should include the following items� in order�

�� A call to provide that announces the module name�

��� COMMON LISP

�� A call to inpackage that establishes the package�

�� A call to shadow that establishes any local symbols that will shadow symbols

that would otherwise be inherited from packages that this package will use�

�� A call to export that establishes all of this package�s external symbols�

�� Any number of calls to require to load other modules that the contents of
this �le might want to use or refer to�
Because the calls to require follow

the calls to inpackage� shadow� and export� it is possible for the packages

that may be loaded to refer to external symbols in this package��

�� Any number of calls to usepackage� to make external symbols from other

packages accessible in this package�

�� Any number of calls to import� to make symbols from other packages
present in this package�

�� Finally� the de�nitions making up the contents of this package�module�

The following mnemonic sentence may be helpful in remembering the proper

order of these calls�

Put in seven extremely random user interface commands�

Each word of the sentence corresponds to one item in the above ordering�

Put Provide

IN INpackage

Seven Shadow

EXtremely EXport

Random Require

USEr USEpackage

Interface Import

COmmands COntents of package�module

The sentence says what it helps you to do�

The most distressing aspect of the X�J�� vote to eliminate provide and

require h���i is of course that it completely ruins the mnemonic sentence�

Now� suppose for the sake of example that the phlogiston and alchemy

packages are single��le� single�package modules as described above� The

phlogiston package needs to use the alchemy package� and the alchemy

package needs to use several external symbols from the phlogiston pack�

age� The de�nitions in the alchemy and phlogiston �les
see tables ����

PACKAGES ���

Table ����� File alchemy

���� Alchemy functions� written and maintained by Merlin� Inc�

�provide alchemy� �The module is named ALCHEMY�

�inpackage alchemy� �So is the package�

��� There is nothing to shadow�

��� Here is the external interface�

�export �leadtogold goldtolead

antimonytozinc elixiroflife��

��� This package�module needs a function from

��� the PHLOGISTON package�module�

�require phlogiston�

��� We don t frequently need most of the external symbols from

��� PHLOGISTON� so it s not worth doing a USEPACKAGE on it�

��� We ll just use qualified names as needed� But we use

��� one function� MAKEFIREBOTTLE� a lot� so import it�

��� It s external in PHLOGISTON and so can be referred to

��� here using ��� qualifiedname syntax�

�import �phlogiston�makefirebottle��

��� Now for the real contents of this file�

�defun leadtogold �x�

�Takes a quantity of lead and returns gold��

�when �� �phlogiston�heatflow � x x� �Using a qualified symbol

��

�makefirebottle x�� �Using an imported symbol

�gild x��

��� And so on ���

��� COMMON LISP

Table ����� File phlogiston

���� Phlogiston functions� by Thermofluidics� Ltd�

�provide phlogiston� �The module is named PHLOGISTON�

�inpackage phlogiston� �So is the package�

��� There is nothing to shadow�

��� Here is the external interface�

�export �heatflow coldflow mixfluids separatefluids

burn makefirebottle��

��� This file uses functions from the ALCHEMY package�module�

�require alchemy�

��� We use alchemy functions a lot� so use the package�

��� This will allow symbols exported from the ALCHEMY package

��� to be referred to here without the need for qualified names�

�usepackage alchemy�

��� No calls to IMPORT are needed here�

��� The real contents of this package�module�

�defvar �feelingweak� nil�

�defun heatflow �amount x y�

�Make some amount of heat flow from x to y��

�when �feelingweak�

�quaff �elixiroflife��� �No qualifier is needed�

�pushheat amount x y��

��� And so on ���

PACKAGES ���

and ����� allow a user to specify require statements for either of these mod�

ules� or for both of them in either order� and all relevant information will be

loaded automatically and in the correct order�

For very large modules whose contents are spread over several �les
the lisp
���

package is an example�� it is recommended that the user create the package

and declare all of the shadows and external symbols in a separate �le� so that

this can be loaded before anything that might use symbols from this package�

Indeed� the defpackage macro approved by X�J�� in January ���� h��i
encourages the use of such a separate �le�
By the way� X�J�� voted in March

���� h���i to specify that the forthcoming ANSI Common Lisp will use the
package name commonlisp instead of lisp�� Let�s take a look at a revision of

I� Newton�s �les using defpackage�

The new version of the initialization �le avoids using require� instead� we

assume that load will do the job
see table ������

The other �les have each been split into two parts� one that establishes
the package and one that de�nes the contents� This example uses a simple

convention that for any �le named� say� �foo� the �le named �foopackage�

contains the necessary defpackage and�or other package�establishing code�

The idiom

�unless �findpackage �FOO��

�load �foopackage���

is conventionally used to load a package de�nition but only if the package has

not already been de�ned�
This is a bit clumsy� and there are other ways to

arrange things so that a package is de�ned no more than once��

The �le alchemypackage is shown in table ����� The tricky point here

is that the alchemy and phlogiston packages contain mutual references

each imports from the other�� and so defpackage alone cannot do the job�
Therefore the phlogiston package is not mentioned in a �use option in the

defpackage for the alchemy package� Instead� the function usepackage is

called explicitly� after the package de�nition for phlogiston has been loaded�

Note that this �le has been coded with excruciating care so as to operate cor�
rectly even if the package current when the �le is loaded does not inherit from

the commonlisp package� In particular� the standard load�package�de�nition

idiom has been peppered with package quali�ers�

�cl�unless �cl�findpackage �PHLOGISTON��

�cl�load �phlogistonpackage���

Note the use of the nickname cl for the commonlisp package�

��� COMMON LISP

Table ����� An Initialization File When defpackage Is Used

���� Lisp init file for I� Newton�

��� Set up the USER package the way I like it�

�load �calculus�� �I use CALCULUS a lot� load it�

�usepackage calculus� �Get easy access to its

� exported symbols�

�load �newtonianmechanics�� �Ditto for NEWTONIANMECHANICS

�usepackage newtonianmechanics�

��� I just want a few things from RELATIVITY�

��� and other things conflict�

��� Import only what I need into the USER package�

�load �relativity��

�import �relativity�speedoflight

relativity�ignoresmallerrors��

��� These are worth loading� but I will use qualified names�

��� such as PHLOGISTON�MAKEFIREBOTTLE� to get at any symbols

��� I might need from these packages�

�load �phlogiston��

�load �alchemy��

��� End of Lisp init file for I� Newton�

The alchemy �le� shown in table ����� simply loads the alchemy package

de�nition� makes that package current� and then de�nes the �real contents�
of the package�

The �le phlogistonpackage is shown in table ����� This one is a little

more straightforward than the �le alchemypackage� because the latter bears

the responsibility for breaking the circular package references� This �le sim�
ply makes sure that the alchemy package is de�ned and then performs a

defpackage for the phlogiston package�

The phlogiston �le� shown in table ����� simply loads the phlogiston

package de�nition� makes that package current� and then de�nes the �real

PACKAGES ���

contents� of the package�

Let�s look at the question of package circularity in this example a little

more closely� Suppose that the �le alchemypackage is loaded �rst� It de�

�nes the alchemy package and then loads �le phlogistonpackage� That �le

in turn �nds that the package alchemy has already been de�ned and there�
fore does not attempt to load �le alchemypackage again� it merely de�nes

package phlogiston� The �le alchemypackage then has a chance to import

phlogiston�makefirebottle and everything is �ne�

On the other hand� suppose that the �le phlogistonpackage is loaded
�rst� It �nds that the package alchemy has not already been de�ned� and

therefore it immediately loads �le alchemypackage� That �le in turn de�nes

the alchemy package� then it �nds that package phlogiston is not yet de�

�ned and so loads �le phlogistonpackage again
indeed� in nested fashion��

This time �le phlogistonpackage does �nd that the package alchemy has
already been de�ned� so it simply de�nes package phlogiston and termi�

nates� The �le alchemypackage then imports phlogiston�makefirebottle

and terminates� Finally� the outer loading of �le phlogistonpackage re�

de
nes package phlogiston� Oh� dear� Fortunately the two de�nitions of
package phlogiston agree in every detail� so everything ought to be all right�

Still� it looks a bit dicey� I certainly don�t have the same warm� fuzzy feeling

that I would if no package were de�ned more than once�

��� COMMON LISP

Table ����� File alchemy�package Using defpackage

���� Alchemy package� written and maintained by Merlin� Inc�

�cl�defpackage �ALCHEMY�

��export �LEADTOGOLD� �GOLDTOLEAD�

�ANTIMONYTOZINC� �ELIXIROFLIFE��

�

��� This package needs a function from the PHLOGISTON package�

��� Load the definition of the PHLOGISTON package if necessary�

�cl�unless �cl�findpackage �PHLOGISTON��

�cl�load �phlogistonpackage���

��� We don t frequently need most of the external symbols from

��� PHLOGISTON� so it s not worth doing a USEPACKAGE on it�

��� We ll just use qualified names as needed� But we use

��� one function� MAKEFIREBOTTLE� a lot� so import it�

��� It s external in PHLOGISTON and so can be referred to

��� here using ��� qualifiedname syntax�

�cl�import �phlogiston�makefirebottle��

Table ����� File alchemy Using defpackage

���� Alchemy functions� written and maintained by Merlin� Inc�

�unless �findpackage �ALCHEMY��

�load �alchemypackage���

�inpackage alchemy�

�defun leadtogold �x�

�Takes a quantity of lead and returns gold��

�when �� �phlogiston�heatflow � x x� �Using a qualified symbol

��

�makefirebottle x�� �Using an imported symbol

�gild x��

��� And so on ���

PACKAGES ��	

Table ����� File phlogiston�package Using defpackage

���� Phlogiston package definition� by Thermofluidics� Ltd�

��� This package uses functions from the ALCHEMY package�

�cl�unless �cl�findpackage �ALCHEMY��

�cl�load �alchemypackage���

�cl�defpackage �PHLOGISTON�

��use �COMMONLISP� �ALCHEMY��

��export �HEATFLOW�

�COLDFLOW�

�MIXFLUIDS�

�SEPARATEFLUIDS�

�BURN�

�MAKEFIREBOTTLE��

�

Table ���	� File phlogiston Using defpackage

���� Phlogiston functions� by Thermofluidics� Ltd�

�unless �findpackage �PHLOGISTON��

�load �phlogistonpackage���

�inpackage phlogiston�

�defvar �feelingweak� nil�

�defun heatflow �amount x y�

�Make some amount of heat flow from x to y��

�when �feelingweak�

�quaff �elixiroflife��� �No qualifier is needed�

�pushheat amount x y��

��� And so on ���

��
 COMMON LISP

Conclusion� defpackage goes a long way� but it certainly doesn�t solve all

the possible problems of package and �le management� Neither did require

and provide� Perhaps further experimentation will yield facilities appropriate

for future standardization�

��

Numbers

Common Lisp provides several di	erent representations for numbers� These

representations may be divided into four categories� integers� ratios�
oating�

point numbers� and complex numbers� Many numeric functions will accept

any kind of number� they are generic� Other functions accept only certain
kinds of numbers�

Note that this remark� predating the design of the Common Lisp Object

System� uses the term �generic� in a generic sense and not necessarily in the
technical sense used by CLOS
see chapter ���

In general� numbers in Common Lisp are not true objects� eq cannot be

counted upon to operate on them reliably� In particular� it is possible that
the expression

�let ��x z� �y z�� �eq x y��

may be false rather than true if the value of z is a number�

Rationale� This odd breakdown of eq in the case of numbers allows the imple

mentor enough design freedom to produce exceptionally e�cient numerical code on
conventional architectures� MacLisp requires this freedom� for example� in order to
produce compiled numerical code equal in speed to Fortran� Common Lisp makes
this same restriction� if not for this freedom� then at least for the sake of compati

bility�

If two objects are to be compared for �identity�� but either might be a

number� then the predicate eql is probably appropriate� if both objects are

known to be numbers� then may be preferable�

���

��� COMMON LISP

����� Precision� Contagion� and Coercion

In general� computations with
oating�point numbers are only approximate�

The precision of a
oating�point number is not necessarily correlated at all

with the accuracy of that number� For instance� �������������������� is a
more precise approximation to � than �������� but the latter is more accurate�

The precision refers to the number of bits retained in the representation�

When an operation combines a short
oating�point number with a long one�

the result will be a long
oating�point number� This rule is made to ensure
that as much accuracy as possible is preserved� however� it is by no means

a guarantee� Common Lisp numerical routines do assume� however� that the

accuracy of an argument does not exceed its precision� Therefore when two

small
oating�point numbers are combined� the result will always be a small

oating�point number� This assumption can be overridden by �rst explicitly
converting a small
oating�point number to a larger representation�
Common

Lisp never converts automatically from a larger size to a smaller one��

Rational computations cannot over
ow in the usual sense
though of course

there may not be enough storage to represent one�� as integers and ratios

may in principle be of any magnitude� Floating�point computations may get
exponent over
ow or under
ow� this is an error�

X�J�� voted in June ���� h��i to address certain problems re�

lating to
oating�point over
ow and under
ow� but certain parts of

the proposed solution were not adopted� namely to add the macro
withoutfloatingunderflowtraps to the language and to require certain be�

havior of
oating�point over
ow and under
ow� The committee agreed that

this area of the language requires more discussion before a solution is stan�

dardized�

For the record� the proposal that was considered and rejected
for the nonce�

introduced a macro withoutfloatingunderflowtraps that would execute its

body in such a way that� within its dynamic extent� a
oating�point under
ow

must not signal an error but instead must produce either a denormalized

number or zero as the result� The rejected proposal also speci�ed the following
treatment of over
ow and under
ow�

� A
oating�point computation that over
ows should signal an error of type

floatingpointoverflow�

� Unless the dynamic extent of a use of withoutfloatingunderflowtraps�

a
oating�point computation that under
ows should signal an error of type

NUMBERS ���

floatingpointunderflow� A result that can be represented only in de�

normalized form must be considered an under
ow in implementations that

support denormalized
oating�point numbers�

These points refer to conditions floatingpointoverflowand floatingpoint

underflow that were approved by X�J�� and are described in section �����

When rational and
oating�point numbers are compared or combined by

a numerical function� the rule of 	oating�point contagion is followed� when

a rational meets a
oating�point number� the rational is �rst converted to

��� COMMON LISP

a
oating�point number of the same format� For functions such as � that

take more than two arguments� it may be that part of the operation is car�

ried out exactly using rationals and then the rest is done using
oating�point

arithmetic�

X�J�� voted in January ���� h��i to apply the rule of
oating�point conta�
gion stated above to the case of combining rational and
oating�point numbers�

For comparing� the following rule is to be used instead� When a rational num�

ber and a
oating�point number are to be compared by a numerical function�

in e	ect the
oating�point number is �rst converted to a rational number as

if by the function rational� and then an exact comparison of two rational
numbers is performed� It is of course valid to use a more e�cient implemen�

tation than actually calling the function rational� as long as the result of

the comparison is the same� In the case of complex numbers� the real and

imaginary parts are handled separately�

Rationale� In general� accuracy cannot be preserved in combining operations� but it
can be preserved in comparisons� and preserving it makes that part of Common Lisp
algebraically a bit more tractable� In particular� this change prevents the breakdown
of transitivity� Let a be the result of �� 	
�
 singlefloatepsilon�� and let j be
the result of �floor a�� �Note that � a �� a 	�
�� is true� by the de�nition of
singlefloatepsilon�� Under the old rules� all of �� a j�� �� j �� j 	��� and
�� �� j 	� a� would be true� transitivity would then imply that �� a a� ought to
be true� but of course it is false� and therefore transitivity fails� Under the new rule�
however� �� �� j 	� a� is false�

For functions that are mathematically associative
and possibly commu�

tative�� a Common Lisp implementation may process the arguments in any

manner consistent with associative
and possibly commutative� rearrange�

ment� This does not a	ect the order in which the argument forms are eval�
uated� of course� that order is always left to right� as in all Common Lisp

function calls� What is left loose is the order in which the argument values

are processed� The point of all this is that implementations may di	er in

which automatic coercions are applied because of di	ering orders of argument

processing� As an example� consider this expression�

��
 � � �
��D�
��
��E
��

One implementation might process the arguments from left to right� �rst

adding
 � and � � to get
� then converting that to a double�precision

oating�point number for combination with
��D�� then successively convert�

ing and adding
�� and
��E
�� Another implementation might process the

NUMBERS ���

arguments from right to left� �rst performing a single�precision
oating�point

addition of
�� and
��E
�
and probably losing some accuracy in the pro�

cess��� then converting the sum to double precision and adding
��D�� then

converting � � to double�precision
oating�point and adding it� and then con�

verting
 � and adding that� A third implementation might �rst scan all the
arguments� process all the rationals �rst to keep that part of the computation

exact� then �nd an argument of the largest
oating�point format among all

the arguments and add that� and then add in all other arguments� converting

each in turn
all in a perhaps misguided attempt to make the computation
as accurate as possible�� In any case� all three strategies are legitimate� The

user can of course control the order of processing explicitly by writing several

calls� for example�

�� ��
 � � �� ��
��D�
��E
��
���

The user can also control all coercions simply by writing calls to coercion

functions explicitly�

In general� then� the type of the result of a numerical function is a
oating�
point number of the largest format among all the
oating�point arguments to

the function� but if the arguments are all rational� then the result is rational

except for functions that can produce mathematically irrational results� in

which case a single�format
oating�point number may result��

There is a separate rule of complex contagion� As a rule� complex numbers
never result from a numerical function unless one or more of the arguments

is complex�
Exceptions to this rule occur among the irrational and transcen�

dental functions� speci�cally expt� log� sqrt� asin� acos� acosh� and atanh�

see section ������ When a non�complex number meets a complex number�
the non�complex number is in e	ect �rst converted to a complex number by

providing an imaginary part of zero�

If any computation produces a result that is a ratio of two integers such

that the denominator evenly divides the numerator� then the result is imme�

diately converted to the equivalent integer� This is called the rule of rational
canonicalization�

If the result of any computation would be a complex rational with a zero

imaginary part� the result is immediately converted to a non�complex rational

number by taking the real part� This is called the rule of complex canonical�
ization� Note that this rule does not apply to complex numbers whose com�

ponents are
oating�point numbers� Whereas ���C�� �� and � are not distinct

values in Common Lisp
they are always eql�� ���C���� ���� and ��� are al�

ways distinct values in Common Lisp
they are never eql� although they are

equalp��

��� COMMON LISP

����� Predicates on Numbers

Each of the following functions tests a single number for a speci�c property�

Each function requires that its argument be a number� to call one with a

non�number is an error�

�Function�zerop number

This predicate is true if number is zero
the integer zero� a
oating�point zero�

or a complex zero�� and is false otherwise� Regardless of whether an imple�

mentation provides distinct representations for positive and negative
oating�

point zeros� �zerop ���� is always true� It is an error if the argument number
is not a number�

�Function�plusp number

This predicate is true if number is strictly greater than zero� and is false

otherwise� It is an error if the argument number is not a non�complex number�

�Function�minusp number

This predicate is true if number is strictly less than zero� and is false otherwise�

Regardless of whether an implementation provides distinct representations for

positive and negative
oating�point zeros� �minusp ���� is always false�
The

function floatsignmay be used to distinguish a negative zero�� It is an error
if the argument number is not a non�complex number�

�Function�oddp integer

This predicate is true if the argument integer is odd
not divisible by ��� and

otherwise is false� It is an error if the argument is not an integer�

�Function�evenp integer

This predicate is true if the argument integer is even
divisible by ��� and

otherwise is false� It is an error if the argument is not an integer�

See also the data�type predicates integerp� rationalp� floatp� complexp�

and numberp�

NUMBERS ���

����� Comparisons on Numbers

Each of the functions in this section requires that its arguments all be num�

bers� to call one with a non�number is an error� Unless otherwise speci�ed�

each works on all types of numbers� automatically performing any required

coercions when arguments are of di	erent types�

�Function�number �rest morenumbers

�Function� number �rest morenumbers

�Function�� number �rest morenumbers
�Function�� number �rest morenumbers

�Function�� number �rest morenumbers

�Function�� number �rest morenumbers

These functions each take one or more arguments� If the sequence of argu�
ments satis�es a certain condition�

all the same

 all di	erent
� monotonically increasing

� monotonically decreasing

� monotonically nondecreasing

� monotonically nonincreasing

then the predicate is true� and otherwise is false� Complex numbers may be

compared using and � but the others require non�complex arguments� Two

complex numbers are considered equal by if their real parts are equal and

their imaginary parts are equal according to � A complex number may be
compared with a non�complex number with or � For example�

� � �� is true� � � �� is false�

� � �� is false� � � �� is true�

� � � � �� is true� � � � � �� is false�
� � � � �� is false� � � � � �� is false�

� � � � �� is false� � � � � �� is true�

� � � �� is false� � � � �� is false�

�� � �� is true� �� � �� is true�
�� � �� is false� �� � �� is false�

�� � �� is false� �� � �� is true�

�� � � � � 	� is true� �� � � � � 	� is true�

�� � � � � �� is false� �� � � � � �� is true�

�� � �� is true� �� � �� is true�

��� COMMON LISP

�� � � �
 �� is true� �� � � �
 �� is true�

�� � � � � �� is false� �� � � � � �� is true�

�� � �
 � �� is false� �� � �
 � �� is false�

� �� is true� � �� is true�

�� �� is true� �� �� is true�
� ��� ���C���� ����� is true� � ��� ���C����
���� is true�

� � ���� is true� � ���s� ���d�� is true�

� ��� ���� is true� � � � ���� is true�

�� ��� ���� is false� � � ���� is true�

With two arguments� these functions perform the usual arithmetic comparison

tests� With three or more arguments� they are useful for range checks� as
shown in the following example�

�� � x �� �true if x is between � and �� inclusive

�� ��� x
��� �true if x is between ��� and ���� exclusive
��
 j �length s�� �true if j is a valid index for s

�� � j k � �length s�
�� �true if j and k are each valid

� indices for s and j � k

Rationale� The �unequality� relation is called � rather than �� �the name used
in Pascal� for two reasons� First� � of more than two arguments is not the same
as the or of � and � of those same arguments� Second� unequality is meaningful
for complex numbers even though � and � are not� For both reasons it would be
misleading to associate unequality with the names of � and ��

Compatibility note� In Common Lisp� the comparison operations perform
�mixed
mode� comparisons� � � ��
� is true� In MacLisp� there must be exactly
two arguments� and they must be either both �xnums or both �oating
point num

bers� To compare two numbers for numerical equality and type equality� use eql�

�Function�max number �rest morenumbers

�Function�min number �rest morenumbers

The arguments may be any non�complex numbers� max returns the argument
that is greatest
closest to positive in�nity�� min returns the argument that

is least
closest to negative in�nity��

For max� if the arguments are a mixture of rationals and
oating�point

numbers� and the largest argument is a rational� then the implementation

is free to produce either that rational or its
oating�point approximation� if

the largest argument is a
oating�point number of a smaller format than the

NUMBERS ��	

largest format of any
oating�point argument� then the implementation is free

to return the argument in its given format or expanded to the larger format�

More concisely� the implementation has the choice of returning the largest

argument as is or applying the rules of
oating�point contagion� taking all the

arguments into consideration for contagion purposes� Also� if two or more of
the arguments are equal� then any one of them may be chosen as the value

to return� Similar remarks apply to min
replacing �largest argument� by

�smallest argument���

�max �
�� �
� �min �
�� � �

�max �
�� � � �min �
�� �
�

�max
 � � 	� � � �min
 � � 	� � 	

�max � � � 	� � 	 �min � � � 	� � �

�max �� � � �min �� � �

�max ��� �� � ��� �min ��� �� � � or ���

�max ��� 	
� � 	 or 	�� �min ��� 	
� �
 or
��

�max
��s� 	��d�� � 	��d�

�min
��s� 	��d�� �
��s� or
��d�

�max �

��s�
��d�� � � or ���d�

�min �

��s�
��d�� �
 or
��s� or
��d�

����� Arithmetic Operations

Each of the functions in this section requires that its arguments all be num�

bers� to call one with a non�number is an error� Unless otherwise speci�ed�
each works on all types of numbers� automatically performing any required

coercions when arguments are of di	erent types�

�Function�� �rest numbers

This returns the sum of the arguments� If there are no arguments� the result

is �� which is an identity for this operation�

Compatibility note� While � is compatible with its use in Lisp Machine Lisp� it
is incompatible with MacLisp� which uses � for �xnum
only addition�

�Function�number �rest morenumbers

The function � when given one argument� returns the negative of that argu�

ment�

��
 COMMON LISP

The function � when given more than one argument� successively subtracts

from the �rst argument all the others� and returns the result� For example� �

� � �� � ��

Compatibility note� While is compatible with its use in Lisp Machine Lisp� it is
incompatible with MacLisp� which uses for �xnum
only subtraction� Also� di�ers
from difference as used in most Lisp systems in the case of one argument�

�Function�
 �rest numbers

This returns the product of the arguments� If there are no arguments� the

result is
� which is an identity for this operation�

Compatibility note� While � is compatible with its use in Lisp Machine Lisp� it
is incompatible with MacLisp� which uses � for �xnum
only multiplication�

�Function� number �rest morenumbers

The function � when given more than one argument� successively divides the

�rst argument by all the others and returns the result�

It is generally accepted that it is an error for any argument other than the
�rst to be zero�

With one argument� reciprocates the argument�

It is generally accepted that it is an error in this case for the argument to

be zero�

 will produce a ratio if the mathematical quotient of two integers is not
an exact integer� For example�

�
� �� � �

�
� �� �
� �

� �� �
 �

� � � �� � � ��

To divide one integer by another producing an integer result� use one of the

functions floor� ceiling� truncate� or round�
If any argument is a
oating�point number� then the rules of
oating�point

contagion apply�

Compatibility note� What � does is totally unlike what the usual �� or quotient
operator does� In most Lisp systems� quotient behaves like � except when dividing

NUMBERS ���

integers� in which case it behaves like truncate of two arguments� this behavior is
mathematically intractable� leading to such anomalies as

�quotient 	�
 ��
� �
�� but �quotient 	 �� �

In contrast� the Common Lisp function � produces these results�

�� 	�
 ��
� �
�� and �� 	 �� � 	��

In practice quotient is used only when one is sure that both arguments are integers�
or when one is sure that at least one argument is a �oating
point number� � is
tractable for its purpose and works for any numbers�

�Function�
� number

�Function�
 number

�
� x� is the same as �� x
��

�
 x� is the same as � x
�� Note that the short name may be confusing�
�
 x� does not mean �� x � rather� it means x � ��

Rationale� These are included primarily for compatibility with MacLisp and Lisp
Machine Lisp� Some programmers prefer always to write �� x 	� and � x 	� instead
of �	� x� and �	 x��

Implementation note� Compiler writers are very strongly encouraged to ensure
that �	� x� and �� x 	� compile into identical code� and similarly for �	 x� and �

x 	�� to avoid pressure on a Lisp programmer to write possibly less clear code for
the sake of e�ciency� This can easily be done as a source
language transformation�

�Macro�incf place �delta�

�Macro�decf place �delta�

The number produced by the form delta is added to
incf� or subtracted

from
decf� the number in the generalized variable named by place� and the

sum is stored back into place and returned� The form place may be any form

acceptable as a generalized variable to setf� If delta is not supplied� then the
number in place is changed by
� For example�

�setq n ��

�incf n� �
 and now n �

�decf n �� � � and now n � �

�decf n �� � � and now n � �

�decf n� � � and now n � �

��� COMMON LISP

The e	ect of �incf place delta� is roughly equivalent to

�setf place �� place delta��

except that the latter would evaluate any subforms of place twice� whereas

incf takes care to evaluate them only once� Moreover� for certain place forms

incf may be signi�cantly more e�cient than the setf version�

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����

�Function�conjugate number

This returns the complex conjugate of number� The conjugate of a non�

complex number is itself� For a complex number z�

�conjugate z� � �complex �realpart z� � �imagpart z���

For example�

�conjugate ���C�� � � ��� � ���C�� � � ��

�conjugate ���C����D�
��D��� � ���C����D�
��D��

�conjugate ��	� � ��	

�Function�gcd �rest integers

This returns the greatest common divisor of all the arguments� which must be

integers� The result of gcd is always a non�negative integer� If one argument

is given� its absolute value is returned� If no arguments are given� gcd returns

�� which is an identity for this operation� For three or more arguments�

�gcd a b c ��� z� � �gcd �gcd a b� c ��� z�

Here are some examples of the use of gcd�

�gcd �
 ��� � 	

�gcd �� �� ��� � 	

�gcd �� � �

�gcd �� � �

�gcd� � �

�Function�lcm integer �rest moreintegers

This returns the least common multiple of its arguments� which must be in�

tegers� The result of lcm is always a non�negative integer� For two arguments

that are not both zero�

NUMBERS ���

�lcm a b� � � �abs �
 a b�� �gcd a b��

If one or both arguments are zero�

�lcm a �� � �lcm � a� � �

For one argument� lcm returns the absolute value of that argument� For

three or more arguments�

�lcm a b c ��� z� � �lcm �lcm a b� c ��� z�

Some examples�

�lcm
� ��� � 	�

�lcm � �� � �

�lcm
 � � � � �� � ��

Mathematically� �lcm� should return in�nity� Because Common Lisp does

not have a representation for in�nity� lcm� unlike gcd� always requires at least

one argument�

X�J�� voted in January ���� h���i to specify that �lcm� �
�

This is one of my biggest boners� The identity for lcm is of course �� not

in�nity� and so �lcm� ought to have been de�ned to return �� Sorry about
that� though in point of fact very few users have complained to me that this

mistake in the �rst edition has cramped their programming style�

����� Irrational and Transcendental Functions

Common Lisp provides no data type that can accurately represent irrational

numerical values� The functions in this section are described as if the results

were mathematically accurate� but actually they all produce
oating�point

approximations to the true mathematical result in the general case� In some
places mathematical identities are set forth that are intended to elucidate the

meanings of the functions� however� two mathematically identical expressions

may be computationally di	erent because of errors inherent in the
oating�

point approximation process�

When the arguments to a function in this section are all rational and the
true mathematical result is also
mathematically� rational� then unless oth�

erwise noted an implementation is free to return either an accurate result of

type rational or a single�precision
oating�point approximation� If the argu�

ments are all rational but the result cannot be expressed as a rational number�

then a single�precision
oating�point approximation is always returned�

��� COMMON LISP

X�J�� voted in March ���� h��i to clarify that the provisions of the previ�

ous paragraph apply to complex numbers� If the arguments to a function are

all of type �or rational �complex rational�� and the true mathematical

result is
mathematically� a complex number with rational real and imagi�

nary parts� then unless otherwise noted an implementation is free to return
either an accurate result of type �or rational �complex rational�� or a

single�precision
oating�point approximation of type singlefloat
permis�

sible only if the imaginary part of the true mathematical result is zero� or

�complex singlefloat�� If the arguments are all of type �or rational

�complex rational�� but the result cannot be expressed as a rational or

complex rational number� then the returned value will be of type singlefloat

permissible only if the imaginary part of the true mathematical result is zero�

or �complex singlefloat��

The rules of
oating�point contagion and complex contagion are e	ectively

obeyed by all the functions in this section except expt� which treats some cases
of rational exponents specially� When� possibly after contagious conversion�

all of the arguments are of the same
oating�point or complex
oating�point

type� then the result will be of that same type unless otherwise noted�

Implementation note� There is a ��oating
point cookbook� by Cody and Waite
���� that may be a useful aid in implementing the functions de�ned in this section�

������� Exponential and Logarithmic Functions

Along with the usual one�argument and two�argument exponential and loga�

rithm functions� sqrt is considered to be an exponential function� because it

raises a number to the power ����

�Function�exp number

Returns e raised to the power number� where e is the base of the natural

logarithms�

�Function�expt basenumber powernumber

Returns base�number raised to the power power�number� If the base�number

is of type rational and the power�number is an integer� the calculation will

be exact and the result will be of type rational� otherwise a
oating�point

approximation may result�

NUMBERS ���

X�J�� voted in March ���� h��i to clarify that provisions similar to those

of the previous paragraph apply to complex numbers� If the base�number

is of type �complex rational� and the power�number is an integer� the

calculation will also be exact and the result will be of type �or rational

�complex rational��� otherwise a
oating�point or complex
oating�point
approximation may result�

When power�number is �
a zero of type integer�� then the result is always

the value � in the type of base�number� even if the base�number is zero
of any

type�� That is�

�expt x �� � �coerce
 �typeof x��

If the power�number is a zero of any other data type� then the result is also the

value �� in the type of the arguments after the application of the contagion
rules� with one exception� it is an error if base�number is zero when the power�

number is a zero not of type integer�

Implementations of expt are permitted to use di	erent algorithms for the

cases of a rational power�number and a
oating�point power�number� the mo�

tivation is that in many cases greater accuracy can be achieved for the case of
a rational power�number� For example� �expt pi
�� and �expt pi
����

may yield slightly di	erent results if the �rst case is computed by repeated

squaring and the second by the use of logarithms� Similarly� an implementa�

tion might choose to compute �expt x � �� as if it had been written �sqrt

�expt x ���� perhaps producing a more accurate result than would �expt x

���� It is left to the implementor to determine the best strategies�

X�J�� voted in January ���� h��i to clarify that the preceding remark is

in error� because �sqrt �expt x ��� does not produce the same value as

�expt x � �� in most cases� and to specify that the speci�cation of the prin�
cipal value of expt as given in section ������ should be regarded as de�nitive�

As an example of the di�culty� let x " cis ��
� " � �

� #
p
�
� i � Then

p
x � "p

� " �� but x ��� " e	���
 log x " e	���
	����
i " e�i " ��� Another example

is x " ��� then
p
x � "

p�� " i � but x ��� " e	���
 log x " e	���
�i " �i �
The result of expt can be a complex number� even when neither argument

is complex� if base�number is negative and power�number is not an integer�

The result is always the principal complex value� Note that �expt �
 �� is
not permitted to return �� while � is indeed one of the cube roots of �� it is

not the principal cube root� which is a complex number approximately equal

to ���C�
��
�	������

Notice of correction� The �rst edition gave the incorrect value ���C����

�	����� for the principal cube root of �� The correct value is ���C�
��

��� COMMON LISP

�	������ that is� � #
p
�i � I simply don�t know what I was thinking of�

�Function�log number �optional base

Returns the logarithm of number in the base base� which defaults to e� the

base of the natural logarithms� For example�

�log ��� �� � ���

�log
����
�� � ���

The result of �log � �� may be either � or ���� depending on the implemen�

tation�

Note that log may return a complex result when given a non�complex

argument if the argument is negative� For example�

�log
��� � �complex ��� �float pi �����

X�J�� voted in January ���� h���i to specify certain
oating�point be�

havior when minus zero is supported� As a part of that vote it approved

a mathematical de�nition of complex logarithm in terms of real logarithm�

absolute value� arc tangent of two real arguments� and the phase function as

Logarithm log jz j# i phase z

This speci�es the branch cuts precisely whether minus zero is supported or

not� see phase and atan�

�Function�sqrt number

Returns the principal square root of number� If the number is not complex
but is negative� then the result will be a complex number� For example�

�sqrt ���� � ���

�sqrt ���� � ���c���� ����

The result of �sqrt �� may be either � or ���� depending on the implemen�

tation� The result of �sqrt �� may be either ���c�� �� or ���c���� �����

X�J�� voted in January ���� h���i to specify certain
oating�point be�
havior when minus zero is supported� As a part of that vote it approved a

mathematical de�nition of complex square root in terms of complex logarithm

and exponential functions as

Square root e	log z
��

NUMBERS ���

This speci�es the branch cuts precisely whether minus zero is supported or

not� see phase and atan�

�Function�isqrt integer

Integer square root� the argument must be a non�negative integer� and the

result is the greatest integer less than or equal to the exact positive square

root of the argument� For example�

�isqrt �� � �

�isqrt
�� � �

�isqrt ���� �
	

�isqrt ���� �
�

������� Trigonometric and Related Functions

Some of the functions in this section� such as abs and signum� are appar�

ently unrelated to trigonometric functions when considered as functions of

real numbers only� The way in which they are extended to operate on com�
plex numbers makes the trigonometric connection clear�

�Function�abs number

Returns the absolute value of the argument� For a non�complex number x�

�abs x� � �if �minusp x� � x� x�

and the result is always of the same type as the argument�

For a complex number z� the absolute value may be computed as

�sqrt �� �expt �realpart z� �� �expt �imagpart z� ����

Implementation note� The careful implementor will not use this formula directly
for all complex numbers but will instead handle very large or very small components
specially to avoid intermediate over�ow or under�ow�

For example�

�abs ���c���� ����� � ���

��� COMMON LISP

The result of �abs ���c�� ��� may be either � or ���� depending on the im�

plementation�

�Function�phase number

The phase of a number is the angle part of its polar representation as a

complex number� That is�

�phase z� � �atan �imagpart z� �realpart z��

The result is in radians� in the range ��
exclusive� to �
inclusive�� The
��

phase of a positive non�complex number is zero� that of a negative non�

complex number is �� The phase of zero is arbitrarily de�ned to be zero�

X�J�� voted in January ���� h���i to specify certain
oating�point behavior

when minus zero is supported� phase is still de�ned in terms of atan as above�

but thanks to a change in atan the range of phase becomes �� inclusive to �

inclusive� The value �� results from an argument whose real part is negative

NUMBERS ��	

and whose imaginary part is minus zero� The phase function therefore has a

branch cut along the negative real axis� The phase of #�#�i is #�� of #���i

is ��� of �� # �i is #�� and of ��� �i is ���
If the argument is a complex
oating�point number� the result is a
oating�

point number of the same type as the components of the argument� If the
argument is a
oating�point number� the result is a
oating�point number

of the same type� If the argument is a rational number or complex rational

number� the result is a single�format
oating�point number�

�Function�signum number

By de�nition�

�signum x� � �if �zerop x� x � x �abs x���

For a rational number� signum will return one of
� �� or
 according to
whether the number is negative� zero� or positive� For a
oating�point number�

the result will be a
oating�point number of the same format whose value is

��� �� or �� For a complex number z� �signum z� is a complex number of

the same phase but with unit magnitude� unless z is a complex zero� in which
case the result is z� For example�

�signum �� � �

�signum ��	L�� �
��L�

�signum � �� �

�signum ���C�	��
����� � ���C���� ����

�signum ���C����
��	�� � ���C����
���

For non�complex rational numbers� signum is a rational function� but it may

be irrational for complex arguments�

�Function�sin radians

�Function�cos radians

�Function�tan radians

sin returns the sine of the argument� cos the cosine� and tan the tangent�
The argument is in radians� The argument may be complex�

�Function�cis radians

This computes ei�radians� The name cis means �cos # i sin�� because ei� "

cos � # i sin �� The argument is in radians and may be any non�complex

��
 COMMON LISP

number� The result is a complex number whose real part is the cosine of the

argument and whose imaginary part is the sine� Put another way� the result

is a complex number whose phase is the equal to the argument
mod ��� and

whose magnitude is unity�

Implementation note� Often it is cheaper to calculate the sine and cosine of a
single angle together than to perform two disjoint calculations�

�Function�asin number

�Function�acos number

asin returns the arc sine of the argument� and acos the arc cosine� The result

is in radians� The argument may be complex�

The arc sine and arc cosine functions may be de�ned mathematically for

an argument z as follows�

Arc sine �i log �iz #p
�� z �

�

Arc cosine �i log �z # i
p
�� z �

�

Note that the result of asin or acos may be complex even if the argument is

not complex� this occurs when the absolute value of the argument is greater

than ��

Kahan ���� suggests for acos the de�ning formula

Arc cosine
� log

�q
��z
� # i

q
��z
�

�

i

or even the much simpler
�����arcsin z � Both equations are mathematically
equivalent to the formula shown above�

Implementation note� These formulae are mathematically correct� assuming com

pletely accurate computation� They may be terrible methods for �oating
point
computation� Implementors should consult a good text on numerical analysis� The
formulae given above are not necessarily the simplest ones for real
valued compu

tations� either� they are chosen to de�ne the branch cuts in desirable ways for the
complex case�

�Function�atan y �optional x

An arc tangent is calculated and the result is returned in radians�

NUMBERS ���

With two arguments y and x� neither argument may be complex� The

result is the arc tangent of the quantity y�x� The signs of y and x are used to

derive quadrant information� moreover� x may be zero provided y is not zero�

The value of atan is always between ��
exclusive� and �
inclusive�� The

following table details various special cases�

Condition Cartesian Locus Range of Result

y " � x � � Positive x�axis �

y � � x � � Quadrant I � � result � ���

y � � x " � Positive y�axis ���

y � � x � � Quadrant II ��� � result � �

y " � x � � Negative x�axis �
y � � x � � Quadrant III �� � result � ����
y � � x " � Negative y�axis ����
y � � x � � Quadrant IV ���� � result � �

y " � x " � Origin error

X�J�� voted in January ���� h���i to specify certain
oating�point behavior
when minus zero is supported� When there is a minus zero� the preceding table

must be modi�ed slightly�

Condition Cartesian Locus Range of Result

y " #� x � � Just above positive x�axis #�

y � � x � � Quadrant I #� � result � ���

y � � x " �� Positive y�axis ���
y � � x � � Quadrant II ��� � result � �

y " #� x � � Just below negative x�axis �

y " �� x � � Just above negative x�axis �

y � � x � � Quadrant III �� � result � ����
y � � x " �� Negative y�axis ����
y � � x � � Quadrant IV ���� � result � ��
y " �� x � � Just below positive x�axis ��
y " #� x " #� Near origin #�

y " �� x " #� Near origin ��
y " #� x " �� Near origin �

y " �� x " �� Near origin ��
Note that the case y " �� x " � is an error in the absence of minus zero�

but the four cases y " ��� x " �� are de�ned in the presence of minus zero�

With only one argument y� the argument may be complex� The result is
��

the arc tangent of y� which may be de�ned by the following formula�

��

��� COMMON LISP

Arc tangent �i log
�

� # iy�

p
��
� # y��

�

NUMBERS ���

Implementation note� This formula is mathematically correct� assuming com

pletely accurate computation� It may be a terrible method for �oating
point com

putation� Implementors should consult a good text on numerical analysis� The
formula given above is not necessarily the simplest one for real
valued computa

tions� either� it is chosen to de�ne the branch cuts in desirable ways for the complex
case�

X�J�� voted in January ���� h��i to replace the preceding formula with

the formula

Arc tangent
log
� # iy� � log
�� iy�

�i

This change alters the direction of continuity for the branch cuts� which alters
the result returned by atan only for arguments on the imaginary axis that

are of magnitude greater than �� See section ������ for further details�

For a non�complex argument y� the result is non�complex and lies between

���� and ���
both exclusive��

Compatibility note� MacLisp has a function called atan whose range is from
 to
��� Almost every other programming language �ANSI Fortran� IBM PL��� Interlisp�
has a two
argument arc tangent function with range �� to �� Lisp Machine Lisp
provides two two
argument arc tangent functions� atan �compatible with MacLisp�
and atan� �compatible with all others��
Common Lisp makes two
argument atan the standard one with range �� to

�� Observe that this makes the one
argument and two
argument versions of atan
compatible in the sense that the branch cuts do not fall in di�erent places� The
Interlisp one
argument function arctan has a range from
 to �� while nearly every
other programming language provides the range ���� to ��� for one
argument arc
tangent� Nevertheless� since Interlisp uses the standard two
argument version of arc
tangent� its branch cuts are inconsistent anyway�

�Constant �pi

This global variable has as its value the best possible approximation to � in

long
oating�point format� For example�

�defun sind �x� �The argument is in degrees
�sin �
 x � �float pi x�
������

An approximation to � in some other precision can be obtained by writing

�float pi x�� where x is a
oating�point number of the desired precision�

��� COMMON LISP

or by writing �coerce pi type�� where type is the name of the desired type�

such as shortfloat�

NUMBERS ���

�Function�sinh number

�Function�cosh number

�Function�tanh number

�Function�asinh number

�Function�acosh number
�Function�atanh number

These functions compute the hyperbolic sine� cosine� tangent� arc sine� arc
���

cosine� and arc tangent functions� which are mathematically de�ned for an

argument z as follows�

Hyperbolic sine
ez � e�z���
Hyperbolic cosine
ez # e�z���
Hyperbolic tangent
ez � e�z��
ez # e�z�

Hyperbolic arc sine log
�
z #

p
� # z �

�

Hyperbolic arc cosine log
�
z #
z # ��

p

z � ���
z # ��

�

Hyperbolic arc tangent log
�

� # z �

p
�� ��z �

�
WRONG�

WARNING� The formula shown above for hyperbolic arc tangent is incor�
rect� It is not a matter of incorrect branch cuts� it simply does not compute

anything like a hyperbolic arc tangent� This unfortunate error in the �rst edi�

tion was the result of mistranscribing a
correct� APL formula from Pen�eld�s

paper ����� The formula should have been transcribed as

Hyperbolic arc tangent log
�

� # z �

p
��
�� z ��

�

A proposal was submitted to X�J�� in September ���� to replace the formulae

for acosh and atanh� See section ������ for further discussion�

Note that the result of acosh may be complex even if the argument is not

complex� this occurs when the argument is less than �� Also� the result of
atanh may be complex even if the argument is not complex� this occurs when

the absolute value of the argument is greater than ��

Implementation note� These formulae are mathematically correct� assuming com

pletely accurate computation� They may be terrible methods for �oating
point
computation� Implementors should consult a good text on numerical analysis� The
formulae given above are not necessarily the simplest ones for real
valued compu

tations� either� they are chosen to de�ne the branch cuts in desirable ways for the
complex case�

��� COMMON LISP

������� BranchCuts� PrincipalValues� and Boundary Con	
ditions in the Complex Plane

Many of the irrational and transcendental functions are multiply de�ned in

the complex domain� for example� there are in general an in�nite number of

complex values for the logarithm function� In each such case� a principal value

must be chosen for the function to return� In general� such values cannot be
chosen so as to make the range continuous� lines in the domain called branch

cuts must be de�ned� which in turn de�ne the discontinuities in the range�

Common Lisp de�nes the branch cuts� principal values� and boundary con�
ditions for the complex functions following a proposal for complex functions

in APL ����� The contents of this section are borrowed largely from that

proposal�

Compatibility note� The branch cuts de�ned here di�er in a few very minor re

spects from those advanced by W� Kahan� who considers not only the �usual� de�ni

tions but also the special modi�cations necessary for IEEE proposed �oating
point
arithmetic� which has in�nities and minus zero as explicit computational objects�
For example� he proposes that

p�� �
i � �i � but p���
i � ��i �
It may be that the di�erences between the APL proposal and Kahan�s proposal

will be ironed out� If so� Common Lisp may be changed as necessary to be compatible
with these other groups� Any changes from the speci�cation below are likely to be
quite minor� probably concerning primarily questions of which side of a branch cut
is continuous with the cut itself�

Indeed� X�J�� voted in January ���� h��i to alter the direction of continuity
for the branch cuts of atan� and also h���i to address the treatment of branch

cuts in implementations that have a distinct
oating�point minus zero�

The treatment of minus zero centers in two�argument atan� If there is no

minus zero� then the branch cut runs just below the negative real axis as

before� and the range of two�argument atan is
��� ��� If there is a minus

zero� however� then the branch cut runs precisely on the negative real axis�

skittering between pairs of numbers of the form �x � �i � and the range of
two�argument atan is ���� ���
The treatment of minus zero by all other irrational and transcendental func�

tions is then speci�ed by de�ning those functions in terms of two�argument

atan� First� phase is de�ned in terms of two�argument atan� and complex

abs in terms of real sqrt� then complex log is de�ned in terms of phase�

abs� and real log� then complex sqrt in terms of complex log� and �nally all

others are de�ned in terms of these�

NUMBERS ���

Kahan ���� treats these matters in some detail and also suggests speci�c

algorithms for implementing irrational and transcendental functions in IEEE

standard
oating�point arithmetic �����

Remarks in the �rst edition about the direction of the continuity of branch

cuts continue to hold in the absence of minus zero and may be ignored if minus

zero is supported� since all branch cuts happen to run along the principal
axes� they run between plus zero and minus zero� and so each sort of zero is

associated with the obvious quadrant�

sqrt

The branch cut for square root lies along the negative real axis� continuous

with quadrant II� The range consists of the right half�plane� including the
non�negative imaginary axis and excluding the negative imaginary axis�

X�J�� voted in January ���� h���i to specify certain
oating�point be�

havior when minus zero is supported� As a part of that vote it approved a

mathematical de�nition of complex square root�

p
z " e	log z
��

This de�nes the branch cuts precisely� whether minus zero is supported or
not�

phase

The branch cut for the phase function lies along the negative real axis� con�

tinuous with quadrant II� The range consists of that portion of the real axis
between ��
exclusive� and �
inclusive��

X�J�� voted in January ���� h���i to specify certain
oating�point be�

havior when minus zero is supported� As a part of that vote it approved a

mathematical de�nition of phase�

phase z " arctan
�z �	z �

where �z is the imaginary part of z and 	z the real part of z � This de�nes
the branch cuts precisely� whether minus zero is supported or not�

log

The branch cut for the logarithm function of one argument
natural logarithm�

lies along the negative real axis� continuous with quadrant II� The domain

excludes the origin� For a complex number z � log z is de�ned to be

��� COMMON LISP

log z "
log jz j� # i
phase z �

Therefore the range of the one�argument logarithm function is that strip of

the complex plane containing numbers with imaginary parts between ��
ex�

clusive� and �
inclusive��

The X�J�� vote on minus zero h���i would alter that exclusive bound of

�� to be inclusive if minus zero is supported�

The two�argument logarithm function is de�ned as logb z "
log z ��
log b��

This de�nes the principal values precisely� The range of the two�argument
logarithm function is the entire complex plane� It is an error if z is zero� If z

is non�zero and b is zero� the logarithm is taken to be zero�

exp

The simple exponential function has no branch cut�

expt

The two�argument exponential function is de�ned as bx " ex log b� This de�nes

the principal values precisely� The range of the two�argument exponential

function is the entire complex plane� Regarded as a function of x � with b
�xed� there is no branch cut� Regarded as a function of b� with x �xed�

there is in general a branch cut along the negative real axis� continuous with

quadrant II� The domain excludes the origin� By de�nition� �� " �� If b " �

and the real part of x is strictly positive� then bx " �� For all other values of
x � �x is an error�

asin

The following de�nition for arc sine determines the range and branch cuts�

arcsin z " �i log �iz #p
�� z �

�

This is equivalent to the formula

arcsin z "
arcsinh iz

i

recommended by Kahan �����

The branch cut for the arc sine function is in two pieces� one along the

negative real axis to the left of ��
inclusive�� continuous with quadrant II�

and one along the positive real axis to the right of �
inclusive�� continuous

with quadrant IV� The range is that strip of the complex plane containing

NUMBERS ��	

numbers whose real part is between ���� and ���� A number with real part

equal to ���� is in the range if and only if its imaginary part is non�negative�

a number with real part equal to ��� is in the range if and only if its imaginary

part is non�positive�

acos

The following de�nition for arc cosine determines the range and branch cuts�

arccos z " �i log �z # i
p
�� z �

�

or� which is equivalent�

arccos z " �
� � arcsin z

The branch cut for the arc cosine function is in two pieces� one along the
negative real axis to the left of ��
inclusive�� continuous with quadrant II�

and one along the positive real axis to the right of �
inclusive�� continuous

with quadrant IV� This is the same branch cut as for arc sine� The range is

that strip of the complex plane containing numbers whose real part is between

zero and �� A number with real part equal to zero is in the range if and only
if its imaginary part is non�negative� a number with real part equal to � is in

the range if and only if its imaginary part is non�positive�

atan

The following de�nition for
one�argument� arc tangent determines the range

and branch cuts�

arctan z " �i log
�

� # iz �

p
��
� # z ��

�
��

Beware of simplifying this formula� �obvious� simpli�cations are likely to

alter the branch cuts or the values on the branch cuts incorrectly�

The branch cut for the arc tangent function is in two pieces� one along

the positive imaginary axis above i
exclusive�� continuous with quadrant II�

and one along the negative imaginary axis below �i
exclusive�� continuous
with quadrant IV� The points i and �i are excluded from the domain� The

range is that strip of the complex plane containing numbers whose real part

is between ���� and ���� A number with real part equal to ���� is in the

range if and only if its imaginary part is strictly positive� a number with real

part equal to ��� is in the range if and only if its imaginary part is strictly

��
 COMMON LISP

negative� Thus the range of the arc tangent function is identical to that of

the arc sine function with the points ���� and ��� excluded�

X�J�� voted in January ���� h��i to replace the formula shown above with

the formula

arctan z "
log
� # iz �� log
�� iz �

�i

This is equivalent to the formula

arctan z "
arctanh iz

i

recommended by Kahan ����� It causes the upper branch cut to be continuous

with quadrant I rather than quadrant II� and the lower branch cut to be

continuous with quadrant III rather than quadrant IV� otherwise it agrees
with the formula of the �rst edition� Therefore this change alters the result

returned by atan only for arguments on the positive imaginary axis that are

of magnitude greater than �� The full description for this new formula is as

follows�

The branch cut for the arc tangent function is in two pieces� one along
the positive imaginary axis above i
exclusive�� continuous with quadrant I�

and one along the negative imaginary axis below �i
exclusive�� continuous

with quadrant III� The points i and �i are excluded from the domain� The

range is that strip of the complex plane containing numbers whose real part
is between ���� and ���� A number with real part equal to ���� is in the

range if and only if its imaginary part is strictly negative� a number with real

part equal to ��� is in the range if and only if its imaginary part is strictly

positive� Thus the range of the arc tangent function is not identical to that

of the arc sine function�

asinh

The following de�nition for the inverse hyperbolic sine determines the range

and branch cuts�

arcsinh z " log
�
z #

p
� # z �

�

The branch cut for the inverse hyperbolic sine function is in two pieces� one

along the positive imaginary axis above i
inclusive�� continuous with quadrant

I� and one along the negative imaginary axis below �i
inclusive�� continuous
with quadrant III� The range is that strip of the complex plane containing

numbers whose imaginary part is between ���� and ���� A number with

NUMBERS ���

imaginary part equal to ���� is in the range if and only if its real part is

non�positive� a number with imaginary part equal to ��� is in the range if

and only if its real part is non�negative�

acosh

The following de�nition for the inverse hyperbolic cosine determines the range
and branch cuts�

arccosh z " log
�
z #
z # ��

p

z � ���
z # ��

�

Kahan ���� suggests the formula

arccosh z " � log
�p

z # ���� #
p

z � ����

�

pointing out that it yields the same principal value but eliminates a gratuitous
removable singularity at z " ��� A proposal was submitted to X�J�� in

September ���� to replace the formula acosh with that recommended by

Kahan� There is a good possibility that it will be adopted�

The branch cut for the inverse hyperbolic cosine function lies along the real

axis to the left of �
inclusive�� extending inde�nitely along the negative real
axis� continuous with quadrant II and
between � and �� with quadrant I� The

range is that half�strip of the complex plane containing numbers whose real

part is non�negative and whose imaginary part is between ��
exclusive� and

�
inclusive�� A number with real part zero is in the range if its imaginary
part is between zero
inclusive� and �
inclusive��

atanh

The following de�nition for the inverse hyperbolic tangent determines the

range and branch cuts�

arctanh z " log
�

� # z �

p
�� ��z �

�
WRONG�

���

WARNING� The formula shown above for hyperbolic arc tangent is incor�

rect� It is not a matter of incorrect branch cuts� it simply does not compute

anything like a hyperbolic arc tangent� This unfortunate error in the �rst edi�

tion was the result of mistranscribing a
correct� APL formula from Pen�eld�s
paper ����� The formula should have been transcribed as

arctanh z " log
�

� # z �

p
��
�� z ��

�

��

��� COMMON LISP

Beware of simplifying this formula� �obvious� simpli�cations are likely to
��

alter the branch cuts or the values on the branch cuts incorrectly�

The branch cut for the inverse hyperbolic tangent function is in two pieces�

one along the negative real axis to the left of ��
inclusive�� continuous with
quadrant III� and one along the positive real axis to the right of �
inclusive��

continuous with quadrant I� The points �� and � are excluded from the do�

main� The range is that strip of the complex plane containing numbers whose

imaginary part is between ���� and ���� A number with imaginary part

equal to ���� is in the range if and only if its real part is strictly negative�
a number with imaginary part equal to ��� is in the range if and only if its

real part is strictly positive� Thus the range of the inverse hyperbolic tangent

function is identical to that of the inverse hyperbolic sine function with the

points ��i�� and �i�� excluded�

A proposal was submitted to X�J�� in September ���� to replace the for�

mula atanh with that recommended by Kahan �����

arctanh z "

log
� # z �� log
�� z ��

�

There is a good possibility that it will be adopted� If it is� the complete

description of the branch cuts of atanh will then be as follows�

The branch cut for the inverse hyperbolic tangent function is in two pieces�

one along the negative real axis to the left of ��
inclusive�� continuous with
quadrant II� and one along the positive real axis to the right of �
inclusive��

continuous with quadrant IV� The points �� and � are excluded from the

domain� The range is that strip of the complex plane containing numbers

whose imaginary part is between ���� and ���� A number with imaginary
part equal to ���� is in the range if and only if its real part is strictly positive�

a number with imaginary part equal to ��� is in the range if and only if its

real part is strictly negative� Thus the range of the inverse hyperbolic tangent

function is not the same as that of the inverse hyperbolic sine function�

With these de�nitions� the following useful identities are obeyed throughout

the applicable portion of the complex domain� even on the branch cuts�

sin iz " i sinh z sinh iz " i sin z arctan iz " i arctanh z

cos iz " cosh z cosh iz " cos z arcsinh iz " i arcsin z

tan iz " i tanh z arcsin iz " i arcsinh z arctanh iz " i arctan z

NUMBERS ���

I thought it would be useful to provide some graphs illustrating the behavior

of the irrational and transcendental functions in the complex plane� It also

provides an opportunity to show o	 the Common Lisp code that was used to

generate them�

Imagine the complex plane to be decorated as follows� The real and imag�

inary axes are painted with thick lines� Parallels from the axes on both sides

at distances of �� �� and � are painted with thin lines� these parallels are dou�
bly in�nite lines� as are the axes� Four annuli
rings� are painted in gradated

shades of gray� Ring �� the inner ring� consists of points whose radial dis�

tances from the origin lie in the range ����� ����� ring � is in the radial range

����� ��� ring �� in the range ����� ��� and ring �� in the range ��� ��� Ring j is
divided into �j�� equal sectors� with each sector painted a di	erent shade of

gray� darkening as one proceeds counterclockwise from the positive real axis�

We can illustrate the behavior of a numerical function f by considering how

it maps the complex plane to itself� More speci�cally� consider each point z

of the decorated plane� We decorate a new plane by coloring the point f
z �

with the same color that point z had in the original decorated plane� In other

words� the newly decorated plane illustrates how the f maps the axes� other
horizontal and vertical lines� and annuli�

In each �gure we will show only a fragment of the complex plane� with the
real axis horizontal in the usual manner
�
 to the left� #
 to the right�

and the imaginary axis vertical
�
i below� #
i above�� Each fragment

shows a region containing points whose real and imaginary parts are in the

range ������ ����� The axes of the new plane are shown as very thin lines� with
large tick marks at integer coordinates and somewhat smaller tick marks at

multiples of ����

Figure ���� shows the result of plotting the identity function
quite liter�
ally�� the graph exhibits the decoration of the original plane�

Figures ���� through ����� show the graphs for the functions sqrt� exp�
log� sin� asin� cos� acos� tan� atan� sinh� asinh� cosh� acosh� tanh� and

atanh� and as a bonus� the graphs for the functions
p
�� z ��

p
� # z ��
z �

���
z # ��� and
� # z ��
�� z �� All of these are related to the trigonometric

functions in various ways� For example� if f
z � "
z � ���
z # ��� then
tanh z " f
e�z�� and if g
z � "

p
�� z �� then cos z " g
sin z �� It is instructive

to examine the graph for
p
�� z � and try to visualize how it transforms the

graph for sin into the graph for cos�

Each �gure is accompanied by a commentary on what maps to what and

other interesting features� None of this material is terribly new� much of it

may be found in any good textbook on complex analysis� I believe that the

particular form in which the graphs are presented is novel� as well as the fact

��� COMMON LISP

that the graphs have been generated as PostScript ��� code by Common Lisp

code� This PostScript code was then fed directly to the typesetting equipment

that set the pages for this book� Samples of this PostScript code follow the

�gures themselves� after which the code for the entire program is presented�

In the commentaries that accompany the �gures I sometimes speak of map�
ping the points �
 or �
i � When I say that function f maps #
 to a

certain point z � I mean that

z " lim
x���

f
x # �i�

Similarly� when I say that f maps �
i to z � I mean that

z " lim
y���

f
� # yi�

In other words� I am considering a limit as one travels out along one of the

main axes� I also speak in a similar manner of mapping to one of these

in�nities�

NUMBERS ���

Figure ����� Initial Decoration of the Complex Plane �Identity Function�

This �gure was produced in exactly the same manner as succeeding �gures� simply
by plotting the function identity instead of a numerical function� Thus the �rst of
these �gures was produced by the last function of the �rst edition� I knew it would
come in handy someday�

��� COMMON LISP

Figure ����� Illustration of the Range of the Square Root Function

The sqrt function maps the complex plane into the right half of the plane by slitting
it along the negative real axis and then sweeping it around as if half
closing a folding
fan� The fan also shrinks� as if it were made of cotton and had gotten wetter at
the periphery than at the center� The positive real axis is mapped onto itself� The
negative real axis is mapped onto the positive imaginary axis �but if minus zero is
supported� then �x �
i is mapped onto the positive imaginary axis and �x �
i
onto the negative imaginary axis� assuming x �
�� The positive imaginary axis
is mapped onto the northeast diagonal� and the negative imaginary axis onto the
southeast diagonal� More generally� lines are mapped to rectangular hyperbolas �or
fragments thereof � centered on the origin� lines through the origin are mapped to
degenerate hyperbolas �perpendicular lines through the origin��

NUMBERS ���

Figure ����� Illustration of the Range of the Exponential Function

The exp function maps horizontal lines to radii and maps vertical lines to circles
centered at the origin� The origin is mapped to �� �It is instructive to compare
this graph with those of other functions that map the origin to �� for example
�� � z ���� � z�� cos z � and

p
�� z��� The entire real axis is mapped to the positive

real axis� with �� mapping to the origin and �� to itself� The imaginary axis
is mapped to the unit circle with in�nite multiplicity �period ���� therefore the
mapping of the imaginary in�nities ��i is indeterminate� It follows that the entire
left half
plane is mapped to the interior of the unit circle� and the right half
plane is
mapped to the exterior of the unit circle� A line at any angle other than horizontal
or vertical is mapped to a logarithmic spiral �but this is not illustrated here��

��� COMMON LISP

Figure ����� Illustration of the Range of the Natural Logarithm Function

The log function� which is the inverse of exp� naturally maps radial lines to horizon

tal lines and circles centered at the origin to vertical lines� The interior of the unit
circle is thus mapped to the entire left half
plane� and the exterior of the unit circle
is mapped to the right half
plane� The positive real axis is mapped to the entire
real axis� and the negative real axis to a horizontal line of height �� The positive
and negative imaginary axes are mapped to horizontal lines of height ����� The
origin is mapped to ���

NUMBERS ��	

Figure ����� Illustration of the Range of the Function �z � ����z � ��

A line is a degenerate circle with in�nite radius� when I say �circles� here I also
mean lines� Then �z � ����z � �� maps circles into circles� All circles through ��
become lines� all lines become circles through �� The real axis is mapped onto itself�
� to the origin� the origin to ��� �� to in�nity� and in�nity to �� The imaginary
axis becomes the unit circle� i is mapped to itself� as is �i � Thus the entire right
half
plane is mapped to the interior of the unit circle� the unit circle interior to
the left half
plane� the left half
plane to the unit circle exterior� and the unit circle
exterior to the right half
plane� Imagine the complex plane to be a vast sea� The
Colossus of Rhodes straddles the origin� its left foot on i and its right foot on �i � It
bends down and brie�y paddles water between its legs so furiously that the water
directly beneath is pushed out into the entire area behind it� much that was behind
swirls forward to either side� and all that was before is sucked in to lie between its
feet�

��
 COMMON LISP

Figure ����� Illustration of the Range of the Function �� � z ����� z�

The function h�z� � �� � z ���� � z � is the inverse of f �z� � �z � ����z � ��� that
is� h�f �z�� � f �h�z�� � z � At �rst glance� the graph of h appears to be that of f
�ipped left
to
right� or perhaps re�ected in the origin� but careful consideration of
the shaded annuli reveals that this is not so� something more subtle is going on�
Note that f �f �z�� � h�h�z�� � g�z� � ���z � The functions f � g � h� and the identity
function thus form a group under composition� isomorphic to the group of the cyclic
permutations of the points ���
� �� and�� as indeed these functions accomplish the
four possible cyclic permutations on those points� This function group is a subset of
the group of bilinear transformations �az � b���cz � d�� all of which are conformal
�angle
preserving� and map circles onto circles� Now� doesn�t that tangle of circles
through �� look like something the cat got into�

NUMBERS ���

Figure ����� Illustration of the Range of the Sine Function

We are used to seeing sin looking like a wiggly ocean wave� graphed vertically as
a function of the real axis only� Here is a di�erent view� The entire real axis is
mapped to the segment ���� �� of the real axis with in�nite multiplicity �period ����
The imaginary axis is mapped to itself as if by sinh considered as a real function�
The origin is mapped to itself� Horizontal lines are mapped to ellipses with foci at
�� �note that two horizontal lines equidistant from the real axis will map onto the
same ellipse�� Vertical lines are mapped to hyperbolas with the same foci� There
is a curious accident� the ellipse for horizontal lines at distance �� from the real
axis appears to intercept the real axis at ���� � ����� � � � but this is not so� the
intercepts are actually at ��e � ��e��� � ����� � � � �

��� COMMON LISP

Figure ���	� Illustration of the Range of the Arc Sine Function

Just as sin grabs horizontal lines and bends them into elliptical loops around the
origin� so its inverse asin takes annuli and yanks them more or less horizontally
straight� Because sine is not injective� its inverse as a function cannot be surjective�
This is just a highfalutin way of saying that the range of the asin function doesn�t
cover the entire plane but only a strip � wide� arc sine as a one
to
many relation
would cover the plane with an in�nite number of copies of this strip side by side�
looking for all the world like the tail of a peacock with an in�nite number of feathers�
The imaginary axis is mapped to itself as if by asinh considered as a real function�
The real axis is mapped to a bent path� turning corners at ���� �the points to
which �� are mapped�� �� is mapped to �����i � and �� to ���� ��i �

NUMBERS ���

Figure ���
� Illustration of the Range of the Cosine Function

We are used to seeing cos looking exactly like sin� a wiggly ocean wave� only
displaced� Indeed the complex mapping of cos is also similar to that of sin� with
horizontal and vertical lines mapping to the same ellipses and hyperbolas with foci
at ��� although mapping to them in a di�erent manner� to be sure� The entire real
axis is again mapped to the segment ���� �� of the real axis� but each half of the
imaginary axis is mapped to the real axis to the right of � �as if by cosh considered
as a real function�� Therefore ��i both map to ��� The origin is mapped to ��
Whereas sin is an odd function� cos is an even function� as a result two points in
each annulus� one the negative of the other� are mapped to the same shaded point
in this graph� the shading shown here is taken from points in the original upper
half
plane�

�	� COMMON LISP

Figure ������ Illustration of the Range of the Arc Cosine Function

The graph of acos is very much like that of asin� One might think that our nervous
peacock has shu ed half a step to the right� but the shading on the annuli shows
that we have instead caught the bird exactly in mid
�ight while doing a cartwheel�
This is easily understood if we recall that arccos z � ����� � arcsin z � negating
arcsin z rotates it upside down� and adding the result to ��� translates it ��� to the
right� The imaginary axis is mapped upside down to the vertical line at ���� The
point �� is mapped to the origin� and �� to �� The image of the real axis is again
cranky� �� is mapped to ��i � and �� to � ��i �

NUMBERS �	�

Figure ������ Illustration of the Range of the Tangent Function

The usual graph of tan as a real function looks like an in�nite chorus line of disco
dancers� left hands pointed skyward and right hands to the �oor� The tan function
is the quotient of sin and cos but it doesn�t much look like either except for having
period ��� This goes for the complex plane as well� although the swoopy loops
produced from the annulus between ��� and � look vaguely like those from the
graph of sin inside out� The real axis is mapped onto itself with in�nite multiplicity
�period ���� The imaginary axis is mapped backwards onto ��i � i �� ��i is mapped
to �i and ��i to �i � Horizontal lines below or above the real axis become circles
surrounding �i or �i � respectively� Vertical lines become circular arcs from �i
to �i � two vertical lines separated by ��k � ��� for integer k together become a
complete circle� It seems that two arcs shown hit the real axis at ���� � ����� � � �
but that is a coincidence� they really hit the axis at � tan � � ���� � � � �

�	� COMMON LISP

Figure ������ Illustration of the Range of the Arc Tangent Function

All I can say is that this peacock is a horse of another color� At �rst glance� the
axes seem to map in the same way as for asin and acos� but look again� this
time it�s the imaginary axis doing weird things� All in�nities map multiply to the
points ��k � ������ within the strip of principal values we may say that the real
axis is mapped to the interval ����������� and therefore �� is mapped to ����
and �� to ����� The point �i is mapped to ��i � and �i to ��i � and so the
imaginary axis is mapped into three pieces� the segment ���i ��i � is mapped to
����� ��� ��i �� the segment ��i � i � is mapped to the imaginary axis ���i ���i ��
and the segment ��i ���i � is mapped to ����� ��i �������

NUMBERS �	�

Figure ������ Illustration of the Range of the Hyperbolic Sine Function

It would seem that the graph of sinh is merely that of sin rotated �
 degrees� If
that were so� then we would have sinh z � i sin z � Careful inspection of the shading�
however� reveals that this is not quite the case� in both graphs the lightest and
darkest shades� which initially are adjacent to the positive real axis� remain adjacent
to the positive real axis in both cases� To derive the graph of sinh from sin we
must therefore �rst rotate the complex plane by ��
 degrees� then apply sin� then
rotate the result by �
 degrees� In other words� sinh z � i sin��i�z � consistently
replacing z with iz in this formula yields the familiar identity sinh iz � i sin z �

�	� COMMON LISP

Figure ������ Illustration of the Range of the Hyperbolic Arc Sine Function

The peacock sleeps� Because arcsinh iz � i arcsin z � the graph of asinh is related to
that of asin by pre
 and post
rotations of the complex plane in the same way as for
sinh and sin�

NUMBERS �		

Figure ������ Illustration of the Range of the Hyperbolic Cosine Function

The graph of cosh does not look like that of cos rotated �
 degrees� instead it looks
like that of cos unrotated� That is because cosh iz is not equal to i cos z � rather�
cosh iz � cos z � Interpreted� that means that the shading is pre
rotated but there is
no post
rotation�

�	
 COMMON LISP

Figure ������ Illustration of the Range of the Hyperbolic Arc Cosine Function

Hmm�I�d rather not say what happened to this peacock� This feather looks a bit
mangled� Actually it is all right�the principal value for acosh is so chosen that its
graph does not look simply like a rotated version of the graph of acos� but if all
values were shown� the two graphs would �ll the plane in repeating patterns related
by a rotation�

NUMBERS �	�

Figure ������ Illustration of the Range of the Hyperbolic Tangent Function

The diagram for tanh is simply that of tan turned on its ear� i tan z � tanh iz �
The imaginary axis is mapped onto itself with in�nite multiplicity �period ���� and
the real axis is mapped onto the segment �������� �� is mapped to ��� and
�� to ��� Vertical lines to the left or right of the real axis are mapped to circles
surrounding �� or �� respectively� Horizontal lines are mapped to circular arcs
anchored at �� and ��� two horizontal lines separated by a distance ��k � ��� for
integer k are together mapped into a complete circle� How do we know these really
are circles� Well� tanh z � ��exp �z�������exp �z����� which is the composition of
the bilinear transform �z � ����z ���� the exponential exp z � and the magni�cation
�z � Magni�cation maps lines to lines of the same slope� the exponential maps
horizontal lines to circles and vertical lines to radial lines� and a bilinear transform
maps generalized circles �including lines� to generalized circles� Q�E�D�

�	� COMMON LISP

Figure ����	� Illustration of the Range of the Hyperbolic Arc Tangent Function

A sleeping peacock of another color� arctanh iz � i arctan z �

NUMBERS �	�

Figure ����
� Illustration of the Range of the Function
p
�� z�

Here is a curious graph indeed for so simple a function� The origin is mapped to
�� The real axis segment �
� �� is mapped backwards �and non
linearly� into itself�
the segment ������ is mapped non
linearly onto the positive imaginary axis� The
negative real axis is mapped to the same points as the positive real axis� Both
halves of the imaginary axis are mapped into ������ on the real axis� Horizontal
lines become vaguely vertical� and vertical lines become vaguely horizontal� Circles
centered at the origin are transformed into Cassinian �half
�ovals� the unit circle is
mapped to a �half
�lemniscate of Bernoulli� The outermost annulus appears to have
its inner edge at � on the real axis and its outer edge at � on the imaginary axis�
but this is another accident� the intercept on the real axis� for example� is not really
at � � ���� � � � but at

p
�� ��i�� � p�
 � ���	 � � � �

�
� COMMON LISP

Figure ������ Illustration of the Range of the Function
p
� � z�

The graph of q�z� �
p
� � z� looks like that of p�z� �

p
�� z� except for the

shading� You might not expect p and q to be related in the same way that cos and
cosh are� but after a little re�ection �or perhaps I should say� after turning it around
in one�s mind� one can see that q�iz � � p�z �� This formula is indeed of exactly the
same form as cosh iz � cos z � The function

p
� � z� maps both halves of the real

axis into ������ on the real axis� The segments �
� i � and �
��i � of the imaginary
axis are each mapped backwards onto segment �
� �� of the real axis� �i ���i � and
��� ��i � are each mapped onto the positive imaginary axis �but if minus zero is
supported then opposite sides of the imaginary axis map to opposite halves of the
imaginary axis�for example� q��
 � �i� �

p
�i but q��
 � �i� � �p�i��

NUMBERS �
�

Here is a sample of the PostScript code that generated �gure ����� showing

the initial scaling� translation� and clipping parameters� the code for one sec�

tor of the innermost annulus� and the code for the negative imaginary axis�

Comment lines indicate how path or boundary segments were generated sep�

arately and then spliced
in order to allow for the places that a singularity
might lurk� in which case the generating code can �inch up� to the problem�

atical argument value��

The size of the entire PostScript �le for the identity function was about ��
kilobytes
���� lines� including comments�� The smallest �les were the plots

for atan and atanh� about �� kilobytes apiece� the largest were the plots for

sin� cos� sinh� and cosh� about ��� kilobytes apiece�

� PostScript file for plot of function IDENTITY

� Plot is to fit in a region ����������������
 inches square

� showing axes extending ��	 units from the origin�

�
��
��
�
��
�
�� �
��
��
�
��
�
�� scale

��	 ��	 translate

newpath

��	 ��	 moveto

��	 ��	 lineto

��	 ��	 lineto

��	 ��	 lineto

closepath

clip

� Moby grid for function IDENTITY

� Annulus
���
�� �
��

���

� Sector from ��
	�� to ������ �quadrant ��

newpath

�

��� moveto

�

��
� lineto

�middle radial

�

��
� lineto

�

�� lineto

�end radial

�

�� lineto

�
��
���	� lineto

�	���
����� lineto

��
�
��	�� lineto

�����
����� lineto

�middle circumferential

�����
����� lineto

��	�
���	� lineto

�����
�	�
� lineto

�
� COMMON LISP

�����
�	
�� lineto

��
�
 lineto

�end circumferential

��
�
 lineto

��
�
�
 lineto

�middle radial

��
�
�
 lineto

���
�
 lineto

�end radial

���
�
 lineto

����

�
��
 lineto

�	
��
�	
�� lineto

�middle circumferential

�	
��
�	
�� lineto

�
���
����� lineto

�

��� lineto

�end circumferential

closepath

currentgray
��� setgray fill setgray

����� lines omitted�

� Vertical line from �
�
�
��� to �
�
�
�
�

newpath

�

�� moveto

�

�
 lineto

�
� setlinewidth 	 setlinecap stroke

� Vertical line from �
�
�
��� to �
�
� 	�
�

newpath

�

�� moveto

�
 	�
 lineto

�
� setlinewidth 	 setlinecap stroke

� Vertical line from �
�
� ��
� to �
�
� 	�
�

newpath

�
 ��
 moveto

�
 	�
 lineto

�
� setlinewidth 	 setlinecap stroke

� Vertical line from �
�
� ��
� to �
�
� 	�	�
��
����
�	�	
E

�

newpath

�
 ��
 moveto

�
 ������ lineto

�
 ���
�	
�	���
���� lineto

�
 ���
�	
�	���
���� lineto

�
 ���
�	
�	���
���� lineto

�
� setlinewidth 	 setlinecap stroke

��� lines omitted�

� End of PostScript file for plot of function IDENTITY

NUMBERS �
�

Here is the program that generated the PostScript code for the graphs

shown in �gures ���� through ������ It contains a mixture of fairly general

mechanisms and ad hoc kludges for plotting functions of a single complex

argument while gracefully handling extremely large and small values� branch

cuts� singularities� and periodic behavior� The aim was to provide a simple
user interface that would not require the caller to provide special advice for

each function to be plotted� The �le for �gure ����� for example� was generated

by the call �picture identity�� which resulted in the writing of a �le

named identityplot�ps�

The program assumes that any periodic behavior will have a period that
is a multiple of ��� that branch cuts will fall along the real or imaginary

axis� and that singularities or very large or small values will occur only at the

origin� at �� or �i � or on the boundaries of the annuli
particularly those

with radius ��� or ��� The central function is parametricpath� which ac�

cepts four arguments� two real numbers that are the endpoints of an interval
of real numbers� a function that maps this interval into a path in the com�

plex plane� and the function to be plotted� the task of parametricpath is

to generate PostScript code
a series of lineto operations� that will plot an

approximation to the image of the parametric path as transformed by the
function to be plotted� Each of the functions hline� vline� hline� vline�

radial� and circumferential takes appropriate parameters and returns a

function suitable for use as the third argument to parametricpath� There is

some code that defends against errors
by using ignoreerrors� and against

certain peculiarities of IEEE
oating�point arithmetic
the code that checks
for not�a�number
NaN� results��

The program is o	ered here without further comment or apology�

�defparameter unitstoshow ��	�

�defparameter textwidthinpicas ���
�

�defparameter devicepixelsperinch �

�

�defparameter pixelsperunit

�� �� �� textwidthinpicas ��

�� unitstoshow ���

devicepixelsperinch��

�defparameter big �sqrt �sqrt mostpositivesinglefloat���

�defparameter tiny �sqrt �sqrt leastpositivesinglefloat���

�defparameter pathreallylosing 	

�
�

�defparameter pathouterlimit �� unitstoshow �sqrt �� 	�	��

�defparameter pathminimaldelta �� 	
 pixelsperunit��

�defparameter pathouterdelta �� pathouterlimit
����

�
� COMMON LISP

�defparameter pathrelativecloseness
�

	�

�defparameter backoffdelta
�

��

NUMBERS �
	

�defun commentline �stream �rest stuff�

�format stream � �� ��

�apply ��� format stream stuff�

�format t � �� ��

�apply ��� format t stuff��

�defun parametricpath �from to paramfn plotfn�

�assert �and �plusp from� �plusp to���

�flet ��domainval �x� �funcall paramfn x��

�rangeval �x� �funcall plotfn �funcall paramfn x���

�losing �x� �or �null x�

�� �realpart x� �realpart x�� �NaN�

�� �imagpart x� �imagpart x�� �NaN�

�� �abs �realpart x�� pathreallylosing�

�� �abs �imagpart x�� pathreallylosing����

�when �� to 	

�
�

�let ��f
 �rangeval from��

�f	 �rangeval �� from 	���

�f� �rangeval �� from �� � pi����

�f� �rangeval �� from 	 �� � pi����

�f� �rangeval �� from �� � pi�����

�flet ��close �x y�

�or �� �carefulabs � x y�� pathminimaldelta�

�� �carefulabs � x y��

�� �� �carefulabs x� �carefulabs y��

pathrelativecloseness�����

�when �and �close f
 f��

�close f� f��

�close f	 f��

�or �and �close f
 f	�

�close f� f���

�and �not �close f
 f	��

�not �close f� f������

�format t � �Periodicity detected���

�setq to �� from �� �signum � to from�� � pi�������

�let ��fromrange �ignoreerrors �rangeval from���

�torange �ignoreerrors �rangeval to����

�if �losing fromrange�

�if �losing torange�

��

�parametricpath �backoff from to� to paramfn plotfn��

�if �losing torange�

�parametricpath from �backoff to from� paramfn plotfn�

�expandpath �refinepath �list from to� ��� rangeval�

��� rangeval������

�

 COMMON LISP

�defun backoff �point other�

�if �or �� point 	
�
� �� point
�	��

�let ��sp �sqrt point���

�if �or �� point sp other� �� point sp other��

sp

�� sp �sqrt other����

�� point �� �signum � other point�� backoffdelta����

�defun carefulabs �z�

�cond ��or �� �realpart z� big�

�� �realpart z� � big��

�� �imagpart z� big�

�� �imagpart z� � big���

big�

��complexp z� �abs z��

��minusp z� � z��

�t z���

�defparameter maxrefinements �

�

�defun refinepath �originalpath rangevalfn�

�flet ��rangeval �x� �funcall rangevalfn x���

�let ��path originalpath��

�do ��j
 �� j 	���

��null �rest path���

�when �zerop �mod �� j 	� maxrefinements��

�break �Runaway path���

�let� ��from �first path��

�to �second path��

�fromrange �rangeval from��

�torange �rangeval to��

�dist �carefulabs � torange fromrange���

�mid �� �sqrt from� �sqrt to���

�midrange �rangeval mid���

�cond ��or �and �farout fromrange� �farout torange��

�and �� dist pathminimaldelta�

�� �abs � midrange fromrange��

pathminimaldelta�

�� Next test is intentionally asymmetric to

�� avoid problems with periodic functions�

�� �abs � �rangeval �� �� to �� from 	����

�����

fromrange��

pathminimaldelta���

�pop path��

NUMBERS �
�

�� mid from� �pop path��

�� mid to� �pop path��

�t �setf �rest path� �cons mid �rest path���������

originalpath�

�defun expandpath �path rangevalfn�

�flet ��rangeval �x� �funcall rangevalfn x���

�let ��finalpath �list �rangeval �first path�����

�do ��p �rest path� �cdr p���

��null p�

�unless �rest finalpath�

�break �Singleton path���

�reverse finalpath��

�let ��v �rangeval �car p����

�cond ��and �rest finalpath�

�not �farout v��

�not �farout �first finalpath���

�between v �first finalpath�

�second finalpath���

�setf �first finalpath� v��

��null �rest p�� �Mustn t omit last point

�push v finalpath��

��� �abs � v �first finalpath��� pathminimaldelta��

��farout v�

�unless �and �farout �first finalpath��

�� �abs � v �first finalpath���

pathouterdelta��

�push �� 	�
	 pathouterlimit �signum v��

finalpath���

�t �push v finalpath��������

�defun farout �x�

�� �carefulabs x� pathouterlimit��

�defparameter betweentolerance
�

	�

�defun between �p q r�

�let ��px �realpart p�� �py �imagpart p��

�qx �realpart q�� �qy �imagpart q��

�rx �realpart r�� �ry �imagpart r���

�and �or �� px qx rx� �� px qx rx��

�or �� py qy ry� �� py qy ry��

�� �abs � �� � qx px� � ry qy��

�� � rx qx� � qy py����

betweentolerance����

�
� COMMON LISP

�defun circle �radius�

��� �lambda �angle� �� radius �cis angle����

�defun hline �imag�

��� �lambda �real� �complex real imag���

�defun vline �real�

��� �lambda �imag� �complex real imag���

�defun hline �imag�

��� �lambda �real� �complex � real� imag���

�defun vline �real�

��� �lambda �imag� �complex real � imag����

�defun radial �phi quadrant�

��� �lambda �rho� �repairquadrant �� rho �cis phi�� quadrant���

�defun circumferential �rho quadrant�

��� �lambda �phi� �repairquadrant �� rho �cis phi�� quadrant���

��� Quadrant is
� 	� �� or �� meaning I� II� III� or IV�

�defun repairquadrant �z quadrant�

�complex �� �� �abs �realpart z�� tiny�

�case quadrant �
 	�
� �	 	�
� �� 	�
� �� 	�
���

�� �� �abs �imagpart z�� tiny�

�case quadrant �
 	�
� �	 	�
� �� 	�
� �� 	�
�����

�defun clampreal �x�

�if �farout x�

�� �signum x� pathouterlimit�

�roundreal x���

�defun roundreal �x�

�� �round �� x 	

�
�� 	

�
��

�defun roundpoint �z�

�complex �roundreal �realpart z�� �roundreal �imagpart z����

�defparameter hiringshade
��
�

�defparameter loringshade
����

�defparameter ticklength
�	��

�defparameter smallticklength
�
��

NUMBERS �
�

��� This determines the pattern of lines and annuli to be drawn�

�defun mobygrid ��optional �fn sqrt� �stream t��

�commentline stream �Moby grid for function S� fn�

�shadedannulus
���
�� � hiringshade loringshade fn stream�

�shadedannulus
�
� 	�
 � hiringshade loringshade fn stream�

�shadedannulus �� pi �� ��
 	� hiringshade loringshade fn stream�

�shadedannulus � pi �� hiringshade loringshade fn stream�

�mobylines �horizontal 	�
 fn stream�

�mobylines �horizontal 	�
 fn stream�

�mobylines �vertical 	�
 fn stream�

�mobylines �vertical 	�
 fn stream�

�let ��tickline
�
	��

�axisline
�

���

�flet ��tick �n� �straightline �complex n ticklength�

�complex n � ticklength��

tickline

stream��

�smalltick �n� �straightline �complex n smallticklength�

�complex n � smallticklength��

tickline

stream���

�commentline stream �Real axis��

�straightline ���c��
� ���c��
� axisline stream�

�dotimes �j �floor unitstoshow��

�let ��q �� j 	��� �tick q� �tick � q����

�dotimes �j �floor unitstoshow �� pi ����

�let ��q �� �� pi �� �� j 	����

�smalltick q�

�smalltick � q�����

�flet ��tick �n� �straightline �complex ticklength n�

�complex � ticklength� n�

tickline

stream��

�smalltick �n� �straightline �complex smallticklength n�

�complex � smallticklength� n�

tickline

stream���

�commentline stream �Imaginary axis��

�straightline ���c�
 �� ���c�
 �� axisline stream�

�dotimes �j �floor unitstoshow��

�let ��q �� j 	��� �tick q� �tick � q����

�dotimes �j �floor unitstoshow �� pi ����

�let ��q �� �� pi �� �� j 	����

�smalltick q�

�smalltick � q�������

��� COMMON LISP

�defun straightline �from to wid stream�

�format stream

� �newpath S S moveto S S lineto S

setlinewidth 	 setlinecap stroke�

�realpart from�

�imagpart from�

�realpart to�

�imagpart to�

wid��

��� This function draws the lines for the pattern�

�defun mobylines �orientation signum plotfn stream�

�let ��paramfn �ecase orientation

��horizontal �if �� signum
� ��� hline ��� hline��

��vertical �if �� signum
� ��� vline ��� vline�����

�flet ��foo �from to other wid�

�ecase orientation

��horizontal

�commentline stream

�Horizontal line from � S� S� to � S� S��

�roundreal �� signum from��

�roundreal other�

�roundreal �� signum to��

�roundreal other���

��vertical

�commentline stream

�Vertical line from � S� S� to � S� S��

�roundreal other�

�roundreal �� signum from��

�roundreal other�

�roundreal �� signum to�����

�postscriptpath

stream

�parametricpath from

to

�funcall paramfn other�

plotfn��

�postscriptpenstroke stream wid���

�let� ��thick
�
��

�thin
�
���

�� Main axis

�foo
�� tiny
�
 thick�

�foo
�� 	�

�
 thick�

�foo ��
 	�

�
 thick�

�foo ��
 big
�
 thick�

NUMBERS ���

�� Parallels at 	 and 	

�foo ��
 tiny 	�
 thin�

�foo ��
 big 	�
 thin�

�foo ��
 tiny 	�
 thin�

�foo ��
 big 	�
 thin�

�� Parallels at �� �� �� �

�foo tiny big ��
 thin�

�foo tiny big ��
 thin�

�foo tiny big ��
 thin�

�foo tiny big ��
 thin�����

�defun splice �p q�

�let ��v �car �last p���

�w �first q���

�and �farout v�

�farout w�

�� �abs � v w�� pathouterdelta�

�� Two farapart farout points� Try to walk around

�� outside the perimeter� in the shorter direction�

�let� ��pdiff �phase �� v w���

�npoints �floor �abs pdiff� �asin �����

�delta �� pdiff �� npoints 	���

�incr �cis delta���

�do ��j
 �� j 	��

�p �list w �end splice�� �cons �� �car p� incr� p���

�� j npoints� �cons �start splice� p�������

��� This function draws the annuli for the pattern�

�defun shadedannulus �inner outer sectors firstshade lastshade fn stream�

�assert �zerop �mod sectors ����

�commentline stream �Annulus S S S S S�

�roundreal inner� �roundreal outer�

sectors firstshade lastshade�

�dotimes �jj sectors�

�let ��j � sectors jj 	���

�let� ��lophase �� tiny �� � pi �� j sectors����

�hiphase �� � pi �� �� j 	� sectors���

�midphase �� �� lophase hiphase� ��
��

�midradius �� �� inner outer� ��
��

�quadrant �floor �� j �� sectors���

�commentline stream �Sector from S to S �quadrant S��

�roundreal lophase�

�roundreal hiphase�

quadrant�

��� COMMON LISP

�let ��p
 �reverse �parametricpath midradius

inner

�radial lophase quadrant�

fn���

�p	 �parametricpath midradius

outer

�radial lophase quadrant�

fn��

�p� �reverse �parametricpath midphase

lophase

�circumferential outer

quadrant�

fn���

�p� �parametricpath midphase

hiphase

�circumferential outer quadrant�

fn��

�p� �reverse �parametricpath midradius

outer

�radial hiphase quadrant�

fn���

�p� �parametricpath midradius

inner

�radial hiphase quadrant�

fn��

�p� �reverse �parametricpath midphase

hiphase

�circumferential inner

quadrant�

fn���

�p
 �parametricpath midphase

lophase

�circumferential inner quadrant�

fn���

�postscriptclosedpath stream

�append

p
 �splice p
 p	� ��middle radial��

p	 �splice p	 p�� ��end radial��

p� �splice p� p�� ��middle circumferential��

p� �splice p� p�� ��end circumferential��

p� �splice p� p�� ��middle radial��

p� �splice p� p�� ��end radial��

p� �splice p� p
� ��middle circumferential��

p
 �splice p
 p
� ��end circumferential��

���

NUMBERS ���

�postscriptshade stream

�� �� �� firstshade � � sectors 	� j��

�� lastshade j��

� sectors 	�������

�defun postscriptpenstroke �stream wid�

�format stream � � S setlinewidth 	 setlinecap stroke�

wid��

�defun postscriptshade �stream shade�

�format stream � �currentgray S setgray fill setgray�

shade��

�defun postscriptclosedpath �stream path�

�unless �every ��� farout �removeifnot ��� numberp path��

�postscriptrawpath stream path�

�format stream � � closepath����

�defun postscriptpath �stream path�

�unless �every ��� farout �removeifnot ��� numberp path��

�postscriptrawpath stream path���

��� Print a path as a series of PostScript �lineto� commands�

�defun postscriptrawpath �stream path�

�format stream � �newpath��

�let ��fmt � � S S moveto���

�dolist �pt path�

�cond ��stringp pt�

�format stream � � � A� pt��

�t �format stream

fmt

�clampreal �realpart pt��

�clampreal �imagpart pt���

�setq fmt � � S S lineto�������

��� Definitions of functions to be plotted that are not

��� standard Common Lisp functions�

�defun oneplusoveroneminus �x� �� �� 	 x� � 	 x���

�defun oneminusoveroneplus �x� �� � 	 x� �� 	 x���

�defun sqrtsquareminusone �x� �sqrt � 	 �� x x����

�defun sqrtoneplussquare �x� �sqrt �� 	 �� x x����

��� COMMON LISP

��� Because X�J	� voted for a new definition of the atan function�

��� the following definition was used in place of the atan function

��� provided by the Common Lisp implementation I was using�

�defun goodatan �x�

�� � �log �� 	 �� x ���c�
 	����

�log � 	 �� x ���c�
 	�����

���c�
 ����

��� Because the first edition had an erroneous definition of atanh�

��� the following definition was used in place of the atanh function

��� provided by the Common Lisp implementation I was using�

�defun reallygoodatanh �x�

�� � �log �� 	 x��

�log � 	 x���

���

��� This is the main procedure that is intended to be called by a user�

�defun picture ��optional �fn ��� sqrt��

�withopenfile �stream �concatenate string

�stringdowncase �string fn��

�plot�ps��

�direction �output�

�format stream �� PostScript file for plot of function S �� fn�

�format stream �� Plot is to fit in a region S inches square ��

�� textwidthinpicas ��
��

�format stream

�� showing axes extending S units from the origin� ��

unitstoshow�

�let ��scaling �� �� textwidthinpicas 	�� �� unitstoshow �����

�format stream � � S �� S scale� scaling��

�format stream � � S �� S translate� unitstoshow�

�format stream � �newpath��

�format stream � � S S moveto� � unitstoshow� � unitstoshow��

�format stream � � S S lineto� unitstoshow � unitstoshow��

�format stream � � S S lineto� unitstoshow unitstoshow�

�format stream � � S S lineto� � unitstoshow� unitstoshow�

�format stream � � closepath��

�format stream � �clip��

�mobygrid fn stream�

�format stream

� �� End of PostScript file for plot of function S�

fn�

�terpri stream���

NUMBERS ��	

����� Type Conversions and Component Extractions on
Numbers

While most arithmetic functions will operate on any kind of number� coerc�

ing types if necessary� the following functions are provided to allow speci�c

conversions of data types to be forced when desired�

�Function�float number �optional other

This converts any non�complex number to a
oating�point number� With no

second argument� if number is already a
oating�point number� then number

is returned� otherwise a singlefloat is produced� If the argument other is

provided� then it must be a
oating�point number� and number is converted

to the same format as other� See also coerce�

�Function�rational number

�Function�rationalize number

Each of these functions converts any non�complex number to a rational num�

ber� If the argument is already rational� it is returned� The two functions

di	er in their treatment of
oating�point numbers�

rational assumes that the
oating�point number is completely accurate

and returns a rational number mathematically equal to the precise value of

the
oating�point number�

rationalize assumes that the
oating�point number is accurate only to

the precision of the
oating�point representation and may return any rational

number for which the
oating�point number is the best available approxi�

mation of its format� in doing this it attempts to keep both numerator and
denominator small�

It is always the case that

�float �rational x� x� � x

and

�float �rationalize x� x� � x

That is� rationalizing a
oating�point number by either method and then

converting it back to a
oating�point number of the same format produces

the original number� What distinguishes the two functions is that rational

typically has a simple� inexpensive implementation� whereas rationalize

��
 COMMON LISP

goes to more trouble to produce a result that is more pleasant to view and

simpler to compute with for some purposes�

�Function�numerator rational

�Function�denominator rational

These functions take a rational number
an integer or ratio� and return as an

integer the numerator or denominator of the canonical reduced form of the

rational� The numerator of an integer is that integer� the denominator of an
integer is
� Note that

�gcd �numerator x� �denominator x�� �

The denominator will always be a strictly positive integer� the numerator may

be any integer� For example�

�numerator � � ��� � �

�denominator � � ��� � �

There is no fix function in Common Lisp because there are several inter�

esting ways to convert non�integral values to integers� These are provided by

the functions below� which perform not only type conversion but also some
non�trivial calculations as well�

�Function�floor number �optional divisor
�Function�ceiling number �optional divisor

�Function�truncate number �optional divisor

�Function�round number �optional divisor

In the simple one�argument case� each of these functions converts its argument

number
which must not be complex� to an integer� If the argument is already
an integer� it is returned directly� If the argument is a ratio or
oating�point

number� the functions use di	erent algorithms for the conversion�

floor converts its argument by truncating toward negative in�nity� that

is� the result is the largest integer that is not larger than the argument�

ceiling converts its argument by truncating toward positive in�nity� that

is� the result is the smallest integer that is not smaller than the argument�

truncate converts its argument by truncating toward zero� that is� the

result is the integer of the same sign as the argument and which has the

greatest integral magnitude not greater than that of the argument�

NUMBERS ���

round converts its argument by rounding to the nearest integer� if number

is exactly halfway between two integers
that is� of the form integer # �����

then it is rounded to the one that is even
divisible by ���

The following table shows what the four functions produce when given

various arguments�

Argument floor ceiling truncate round

��� � � � �

��� � � � �

��� � � � �

��	 �
 �

��� �
 � �

���
 � � �

��	
 � �

��� � � � �

��� � � � �

��� � � � �

If a second argument divisor is supplied� then the result is the appropriate

type of rounding or truncation applied to the result of dividing the number by
the divisor� For example� �floor � �� � �floor � � ��� but is potentially

more e�cient�

This statement is not entirely accurate� one should instead say that �values

�floor � ���� �values �floor � � ����� because there is a second value

to consider� as discussed below� In other words� the �rst values returned by
the two forms will be the same� but in general the second values will di	er�

Indeed� we have

�floor � �� � � and

�floor � � ��� � � and
 �

for this example�

The divisor may be any non�complex number�

It is generally accepted that it is an error for the divisor to be zero�

The one�argument case is exactly like the two�argument case where the

second argument is
�

In other words� the one�argument case returns an integer and fractional

part for the number� �truncate ���� � ��� and ���� for example�

Each of the functions actually returns two values� whether given one or two

arguments� The second result is the remainder and may be obtained using

multiplevaluebind and related constructs� If any of these functions is given

��� COMMON LISP

two arguments x and y and produces results q and r � then q � y # r " x �

The �rst result q is always an integer� The remainder r is an integer if

both arguments are integers� is rational if both arguments are rational� and

is
oating�point if either argument is
oating�point� One consequence is that

in the one�argument case the remainder is always a number of the same type
as the argument�

When only one argument is given� the two results are exact� the mathemat�

ical sum of the two results is always equal to the mathematical value of the

argument�

Compatibility note� The names of the functions floor� ceiling� truncate� and
round are more accurate than names like fix that have heretofore been used in vari

ous Lisp systems� The names used here are compatible with standard mathematical
terminology �and with PL��� as it happens�� In Fortran ifix means truncate� Al

gol 	� provides round and uses entier to mean floor� In MacLisp� fix and ifix

both mean floor �one is generic� the other �onum
in��xnum
out�� In Interlisp� fix
means truncate� In Lisp Machine Lisp� fix means floor and fixr means round�
Standard Lisp provides a fix function but does not specify precisely what it does�
The existing usage of the name fix is so confused that it seemed best to avoid it
altogether�
The names and de�nitions given here have recently been adopted by Lisp Machine

Lisp� and MacLisp and NIL �New Implementation of Lisp� seem likely to follow suit�

�Function�mod number divisor

�Function�rem number divisor

mod performs the operation floor on its two arguments and returns the sec�

ond result of floor as its only result� Similarly� rem performs the operation

truncate on its arguments and returns the second result of truncate as its

only result�

mod and rem are therefore the usual modulus and remainder functions when

applied to two integer arguments� In general� however� the arguments may be

integers or
oating�point numbers�

�mod
� �� �
 �rem
� �� �

�mod
� �� � � �rem
� �� �

�mod
� �� � � �rem
� �� �

�mod
� �� �
 �rem
� �� �

�mod
���
� � ��� �rem
���
� � ���

�mod
���
� � ��� �rem
���
� � ���

NUMBERS ���

Compatibility note� The Interlisp function remainder is essentially equivalent to
the Common Lisp function rem� The MacLisp function remainder is like rem but
accepts only integer arguments�

�Function�ffloor number �optional divisor

�Function�fceiling number �optional divisor

�Function�ftruncate number �optional divisor

�Function�fround number �optional divisor

These functions are just like floor� ceiling� truncate� and round� except
that the result
the �rst result of two� is always a
oating�point number rather

than an integer� It is roughly as if ffloor gave its arguments to floor� and

then applied float to the �rst result before passing them both back� In

practice� however� ffloormay be implemented much more e�ciently� Similar

remarks apply to the other three functions� If the �rst argument is a
oating�
point number� and the second argument is not a
oating�point number of

longer format� then the �rst result will be a
oating�point number of the

same type as the �rst argument� For example�

�ffloor ��	� � ��� and ���

�ffloor ���d�� � ���d� and ���d�

�Function�decodefloat 	oat

�Function�scalefloat 	oat integer

�Function�floatradix 	oat
�Function�floatsign 	oat� �optional 	oat�

�Function�floatdigits 	oat

�Function�floatprecision 	oat

�Function�integerdecodefloat 	oat

The function decodefloat takes a
oating�point number and returns three

values�

The �rst value is a new
oating�point number of the same format represent�

ing the signi�cand� the second value is an integer representing the exponent�
and the third value is a
oating�point number of the same format indicating

the sign
���� or ����� Let b be the radix for the
oating�point representa�

tion� then decodefloat divides the argument by an integral power of b so as

to bring its value between ��b
inclusive� and �
exclusive� and returns the

quotient as the �rst value� If the argument is zero� however� the result is equal

��� COMMON LISP

to the absolute value of the argument
that is� if there is a negative zero� its

signi�cand is considered to be a positive zero��

The second value of decodefloat is the integer exponent e to which b must
be raised to produce the appropriate power for the division� If the argument

is zero� any integer value may be returned� provided that the identity shown

below for scalefloat holds�

The third value of decodefloat is a
oating�point number� of the same

format as the argument� whose absolute value is � and whose sign matches

that of the argument�

The function scalefloat takes a
oating�point number f
not necessarily

between ��b and �� and an integer k� and returns �
 f �expt �float b f�

k���
The use of scalefloat may be much more e�cient than using expo�
nentiation and multiplication and avoids intermediate over
ow and under
ow

if the �nal result is representable��

Note that

�multiplevaluebind �signif expon sign�

�decodefloat f�

�scalefloat signif expon��

� �abs f�

and

�multiplevaluebind �signif expon sign�

�decodefloat f�

�
 �scalefloat signif expon� sign��

� f

The function floatradix returns
as an integer� the radix b of the
oating�

point argument�

The function floatsign returns a
oating�point number z such that z

and 	oat� have the same sign and also such that z and 	oat� have the same

absolute value� The argument 	oat� defaults to the value of �float
 	oat���

�floatsign x� therefore always produces a
�� or
�� of appropriate format
according to the sign of x�
Note that if an implementation has distinct

representations for negative zero and positive zero� then �floatsign �����

����

The function floatdigits returns� as a non�negative integer� the number

of radix�b digits used in the representation of its argument
including any im�

plicit digits� such as a �hidden bit��� The function floatprecision returns�

as a non�negative integer� the number of signi�cant radix�b digits present

NUMBERS ���

in the argument� if the argument is
a
oating�point� zero� then the result

is
an integer� zero� For normalized
oating�point numbers� the results of

floatdigits and floatprecision will be the same� but the precision will

be less than the number of representation digits for a denormalized or zero

number�

The function integerdecodefloat is similar to decodefloat but for its

�rst value returns� as an integer� the signi�cand scaled so as to be an integer�

For an argument f� this integer will be strictly less than

�expt b �floatprecision f��

but no less than

�expt b � �floatprecision f�
��

except that if f is zero� then the integer value will be zero�

The second value bears the same relationship to the �rst value as for

decodefloat�

�multiplevaluebind �signif expon sign�

�integerdecodefloat f�

�scalefloat �float signif f� expon��

� �abs f�

The third value of integerdecodefloat will be
 or
�

Rationale� These functions allow the writing of machine
independent� or at least
machine
parameterized� �oating
point software of reasonable e�ciency�

�Function�complex realpart �optional imagpart

The arguments must be non�complex numbers� a number is returned that has

realpart as its real part and imagpart as its imaginary part� possibly converted

according to the rule of
oating�point contagion
thus both components will

be of the same type�� If imagpart is not speci�ed� then �coerce � �typeof

realpart�� is e	ectively used� Note that if both the realpart and imagpart are

rational and the imagpart is zero� then the result is just the realpart because

of the rule of canonical representation for complex rationals� It follows that

the result of complex is not always a complex number� it may be simply a

rational�

��� COMMON LISP

�Function�realpart number

�Function�imagpart number

These return the real and imaginary parts of a complex number� If number

is a non�complex number� then realpart returns its argument number and

imagpart returns �
 � number�� which has the e	ect that the imaginary part

of a rational is � and that of a
oating�point number is a
oating�point zero
of the same format�

A clever way to multiply a complex number z by i is to write

�complex � �imagpart z�� �realpart z��

instead of �
 z ���c��
��� This cleverness is not always gratuitous� it may

be of particular importance in the presence of minus zero� For example� if we
are using IEEE standard
oating�point arithmetic and z " � # �i � the result

of the clever expression is ��#�i � a true ��� rotation of z � whereas the result

of �
 z ���c��
�� is likely to be

� # �i�
#� # i� "

��
#���
#��
��� #

��
�� #
#��
#���i

"

#���
#��� #

�� #
#���i " #� # �i

which could land on the wrong side of a branch cut� for example�

����� Logical Operations on Numbers

The logical operations in this section require integers as arguments� it is an
error to supply a non�integer as an argument� The functions all treat integers

as if they were represented in two�s�complement notation�

Implementation note� Internally� of course� an implementation of Common Lisp
may or may not use a two�s
complement representation� All that is necessary is that
the logical operations perform calculations so as to give this appearance to the user�

The logical operations provide a convenient way to represent an in�nite

vector of bits� Let such a conceptual vector be indexed by the non�negative

integers� Then bit j is assigned a �weight� �j� Assume that only a �nite
number of bits are ��s or only a �nite number of bits are ��s� A vector with

only a �nite number of one�bits is represented as the sum of the weights of the

one�bits� a positive integer� A vector with only a �nite number of zero�bits

is represented as
 minus the sum of the weights of the zero�bits� a negative

integer�

NUMBERS ���

This method of using integers to represent bit�vectors can in turn be used

to represent sets� Suppose that some
possibly countably in�nite� universe

of discourse for sets is mapped into the non�negative integers� Then a set

can be represented as a bit vector� an element is in the set if the bit whose

index corresponds to that element is a one�bit� In this way all �nite sets can
be represented
by positive integers�� as well as all sets whose complements

are �nite
by negative integers�� The functions logior� logand� and logxor

de�ned below then compute the union� intersection� and symmetric di	erence

operations on sets represented in this way�

�Function�logior �rest integers

This returns the bit�wise logical inclusive or of its arguments� If no argument

is given� then the result is zero� which is an identity for this operation�

�Function�logxor �rest integers

This returns the bit�wise logical exclusive or of its arguments� If no argument

is given� then the result is zero� which is an identity for this operation�

�Function�logand �rest integers

This returns the bit�wise logical and of its arguments� If no argument is given�

then the result is
� which is an identity for this operation�

�Function�logeqv �rest integers

This returns the bit�wise logical equivalence
also known as exclusive nor�

of its arguments� If no argument is given� then the result is
� which is an

identity for this operation�

�Function�lognand integer� integer�
�Function�lognor integer� integer�

�Function�logandc
 integer� integer�

�Function�logandc� integer� integer�

�Function�logorc
 integer� integer�
�Function�logorc� integer� integer�

These are the other six non�trivial bit�wise logical operations on two argu�

ments� Because they are not associative� they take exactly two arguments

rather than any non�negative number of arguments�

��� COMMON LISP

�lognand n� n�� � �lognot �logand n� n���

�lognor n� n�� � �lognot �logior n� n���

�logandc
 n� n�� � �logand �lognot n�� n��

�logandc� n� n�� � �logand n� �lognot n���

�logorc
 n� n�� � �logior �lognot n�� n��

�logorc� n� n�� � �logior n� �lognot n���

The ten bit�wise logical operations on two integers are summarized in the

following table�

integer� � �

integer� �
 �
 Operation Name

logand � � �
 and

logior �

 inclusive or

logxor �

 � exclusive or

logeqv
 � �
 equivalence
exclusive nor�
lognand

 � not�and

lognor
 � � � not�or

logandc
 �
 � � and complement of integer� with integer�

logandc� � �
 � and integer� with complement of integer�

logorc

 �
 or complement of integer� with integer�
logorc�
 �

 or integer� with complement of integer�

NUMBERS ��	

�Function�boole op integer� integer�

�Constant �booleclr

�Constant �booleset

�Constant �boole

�Constant �boole�

�Constant �boolec

�Constant �boolec�

�Constant �booleand

�Constant �booleior

�Constant �boolexor

�Constant �booleeqv

�Constant �boolenand

�Constant �boolenor

�Constant �booleandc

�Constant �booleandc�

�Constant �booleorc

�Constant �booleorc�

The function boole takes an operation op and two integers� and returns an

integer produced by performing the logical operation speci�ed by op on the

two integers� The precise values of the sixteen constants are implementation�

dependent� but they are suitable for use as the �rst argument to boole�

integer� � �

integer� �
 �
 Operation Performed

booleclr � � � � always �
booleset

 always �

boole
 � �

 integer�

boole� �
 �
 integer�

boolec

 � � complement of integer�

boolec�
 �
 � complement of integer�
booleand � � �
 and

booleior �

 inclusive or

boolexor �

 � exclusive or

booleeqv
 � �
 equivalence
exclusive nor�
boolenand

 � not�and

boolenor
 � � � not�or

booleandc
 �
 � � and complement of integer� with integer�

booleandc� � �
 � and integer� with complement of integer�

booleorc

 �
 or complement of integer� with integer�
booleorc�
 �

 or integer� with complement of integer�

��
 COMMON LISP

boole can therefore compute all sixteen logical functions on two arguments�

In general�

�boole booleand x y� � �logand x y�

and the latter is more perspicuous� However� boole is useful when it is nec�

essary to parameterize a procedure so that it can use one of several logical
operations�

�Function�lognot integer

This returns the bit�wise logical not of its argument� Every bit of the result

is the complement of the corresponding bit in the argument�

�logbitp j �lognot x�� � �not �logbitp j x��

�Function�logtest integer� integer�

logtest is a predicate that is true if any of the bits designated by the ��s in

integer� are ��s in integer��

�logtest x y� � �not �zerop �logand x y���

�Function�logbitp index integer

logbitp is true if the bit in integer whose index is index
that is� its weight

is �index� is a one�bit� otherwise it is false� For example�

�logbitp � �� is true

�logbitp � �� is false
�logbitp k n� � �ldbtest �byte
 k� n�

X�J�� voted in January ���� h�i to clarify that the index must be a non�

negative integer�

�Function�ash integer count

This function shifts integer arithmetically left by count bit positions if count

is positive� or right by �count bit positions if count is negative� The sign of

the result is always the same as the sign of integer�

Mathematically speaking� this operation performs the computation

	oor
integer � �count��

NUMBERS ���

Logically� this moves all of the bits in integer to the left� adding zero�bits

at the bottom� or moves them to the right� discarding bits�
In this context

the question of what gets shifted in on the left is irrelevant� integers� viewed

as strings of bits� are �half�in�nite�� that is� conceptually extend in�nitely far

to the left�� For example�

�logbitp j �ash n k�� � �and �� j k� �logbitp � j k� n��

�Function�logcount integer

The number of bits in integer is determined and returned� If integer is positive�

the
�bits in its binary representation are counted� If integer is negative� the

��bits in its two�s�complement binary representation are counted� The result
is always a non�negative integer� For example�

�logcount
�� � � �Binary representation is ������

�

�logcount
�� � � �Binary representation is ���

��

�logcount ��� � � �Binary representation is �����

�

�logcount ��� � � �Binary representation is ���

���
�

The following identity always holds�

�logcount x� � �logcount � �� x
���

� �logcount �lognot x��

�Function�integerlength integer

This function performs the computation

ceiling
log�
if integer � � then � integer else integer # ���

This is useful in two di	erent ways� First� if integer is non�negative� then its

value can be represented in unsigned binary form in a �eld whose width in bits

is no smaller than �integerlength integer�� Second� regardless of the sign of
integer� its value can be represented in signed binary two�s�complement form

in a �eld whose width in bits is no smaller than �� �integerlength integer�

�� For example�

�integerlength �� � �

�integerlength
� �

�integerlength �� � �

�integerlength �� � �

�integerlength 	� � �

��� COMMON LISP

�integerlength
� � �

�integerlength �� � �

�integerlength 	� � �

�integerlength �� � �

Compatibility note� This function is similar to the MacLisp function haulong�
One may de�ne haulong as

�haulong x� � �integerlength �abs x��

���
� Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary�width �eld of

contiguous bits appearing anywhere in an integer� Such a contiguous set of

bits is called a byte� Here the term byte does not imply some �xed number of

bits
such as eight�� rather a �eld of arbitrary and user�speci�able width�

The byte�manipulation functions use objects called byte speci
ers to desig�

nate a speci�c byte position within an integer� The representation of a byte

speci�er is implementation�dependent� in particular� it may or may not be a

number� It is su�cient to know that the function byte will construct one� and
that the byte�manipulation functions will accept them� The function byte ac�

cepts two integers representing the position and size of the byte and returns

a byte speci�er� Such a speci�er designates a byte whose width is size and

whose bits have weights �position�size�� through �position�

�Function�byte size position

byte takes two integers representing the size and position of a byte and returns

a byte speci�er suitable for use as an argument to byte�manipulation functions�

�Function�bytesize bytespec
�Function�byteposition bytespec

Given a byte speci�er� bytesize returns the size speci�ed as an integer�
byteposition similarly returns the position� For example�

�bytesize �byte j k�� � j

�byteposition �byte j k�� � k

NUMBERS ���

�Function�ldb bytespec integer

bytespec speci�es a byte of integer to be extracted� The result is returned as

a non�negative integer� For example�

�logbitp j �ldb �byte s p� n�� � �and �� j s� �logbitp �� j p� n��

The name of the function ldb means �load byte��

Compatibility note� The MacLisp function haipart can be implemented in terms
of ldb as follows�

�defun haipart �integer count�

�let ��x �abs integer���

�if �minusp count�

�ldb �byte � count�
� x�

�ldb �byte count �max
 � �integerlength x� count���

x����

If the argument integer is speci�ed by a form that is a place form acceptable

to setf� then setf may be used with ldb to modify a byte within the integer

that is stored in that place� The e	ect is to perform a dpb operation and then
store the result back into the place�

�Function�ldbtest bytespec integer

ldbtest is a predicate that is true if any of the bits designated by the byte

speci�er bytespec are ��s in integer� that is� it is true if the designated �eld is

non�zero�

�ldbtest bytespec n� � �not �zerop �ldb bytespec n���

�Function�maskfield bytespec integer

This is similar to ldb� however� the result contains the speci�ed byte of integer

in the position speci�ed by bytespec� rather than in position � as with ldb�

The result therefore agrees with integer in the byte speci�ed but has zero�bits

everywhere else� For example�

�ldb bs �maskfield bs n�� � �ldb bs n�

�logbitp j �maskfield �byte s p� n��

��� COMMON LISP

� �and �� j p� �� j �� p s�� �logbitp j n��

�maskfield bs n� � �logand n �dpb
 bs ���

If the argument integer is speci�ed by a form that is a place form acceptable

to setf� then setf may be used with maskfield to modify a byte within the

integer that is stored in that place� The e	ect is to perform a depositfield

operation and then store the result back into the place�

�Function�dpb newbyte bytespec integer

This returns a number that is the same as integer except in the bits speci�ed

by bytespec� Let s be the size speci�ed by bytespec� then the low s bits of

newbyte appear in the result in the byte speci�ed by bytespec� The integer
newbyte is therefore interpreted as being right�justi�ed� as if it were the result

of ldb� For example�

�logbitp j �dpb m �byte s p� n��

� �if �and �� j p� �� j �� p s���
�logbitp � j p� m�

�logbitp j n��

The name of the function dpb means �deposit byte��

�Function�depositfield newbyte bytespec integer

This function is to maskfield as dpb is to ldb� The result is an integer

that contains the bits of newbyte within the byte speci�ed by bytespec� and
elsewhere contains the bits of integer� For example�

�logbitp j �depositfield m �byte s p� n��

� �if �and �� j p� �� j �� p s���

�logbitp j m�

�logbitp j n��

Implementation note� If the bytespec is a constant� one may of course construct�
at compile time� an equivalent mask m� for example by computing �depositfield

	 bytespec
�� Given this mask m� one may then compute

�depositfield newbyte bytespec integer�

by computing

NUMBERS ���

�logior �logand newbyte m� �logand integer �lognot m���

where the result of �lognot m� can of course also be computed at compile time�
However� the following expression may also be used and may require fewer temporary
registers in some situations�

�logxor integer �logand m �logxor integer newbyte���

A related� though possibly less useful� trick is that

�let ��z �logand �logxor x y� m���

�setq x �logxor z x��

�setq y �logxor z y���

interchanges those bits of x and y for which the mask m is 	� and leaves alone those
bits of x and y for which m is
�

����� Random Numbers

The Common Lisp facility for generating pseudo�random numbers has been

carefully de�ned to make its use reasonably portable� While two implementa�
tions may produce di	erent series of pseudo�random numbers� the distribution

of values should be relatively independent of such machine�dependent aspects

as word size�

�Function�random number �optional state

�random n� accepts a positive number n and returns a number of the same
kind between zero
inclusive� and n
exclusive�� The number n may be an

integer or a
oating�point number� An approximately uniform choice distri�

bution is used� If n is an integer� each of the possible results occurs with

approximate� probability ��n�
The quali�er �approximate� is used because
of implementation considerations� in practice� the deviation from uniformity

should be quite small��

The argument state must be an object of type randomstate� it defaults to

the value of the variable
randomstate
� This object is used to maintain the

state of the pseudo�random�number generator and is altered as a side e	ect
of the random operation�

Compatibility note� random of zero arguments as de�ned in MacLisp has been
omitted because its value is too implementation
dependent �limited by �xnum
range��

��� COMMON LISP

Implementation note� In general� even if random of zero arguments were de�ned
as in MacLisp� it is not adequate to de�ne �random n� for integral n to be simply
�mod �random� n�� this fails to be uniformly distributed if n is larger than the largest
number produced by random� or even if n merely approaches this number� This is
another reason for omitting random of zero arguments in Common Lisp� Assuming
that the underlying mechanism produces �random bits� �possibly in chunks such as
�xnums�� the best approach is to produce enough random bits to construct an integer
k some number d of bits larger than �integerlength n� �see integerlength�� and
then compute �mod k n�� The quantity d should be at least �� and preferably �
 or
more�

To produce random �oating
point numbers in the half
open range �A�B�� accepted
practice �as determined by a look through the Collected Algorithms from the ACM�
particularly algorithms ���� �		� ���� and ��
� is to compute X � �B�A��A� where
X is a �oating
point number uniformly distributed over �
�
� ��
� and computed by
calculating a random integer N in the range �
�M � �typically by a multiplicative

congruential or linear
congruential method mod M � and then setting X � N �M �

See also ����� If one takes M � �f� where f is the length of the signi�cand of a
�oating
point number �and it is in fact common to choose M to be a power of ���
then this method is equivalent to the following assembly
language
level procedure�
Assume the representation has no hidden bit� Take a �oating
point
��� and clobber
its entire signi�cand with random bits� Normalize the result if necessary�

For example� on the DEC PDP
�
� assume that accumulator T is completely
random �all �	 bits are random�� Then the code sequence

LSH T�� �Clear high � bits� low �� are random
FSC T�	��� �Install exponent and normalize

will produce in T a random �oating
point number uniformly distributed over
�
�
� ��
�� �Instead of the LSH instruction� one could do

TLZ T�

 �That�s ���

 octal

but if the �	 random bits came from a congruential random
number generator� the
high
order bits tend to be �more random� than the low
order ones� and so the LSH
would be better for uniform distribution� Ideally all the bits would be the result of
high
quality randomness��

With a hidden
bit representation� normalization is not a problem� but dealing
with the hidden bit is� The method can be adapted as follows� Take a �oating

point ��
 and clobber the explicit signi�cand bits with random bits� this produces a
random �oating
point number in the range ���
� ��
�� Then simply subtract ��
� In
e�ect� we let the hidden bit creep in and then subtract it away again�

For example� on the DEC VAX� assume that register T is completely random �but
a little less random than on the PDP
�
� as it has only �� random bits�� Then the
code sequence

NUMBERS ���

INSV ��� X�	����
������T �Install correct sign bit and exponent
SUBF ��� F	�
�T �Subtract ��

will produce in T a random �oating
point number uniformly distributed over
�
�
� ��
�� Again� if the low
order bits are not random enough� then the instruc

tion

ROTL ���
�T

should be performed �rst�
Implementors may wish to consult reference ���� for a discussion of some e�cient

methods of generating pseudo
random numbers�

�Variable�
randomstate

This variable holds a data structure� an object of type randomstate� that

encodes the internal state of the random�number generator that random uses

by default� The nature of this data structure is implementation�dependent� It
may be printed out and successfully read back in� but may or may not function

correctly as a random�number state object in another implementation� A call

to random will perform a side e	ect on this data structure� Lambda�binding

this variable to a di	erent random�number state object will correctly save and
restore the old state object�

�Function�makerandomstate �optional state

This function returns a new object of type randomstate� suitable for use

as the value of the variable
randomstate
� If state is nil or omitted�

makerandomstate returns a copy of the current random�number state ob�

ject
the value of the variable
randomstate
�� If state is a state object� a
copy of that state object is returned� If state is t� then a new state object is

returned that has been �randomly� initialized by some means
such as by a

time�of�day clock��

Rationale� Common Lisp purposely provides no way to initialize a randomstate

object from a user
speci�ed �seed�� The reason for this is that the number of bits of
state information in a randomstate object may vary widely from one implementation
to another� and there is no simple way to guarantee that any user
speci�ed seed value
will be �random enough�� Instead� the initialization of randomstate objects is left
to the implementor in the case where the argument t is given to makerandomstate�
To handle the common situation of executing the same program many times in

a reproducible manner� where that program uses random� the following procedure
may be used�

��� COMMON LISP

�� Evaluate �makerandomstate t� to create a randomstate object�

�� Write that object to a �le� using print� for later use�

�� Whenever the program is to be run� �rst use read to create a copy of the
randomstate object from the printed representation in the �le� Then use the
randomstate object newly created by the read operation to initialize the random

number generator for the program�

It is for the sake of this procedure for reproducible execution that implementations
are required to provide a read�print syntax for objects of type randomstate�
It is also possible to make copies of a randomstate object directly without going

through the print�read process� simply by using the makerandomstate function to
copy the object� this allows the same sequence of random numbers to be generated
many times within a single program�

Implementation note� A recommended way to implement the type randomstate
is e�ectively to use the machinery for defstruct� The usual structure syntax may
then be used for printing randomstate objects� one might look something like

���S�RANDOMSTATE DATA ����	� �� ��������
����� �
�������� �����

where the components are of course completely implementation
dependent�

�Function�randomstatep object

randomstatep is true if its argument is a random�state object� and otherwise

is false�

�randomstatep x� � �typep x randomstate�

������ Implementation Parameters

The values of the named constants de�ned in this section are implementation�

dependent� They may be useful for parameterizing code in some situations�

�Constant �mostpositivefixnum

�Constant �mostnegativefixnum

The value of mostpositivefixnum is that �xnum closest in value to positive

in�nity provided by the implementation�

The value of mostnegativefixnum is that �xnum closest in value to nega�

tive in�nity provided by the implementation�

NUMBERS ��	

X�J�� voted in January ���� h��i to specify that fixnum must be a su�

pertype of the type �signedbyte
��� and additionally that the value of

arraydimensionlimit must be a �xnum� This implies that the value of

mostnegativefixnum must be less than or equal to ����� and the value of

mostpositivefixnum must be greater than or equal to both ��� � � and the
value of arraydimensionlimit�

�Constant �mostpositiveshortfloat

�Constant �leastpositiveshortfloat

�Constant �leastnegativeshortfloat

�Constant �mostnegativeshortfloat

The value of mostpositiveshortfloat is that short�format
oating�point

number closest in value to
but not equal to� positive in�nity provided by the

implementation�

The value of leastpositiveshortfloat is that positive short�format

oating�point number closest in value to
but not equal to� zero provided

by the implementation�

The value of leastnegativeshortfloat is that negative short�format

oating�point number closest in value to
but not equal to� zero provided

by the implementation�
Note that even if an implementation supports minus

zero as a distinct short
oating�point value� leastnegativeshortfloatmust

not be minus zero��

X�J�� voted in June ���� h��i to clarify that these de�nitions are to be

taken quite literally� In implementations that support denormalized numbers�

the values of leastpositiveshortfloat and leastnegativeshortfloat

may be denormalized�

The value of mostnegativeshortfloat is that short�format
oating�point

number closest in value to
but not equal to� negative in�nity provided by the

implementation�

��
 COMMON LISP

�Constant �mostpositivesinglefloat

�Constant �leastpositivesinglefloat

�Constant �leastnegativesinglefloat

�Constant �mostnegativesinglefloat

�Constant �mostpositivedoublefloat

�Constant �leastpositivedoublefloat

�Constant �leastnegativedoublefloat

�Constant �mostnegativedoublefloat

�Constant �mostpositivelongfloat

�Constant �leastpositivelongfloat

�Constant �leastnegativelongfloat

�Constant �mostnegativelongfloat

These are analogous to the constants de�ned above for short�format
oating�

point numbers�

�Constant �leastpositivenormalizedshortfloat

�Constant �leastnegativenormalizedshortfloat

X�J�� voted in June ���� h��i to add these constants to the language�

The value of leastpositivenormalizedshortfloat is that positive nor�

malized short�format
oating�point number closest in value to
but not equal
to� zero provided by the implementation� In implementations that do not

support denormalized numbers this may be the same as the value of least

positiveshortfloat�

The value of leastnegativenormalizedshortfloat is that negative nor�

malized short�format
oating�point number closest in value to
but not equal
to� zero provided by the implementation�
Note that even if an implemen�

tation supports minus zero as a distinct short
oating�point value� least

negativenormalizedshortfloat must not be minus zero�� In implementa�

tions that do not support denormalized numbers this may be the same as the

value of leastpositiveshortfloat�

NUMBERS ���

�Constant �leastpositivenormalizedsinglefloat

�Constant �leastnegativenormalizedsinglefloat

�Constant �leastpositivenormalizeddoublefloat

�Constant �leastnegativenormalizeddoublefloat

�Constant �leastpositivenormalizedlongfloat

�Constant �leastnegativenormalizedlongfloat

These are analogous to the constants de�ned above for short�format
oating�

point numbers�

�Constant �shortfloatepsilon

�Constant �singlefloatepsilon

�Constant �doublefloatepsilon

�Constant �longfloatepsilon

These constants have as value� for each
oating�point format� the smallest

positive
oating�point number e of that format such that the expression

�not � �float
 e� �� �float
 e� e���

is true when actually evaluated�

�Constant �shortfloatnegativeepsilon

�Constant �singlefloatnegativeepsilon

�Constant �doublefloatnegativeepsilon

�Constant �longfloatnegativeepsilon

These constants have as value� for each
oating�point format� the smallest

positive
oating�point number e of that format such that the expression

�not � �float
 e� � �float
 e� e���

is true when actually evaluated�

��

Characters

Common Lisp provides a character data type� objects of this type represent

printed symbols such as letters�

In general� characters in Common Lisp are not true objects� eq cannot be

counted upon to operate on them reliably� In particular� it is possible that

the expression

�let ��x z� �y z�� �eq x y��

may be false rather than true� if the value of z is a character�

Rationale� This odd breakdown of eq in the case of characters allows the implemen

tor enough design freedom to produce exceptionally e�cient code on conventional
architectures� In this respect the treatment of characters exactly parallels that of
numbers� as described in chapter ���

If two objects are to be compared for �identity�� but either might be a

character� then the predicate eql is probably appropriate�

X�J�� voted in March ���� h��i to approve the following de�nitions and

terminology for use in discussing character facilities in Common Lisp�

A character repertoire de�nes a collection of characters independent of their
speci�c rendered image or font�
This corresponds to the mathematical notion

of a set� but the term character set is avoided here because it has been used in

the past to mean both what is here called a repertoire and what is here called

a coded character set�� Character repertoires are speci�ed independent of
coding and their characters are identi�ed only with a unique character label�

a graphic symbol� and a character description� As an example� table ����

shows the character labels� graphic symbols� and character descriptions for

all of the characters in the repertoire standardchar except for ����Space and

����Newline�

���

CHARACTERS ���

Table ����� Standard Character Labels� Glyphs� and Descriptions

SM
� � commercial at SD	� grave accent

SP
� � exclamation mark LA
� A capital A LA
	 a small a

SP
� � quotation mark LB
� B capital B LB
	 b small b

SM
	 ��� number sign LC
� C capital C LC
	 c small c

SC
� dollar sign LD
� D capital D LD
	 d small d

SM
� � percent sign LE
� E capital E LE
	 e small e

SM
� � ampersand LF
� F capital F LF
	 f small f

SP
� apostrophe LG
� G capital G LG
	 g small g

SP
� � left parenthesis LH
� H capital H LH
	 h small h

SP

 � right parenthesis LI
� I capital I LI
	 i small i

SM
� � asterisk LJ
� J capital J LJ
	 j small j

SA
	 � plus sign LK
� K capital K LK
	 k small k

SP
� � comma LL
� L capital L LL
	 l small l

SP	
 hyphen or minus sign LM
� M capital M LM
	 m small m

SP		 � period or full stop LN
� N capital N LN
	 n small n

SP	� � solidus LO
� O capital O LO
	 o small o

ND	

 digit
 LP
� P capital P LP
	 p small p

ND
	 	 digit � LQ
� Q capital Q LQ
	 q small q

ND
� � digit � LR
� R capital R LR
	 r small r

ND
� � digit � LS
� S capital S LS
	 s small s

ND
� � digit � LT
� T capital T LT
	 t small t

ND
� � digit � LU
� U capital U LU
	 u small u

ND
� � digit 	 LV
� V capital V LV
	 v small v

ND

 digit � LW
� W capital W LW
	 w small w

ND
� � digit � LX
� X capital X LX
	 x small x

ND
� � digit � LY
� Y capital Y LY
	 y small y

SP	� � colon LZ
� Z capital Z LZ
	 z small z

SP	� � semicolon SM
� � left square bracket SM		 ! left curly bracket

SA
� � less
than sign SM

 � reverse solidus SM	� " vertical bar

SA
� equals sign SM
� � right square bracket SM	� # right curly bracket

SA
� � greater
than sign SD	� circum�ex accent SD	� tilde

SP	� � question mark SP
� $ low line

The characters in this table plus the space and newline characters make up the
standard Common Lisp character repertoire �type standardchar�� The character
labels and character descriptions shown here are taken from ISO standard 	�����
� The �rst character of the label categorizes the character as Latin� Numeric� or
Special�

��� COMMON LISP

Every Common Lisp implementation must support the standard character

repertoire as well as repertoires named basecharacter� extendedcharacter�

and character� Other repertoires may be supported as well� X�J�� voted in

June ���� h���i to specify that names of repertoires may be used as type spec�

i�ers� Such types must be subtypes of character� that is� in a given imple�
mentation the repertoire named character must encompass all the character

objects supported by that implementation�

A coded character set is a character repertoire plus an encoding that provides

a bijective mapping between each character in the set and a number
typically

a non�negative integer� that serves as the character representation� There are
numerous internationally standardized coded character sets�

A character may be included in one or more character repertoires� Similarly�

a character may be included in one or more coded character sets�

To ensure that each character is uniquely de�ned� we may use a universal

registry of characters that incorporates a collection of distinguished repertoires

called character scripts that form an exhaustive partition of all characters�
That is� each character is included in exactly one character script�
Draft ISO

����� Coded Character Set Standard� if eventually approved as a standard�

may become the practical realization of this universal registry��

X�J�� voted in June ���� h���i to specify that an implementation must

document the character scripts it supports� For each script the documen�
tation should discuss character labels� glyphs� and descriptions� any canoni�

calization processes performed by the reader that result in treating distinct

characters as equivalent� any canonicalization performed by format in pro�

cessing directives� the behavior of charupcase� chardowncase� and the pred�
icates alphacharp� uppercasep� lowercasep� bothcasep� graphiccharp�

alphanumericp� charequal� charnotequal� charlessp� chargreaterp�

charnotgreaterp� and charnotlessp for characters in the script� and be�

havior with respect to input and output� including coded character sets and

external coding schemes��

In Common Lisp a character data object is identi�ed by its character code�
a unique numerical code� Each character code is composed from a character

script and a character label� The convention by which a character script

and character label compose a character code is implementation dependent�

�X�J�� did not approve all parts of the proposal from its Subcommittee on
Characters� As a result� some features that were approved appear to have no

purpose� X�J�� wished to support the standardization by ISO of character

scripts and coded character sets but declined to design facilities for use in

Common Lisp until there has been more progress by ISO in this area� The

approval of the terminology for scripts and labels gives a hint to implementors

CHARACTERS ���

of likely directions for Common Lisp in the future��

A character object that is classi�ed as graphic� or displayable� has an as�

sociated glpyh� The glyph is the visual representation of the character� All

other character data objects are classi�ed as non�graphic�

This terminology assigns names to Common Lisp concepts in a manner
consistent with related concepts discussed in various ISO standards for coded

character sets and provides a demarcation between standardization activi�

ties� For example� facilities for manipulating characters� character scripts�

and coded character sets are properly de�ned by a Common Lisp standard�
but Common Lisp should not de�ne standard character sets or standard char�

acter scripts�

����� Character Attributes

Every character has three attributes� code� bits� and font� The code attribute

is intended to distinguish among the printed glyphs and formatting functions

for characters� The bits attribute allows extra
ags to be associated with a
character� The font attribute permits a speci�cation of the style of the glyphs

such as italics��

The treatment of character attributes in Common Lisp has not been entirely

successful� The font attribute has not been widely used� for two reasons�

First� a single integer� limited in most implementations to ��� at most� is
not an adequate� convenient� or portable representation for a font� Second�

in many applications where font information matters it is more convenient

or more e�cient to represent font information as shift codes that apply to

many characters� rather than attaching font information separately to each
character�

As for the bits attribute� it was intended to support character input from

extended keyboards having extra �shift� keys� This� in turn� was imagined

to support the programming of a portable EMACS�like editor in Common

Lisp�
The EMACS command set is most convenient when the keyboard has
separate �control� and �meta� keys�� The bits attribute has been used in

the implementation of such editors and other interactive interfaces� However�

software that relies crucially on these extended characters will not be portable

to Common Lisp implementations that do not support them�
X�J�� voted in March ���� h��i and in June ���� h���i to revise consid�

erably the treatment of characters in the language� The bits and font at�

tributes are eliminated� instead a character may have implementation�de
ned

attributes� The treatment of such attributes by existing character�handling

functions is carefully constrained by certain rules�

��� COMMON LISP

Implementations are free to continue to support bits and font attributes�

but they are formally regarded as implementation�de�ned attributes� The

rules are generally consistent with the previous treatment of the bits and font

attributes� My guess is that the font attribute as currently de�ned will wither

away� but the bits attribute as de�ned by the �rst edition will continue to
be supported as a de facto standard extension� because it �lls a useful small

purpose�

�Constant �charcodelimit

The value of charcodelimit is a non�negative integer that is the upper exclu�

sive bound on values produced by the function charcode� which returns the
code component of a given character� that is� the values returned by charcode

are non�negative and strictly less than the value of charcodelimit�

Common Lisp does not at present explicitly guarantee that all integers

between zero and the value of charcodelimit are valid character codes� and

so it is wise in any case for the programmer to assume that the space of
assigned character codes may be sparse�

�Constant �charfontlimit
��

The value of charfontlimit is a non�negative integer that is the upper exclu�

sive bound on values produced by the function charfont� which returns the

font component of a given character� that is� the values returned by charfont

are non�negative and strictly less than the value of charfontlimit�

Implementation note� No Common Lisp implementation is required to support
non
zero font attributes� if it does not� then charfontlimit should be 	�

X�J�� voted in March ���� h��i to eliminate charfontlimit�

Experience has shown that numeric codes are not an especially convenient�

let alone portable� representation for font information� A system based on
typeface names� type styles� and point sizes would be much better�
Macintosh

software developers made the same discovery and have recently converted to

a new font identi�cation scheme��

�Constant �charbitslimit
��

The value of charbitslimit is a non�negative integer that is the upper exclu�

sive bound on values produced by the function charbits� which returns the

��

CHARACTERS ���

bits component of a given character� that is� the values returned by charbits

are non�negative and strictly less than the value of charbitslimit� Note that

the value of charbitslimit will be a power of ��

Implementation note� No Common Lisp implementation is required to support
non
zero bits attributes� if it does not� then charbitslimit should be 	�

X�J�� voted in March ���� h��i to eliminate charbitslimit�

����� Predicates on Characters

The predicate characterpmay be used to determine whether any Lisp object
is a character object�

�Function�standardcharp char

The argument char must be a character object� standardcharp is true if the

argument is a �standard character�� that is� an object of type standardchar�

Note that any character with a non�zero bits or font attribute is non�
standard�

�Function�graphiccharp char

The argument char must be a character object� graphiccharp is true if the
argument is a �graphic�
printing� character� and false if it is a �non�graphic�

formatting or control� character� Graphic characters have a standard textual

representation as a single glyph� such as A or
 or � By convention� the space

character is considered to be graphic� Of the standard characters all but
����Newline are graphic� The semi�standard characters ����Backspace� ����Tab�

����Rubout� ����Linefeed� ����Return� and ����Page are not graphic�

Programs may assume that graphic characters of font � are all of the same
width when printed� for example� for purposes of columnar formatting�
This

does not prohibit the use of a variable�pitch font as font �� but merely implies

that every implementation of Common Lisp must provide some mode of oper�

ation in which font � is a �xed�pitch font�� Portable programs should assume
that� in general� non�graphic characters and characters of other fonts may be

of varying widths�

Any character with a non�zero bits attribute is non�graphic�

��

��� COMMON LISP

�Function�stringcharp char
��

The argument char must be a character object� stringcharp is true if char

can be stored into a string� and otherwise is false� Any character that satis�es

standardcharp also satis�es stringcharp� others may also�

X�J�� voted in March ���� h��i to eliminate stringcharp�

�Function�alphacharp char

The argument char must be a character object� alphacharp is true if the

argument is an alphabetic character� and otherwise is false�

If a character is alphabetic� then it is perforce graphic� Therefore any

character with a non�zero bits attribute cannot be alphabetic� Whether a

character is alphabetic may depend on its font number�
Of the standard characters
as de�ned by standardcharp�� the letters A

through Z and a through z are alphabetic�

�Function�uppercasep char

�Function�lowercasep char

�Function�bothcasep char

The argument char must be a character object�

uppercasep is true if the argument is an uppercase character� and otherwise

is false�

lowercasep is true if the argument is a lowercase character� and otherwise
is false�

bothcasep is true if the argument is an uppercase character and there

is a corresponding lowercase character
which can be obtained using

chardowncase�� or if the argument is a lowercase character and there is a cor�
responding uppercase character
which can be obtained using charupcase��

If a character is either uppercase or lowercase� it is necessarily alphabetic

and therefore is graphic� and therefore has a zero bits attribute�� However�

it is permissible in theory for an alphabetic character to be neither uppercase

nor lowercase
in a non�Roman font� for example��
Of the standard characters
as de�ned by standardcharp�� the letters A

through Z are uppercase and a through z are lowercase�

�Function�digitcharp char �optional �radix
��

The argument char must be a character object� and radix must be a non�

negative integer� If char is not a digit of the radix speci�ed by radix� then

CHARACTERS ��	

digitcharp is false� otherwise it returns a non�negative integer that is the

�weight� of char in that radix�

Digits are necessarily graphic characters�

Of the standard characters
as de�ned by standardcharp�� the characters �

through �� A through Z� and a through z are digits� The weights of � through

� are the integers � through �� and of A through Z
and also a through z� are

�� through ��� digitcharp returns the weight for one of these digits if and
only if its weight is strictly less than radix� Thus� for example� the digits for

radix �� are

�
 � � � � � 	 � � A B C D E F

Here is an example of the use of digitcharp�

�defun convertstringtointeger �str �optional �radix
���

�Given a digit string and optional radix� return an integer��

�do ��j � �� j
��

�n � �� �
 n radix�

�or �digitcharp �char str j� radix�

�error �Bad radix D digit� C�

radix

�char str j������

�� j �length str�� n���

�Function�alphanumericp char

The argument char must be a character object� alphanumericp is true if char

is either alphabetic or numeric� By de�nition�

�alphanumericp x�

� �or �alphacharp x� �not �null �digitcharp x����

Alphanumeric characters are therefore necessarily graphic
as de�ned by the

predicate graphiccharp��

Of the standard characters
as de�ned by standardcharp�� the characters

� through �� A through Z� and a through z are alphanumeric�

��
 COMMON LISP

�Function�char character �rest morecharacters

�Function�char character �rest morecharacters

�Function�char� character �rest morecharacters

�Function�char� character �rest morecharacters

�Function�char� character �rest morecharacters
�Function�char� character �rest morecharacters

The arguments must all be character objects� These functions compare the

objects using the implementation�dependent total ordering on characters� in

a manner analogous to numeric comparisons by and related functions�

The total ordering on characters is guaranteed to have the following prop�
erties�

� The standard alphanumeric characters obey the following partial ordering�

A�B�C�D�E�F�G�H�I�J�K�L�M�N�O�P�Q�R�S�T�U�V�W�X�Y�Z

a�b�c�d�e�f�g�h�i�j�k�l�m�n�o�p�q�r�s�t�u�v�w�x�y�z

��
�����������	����

either ��A or Z��

either ��a or z��

This implies that alphabetic ordering holds within each case
upper and

lower�� and that the digits as a group are not interleaved with letters� How�
ever� the ordering or possible interleaving of uppercase letters and lowercase

letters is unspeci�ed�
Note that both the ASCII and the EBCDIC char�

acter sets conform to this speci�cation� As it happens� neither ordering

interleaves uppercase and lowercase letters� in the ASCII ordering� ��A and

Z�a� whereas in the EBCDIC ordering z�A and Z����

� If two characters have the same bits and font attributes� then their ordering
��

by char� is consistent with the numerical ordering by the predicate � on

their code attributes�

� If two characters di	er in any attribute
code� bits� or font�� then they are

di	erent�

X�J�� voted in March ���� h��i to replace the notion of bits and font

attributes with that of implementation�de�ned attributes�

� If two characters have identical implementation�de�ned attributes� then

their ordering by char� is consistent with the numerical ordering by the
predicate � on their codes� and similarly for char�� char�� and char��

� If two characters di	er in any implementation�de�ned attribute� then they

are not char�

CHARACTERS ���

The total ordering is not necessarily the same as the total ordering on the

integers produced by applying charint to the characters
although it is a
reasonable implementation technique to use that ordering��

While alphabetic characters of a given case must be properly ordered� they

need not be contiguous� thus �char� ����a x ����z� is not a valid way of de�

termining whether or not x is a lowercase letter� That is why a separate

lowercasep predicate is provided�

�char ����d ����d� is true�

�char ����d ����d� is false�

�char ����d ����x� is false�

�char ����d ����x� is true�
�char ����d ����D� is false�

�char ����d ����D� is true�

�char ����d ����d ����d ����d� is true�

�char ����d ����d ����d ����d� is false�
�char ����d ����d ����x ����d� is false�

�char ����d ����d ����x ����d� is false�

�char ����d ����y ����x ����c� is false�

�char ����d ����y ����x ����c� is true�

�char ����d ����c ����d� is false�
�char ����d ����c ����d� is false�

�char� ����d ����x� is true�

�char� ����d ����x� is true�

�char� ����d ����d� is false�
�char� ����d ����d� is true�

�char� ����a ����e ����y ����z� is true�

�char� ����a ����e ����y ����z� is true�

�char� ����a ����e ����e ����y� is false�

�char� ����a ����e ����e ����y� is true�
�char� ����e ����d� is true�

�char� ����e ����d� is true�

�char� ����d ����c ����b ����a� is true�

�char� ����d ����c ����b ����a� is true�
�char� ����d ����d ����c ����a� is false�

�char� ����d ����d ����c ����a� is true�

�char� ����e ����d ����b ����c ����a� is false�

�char� ����e ����d ����b ����c ����a� is false�

�char� ����z ����A� may be true or false�

��� COMMON LISP

�char� ����Z ����a� may be true or false�

There is no requirement that �eq c
 c�� be true merely because �char

c
 c�� is true� While eq may distinguish two character objects that char

does not� it is distinguishing them not as characters� but in some sense on

the basis of a lower�level implementation characteristic�
Of course� if �eq c

c�� is true� then one may expect �char c
 c�� to be true�� However� eql

and equal compare character objects in the same way that char does�

�Function�charequal character �rest morecharacters

�Function�charnotequal character �rest morecharacters

�Function�charlessp character �rest morecharacters

�Function�chargreaterp character �rest morecharacters
�Function�charnotgreaterp character �rest morecharacters

�Function�charnotlessp character �rest morecharacters

The predicate charequal is like char� and similarly for the others� ex�
��

cept according to a di	erent ordering such that di	erences of bits attributes
and case are ignored� and font information is taken into account in an

implementation�dependent manner�

X�J�� voted in March ���� h��i to replace the notion of bits and font

attributes with that of implementation�de�ned attributes� The e	ect� if any� of

each such attribute on the behavior of charequal� charnotequal� charlessp�
chargreaterp� charnotgreaterp� and charnotlessp must be speci�ed as

part of the de�nition of that attribute�

For the standard characters� the ordering is such that Aa� Bb� and so on� up

to Zz� and furthermore either ��A or Z��� For example�

�charequal ����A ����a� is true�

�char ����A ����a� is false�
�charequal ����A ����ControlA� is true�

The ordering may depend on the font information� For example� an im�
���

plementation might decree that �charequal ����p ����p� be true� but that

�charequal ����p ������ be false
where ����� is a lowercase p in some font��

Assuming italics to be in font � and the Greek alphabet in font �� this is the
same as saying that �charequal �����p ���
�p� may be true and at the same

time �charequal �����p �����p� may be false�

CHARACTERS ���

����� Character Construction and Selection

These functions may be used to extract attributes of a character and to con�

struct new characters�

�Function�charcode char

The argument char must be a character object� charcode returns the code
attribute of the character object� this will be a non�negative integer less than

the
normal� value of the variable charcodelimit�

This is usually what you need in order to treat a character as an index into a

vector� The length of the vector should then be equal to charcodelimit� Be

careful how you initialize this vector� remember that you cannot necessarily
expect all non�negative integers less than charcodelimit to be valid character

codes�

�Function�charbits char
��

The argument char must be a character object� charbits returns the bits

attribute of the character object� this will be a non�negative integer less than

the
normal� value of the variable charbitslimit�

X�J�� voted in March ���� h��i to eliminate charbits�

�Function�charfont char
���

The argument char must be a character object� charfont returns the font

attribute of the character object� this will be a non�negative integer less than

the
normal� value of the variable charfontlimit�

X�J�� voted in March ���� h��i to eliminate charfont�

The references to the �normal� values of the �variables� charcodelimit�

charbitslimit� and charfontlimit in the descriptions of charcode�

charbits� and charfont were an oversight on my part� Early in the design
of Common Lisp they were indeed variables� but they are at present de�ned

to be constants� and their values therefore are always normal and should not

change� But this point is now moot�

�Function�codechar code �optional �bits �� �font ��

All three arguments must be non�negative integers� If it is possible in the
��

implementation to construct a character object whose code attribute is code�

��

��� COMMON LISP

whose bits attribute is bits� and whose font attribute is font� then such an

object is returned� otherwise nil is returned�

For any integers c� b� and f� if �codechar c b f� is not nil then

�charcode �codechar c b f�� � c

�charbits �codechar c b f�� � b
�charfont �codechar c b f�� � f

If the font and bits attributes of a character object c are zero� then it is the

case that

�char �codechar �charcode c�� c�

is true�

X�J�� voted in March ���� h��i to eliminate the bits and font arguments

from the speci�cation of codechar�

�Function�makechar char �optional �bits �� �font ��
��

The argument char must be a character� and bits and font must be non�

negative integers� If it is possible in the implementation to construct a char�

acter object whose code attribute is the same as the code attribute of char�

whose bits attribute is bits� and whose font attribute is font� then such an
object is returned� otherwise nil is returned�

If bits and font are zero� then makechar cannot fail� This implies that for

every character object one can �turn o	� its bits and font attributes�

X�J�� voted in March ���� h��i to eliminate makechar�

����� Character Conversions

These functions perform various transformations on characters� including case

conversions�

�Function�character object

The function character coerces its argument to be a character if possible�

see coerce�

�character x� � �coerce x character�

CHARACTERS ���

�Function�charupcase char

�Function�chardowncase char

The argument char must be a character object� charupcase attempts to

convert its argument to an uppercase equivalent� chardowncase attempts to

convert its argument to a lowercase equivalent�

charupcase returns a character object with the same font and bits at�
���

tributes as char� but with possibly a di	erent code attribute� If the code

is di	erent from char�s� then the predicate lowercasep is true of char� and

uppercasep is true of the result character� Moreover� if �char �charupcase

x� x� is not true� then it is true that

�char �chardowncase �charupcase x�� x�

Similarly� chardowncase returns a character object with the same font and

bits attributes as char� but with possibly a di	erent code attribute� If the code

is di	erent from char�s� then the predicate uppercasep is true of char� and

lowercasep is true of the result character� Moreover� if �char �chardown�

case x� x� is not true� then it is true that

�char �charupcase �chardowncase x�� x�

Note that the action of charupcase and chardowncase may depend on the

bits and font attributes of the character� In particular� they have no e	ect
on a character with a non�zero bits attribute� because such characters are by

de�nition not alphabetic� See alphacharp�

X�J�� voted in March ���� h��i to replace the notion of bits and font

attributes with that of implementation�de�ned attributes� The e	ect of

charupcase and chardowncase is to preserve implementation�de�ned at�

tributes�

�Function�digitchar weight �optional �radix
�� �font ��

All arguments must be integers� digitchar determines whether or not it is

possible to construct a character object whose font attribute is font� and whose
code is such that the result character has the weight weight when considered

as a digit of the radix radix
see the predicate digitcharp�� It returns such

a character if that is possible� and otherwise returns nil�

digitchar cannot return nil if font is zero� radix is between � and ��

inclusive� and weight is non�negative and less than radix�

If more than one character object can encode such a weight in the given

radix� one will be chosen consistently by any given implementation� moreover�

��� COMMON LISP

among the standard characters� uppercase letters are preferred to lowercase

letters� For example�

�digitchar 	� � ����	

�digitchar
�� � nil

�digitchar
�
�� � ����C �not ����c

�digitchar � �� � nil

�digitchar
 �� � ����

Note that no argument is provided for specifying the bits component of the
returned character� because a digit cannot have a non�zero bits component�

The reasoning is that every digit is graphic
see digitcharp� and no graphic

character has a non�zero bits component
see graphiccharp��

X�J�� voted in March ���� h��i to eliminate the font argument from the
speci�cation of digitchar�

�Function�charint char

The argument char must be a character object� charint returns a non�
negative integer encoding the character object�

If the font and bits attributes of char are zero� then charint returns the

same integer charcode would� Also�

�char c
 c�� � � �charint c
� �charint c���

for characters c
 and c��

This function is provided primarily for the purpose of hashing characters�

�Function�intchar integer
���

The argument must be a non�negative integer� intchar returns a character

object c such that �charint c� is equal to integer� if possible� otherwise

intchar returns false�

X�J�� voted in March ���� h��i to eliminate intchar�

�Function�charname char

The argument char must be a character object� If the character has a name�

then that name
a string� is returned� otherwise nil is returned� All characters

that have zero font and bits attributes and that are non�graphic
do not satisfy

the predicate graphiccharp� have names� Graphic characters may or may not

have names�

CHARACTERS ���

The standard newline and space characters have the respective names

Newline and Space� The semi�standard characters have the names Tab� Page�

Rubout� Linefeed� Return� and Backspace�

Characters that have names can be notated as ���� followed by the name�

See section �������� Although the name may be written in any case� it is
stylish to capitalize it thus� ����Space�

charname will only locate �simple� character names� it will not construct

names such as ControlSpace on the basis of the character�s bits attribute�

The easiest way to get a name that includes the bits attribute of a character
c is �format nil � �C� c��

�Function�namechar name

The argument name must be an object coerceable to a string as if by the

function string� If the name is the same as the name of a character object

as determined by stringequal�� that object is returned� otherwise nil is

returned�

����� Character Control	Bit Functions
���

Common Lisp provides explicit names for four bits of the bits attribute� Con�

trol� Meta� Hyper� and Super� The following de�nitions are provided for ma�
nipulating these� Each Common Lisp implementation provides these functions

for compatibility� even if it does not support any or all of the bits named below�

�Constant �charcontrolbit
���

�Constant �charmetabit

�Constant �charsuperbit

�Constant �charhyperbit

The values of these named constants are the �weights�
as integers� for the
four named control bits� The weight of the control bit is
� of the meta bit�

�� of the super bit� �� and of the hyper bit� ��

If a given implementation of Common Lisp does not support a particular

bit� then the corresponding constant is zero instead�

X�J�� voted in March ���� h��i to eliminate all four of the constants

charcontrolbit� charmetabit� charsuperbit� and charhyperbit�

When Common Lisp was �rst designed� keyboards with �extra bits� were

relatively rare� The bits attribute was originally designed to support input

from keyboards in use at Stanford and M�I�T� circa �����

��� COMMON LISP

Since that time such extended keyboards have come into wider use� Notable

here are the keyboards associated with certain personal computers and work�

stations� For example� in some speci�c applications the command and option

keys of Apple Macintosh keyboards have had the connotations of control and

meta� Macintosh II extended keyboards also have keys marked control whose
use is analogous to that of hyper on the old M�I�T� keyboards� IBM PC per�

sonal computer keyboards have alt keys that function much like meta keys�

similarly� keyboards on Sun workstations have keys very much like meta keys

but labelled left and right�

�Function�charbit char name
���

charbit takes a character object char and the name of a bit� and returns

non�nil if the bit of that name is set in char� or nil if the bit is not set in

char� For example�

�charbit ����ControlX �control� � true

Valid values for name are implementation�dependent� but typically are

�control� �meta� �hyper� and �super� It is an error to give charbit the

name of a bit not supported by the implementation�

If the argument char is speci�ed by a form that is a place form acceptable to

setf� then setf may be used with charbit to modify a bit of the character
stored in that place� The e	ect is to perform a setcharbit operation and

then store the result back into the place�

X�J�� voted in March ���� h��i to eliminate charbit�

�Function�setcharbit char name newvalue
���

charbit takes a character object char� the name of a bit� and a
ag� A

character is returned that is just like char except that the named bit is set or

reset according to whether newvalue is non�nil or nil� Valid values for name

are implementation�dependent� but typically are �control� �meta� �hyper�

and �super� For example�

�setcharbit ����X �control t� � ����ControlX

�setcharbit ����ControlX �control t� � ����ControlX

�setcharbit ����ControlX �control nil� � ����X

X�J�� voted in March ���� h��i to eliminate setcharbit�

��

Sequences

The type sequence encompasses both lists and vectors
one�dimensional ar�

rays�� While these are di	erent data structures with di	erent structural prop�
erties leading to di	erent algorithmic uses� they do have a common property�

each contains an ordered set of elements� Note that nil is considered to be a

sequence of length zero�

Some operations are useful on both lists and arrays because they deal with

ordered sets of elements� One may ask the number of elements� reverse the

ordering� extract a subsequence� and so on� For such purposes Common Lisp
provides a set of generic functions on sequences�

Note that this remark� predating the design of the Common Lisp Object
System� uses the term �generic� in a generic sense� and not necessarily in the

technical sense used by CLOS
see chapter ���

elt reverse map remove

length nreverse some removeduplicates

subseq concatenate every delete

copyseq position notany deleteduplicates

fill find notevery substitute

replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version� Such versions are

indicated by adding a su�x
or occasionally a pre�x� to the basic name of the
operation� In addition� many operations accept one or more optional keyword

arguments that can modify the operation in various ways�

If the operation requires testing sequence elements according to some cri�

terion� then the criterion may be speci�ed in one of two ways� The basic

operation accepts an item� and elements are tested for being eql to that

item�
A test other than eql can be speci�ed by the �test or �testnot

��	

��
 COMMON LISP

keyword� It is an error to use both of these keywords in the same call�� The

variants formed by adding if and ifnot to the basic operation name do not

take an item� but instead a one�argument predicate� and elements are tested

for satisfying or not satisfying the predicate� As an example�

�remove item sequence�

returns a copy of sequence from which all elements eql to item have been

removed�

�remove item sequence �test ��� equal�

returns a copy of sequence from which all elements equal to item have been

removed�

�removeif ��� numberp sequence�

returns a copy of sequence from which all numbers have been removed�

If an operation tests elements of a sequence in any manner� the keyword

argument �key� if not nil� should be a function of one argument that will

extract from an element the part to be tested in place of the whole element�

For example� the e	ect of the MacLisp expression �assq item seq� could be
obtained by

�find item sequence �test ��� eq �key ��� car�

This searches for the �rst element of sequence whose car is eq to item�

X�J�� voted in June ���� h��i to allow the �key function to be only of
type symbol or function� a lambda�expression is no longer acceptable as a

functional argument� One must use the function special form or the abbre�

viation ��� before a lambda�expression that appears as an explicit argument

form�

For some operations it can be useful to specify the direction in which the
sequence is conceptually processed� In this case the basic operation normally

processes the sequence in the forward direction� and processing in the re�

verse direction is indicated by a non�nil value for the keyword argument

�fromend�
The processing order speci�ed by the �fromend is purely concep�

tual� Depending on the object to be processed and on the implementation�
the actual processing order may be di	erent� For this reason a user�supplied

test function should be free of side e	ects��

Many operations allow the speci�cation of a subsequence to be operated

upon� Such operations have keyword arguments called �start and �end�

These arguments should be integer indices into the sequence� with start � end

SEQUENCES ���

it is an error if start � end�� They indicate the subsequence starting with and

including element start and up to but excluding element end� The length of the

subsequence is therefore end�start � If start is omitted� it defaults to zero� and

if end is omitted or nil� it defaults to the length of the sequence� Therefore

if both start and end are omitted� the entire sequence is processed by default�
For the most part� subsequence speci�cation is permitted purely for the sake

of e�ciency� one could simply call subseq instead to extract the subsequence

before operating on it� Note� however� that operations that calculate indices

return indices into the original sequence� not into the subsequence�

�position ����b �foobar� �start � �end �� � �

�position ����b �subseq �foobar� � ��� �

If two sequences are involved� then the keyword arguments �start
� �end
�
�start�� and �end� are used to specify separate subsequences for each se�

quence�

X�J�� voted in June ���� h���i
and further clari�cation was voted in

January ���� h���i� to specify that these rules apply not only to all built�in

functions that have keyword parameters named �start� �start
� �start��
�end� �end
� or �end� but also to functions such as subseq that take required

or optional parameters that are documented as being named start or end�

� A �start� argument must always be a non�negative integer and defaults to

zero if not supplied� it is not permissible to pass nil as a �start� argument�

� An �end� argument must be either a non�negative integer or nil
which
indicates the end of the sequence� and defaults to nil if not supplied�

therefore supplying nil is equivalent to not supplying such an argument�

� If the �end� argument is an integer� it must be no greater than the active

length of the corresponding sequence
as returned by the function length��

� The default value for the �end� argument is the active length of the corre�

sponding sequence�

� The �start� value
after defaulting� if necessary� must not be greater than

the corresponding �end� value
after defaulting� if necessary��

This may be summarized as follows� Let x be the sequence within which

indices are to be considered� Let s be the �start� argument for that sequence

of any standard function� whether explicitly speci�ed or defaulted� through

omission� to zero� Let e be the �end� argument for that sequence of any

standard function� whether explicitly speci�ed or defaulted� through omission

��� COMMON LISP

or an explicitly passed nil value� to the active length of x� as returned by

length� Then it is an error if the test �� � s e �length x�� is not true�

For some functions� notably remove and delete� the keyword argument
�count is used to specify how many occurrences of the item should be a	ected�

If this is nil or is not supplied� all matching items are a	ected�

In the following function descriptions� an element x of a sequence �satis�es
the test� if any of the following holds�

� A basic function was called� testfn was speci�ed by the keyword �test� and

�funcall testfn item �keyfn x�� is true�

� A basic function was called� testfn was speci�ed by the keyword �testnot�

and �funcall testfn item �keyfn x�� is false�

� An if function was called� and �funcall predicate �keyfn x�� is true�

� An ifnot function was called� and �funcall predicate �keyfn x�� is false�

In each case keyfn is the value of the �key keyword argument
the default

being the identity function�� See� for example� remove�

In the following function descriptions� two elements x and y taken from

sequences �match� if either of the following holds�

� testfn was speci�ed by the keyword �test� and �funcall testfn �keyfn x�

�keyfn y�� is true�

� testfn was speci�ed by the keyword �testnot� and �funcall testfn �keyfn
x� �keyfn y�� is false�

See� for example� search�

X�J�� voted in June ���� h��i to allow the testfn or predicate to be only

of type symbol or function� a lambda�expression is no longer acceptable as a

functional argument� One must use the function special form or the abbre�

viation ��� before a lambda�expression that appears as an explicit argument
form�

You may depend on the order in which arguments are given to testfn� this

permits the use of non�commutative test functions in a predictable manner�
The order of the arguments to testfn corresponds to the order in which those

arguments
or the sequences containing those arguments� were given to the

sequence function in question� If a sequence function gives two elements from

the same sequence argument to testfn� they are given in the same order in

which they appear in the sequence�

SEQUENCES ���

Whenever a sequence function must construct and return a new vector�

it always returns a simple vector
see section ����� Similarly� any strings

constructed will be simple strings�

X�J�� voted in January ���� h���i to deprecate the use of �testnot key�

word arguments and ifnot functions� This means that these features are
very likely to be retained in the forthcoming standard but are regarded as

candidates for removal in a future revision of the ANSI standard� X�J�� also

voted in January ���� h��i to add the complement function� intended to re�

duce or eliminate the need for these deprecated features� Time will tell� I
note that many features in Fortran have been deprecated but very few indeed

have actually been removed or altered incompatibly�

�Function�complement fn

Returns a function whose value is the same as that of not applied to the
result of applying the function fn to the same arguments� One could de�ne

complement as follows�

�defun complement �fn�

��� �lambda ��rest arguments�

�not �apply fn arguments����

One intended use of complement is to supplant the use of �testnot argu�
ments and ifnot functions�

�removeifnot ��� virtuous senators� �
�removeif �complement ��� virtuous� senators�

�removeduplicates telephonebook

�testnot ��� mismatch� �
�removeduplicates telephonebook

�test �complement ��� mismatch��

����� Simple Sequence Functions

Most of the following functions perform simple operations on a single sequence�

makesequence constructs a new sequence�

��� COMMON LISP

�Function�elt sequence index

This returns the element of sequence speci�ed by index� which must be a non�

negative integer less than the length of the sequence as returned by length�

The �rst element of a sequence has index ��

Note that elt observes the �ll pointer in those vectors that have �ll point�

ers� The array�speci�c function aref may be used to access vector elements

that are beyond the vector�s �ll pointer��

setf may be used with elt to destructively replace a sequence element
with a new value�

�Function�subseq sequence start �optional end

This returns the subsequence of sequence speci�ed by start and end� subseq

always allocates a new sequence for a result� it never shares storage with an old

sequence� The result subsequence is always of the same type as the argument

sequence�

setf may be used with subseq to destructively replace a subsequence with

a sequence of new values� see also replace�

�Function�copyseq sequence

A copy is made of the argument sequence� the result is equalp to the argument
but not eq to it�

�copyseq x� � �subseq x ��

but the name copyseq is more perspicuous when applicable�

�Function�length sequence

The number of elements in sequence is returned as a non�negative integer� If

the sequence is a vector with a �ll pointer� the �active length� as speci�ed by

the �ll pointer is returned
see section ������

�Function�reverse sequence

The result is a new sequence of the same kind as sequence� containing the

same elements but in reverse order� The argument is not modi�ed�

SEQUENCES ���

�Function�nreverse sequence

The result is a sequence containing the same elements as sequence but in

reverse order� The argument may be destroyed and re�used to produce the

result� The result may or may not be eq to the argument� so it is usually wise
to say something like �setq x �nreverse x��� because simply �nreverse

x� is not guaranteed to leave a reversed value in x�

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� When the sequence is a list� nreverse is permitted to
perform a setf on any part� car or cdr� of the top�level list structure of that

list� When the sequence is an array� nreverse is permitted to re�order the

elements of the given array in order to produce the resulting array�

�Function�makesequence type size �key �initialelement

This returns a sequence of type type and of length size� each of whose ele�

ments has been initialized to the �initialelement argument� If speci�ed�
the �initialelement argument must be an object that can be an element of

a sequence of type type� For example�

�makesequence �vector doublefloat�

��

�initialelement
d��

If an �initialelement argument is not speci�ed� then the sequence will be

initialized in an implementation�dependent way�

X�J�� voted in January ���� h�i to clarify that the type argument must be
a type speci�er� and the size argument must be a non�negative integer less

than the value of arraydimensionlimit�

X�J�� voted in June ���� h���i to specify that makesequence should signal

an error if the sequence type speci�es the number of elements and the size

argument is di	erent�
X�J�� voted in March ���� h��i to specify that if type is string� the

result is the same as if makestring had been called with the same size and

�initialelement arguments�

����� Concatenating� Mapping� and Reducing Sequences

The functions in this section each operate on an arbitrary number of sequences

except for reduce� which is included here because of its conceptual relation�

ship to the mapping functions�

��� COMMON LISP

�Function�concatenate resulttype �rest sequences

The result is a new sequence that contains all the elements of all the sequences

in order� All of the sequences are copied from� the result does not share any

structure with any of the argument sequences
in this concatenate di	ers
from append�� The type of the result is speci�ed by result�type� which must

be a subtype of sequence� as for the function coerce� It must be possible for

every element of the argument sequences to be an element of a sequence of

type result�type�
If only one sequence argument is provided and it has the type speci�ed by

result�type� concatenate is required to copy the argument rather than simply

returning it� If a copy is not required� but only possibly type conversion� then

the coerce function may be appropriate�

X�J�� voted in June ���� h���i to specify that concatenate should signal
an error if the sequence type speci�es the number of elements and the sum of

the argument lengths is di	erent�

�Function�map resulttype function sequence �rest moresequences

The function must take as many arguments as there are sequences provided�

at least one sequence must be provided� The result of map is a sequence such

that element j is the result of applying function to element j of each of the

argument sequences� The result sequence is as long as the shortest of the
input sequences�

If the function has side e	ects� it can count on being called �rst on all the

elements numbered �� then on all those numbered
� and so on�

The type of the result sequence is speci�ed by the argument result�type

which must be a subtype of the type sequence�� as for the function coerce�

In addition� one may specify nil for the result type� meaning that no result

sequence is to be produced� in this case the function is invoked only for e	ect�

and map returns nil� This gives an e	ect similar to that of mapc�

X�J�� voted in June ���� h���i to specify that map should signal an error
if the sequence type speci�es the number of elements and the minimum of the

argument lengths is di	erent�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Compatibility note� In MacLisp� Lisp Machine Lisp� Interlisp� and indeed even
Lisp ���� the function map has always meant a non
value
returning version� However�
standard computer science literature� including in particular the recent wave of
papers on �functional programming�� have come to use map to mean what in the past

SEQUENCES ���

Lisp implementations have called mapcar� To simplify things henceforth� Common
Lisp follows current usage� and what was formerly called map is named mapl in
Common Lisp�

For example�

�map list ��� �
 � � ��� � �
 � � ��

�map string

��� �lambda �x� �if �oddp x� ����
 �������

�
 � � ���

� �
�
��

�Function�mapinto resultsequence function �rest sequences

X�J�� voted in June ���� h���i to add the function mapinto� It destructively

modi�es the result�sequence to contain the results of applying function to

corresponding elements of the argument sequences in turn� it then returns
result�sequence�

The arguments result�sequence and each element of sequences can each be

either a list or a vector
one�dimensional array�� The function must accept

at least as many arguments as the number of argument sequences supplied to

mapinto� If result�sequence and the other argument sequences are not all the
same length� the iteration terminates when the shortest sequence is exhausted�

If result�sequence is a vector with a �ll pointer� the �ll pointer is ignored when

deciding how many iterations to perform� and afterwards the �ll pointer is set

to the number of times the function was applied�

If the function has side e	ects� it can count on being called �rst on all the

elements numbered �� then on all those numbered
� and so on�

If result�sequence is longer than the shortest element of sequences� extra

elements at the end of result�sequence are unchanged�

The function mapinto di	ers from map in that it modi�es an existing se�
quence rather than creating a new one� In addition� mapinto can be called

with only two arguments
result�sequence and function�� while map requires at

least three arguments�

If result�sequence is nil� mapinto immediately returns nil� because nil is

a sequence of length zero�

��� COMMON LISP

�Function�some predicate sequence �rest moresequences

�Function�every predicate sequence �rest moresequences

�Function�notany predicate sequence �rest moresequences

�Function�notevery predicate sequence �rest moresequences

These are all predicates� The predicate must take as many arguments as there

are sequences provided� The predicate is �rst applied to the elements with

index � in each of the sequences� and possibly then to the elements with

index
� and so on� until a termination criterion is met or the end of the
shortest of the sequences is reached�

If the predicate has side e	ects� it can count on being called �rst on all the

elements numbered �� then on all those numbered
� and so on�

some returns as soon as any invocation of predicate returns a non�nil value�

some returns that value� If the end of a sequence is reached� some returns nil�
Thus� considered as a predicate� it is true if some invocation of predicate is

true�

every returns nil as soon as any invocation of predicate returns nil� If the

end of a sequence is reached� every returns a non�nil value� Thus� considered
as a predicate� it is true if every invocation of predicate is true�

notany returns nil as soon as any invocation of predicate returns a non�nil

value� If the end of a sequence is reached� notany returns a non�nil value�

Thus� considered as a predicate� it is true if no invocation of predicate is true�

notevery returns a non�nil value as soon as any invocation of predicate
returns nil� If the end of a sequence is reached� notevery returns nil� Thus�

considered as a predicate� it is true if not every invocation of predicate is true�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Compatibility note� The order of the arguments here is not compatible with
Interlisp and Lisp Machine Lisp� This is to stress the similarity of these functions
to map� The functions are therefore extended here to functions of more than one
argument� and to multiple sequences�

�Function�reduce function sequence �key �fromend �start �end

�initialvalue

The reduce function combines all the elements of a sequence using a binary

operation� for example� using � one can add up all the elements�

The speci�ed subsequence of the sequence is combined or �reduced� us�

ing the function� which must accept two arguments� The reduction is left�

associative� unless the �fromend argument is true
it defaults to nil�� in

SEQUENCES ��	

which case it is right�associative� If an �initialvalue argument is given� it

is logically placed before the subsequence
after it if �fromend is true� and

included in the reduction operation�

If the speci�ed subsequence contains exactly one element and the keyword

argument �initialvalue is not given� then that element is returned and
the function is not called� If the speci�ed subsequence is empty and an

�initialvalue is given� then the �initialvalue is returned and the function

is not called�

If the speci�ed subsequence is empty and no �initialvalue is given� then
the function is called with zero arguments� and reduce returns whatever the

function does�
This is the only case where the function is called with other

than two arguments��

�reduce ��� � �
 � � ��� �
�

�reduce ��� �
 � � ��� � � � �
 �� �� �� � �

�reduce ��� �
 � � �� �fromend t� �Alternating sum
� �
 � � � � ���� � �

�reduce ��� � ��� � �

�reduce ��� � ���� � �

�reduce ��� � �foo�� � foo

�reduce ��� list �
 � � ��� � ���
 �� �� ��

�reduce ��� list �
 � � �� �fromend t� � �
 �� �� ����

�reduce ��� list �
 � � �� �initialvalue foo�

� ����foo
� �� �� ��

�reduce ��� list �
 � � ��

�fromend t �initialvalue foo�

� �
 �� �� �� foo����

If the function produces side e	ects� the order of the calls to the function can

be correctly predicted from the reduction ordering demonstrated above�

The name �reduce� for this function is borrowed from APL�

X�J�� voted in March ���� h���i to extend the reduce function to take an
additional keyword argument named �key� As usual� this argument defaults

to the identity function� The value of this argument must be a function that

accepts at least one argument� This function is applied once to each element

of the sequence that is to participate in the reduction operation� in the order
implied by the �fromend argument� the values returned by this function are

combined by the reduction function� However� the �key function is not applied

to the �initialvalue argument
if any��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

��
 COMMON LISP

����� Modifying Sequences

Each of these functions alters the contents of a sequence or produces an altered

copy of a given sequence�

�Function�fill sequence item �key �start �end

The sequence is destructively modi�ed by replacing each element of the sub�

sequence speci�ed by the �start and �end parameters with the item� The

item may be any Lisp object but must be a suitable element for the sequence�

The item is stored into all speci�ed components of the sequence� beginning at

the one speci�ed by the �start index
which defaults to zero�� up to but not
including the one speci�ed by the �end index
which defaults to the length of

the sequence�� fill returns the modi�ed sequence� For example�

�setq x �vector a b c d e�� � ����a b c d e�

�fill x z �start
 �end �� � ����a z z d e�

and now x � ����a z z d e�

�fill x p� � ����p p p p p�

and now x � ����p p p p p�

�Function�replace sequence� sequence� �key �start
 �end

�start� �end�

The sequence sequence� is destructively modi�ed by copying successive ele�

ments into it from sequence�� The elements of sequence� must be of a type

that may be stored into sequence�� The subsequence of sequence� speci�ed

by �start� and �end� is copied into the subsequence of sequence� speci�ed

by �start
 and �end
�
The arguments �start
 and �start� default to
zero� The arguments �end
 and �end� default to nil� meaning the end of

the appropriate sequence�� If these subsequences are not of the same length�

then the shorter length determines how many elements are copied� the ex�

tra elements near the end of the longer subsequence are not involved in the
operation� The number of elements copied may be expressed as�

�min � end� start�� � end� start���

The value returned by replace is the modi�ed sequence��

If sequence� and sequence� are the same
eq� object and the region being

modi�ed overlaps the region being copied from� then it is as if the entire

source region were copied to another place and only then copied back into the

target region� However� if sequence� and sequence� are not the same� but the

SEQUENCES ���

region being modi�ed overlaps the region being copied from
perhaps because

of shared list structure or displaced arrays�� then after the replace operation

the subsequence of sequence� being modi�ed will have unpredictable contents�

�Function�remove item sequence �key �fromend �test �testnot

�start �end �count �key

�Function�removeif predicate sequence �key �fromend �start �end

�count �key

�Function�removeifnot predicate sequence �key �fromend �start �end

�count �key

The result is a sequence of the same kind as the argument sequence that has
the same elements except that those in the subsequence delimited by �start

and �end and satisfying the test
see above� have been removed� This is a

non�destructive operation� the result is a copy of the input sequence� save that

some elements are not copied� Elements not removed occur in the same order

in the result as they did in the argument�
The �count argument� if supplied� limits the number of elements removed�

if more than �count elements satisfy the test� then of these elements only the

leftmost are removed� as many as speci�ed by �count�

X�J�� voted in January ���� h���i to clarify that the �count argument
must be either nil or an integer� and that supplying a negative integer pro�

duces the same behavior as supplying zero�

A non�nil �fromend speci�cation matters only when the �count argument

is provided� in that case only the rightmost �count elements satisfying the

test are removed� For example�

�remove � �
 � �
 � � ��� � �
 �
 � ��

�remove � �
 � �
 � � �� �count
� � �
 �
 � � ��

�remove � �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � ��

�remove � �
 � �
 � � �� �test ��� �� � �� � � ��

�removeif ��� oddp �
 � �
 � � ��� � �� � ��

�removeif ��� evenp �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � ��

The result of remove may share with the argument sequence� a list result may

share a tail with an input list� and the result may be eq to the input sequence

if no elements need to be removed�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

��� COMMON LISP

�Function�delete item sequence �key �fromend �test �testnot

�start �end �count �key

�Function�deleteif predicate sequence �key �fromend

�start �end �count �key

�Function�deleteifnot predicate sequence �key �fromend

�start �end �count �key

This is the destructive counterpart to remove� The result is a sequence of the

same kind as the argument sequence that has the same elements except that
those in the subsequence delimited by �start and �end and satisfying the test

see above� have been deleted� This is a destructive operation� The argument

sequence may be destroyed and used to construct the result� however� the

result may or may not be eq to sequence� Elements not deleted occur in the

same order in the result as they did in the argument�

The �count argument� if supplied� limits the number of elements deleted�

if more than �count elements satisfy the test� then of these elements only the

leftmost are deleted� as many as speci�ed by �count�

X�J�� voted in January ���� h���i to clarify that the �count argument

must be either nil or an integer� and that supplying a negative integer pro�

duces the same behavior as supplying zero�

A non�nil �fromend speci�cation matters only when the �count argument
is provided� in that case only the rightmost �count elements satisfying the

test are deleted� For example�

�delete � �
 � �
 � � ��� � �
 �
 � ��

�delete � �
 � �
 � � �� �count
� � �
 �
 � � ��

�delete � �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � ��

�delete � �
 � �
 � � �� �test ��� �� � �� � � ��

�deleteif ��� oddp �
 � �
 � � ��� � �� � ��

�deleteif ��� evenp �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � ��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects
of certain operations� When the sequence is a list� delete is permitted to

perform a setf on any part� car or cdr� of the top�level list structure of

that list� When the sequence is an array� delete is permitted to alter the

dimensions of the given array and to slide some of its elements into new

positions without permuting them in order to produce the resulting array�

SEQUENCES ���

Furthermore� �deleteif predicate sequence ���� is required to behave ex�

actly like

�delete nil sequence
�test ��� �lambda �unused item�

�declare �ignore unused��

�funcall predicate item��

����

Compatibility note� In MacLisp� the delete function uses an equal comparison
rather than eql� which is the default test for delete in Common Lisp� Where in
MacLisp one would write �delete x y�� one must in Common Lisp write �delete
x y �test ��� equal� to get the completely identical e�ect� Similarly� one can get
the precise e�ect� and no more� of the MacLisp �delq x y� by writing in Common
Lisp �delete x y �test ��� eq��

�Function�removeduplicates sequence �key �fromend �test �testnot

�start �end �key

�Function�deleteduplicates sequence �key �fromend �test �testnot

�start �end �key

The elements of sequence are compared pairwise� and if any two match� then

the one occurring earlier in the sequence is discarded
but if the �fromend

argument is true� then the one later in the sequence is discarded�� The result

is a sequence of the same kind as the argument sequence with enough elements

removed so that no two of the remaining elements match� The order of the

elements remaining in the result is the same as the order in which they appear

in sequence�
removeduplicates is the non�destructive version of this operation� The

result of removeduplicates may share with the argument sequence� a list

result may share a tail with an input list� and the result may be eq to the

input sequence if no elements need to be removed�
deleteduplicates may destroy the argument sequence�

Some examples�

�removeduplicates �a b c b d d e�� � �a c b d e�

�removeduplicates �a b c b d d e� �fromend t� � �a b c d e�

�removeduplicates ��foo ����a� �bar ����"� �baz ����A��

�test ��� charequal �key ��� cadr�

� ��bar ����"� �baz ����A��

�removeduplicates ��foo ����a� �bar ����"� �baz ����A��

��� COMMON LISP

�test ��� charequal �key ��� cadr �fromend t�

� ��foo ����a� �bar ����"��

These functions are useful for converting a sequence into a canonical form

suitable for representing a set�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects
of certain operations� When the sequence is a list� deleteduplicates is

permitted to perform a setf on any part� car or cdr� of the top�level list

structure of that list� When the sequence is an array� deleteduplicates is

permitted to alter the dimensions of the given array and to slide some of its
elements into new positions without permuting them in order to produce the

resulting array�

�Function�substitute newitem olditem sequence �key �fromend �test

�testnot �start �end �count �key

�Function�substituteif newitem test sequence �key �fromend

�start �end �count �key

�Function�substituteifnot newitem test sequence �key �fromend

�start �end �count �key

The result is a sequence of the same kind as the argument sequence that has

the same elements except that those in the subsequence delimited by �start

and �end and satisfying the test
see above� have been replaced by newitem�

This is a non�destructive operation� the result is a copy of the input sequence�

save that some elements are changed�

The �count argument� if supplied� limits the number of elements altered�

if more than �count elements satisfy the test� then of these elements only the
leftmost are replaced� as many as speci�ed by �count�

X�J�� voted in January ���� h���i to clarify that the �count argument

must be either nil or an integer� and that supplying a negative integer pro�

duces the same behavior as supplying zero�
A non�nil �fromend speci�cation matters only when the �count argument

is provided� in that case only the rightmost �count elements satisfying the

test are replaced� For example�

�substitute � � �
 � �
 � � ��� � �
 � �
 � � ��

�substitute � � �
 � �
 � � �� �count
� � �
 � �
 � � ��

�substitute � � �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � � ��

SEQUENCES ���

�substitute � � �
 � �
 � � �� �test ��� �� � �� � � � � � ��

�substituteif � ��� oddp �
 � �
 � � ��� � �� � � � � � ��

�substituteif � ��� evenp �
 � �
 � � �� �count
 �fromend t�

� �
 � �
 � � ��

The result of substitutemay share with the argument sequence� a list result

may share a tail with an input list� and the result may be eq to the input

sequence if no elements need to be changed�

See also subst� which performs substitutions throughout a tree�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�nsubstitute newitem olditem sequence �key �fromend

�test �testnot �start �end �count �key

�Function�nsubstituteif newitem test sequence �key �fromend

�start �end �count �key

�Function�nsubstituteifnot newitem test sequence �key �fromend

�start �end �count �key

This is the destructive counterpart to substitute� The result is a sequence

of the same kind as the argument sequence that has the same elements except

that those in the subsequence delimited by �start and �end and satisfying
the test
see above� have been replaced by newitem� This is a destructive

operation� The argument sequence may be destroyed and used to construct

the result� however� the result may or may not be eq to sequence�

See also nsubst� which performs destructive substitutions throughout a

tree�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

X�J�� voted in March ���� h���i to clarify the permissible side ef�

fects of certain operations� When the sequence is a list� nsubstitute or
nsubstituteif is required to perform a setf on any car of the top�level list

structure of that list whose old contents must be replaced with newitem but

is forbidden to perform a setf on any cdr of the list� When the sequence is

an array� nsubstitute or nsubstituteif is required to perform a setf on
any element of the array whose old contents must be replaced with newitem�

These functions� therefore� may successfully be used solely for e	ect� the caller

discarding the returned value
though some programmers �nd this stylistically

distasteful��

��� COMMON LISP

����� Searching Sequences for Items

Each of these functions searches a sequence to locate one or more elements

satisfying some test�

�Function�find item sequence �key �fromend �test �testnot

�start �end �key

�Function�findif predicate sequence �key �fromend �start �end �key

�Function�findifnot predicate sequence �key �fromend

�start �end �key

If the sequence contains an element satisfying the test� then the leftmost such

element is returned� otherwise nil is returned�
If �start and �end keyword arguments are given� only the speci�ed subse�

quence of sequence is searched�

If a non�nil �fromend keyword argument is speci�ed� then the result is the

rightmost element satisfying the test�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�
tion ����

�Function�position item sequence �key �fromend �test �testnot

�start �end �key

�Function�positionif predicate sequence �key �fromend

�start �end �key

�Function�positionifnot predicate sequence �key �fromend

�start �end �key

If the sequence contains an element satisfying the test� then the index within

the sequence of the leftmost such element is returned as a non�negative integer�

otherwise nil is returned�

If �start and �end keyword arguments are given� only the speci�ed subse�

quence of sequence is searched� However� the index returned is relative to the
entire sequence� not to the subsequence�

If a non�nil �fromend keyword argument is speci�ed� then the result is

the index of the rightmost element satisfying the test�
The index returned�

however� is an index from the left�hand end� as usual��
X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Here is a simple piece of code that uses several of the sequence functions�

notably positionif and findif� to process strings� Note one use of loop as

well�

SEQUENCES ���

�defun debugpalindrome �s�

�flet ��match �x� �charequal �first x� �third x����

�let
 ��pairs �loop for c across s

for j from �

when �alphacharp c�

collect �list c j���

�quads �mapcar ��� append pairs �reverse pairs���

�diffpos �positionif �complement ��� match� quads���

�when diffpos

�let
 ��diff �elt quads diffpos��

�same �findif ��� match quads

�start �� diffpos
����

�if same

�format nil

� A �at D� is not the reverse of A �

�subseq s �second diff� �second same��

�second diff�

�subseq s �� �fourth same�
�

�� �fourth diff�
���

�This palindrome is completely messed up��������

Here is an example of its behavior�

�setq panama �A putative palindrome$

�A man� a plan� a canoe� pasta� heros� rajahs�

a coloratura� maps� waste� percale� macaroni� a gag�

a banana bag� a tan� a tag� a banana bag again

�or a camel�� a crepe� pins� Spam� a rut� a Rolo�

cash� a jar� sore hats� a peon� a canalPanama���

�debugpalindrome panama�

� � wast �at 	�� is not the reverse of � pins �

�replace panama �snipe� �start
 	�� �Repair it

� �A man� a plan� a canoe� pasta� heros� rajahs�

a coloratura� maps� snipe� percale� macaroni� a gag�

a banana bag� a tan� a tag� a banana bag again

�or a camel�� a crepe� pins� Spam� a rut� a Rolo�

cash� a jar� sore hats� a peon� a canalPanama��

�debugpalindrome panama� � nil �Copacetic!a true palindrome

��� COMMON LISP

�debugpalindrome �Rubber baby buggy bumpers��

� � Rubber �at �� is not the reverse of umpers �

�debugpalindrome �Common Lisp� The Language��

� � Commo �at �� is not the reverse of guage �

�debugpalindrome �Complete mismatches are hard to find��

�
� Complete mism �at �� is not the reverse of re hard to find �

�debugpalindrome �Waltz� nymph� for quick jigs vex Bud��

� �This palindrome is completely messed up��

�debugpalindrome �Doc� note� I dissent� A fast never

prevents a fatness� I diet on cod���

�nil �Another winner

�debugpalindrome �Top step s pup s pet spot�� � nil

�Function�count item sequence �key �fromend �test �testnot

�start �end �key

�Function�countif predicate sequence �key �fromend

�start �end �key

�Function�countifnot predicate sequence �key �fromend

�start �end �key

The result is always a non�negative integer� the number of elements in the

speci�ed subsequence of sequence satisfying the test�

The �fromend argument does not a	ect the result returned� it is accepted

purely for compatibility with other sequence functions�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�mismatch sequence� sequence� �key �fromend �test

�testnot �key �start
 �start� �end
 �end�

The speci�ed subsequences of sequence� and sequence� are compared element�

wise� If they are of equal length and match in every element� the result is

nil� Otherwise� the result is a non�negative integer� This result is the index

SEQUENCES ��	

within sequence� of the leftmost position at which the two subsequences fail

to match� or� if one subsequence is shorter than and a matching pre�x of the

other� the result is the index relative to sequence� beyond the last position

tested�

If a non�nil �fromend keyword argument is given� then one plus the index
of the rightmost position in which the sequences di	er is returned� In e	ect�

the
sub�sequences are aligned at their right�hand ends� then� the last elements

are compared� the penultimate elements� and so on� The index returned is

again an index relative to sequence��
X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�search sequence� sequence� �key �fromend �test �testnot

�key �start
 �start� �end
 �end�

A search is conducted for a subsequence of sequence� that element�wise

matches sequence�� If there is no such subsequence� the result is nil� if

there is� the result is the index into sequence� of the leftmost element of the
leftmost such matching subsequence�

If a non�nil �fromend keyword argument is given� the index of the leftmost

element of the rightmost matching subsequence is returned�

The implementation may choose to search the sequence in any order� there is

no guarantee on the number of times the test is made� For example� search
with a non�nil �fromend argument might actually search a list from left

to right instead of from right to left
but in either case would return the

rightmost matching subsequence� of course�� Therefore it is a good idea for a

user�supplied predicate to be free of side e	ects�
X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

����� Sorting and Merging

These functions may destructively modify argument sequences in order to put

a sequence into sorted order or to merge two already sorted sequences�

�Function�sort sequence predicate �key �key

�Function�stablesort sequence predicate �key �key

The sequence is destructively sorted according to an order determined by the

predicate� The predicate should take two arguments� and return non�nil if and

��
 COMMON LISP

only if the �rst argument is strictly less than the second
in some appropriate

sense�� If the �rst argument is greater than or equal to the second
in the

appropriate sense�� then the predicate should return nil�

The sort function determines the relationship between two elements by

giving keys extracted from the elements to the predicate� The �key argument�
when applied to an element� should return the key for that element� The �key

argument defaults to the identity function� thereby making the element itself

be the key�

The �key function should not have any side e	ects� A useful example of
a �key function would be a component selector function for a defstruct

structure� used in sorting a sequence of structures�

�sort a p �key s� � �sort a ��� �lambda �x y� �p �s x� �s y����

While the above two expressions are equivalent� the �rst may be more e��

cient in some implementations for certain types of arguments� For example�

an implementation may choose to apply s to each item just once� putting

the resulting keys into a separate table� and then sort the parallel tables� as
opposed to applying s to an item every time just before applying the predicate�

If the �key and predicate functions always return� then the sorting operation

will always terminate� producing a sequence containing the same elements as

the original sequence
that is� the result is a permutation of sequence�� This is

guaranteed even if the predicate does not really consistently represent a total
order
in which case the elements will be scrambled in some unpredictable

way� but no element will be lost�� If the �key function consistently returns

meaningful keys� and the predicate does re
ect some total ordering criterion

on those keys� then the elements of the result sequence will be properly sorted
according to that ordering�

The sorting operation performed by sort is not guaranteed stable� Elements

considered equal by the predicate may or may not stay in their original order�

The predicate is assumed to consider two elements x and y to be equal if

�funcall predicate x y� and �funcall predicate y x� are both false�� The
function stablesort guarantees stability but may be slower than sort in

some situations�

The sorting operation may be destructive in all cases� In the case of an

array argument� this is accomplished by permuting the elements in place� In
the case of a list� the list is destructively reordered in the same manner as for

nreverse� Thus if the argument should not be destroyed� the user must sort

a copy of the argument�

Should execution of the �key function or the predicate cause an error� the

state of the list or array being sorted is unde�ned� However� if the error is

SEQUENCES ���

corrected� the sort will� of course� proceed correctly�

Note that since sorting requires many comparisons� and thus many calls to

the predicate� sorting will be much faster if the predicate is a compiled function

rather than interpreted�

An example�

�setq foovector �sort foovector ��� stringlessp �key ��� car��

If foovector contained these items before the sort

��Tokens� �The Lion Sleeps Tonight��

��Carpenters� �Close to You��

��Rolling Stones� �Brown Sugar��

��Beach Boys� �I Get Around��

��Mozart� �Eine Kleine Nachtmusik� �K �����

��Beatles� �I Want to Hold Your Hand��

then after the sort foovector would contain

��Beach Boys� �I Get Around��

��Beatles� �I Want to Hold Your Hand��

��Carpenters� �Close to You��

��Mozart� �Eine Kleine Nachtmusik� �K �����

��Rolling Stones� �Brown Sugar��

��Tokens� �The Lion Sleeps Tonight��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�merge resulttype sequence� sequence� predicate �key �key

The sequences sequence� and sequence� are destructively merged according

to an order determined by the predicate� The result is a sequence of type

result�type� which must be a subtype of sequence� as for the function coerce�
The predicate should take two arguments and return non�nil if and only if

the �rst argument is strictly less than the second
in some appropriate sense��

If the �rst argument is greater than or equal to the second
in the appropriate

sense�� then the predicate should return nil�
The merge function determines the relationship between two elements by

giving keys extracted from the elements to the predicate� The �key function�

when applied to an element� should return the key for that element� the �key

function defaults to the identity function� thereby making the element itself

be the key�

��� COMMON LISP

The �key function should not have any side e	ects� A useful example of

a �key function would be a component selector function for a defstruct

structure� used to merge a sequence of structures�

If the �key and predicate functions always return� then the merging opera�

tion will always terminate� The result of merging two sequences x and y is a
new sequence z� such that the length of z is the sum of the lengths of x and y�

and z contains all the elements of x and y� If x� and x� are two elements of x�

and x� precedes x� in x� then x� precedes x� in z� and similarly for elements

of y� In short� z is an interleaving of x and y�
Moreover� if x and y were correctly sorted according to the predicate� then

z will also be correctly sorted� as shown in this example�

�merge list �
 � � � 	� �� � �� ��� �� � �
 � � � � � 	 ��

If x or y is not so sorted then z will not be sorted� but will nevertheless be an
interleaving of x and y�

The merging operation is guaranteed stable� if two or more elements are

considered equal by the predicate� then the elements from sequence� will pre�

cede those from sequence� in the result�
The predicate is assumed to consider

two elements x and y to be equal if �funcall predicate x y� and �funcall

predicate y x� are both false�� For example�

�merge string �BOY� �nosy� ��� charlessp� � �BnOosYy�

The result can not be �BnoOsYy�� �BnOosyY�� or �BnoOsyY�� The function
charlessp ignores case� and so considers the characters Y and y to be equal�

for example� the stability property then guarantees that the character from

the �rst argument
Y� must precede the one from the second argument
y��

X�J�� voted in June ���� h���i to specify that merge should signal an

error if the sequence type speci�es the number of elements and the sum of the
lengths of the two sequence arguments is di	erent�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

��

Lists

A cons� or dotted pair� is a compound data object having two components

called the car and cdr� Each component may be any Lisp object� A list is a
chain of conses linked by cdr �elds� the chain is terminated by some atom
a

non�cons object�� An ordinary list is terminated by nil� the empty list
also

written ���� A list whose cdr chain is terminated by some non�nil atom is

called a dotted list�

The recommended predicate for testing for the end of a list is endp�

����� Conses

These are the basic operations on conses viewed as pairs rather than as the

constituents of a list�

�Function�car list

This returns the car of list� which must be a cons or ��� that is� list must

satisfy the predicate listp� By de�nition� the car of �� is ��� If the cons is

regarded as the �rst cons of a list� then car returns the �rst element of the

list� For example�

�car �a b c�� � a

See first� The car of a cons may be altered by using rplaca or setf�

�Function�cdr list

This returns the cdr of list� which must be a cons or ��� that is� list must

satisfy the predicate listp� By de�nition� the cdr of �� is ��� If the cons is

regarded as the �rst cons of a list� then cdr returns the rest of the list� which

is a list with all elements but the �rst of the original list� For example�

���

��� COMMON LISP

�cdr �a b c�� � �b c�

See rest� The cdr of a cons may be altered by using rplacd or setf�

�Function�caar list

�Function�cadr list

�Function�cdar list

�Function�cddr list
�Function�caaar list

�Function�caadr list

�Function�cadar list

�Function�caddr list
�Function�cdaar list

�Function�cdadr list

�Function�cddar list

�Function�cdddr list

�Function�caaaar list
�Function�caaadr list

�Function�caadar list

�Function�caaddr list

�Function�cadaar list
�Function�cadadr list

�Function�caddar list

�Function�cadddr list

�Function�cdaaar list

�Function�cdaadr list
�Function�cdadar list

�Function�cdaddr list

�Function�cddaar list

�Function�cddadr list
�Function�cdddar list

�Function�cddddr list

All of the compositions of up to four car and cdr operations are de�ned as

separate Common Lisp functions� The names of these functions begin with c

and end with r� and in between is a sequence of a and d letters corresponding

to the composition performed by the function� For example�

�cddadr x� is the same as �cdr �cdr �car �cdr x����

If the argument is regarded as a list� then cadr returns the second element of

the list� caddr the third� and cadddr the fourth� If the �rst element of a list

LISTS ���

is a list� then caar is the �rst element of the sublist� cdar is the rest of that

sublist� and cadar is the second element of the sublist� and so on�

As a matter of style� it is often preferable to de�ne a function or macro to

access part of a complicated data structure� rather than to use a long car�cdr

string� For example� one might de�ne a macro to extract the list of parameter
variables from a lambda�expression�

�defmacro lambdavars �lambdaexp� %�cadr �lambdaexp��

and then use lambdavars for this purpose instead of cadr� See also

defstruct� which will automatically de�ne new record data types and ac�

cess functions for instances of them�

Any of these functions may be used to specify a place for setf�

�Function�cons x y

cons is the primitive function to create a new cons whose car is x and whose

cdr is y� For example�

�cons a b� � �a � b�

�cons a �cons b �cons c ����� � �a b c�

�cons a �b c d�� � �a b c d�

cons may be thought of as creating a cons� or as adding a new element to the

front of a list�

�Function�treeequal x y �key �test �testnot

This is a predicate that is true if x and y are isomorphic trees with identical

leaves� that is� if x and y are atoms that satisfy the test
by default eql��

or if they are both conses and their car�s are treeequal and their cdr�s are
treeequal� Thus treeequal recursively compares conses
but not any other

objects that have components�� See equal� which does recursively compare

certain other structured objects� such as strings�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�
tion ����

����� Lists

The following functions perform various operations on lists�

The list is one of the original Lisp data types� The very name �Lisp� is an
abbreviation for �LISt Processing��

��� COMMON LISP

�Function�endp object

The predicate endp is the recommended way to test for the end of a list� It is

false of conses� true of nil� and an error for all other arguments�

Implementation note� Implementations are encouraged to signal an error� espe

cially in the interpreter� for a non
list argument� The endp function is de�ned so as
to allow compiled code to perform simply an atom check or a null check if speed is
more important than safety�

�Function�listlength list

listlength returns� as an integer� the length of list� listlength di	ers

from length when the list is circular� length may fail to return� whereas

listlength will return nil� For example�

�listlength ��� � �

�listlength �a b c d�� � �

�listlength �a �b c� d�� � �

�let ��x �list a b c���

�rplacd �last x� x�

�listlength x�� � nil

listlength could be implemented as follows�

�defun listlength �x�

�do ��n � �� n ��� �Counter

�fast x �cddr fast�� �Fast pointer� leaps by �
�slow x �cdr slow��� �Slow pointer� leaps by �

�nil�

�� If fast pointer hits the end� return the count�

�when �endp fast� �return n��

�when �endp �cdr fast�� �return �� n
���

�� If fast pointer eventually equals slow pointer�

�� then we must be stuck in a circular list�

�� �A deeper property is the converse� if we are

�� stuck in a circular list� then eventually the

�� fast pointer will equal the slow pointer�

�� That fact justifies this implementation��

�when �and �eq fast slow� �� n ��� �return nil����

See length� which will return the length of any sequence�

LISTS ���

�Function�nth n list

�nth n list� returns the nth element of list� where the car of the list is the

�zeroth� element� The argument n must be a non�negative integer� If the

length of the list is not greater than n� then the result is ��� that is� nil�

This is consistent with the idea that the car and cdr of �� are each ���� For
example�

�nth � �foo bar gack�� � foo

�nth
 �foo bar gack�� � bar

�nth � �foo bar gack�� � ��

Compatibility note� This is not the same as the Interlisp function called nth�
which is similar to but not exactly the same as the Common Lisp function nthcdr�
This de�nition of nth is compatible with Lisp Machine Lisp and NIL �New Imple

mentation of Lisp�� Also� some people have used macros and functions called nth

of their own in their old MacLisp programs� which may not work the same way�

nth may be used to specify a place to setf� when nth is used in this way�

the argument n must be less than the length of the list�

Note that the arguments to nth are reversed from the order used by most

other sequence selector functions such as elt�

�Function�first list

�Function�second list

�Function�third list
�Function�fourth list

�Function�fifth list

�Function�sixth list

�Function�seventh list

�Function�eighth list
�Function�ninth list

�Function�tenth list

These functions are sometimes convenient for accessing particular elements

of a list� first is the same as car� second is the same as cadr� third is

the same as caddr� and so on� Note that the ordinal numbering used here is
one�origin� as opposed to the zero�origin numbering used by nth�

�fifth x� � �nth � x�

��� COMMON LISP

setf may be used with each of these functions to store into the indicated

position of a list�

�Function�rest list

rest means the same as cdr but mnemonically complements first� setf

may be used with rest to replace the cdr of a list with a new value�

�Function�nthcdr n list

�nthcdr n list� performs the cdr operation n times on list� and returns the
result� For example�

�nthcdr � �a b c�� � �a b c�

�nthcdr � �a b c�� � �c�

�nthcdr � �a b c�� � ��

In other words� it returns the nth cdr of the list�

Compatibility note� This is similar to the Interlisp function nth� except that the
Interlisp function is one
based instead of zero
based�

�car �nthcdr n x�� � �nth n x�

X�J�� voted in January ���� h�i to clarify that the argument n must be a
non�negative integer�

�Function�last list
���

last returns the last cons
not the last element�� of list� If list is ��� it returns

��� For example�

�setq x �a b c d��

�last x� � �d�

�rplacd �last x� �e f��

x � �a b c d e f�

�last �a b c � d�� � �c � d�

X�J�� voted in June ���� h���i to extend the last function to accept

an optional second argument� The e	ect is to make last complementary in

operation to butlast� The new description
with some additional examples�

would be as follows�

LISTS ��	

�Function�last list �optional �n
�

last returns the tail of the list consisting of the last n conses of list� The list

may be a dotted list� It is an error if the list is circular�

The argument n must be a non�negative integer� If n is zero� then the atom

that terminates the list is returned� If n is not less than the number of cons

cells making up the list� then the list itself is returned�

For example�

�setq x �a b c d��

�last x� � �d�

�rplacd �last x� �e f��

x � �a b c d e f�

�last x �� � �d e f�

�last ��� � ��

�last �a b c � d�� � �c � d�

�last �a b c � d� �� � d

�last �a b c � d� �� � �b c � d�

�last �a b c � d�
	��� � �a b c � d�

�Function�list �rest args

list constructs and returns a list of its arguments� For example�

�list � � a �car �b � c�� �� � ��� � �� � a b ��

�list� � ��

�list �list a b� �list c d e�� � ��a b� �c d e��

�Function�list
 arg �rest others

list
 is like list except that the last cons of the constructed list is �dotted��

The last argument to list
 is used as the cdr of the last cons constructed�

this need not be an atom� If it is not an atom� then the e	ect is to add several
new elements to the front of a list� For example�

�list
 a b c d� � �a b c � d�

This is like

�cons a �cons b �cons c d���

Also�

��
 COMMON LISP

�list
 a b c �d e f�� � �a b c d e f�

�list
 x� � x

�Function�makelist size �key �initialelement

This creates and returns a list containing size elements� each of which is

initialized to the �initialelement argument
which defaults to nil�� size
should be a non�negative integer� For example�

�makelist �� � �nil nil nil nil nil�

�makelist � �initialelement rah� � �rah rah rah�

�Function�append �rest lists

The arguments to append are lists� The result is a list that is the concatenation

of the arguments� The arguments are not destroyed� For example�

�append �a b c� �d e f� �� �g�� � �a b c d e f g�

Note that append copies the top�level list structure of each of its arguments

except the last� The function concatenate can perform a similar operation�

but always copies all its arguments� See also nconc� which is like append but

destroys all arguments but the last�

The last argument actually need not be a list but may be any Lisp object�
which becomes the tail end of the constructed list� For example� �append �a

b c� d� � �a b c � d��

�append x ��� is an idiom once frequently used to copy the list x� but the

copylist function is more appropriate to this task�

�Function�copylist list

This returns a list that is equal to list� but not eq� Only the top level of

list structure is copied� that is� copylist copies in the cdr direction but not

in the car direction� If the list is �dotted�� that is� �cdr �last list�� is a

non�nil atom� this will be true of the returned list also� See also copyseq

and copytree�

�Function�copyalist list

copyalist is for copying association lists� The top level of list structure of

list is copied� just as for copylist� In addition� each element of list that is a

cons is replaced in the copy by a new cons with the same car and cdr�

LISTS ���

�Function�copytree object

copytree is for copying trees of conses� The argument object may be any

Lisp object� If it is not a cons� it is returned� otherwise the result is a new

cons of the results of calling copytree on the car and cdr of the argument� In
other words� all conses in the tree are copied recursively� stopping only when

non�conses are encountered� Circularities and the sharing of substructure are

not preserved�

Compatibility note� This function is called copy in Interlisp�

�Function�revappend x y

�revappend x y� is exactly the same as �append �reverse x� y� except
that it is potentially more e�cient� Both x and y should be lists� The argu�

ment x is copied� not destroyed� Compare this with nreconc� which destroys

its �rst argument�

�Function�nconc �rest lists

nconc takes lists as arguments� It returns a list that is the arguments concate�

nated together� The arguments are changed rather than copied�
Compare

this with append� which copies arguments rather than destroying them�� For

example�

�setq x �a b c��

�setq y �d e f��

�nconc x y� � �a b c d e f�

x � �a b c d e f�

Note� in the example� that the value of x is now di	erent� since its last cons

has been rplacd�d to the value of y� If one were then to evaluate �nconc x

y� again� it would yield a piece of �circular� list structure� whose printed rep�

resentation would be �a b c d e f d e f d e f ����� repeating forever� if

the
printcircle
 switch were non�nil� it would be printed as �a b c �

���
�d e f � ���
������
X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� The side�e	ect behavior of nconc is speci�ed by a recursive

relationship outlined in the following table� in which a call to nconc matching

the earliest possible pattern on the left is required to have side�e	ect behavior

equivalent to the corresponding expression on the right�

��� COMMON LISP

�nconc� nil �No side e	ects

�nconc nil � r� �nconc � r�

�nconc x� x
�nconc x y� �let ��p x� �q y��

�rplacd �last p� q�

p�

�nconc x y � r� �nconc �nconc x y� � r�

LISTS ���

�Function�nreconc x y

�nreconc x y� is exactly the same as �nconc �nreverse x� y� except that

it is potentially more e�cient� Both x and y should be lists� The argument x

is destroyed� Compare this with revappend�

�setq planets �jupiter mars earth venus mercury��

�setq moreplanets �saturn uranus pluto neptune��

�nreconc moreplanets planets�

� �neptune pluto uranus saturn jupiter mars earth venus mercury�

and now the value of moreplanets is not well de�ned

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of
certain operations� �nreconc x y� is permitted and required to have side�

e	ect behavior equivalent to that of �nconc �nreverse x� y��

�Macro�push item place

The form place should be the name of a generalized variable containing a list�

item may refer to any Lisp object� The item is consed onto the front of the

list� and the augmented list is stored back into place and returned� The form

place may be any form acceptable as a generalized variable to setf� If the list
held in place is viewed as a push�down stack� then push pushes an element

onto the top of the stack� For example�

�setq x �a �b c� d��

�push � �cadr x�� � �� b c� and now x � �a �� b c� d�

The e	ect of �push item place� is roughly equivalent to

�setf place �cons item place��

except that the latter would evaluate any subforms of place twice� while push

takes care to evaluate them only once� Moreover� for certain place forms push
may be signi�cantly more e�cient than the setf version�

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion ����� Note that item is fully evaluated before any part of place is evalu�

ated�

�Macro�pushnew item place �key �test �testnot �key

The form place should be the name of a generalized variable containing a list�

item may refer to any Lisp object� If the item is not already a member of the

�	� COMMON LISP

list
as determined by comparisons using the �test predicate� which defaults

to eql�� then the item is consed onto the front of the list� and the augmented

list is stored back into place and returned� otherwise the unaugmented list

is returned� The form place may be any form acceptable as a generalized

variable to setf� If the list held in place is viewed as a set� then pushnew

adjoins an element to the set� see adjoin�

The keyword arguments to pushnew follow the conventions for the generic

sequence functions� See chapter ��� In e	ect� these keywords are simply

passed on to the adjoin function�

pushnew returns the new contents of the place� For example�

�setq x �a �b c� d��

�pushnew � �cadr x�� � �� b c� and now x � �a �� b c� d�

�pushnew b �cadr x�� � �� b c� and x is unchanged

The e	ect of

�pushnew item place �test p�

is roughly equivalent to

�setf place �adjoin item place �test p��

except that the latter would evaluate any subforms of place twice� while

pushnew takes care to evaluate them only once� Moreover� for certain place
forms pushnew may be signi�cantly more e�cient than the setf version�

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion ����� Note that item is fully evaluated before any part of place is evalu�

ated�

�Macro�pop place

The form place should be the name of a generalized variable containing a list�

The result of pop is the car of the contents of place� and as a side e	ect the

cdr of the contents is stored back into place� The form place may be any form
acceptable as a generalized variable to setf� If the list held in place is viewed

as a push�down stack� then pop pops an element from the top of the stack

and returns it� For example�

�setq stack �a b c��

�pop stack� � a and now stack � �b c�

The e	ect of �pop place� is roughly equivalent to

LISTS �	�

�prog
 �car place� �setf place �cdr place���

except that the latter would evaluate any subforms of place three times� while

pop takes care to evaluate them only once� Moreover� for certain place forms

pop may be signi�cantly more e�cient than the setf version�

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�
tion �����

�Function�butlast list �optional n

This creates and returns a list with the same elements as list� excepting the
last n elements� n defaults to �� The argument is not destroyed� If the list

has fewer than n elements� then �� is returned� For example�

�butlast �a b c d�� � �a b c�

�butlast ��a b� �c d��� � ��a b��

�butlast �a�� � ��

�butlast nil� � ��

The name is from the phrase �all elements but the last��

�Function�nbutlast list �optional n

This is the destructive version of butlast� it changes the cdr of the cons n#�

from the end of the list to nil� n defaults to �� If the list has fewer than

n elements� then nbutlast returns ��� and the argument is not modi�ed�

Therefore one normally writes �setq a �nbutlast a�� rather than simply

�nbutlast a��� For example�

�setq foo �a b c d��

�nbutlast foo� � �a b c�

foo � �a b c�

�nbutlast �a�� � ��

�nbutlast nil� � ��

�Function�ldiff list sublist

list should be a list� and sublist should be a sublist of list� that is� one of the
conses that make up list� ldiff
meaning �list di	erence�� will return a new

freshly consed� list� whose elements are those elements of list that appear

before sublist� If sublist is not a tail of list
and in particular if sublist is nil��

then a copy of the entire list is returned� The argument list is not destroyed�

For example�

�	� COMMON LISP

�setq x �a b c d e��

�setq y �cdddr x�� � �d e�

�ldiff x y� � �a b c�

but �ldiff �a b c d� �c d�� � �a b c d�

since the sublist was not eq to any part of the list�

����� Alteration of List Structure

The functions rplaca and rplacdmay be used to make alterations in already
existing list structure� that is� to change the car or cdr of an existing cons�

One may also use setf in conjunction with car and cdr�

The structure is not copied but is destructively altered� hence caution

should be exercised when using these functions� as strange side e	ects can

occur if portions of list structure become shared� The nconc� nreverse�

nreconc� and nbutlast functions� already described� have the same prop�

erty� as do certain of the generic sequence functions such as delete� How�
ever� they are normally not used for this side e	ect� rather� the list�structure

modi�cation is purely for e�ciency� and compatible non�modifying functions

are provided�

�Function�rplaca x y

�rplaca x y� changes the car of x to y and returns
the modi�ed� x� x must

be a cons� but y may be any Lisp object� For example�

�setq g �a b c��

�rplaca �cdr g� d� � �d c�

Now g � �a d c�

�Function�rplacd x y

�rplacd x y� changes the cdr of x to y and returns
the modi�ed� x� x must

be a cons� but y may be any Lisp object� For example�

�setq x �a b c��

�rplacd x d� � �a � d�

Now x � �a � d�

LISTS �	�

The functions rplaca and rplacd go back to the earliest origins of Lisp�

along with car� cdr� and cons� Nowadays� however� they seem to be falling by

the wayside� More and more Common Lisp programmers use setf for nearly

all structure modi�cations� �rplaca x y� is rendered as �setf �car x� y�

or perhaps as �setf �first x� y�� Even more likely is that a defstruct

structure or a CLOS class is used in place of a list� if the data structure is at

all complicated� in this case setf is used with a slot accessor�

�	� COMMON LISP

����� Substitution of Expressions

A number of functions are provided for performing substitutions within a
tree� All take a tree and a description of old subexpressions to be replaced by

new ones� They come in non�destructive and destructive varieties and specify

substitution either by two arguments or by an association list�

The naming conventions for these functions and for their keyword argu�

ments generally follow the conventions for the generic sequence functions� See

chapter ���

�Function�subst new old tree �key �test �testnot �key

�Function�substif new test tree �key �key

�Function�substifnot new test tree �key �key

�subst new old tree�makes a copy of tree� substituting new for every subtree

or leaf of tree
whether the subtree or leaf is a car or a cdr of its parent� such

that old and the subtree or leaf satisfy the test� It returns the modi�ed copy

of tree� The original tree is unchanged� but the result tree may share with

parts of the argument tree�

Compatibility note� In MacLisp� subst is guaranteed not to share with the tree
argument� and the idiom �subst nil nil x� was used to copy a tree x� In Common
Lisp� the function copytree should be used to copy a tree� as the subst idiom will
not work�

For example�

�subst tempest hurricane

�shakespeare wrote �the hurricane���

� �shakespeare wrote �the tempest��

�subst foo nil �shakespeare wrote �twelfth night���

� �shakespeare wrote �twelfth night � foo� � foo�

�subst �a � cons� �old � pair�

��old � spice� ��old � shoes� old � pair� �old � pair��

�test ��� equal�

� ��old � spice� ��old � shoes� a � cons� �a � cons��

This function is not destructive� that is� it does not change the car or cdr of

any already existing list structure� One possible de�nition of subst�

LISTS �		

�defun subst �old new tree �rest x �key test testnot key�

�cond ��satisfiesthetest old tree �test test

�testnot testnot �key key�

new�

��atom tree� tree�

�t �let ��a �apply ��� subst old new �car tree� x��

�d �apply ��� subst old new �cdr tree� x���

�if �and �eql a �car tree��

�eql d �cdr tree���

tree

�cons a d������

See also substitute� which substitutes for top�level elements of a sequence�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�nsubst new old tree �key �test �testnot �key

�Function�nsubstif new test tree �key �key

�Function�nsubstifnot new test tree �key �key

nsubst is a destructive version of subst� The list structure of tree is altered

by destructively replacing with new each leaf or subtree of the tree such that

old and the leaf or subtree satisfy the test�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�sublis alist tree �key �test �testnot �key

sublis makes substitutions for objects in a tree
a structure of conses�� The

�rst argument to sublis is an association list� The second argument is the

tree in which substitutions are to be made� as for subst� sublis looks at
all subtrees and leaves of the tree� if a subtree or leaf appears as a key in

the association list
that is� the key and the subtree or leaf satisfy the test��

it is replaced by the object with which it is associated� This operation is

non�destructive� In e	ect� sublis can perform several subst operations si�

multaneously� For example�

�	
 COMMON LISP

�sublis ��x �
��� �z � zprime��

�plus x �minus g z x p� � � x��

� �plus
�� �minus g zprime
�� p� � �
���

�sublis ���� x y� � � x y�� �� x y� � �� x y���

�
 � �� x y� �� x p�� � x y��

�test ��� equal�

� �
 � � x y� �� x p�� �� x y��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�nsublis alist tree �key �test �testnot �key

nsublis is like sublis but destructively modi�es the relevant parts of the

tree�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

����� Using Lists as Sets

Common Lisp includes functions that allow a list of items to be treated as a

set� There are functions to add� remove� and search for items in a list� based
on various criteria� There are also set union� intersection� and di	erence

functions�

The naming conventions for these functions and for their keyword argu�

ments generally follow the conventions that apply to the generic sequence

functions� See chapter ���

�Function�member item list �key �test �testnot �key

�Function�memberif predicate list �key �key

�Function�memberifnot predicate list �key �key

The list is searched for an element that satis�es the test� If none is found� nil

is returned� otherwise� the tail of list beginning with the �rst element that

satis�ed the test is returned� The list is searched on the top level only� These
functions are suitable for use as predicates�

For example�

LISTS �	�

�member snerd �a b c d�� � nil

�memberif ��� numberp �a ����Space � � foo�� � �� � foo�

�member a �g �a y� c a d e a f�� � �a d e a f�

Note� in the last example� that the value returned by member is eq to the

portion of the list beginning with a� Thus rplaca on the result of member

may be used to alter the found list element� if a check is �rst made that

member did not return nil�
See also find and position�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Compatibility note� In MacLisp� the member function uses an equal comparison
rather than eql� which is the default test for member in Common Lisp� Where in
MacLisp one would write �member x y�� in Common Lisp one must write �member
x y �test ��� equal� to get a completely identical e�ect� Similarly� one can get the
precise e�ect� and no more� of the MacLisp �memq x y� by writing in Common Lisp
�member x y �test ��� eq��

�Function�tailp sublist list

This predicate is true if sublist is a sublist of list
that is� one of the conses

that makes up list�� otherwise it is false� Another way to look at this is that
tailp is true if �nthcdr n list� is sublist� for some value of n� See ldiff�

X�J�� voted in January ���� h���i to strike the parenthetical remark that

suggests that the sublist must be a cons� to clarify that tailp is true if and

only if there exists an integer n such that

�eql sublist �nthcdr n list��

and to specify that list may be a dotted list
implying that implementations

must use atom and not endp to check for the end of the list��

�Function�adjoin item list �key �test �testnot �key

adjoin is used to add an element to a set� provided that it is not already a

member� The equality test defaults to eql�

�adjoin item list� � �if �member item list� list �cons item list��

In general� the test may be any predicate� the item is added to the list only if

there is no element of the list that �satis�es the test��

�	� COMMON LISP

adjoin deviates from the usual rules described in chapter �� for the treat�

ment of arguments named item and �key� If a �key function is speci�ed� it is

applied to item as well as to each element of the list� The rationale is that if

the item is not yet in the list� it soon will be� and so the test is more properly

viewed as being between two elements rather than between a separate item
and an element�

�adjoin item list �key fn�
� �if �member �funcall fn item� list �key fn� list �cons item list��

See pushnew�
Notice of correction� In the �rst edition� the form �fn item� appeared in

this example without the required funcall�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�union list� list� �key �test �testnot �key

�Function�nunion list� list� �key �test �testnot �key

union takes two lists and returns a new list containing everything that is an

element of either of the lists� If there is a duplication between two lists� only

one of the duplicate instances will be in the result� If either of the arguments
has duplicate entries within it� the redundant entries may or may not appear

in the result� For example�

�union �a b c� �f a d��

� �a b c f d� or �b c f a d� or �d f a b c� or ���

�union ��x �� �y ��� ��z �� �x ��� �key ��� car�

� ��x �� �y �� �z ��� or ��x �� �y �� �z ��� or ���

There is no guarantee that the order of elements in the result will re
ect

the ordering of the arguments in any particular way� The implementation is
therefore free to use any of a variety of strategies� The result list may share

cells with� or be eq to� either of the arguments if appropriate�

In general� the test may be any predicate� and the union operation may be

described as follows� For all possible ordered pairs consisting of one element
from list� and one element from list�� the test is used to determine whether

they �match�� For every matching pair� at least one of the two elements of the

pair will be in the result� Moreover� any element from either list that matches

no element of the other will appear in the result� All this is very general� but

probably not particularly useful unless the test is an equivalence relation�

LISTS �	�

The �testnot argument can be useful when the test function is the logi�

cal negation of an equivalence test� A good example of this is the function

mismatch� which is logically inverted so that possibly useful information can

be returned if the arguments do not match� This additional �useful infor�

mation� is discarded in the following example� mismatch is used purely as a
predicate�

�union �����a b� ����� � �� ����f ���

������ � �� �a b� ����g h��

�testnot

��� mismatch�

� �����a b� ����� � �� ����f �� ����g h�� �One possible result

� ��a b� ����f �� ����� � �� ����g h�� �Another possible result

Using �testnot ��� mismatch di	ers from using �test ��� equalp� for exam�

ple� because mismatch will determine that ����a b� and �a b� are the same�
while equalp would regard them as not the same�

nunion is the destructive version of union� It performs the same operation

but may destroy the argument lists� perhaps in order to use their cells to

construct the result�
X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� nunion is permitted to perform a setf on any part� car

or cdr� of the top�level list structure of any of the argument lists�

�Function�intersection list� list� �key �test �testnot �key

�Function�nintersection list� list� �key �test �testnot �key

intersection takes two lists and returns a new list containing everything

that is an element of both argument lists� If either list has duplicate entries�
the redundant entries may or may not appear in the result� For example�

�intersection �a b c� �f a d�� � �a�

There is no guarantee that the order of elements in the result will re
ect

the ordering of the arguments in any particular way� The implementation is
therefore free to use any of a variety of strategies� The result list may share

cells with� or be eq to� either of the arguments if appropriate�

In general� the test may be any predicate� and the intersection operation

may be described as follows� For all possible ordered pairs consisting of one

element from list� and one element from list�� the test is used to determine

�
� COMMON LISP

whether they �match�� For every matching pair� exactly one of the two el�

ements of the pair will be put in the result� No element from either list

appears in the result that does not match an element from the other list� All

this is very general� but probably not particularly useful unless the test is an

equivalence relation�
nintersection is the destructive version of intersection� It performs

the same operation� but may destroy list�� perhaps in order to use its cells to

construct the result�
The argument list� is not destroyed��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�
tion ����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� nintersection is permitted to perform a setf on any

part� car or cdr� of the top�level list structure of any of the argument lists�

�Function�setdifference list� list� �key �test �testnot �key

�Function�nsetdifference list� list� �key �test �testnot �key

setdifference returns a list of elements of list� that do not appear in list��

This operation is not destructive�

There is no guarantee that the order of elements in the result will re
ect

the ordering of the arguments in any particular way� The implementation is
therefore free to use any of a variety of strategies� The result list may share

cells with� or be eq to� either of the arguments if appropriate�

In general� the test may be any predicate� and the set di	erence operation

may be described as follows� For all possible ordered pairs consisting of one

element from list� and one element from list�� the test is used to determine
whether they �match�� An element of list� appears in the result if and only

if it does not match any element of list�� This is very general and permits

interesting applications� For example� one can remove from a list of strings

all those strings containing one of a given list of characters�

�� Remove all flavor names that contain �c� or �w��

�setdifference ��strawberry� �chocolate� �banana�

�lemon� �pistachio� �rhubarb��

�����c ����w�

�test

��� �lambda �s c� �find c s���

� ��banana� �rhubarb� �lemon�� �One possible ordering

nsetdifference is the destructive version of setdifference� This opera�

tion may destroy list��

LISTS �
�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Compatibility note� An approximately equivalent Interlisp function is
ldifference�

�Function�setexclusiveor list� list� �key �test �testnot �key

�Function�nsetexclusiveor list� list� �key �test �testnot �key

setexclusiveor returns a list of elements that appear in exactly one of list�
and list�� This operation is not destructive�

There is no guarantee that the order of elements in the result will re
ect

the ordering of the arguments in any particular way� The implementation is

therefore free to use any of a variety of strategies� The result list may share

cells with� or be eq to� either of the arguments if appropriate�
In general� the test may be any predicate� and the set�exclusive�or operation

may be described as follows� For all possible ordered pairs consisting of one

element from list� and one element from list�� the test is used to determine

whether they �match�� The result contains precisely those elements of list�
and list� that appear in no matching pair�

�
� COMMON LISP

nsetexclusiveor is the destructive version of setexclusiveor� Both lists

may be destroyed in producing the result�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

X�J�� voted in March ���� h���i to clarify the permissible side e	ects of

certain operations� nsetexclusiveor is permitted to perform a setf on any
part� car or cdr� of the top�level list structure of any of the argument lists�

�Function�subsetp list� list� �key �test �testnot �key

subsetp is a predicate that is true if every element of list� appears in

�matches� some element of� list�� and false otherwise�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

����� Association Lists

An association list� or a�list� is a data structure used very frequently in Lisp�

An a�list is a list of pairs
conses�� each pair is an association� The car of a

pair is called the key� and the cdr is called the datum�

An advantage of the a�list representation is that an a�list can be incre�

mentally augmented simply by adding new entries to the front� Moreover�
because the searching function assoc searches the a�list in order� new entries

can �shadow� old entries� If an a�list is viewed as a mapping from keys to

data� then the mapping can be not only augmented but also altered in a

non�destructive manner by adding new entries to the front of the a�list�

Sometimes an a�list represents a bijective mapping� and it is desirable to
retrieve a key given a datum� For this purpose� the �reverse� searching func�

tion rassoc is provided� Other variants of a�list searches can be constructed

using the function find or member�

It is permissible to let nil be an element of an a�list in place of a pair� Such

an element is not considered to be a pair but is simply passed over when the
a�list is searched by assoc�

�Function�acons key datum alist

acons constructs a new association list by adding the pair �key � datum� to

the old a�list�

�acons x y a� � �cons �cons x y� a�

LISTS �
�

This is a trivial convenience function� but I �nd I use it a lot�

�
� COMMON LISP

�Function�pairlis keys data �optional alist

pairlis takes two lists and makes an association list that associates elements

of the �rst list to corresponding elements of the second list� It is an error if the
two lists keys and data are not of the same length� If the optional argument

a�list is provided� then the new pairs are added to the front of it�

The new pairs may appear in the resulting a�list in any order� in particular�

either forward or backward order is permitted� Therefore the result of the call

�pairlis �one two� �
 �� ��three � �� �four �
����

might be

��one �
� �two � �� �three � �� �four �
���

but could equally well be

��two � �� �one �
� �three � �� �four �
���

�Function�assoc item alist �key �test �testnot �key

�Function�associf predicate alist
�Function�associfnot predicate alist

X�J�� voted in March ���� h�i to allow associf and associfnot also to
take a keyword argument named �key� to be used to determine whether a

pair �satis�es the test� in the same manner as for sequence functions� The

new function descriptions are therefore as follows�

�Function�associf predicate alist �key �key

�Function�associfnot predicate alist �key �key

The omission of �key arguments for these functions in the �rst edition was

probably an oversight�

Each of these searches the association list a�list� The value is the �rst pair

in the a�list such that the car of the pair satis�es the test� or nil if there is
no such pair in the a�list� For example�

�assoc r ��a � b� �c � d� �r � x� �s � y� �r � z���

� �r � x�

�assoc goo ��foo � bar� �zoo � goo��� � nil

�assoc � ��
 a b c� �� b c d� �	 x y z��� � �� b c d�

LISTS �
	

It is possible to rplacd the result of assoc provided that it is not nil� in

order to �update� the �table� that was assoc�s second argument�
However�

it is often better to update an a�list by adding new pairs to the front� rather

than altering old pairs�� For example�

�setq values ��x �
��� �y � ���� �z � �����

�assoc y values� � �y � ����

�rplacd �assoc y values� ��
�

�assoc y values� � �y � ��
� now

A typical trick is to say �cdr �assoc x y��� Because the cdr of nil is guar�

anteed to be nil� this yields nil if no pair is found or if a pair is found whose
cdr is nil� This is useful if nil serves its usual role as a �default value��

The two expressions

�assoc item list �test fn�

and

�find item list �test fn �key ��� car�

are equivalent in meaning with one important exception� if nil appears in

the a�list in place of a pair� and the item being searched for is nil� find will

blithely compute the car of the nil in the a�list� �nd that it is equal to the

item� and return nil� whereas assoc will ignore the nil in the a�list and
continue to search for an actual pair
cons� whose car is nil� See find and

position�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Compatibility note� In MacLisp� the assoc function uses an equal comparison
rather than eql� which is the default test for assoc in Common Lisp� Where in
MacLisp one would write �assoc x y�� in Common Lisp one must write �assoc x

y �test ��� equal� to get the completely identical e�ect� Similarly� one can get the
precise e�ect� and no more� of the MacLisp �assq x y� by writing in Common Lisp
�assoc x y �test ��� eq��
In Interlisp� assoc uses an eq test� and sassoc uses an Interlisp equal test�

�Function�rassoc item alist �key �test �testnot �key

�Function�rassocif predicate alist

�Function�rassocifnot predicate alist

X�J�� voted in March ���� h�i to allow rassocif and rassocifnot also

�

 COMMON LISP

to take a keyword argument named �key� to be used to determine whether a

pair �satis�es the test� in the same manner as for sequence functions� The

new function descriptions are therefore as follows�

�Function�rassocif predicate alist �key �key

�Function�rassocifnot predicate alist �key �key

The omission of �key arguments for these functions in the �rst edition was

probably an oversight�

rassoc is the reverse form of assoc� it searches for a pair whose cdr satis�es

the test� rather than the car� If the a�list is considered to be a mapping� then

rassoc treats the a�list as representing the inverse mapping� For example�

�rassoc a ��a � b� �b � c� �c � a� �z � a��� � �c � a�

The expressions

�rassoc item list �test fn�

and

�find item list �test fn �key ��� cdr�

are equivalent in meaning� except when the item is nil and nil appears in
place of a pair in the a�list� See the discussion of the function assoc�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

��

Hash Tables

A hash table is a Lisp object that can e�ciently map a given Lisp object

to another Lisp object� Each hash table has a set of entries� each of which

associates a particular key with a particular value� The basic functions that
deal with hash tables can create entries� delete entries� and �nd the value that

is associated with a given key� Finding the value is very fast� even if there are

many entries� because hashing is used� this is an important advantage of hash

tables over property lists�

A given hash table can associate only one value with a given key� if you

try to add a second value� it will replace the �rst� Also� adding a value to a
hash table is a destructive operation� the hash table is modi�ed� By contrast�

association lists can be augmented non�destructively�

Hash tables come in three kinds� the di	erence being whether the keys are

compared with eq� eql� or equal� In other words� there are hash tables that

hash on Lisp objects
using eq or eql� and there are hash tables that hash on
tree structure
using equal��

Hash tables are created with the function makehashtable� which takes var�

ious options� including which kind of hash table to make
the default being

the eql kind�� To look up a key and �nd the associated value� use gethash�

New entries are added to hash tables using setf with gethash� To remove

an entry� use remhash� Here is a simple example�

�setq a �makehashtable��

�setf �gethash color a� brown�

�setf �gethash name a� fred�

�gethash color a� � brown

�gethash name a� � fred

�gethash pointy a� � nil

In this example� the symbols color and name are being used as keys� and

�
�

�
� COMMON LISP

the symbols brown and fred are being used as the associated values� The

hash table has two items in it� one of which associates from color to brown�

and the other of which associates from name to fred�

Keys do not have to be symbols� they can be any Lisp object� Similarly�

values can be any Lisp object�
When a hash table is �rst created� it has a size� which is the maximum

���

number of entries it can hold� Usually the actual capacity of the table is

somewhat less� since the hashing is not perfectly collision�free� With the

maximum possible bad luck� the capacity could be very much less� but this
rarely happens� If so many entries are added that the capacity is exceeded�

the hash table will automatically grow� and the entries will be rehashed
new

hash values will be recomputed� and everything will be rearranged so that the

fast hash lookup still works�� This is transparent to the caller� it all happens

automatically�
There is a discrepancy between the preceding description of the size of a

hash table and the description of the �size argument in the speci�cation

below of makehashtable�

X�J�� voted in June ���� h��i to regard the latter description as de�ni�
tive� the �size argument is approximately the number of entries that can be

inserted without having to enlarge the hash table� This de�nition is certainly

more convenient for the user�

Compatibility note� This hash table facility is compatible with Lisp Machine Lisp�
It is similar to the hasharray facility of Interlisp� and some of the function names
are the same� However� it is not compatible with Interlisp� The exact details and
the order of arguments are designed to be consistent with the rest of MacLisp rather
than with Interlisp� For instance� the order of arguments to maphash is di�erent�
there is no �system hash table�� and there is not the Interlisp restriction that keys
and values may not be nil�

����� Hash Table Functions

This section documents the functions for hash tables� which use objects as
keys and associate other objects with them�

�Function�makehashtable �key �test �size �rehashsize

�rehashthreshold

This function creates and returns a new hash table� The �test argument

determines how keys are compared� it must be one of the three values ��� eq�

HASH TABLES �
�

��� eql� or ��� equal� or one of the three symbols eq� eql� or equal� If no test

is speci�ed� eql is assumed�

X�J�� voted in January ���� h���i to add a fourth type of hash table�

the value of ��� equalp and the symbol equalp are to be additional valid

possibilities for the �test argument�

Note that one consequence of the vote to change the rules of
oating�point

contagion h��i
described in section ����� is to require � and therefore also

equalp� to compare the values of numbers exactly and not approximately�

making equalp a true equivalence relation on numbers�

Another valuable use of equalp hash tables is case�insensitive comparison
of keys that are strings�

The �size argument sets the initial size of the hash table� in entries�
The

actual size may be rounded up from the size you specify to the next �good�

size� for example to make it a prime number�� You won�t necessarily be able

to store precisely this many entries into the table before it over
ows and
becomes bigger� but this argument does serve as a hint to the implementation

of approximately how many entries you intend to store�

X�J�� voted in January ���� h�i to clarify that the �size argument must

be a non�negative integer�

X�J�� voted in June ���� h��i to regard the preceding description of the
�size argument as de�nitive� it is approximately the number of entries that

can be inserted without having to enlarge the hash table�

The �rehashsize argument speci�es how much to increase the size of the

hash table when it becomes full� This can be an integer greater than zero�

which is the number of entries to add� or it can be a
oating�point number
greater than �� which is the ratio of the new size to the old size� The default

value for this argument is implementation�dependent�

The �rehashthreshold argument speci�es how full the hash table can get
���

before it must grow� This can be an integer greater than zero and less than

the �rehashsize
in which case it will be scaled whenever the table is grown��
or it can be a
oating�point number between zero and �� The default value

for this argument is implementation�dependent�

X�J�� voted in June ���� h��i to replace the preceding speci�cation of

the �rehashthreshold argument with the following� The �rehashthreshold

argument speci�es how full the hash table can get before it must grow� It may
be any real number between � and
� inclusive� It indicates the maximum

desired level of hash table occupancy� An implementation is permitted to

ignore this argument� The default value for this argument is implementation�

dependent�

An example of the use of makehashtable�

��� COMMON LISP

�makehashtable �rehashsize
��

�size �
 numberofwidgets ����

�Function�hashtablep object

hashtablep is true if its argument is a hash table� and otherwise is false�

�hashtablep x� � �typep x hashtable�

�Function�gethash key hashtable �optional default

gethash �nds the entry in hash�table whose key is key and returns the asso�
ciated value� If there is no such entry� gethash returns default� which is nil

if not speci�ed�

gethash actually returns two values� the second being a predicate value

that is true if an entry was found� and false if no entry was found�

setf may be used with gethash to make new entries in a hash table� If
an entry with the speci�ed key already exists� it is removed before the new

entry is added� The default argument may be speci�ed to gethash in this

context� it is ignored by setf but may be useful in such macros as incf that

are related to setf�

�incf �gethash akey table ���

means approximately the same as

�setf �gethash akey table ��

�� �gethash akey table ��
��

which in turn would be treated as simply

�setf �gethash akey table�

�� �gethash akey table ��
��

�Function�remhash key hashtable

remhash removes any entry for key in hash�table� This is a predicate that is

true if there was an entry or false if there was not�

�Function�maphash function hashtable

For each entry in hash�table� maphash calls function on two arguments� the

key of the entry and the value of the entry� maphash then returns nil� If

HASH TABLES ���

entries are added to or deleted from the hash table while a maphash is in

progress� the results are unpredictable� with one exception� if the function

calls remhash to remove the entry currently being processed by the function�

or performs a setf of gethash on that entry to change the associated value�

then those operations will have the intended e	ect� For example�

��� Alter every entry in MYHASHTABLE� replacing the value with

��� its square root� Entries with negative values are removed�

�maphash ��� �lambda �key val�

�if �minusp val�

�remhash key myhashtable�

�setf �gethash key myhashtable� �sqrt val����

myhashtable�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Function�clrhash hashtable

This removes all the entries from hash�table and returns the hash table itself�

�Function�hashtablecount hashtable

This returns the number of entries in the hash�table� When a hash table is

�rst created or has been cleared� the number of entries is zero�

�Macro�withhashtableiterator �mname hash�table� f formg�

X�J�� voted in January ���� h��i to add the macro withhashtableiterator�

The name mname is bound and de�ned as if by macrolet� with the body

forms as its lexical scope� to be a �generator macro� such that successive

invocations �mname� will return entries� one by one� from the hash table that

is the value of the expression hash�table
which is evaluated exactly once��

At each invocation of the generator macro� there are two possibilities� If

there is yet another unprocessed entry in the hash table� then three values are

returned� t� the key of the hash table entry� and the associated value of the

hash table entry� On the other hand� if there are no more unprocessed entries
in the hash table� then one value is returned� nil�

The implicit interior state of the iteration over the hash table entries has

dynamic extent� While the name mname has lexical scope� it is an error to

��� COMMON LISP

invoke the generator macro once the withhashtableiterator form has been

exited�

Invocations of withhashtableiterator and related macros may be nested�

and the generator macro of an outer invocation may be called from within

an inner invocation
assuming that its name is visible or otherwise made
available��

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

Rationale� This facility is a bit more �exible than maphash� It makes possible a
portable and e�cient implementation of loop clauses for iterating over hash tables
�see chapter �	��

HASH TABLES ���

�setq turtles �makehashtable �size � �test eq��

�setf �gethash howardkaylan turtles� �musician leadsinger��

�setf �gethash johnbarbata turtles� �musician drummer��

�setf �gethash leonardo turtles� �ninja leader blue��

�setf �gethash donatello turtles� �ninja machines purple��

�setf �gethash alnichol turtles� �musician guitarist��

�setf �gethash markvolman turtles� �musician greathair��

�setf �gethash raphael turtles� �ninja cool rude red��

�setf �gethash michaelangelo turtles� �ninja partydude orange��

�setf �gethash jimpons turtles� �musician bassist��

�withhashtableiterator �getturtle turtles�

�labels ��try �gotone �optional key value�

�when gotone �Remember� keys may show up in any order
�when �eq �first value� ninja�

�format t � " �� A �� � A � ��

key �rest value���

�multiplevaluecall ��� try �getturtle�����

�multiplevaluecall ��� try �getturtle���� �Prints � lines

Michaelangelo� PARTYDUDE� ORANGE

Leonardo� LEADER� BLUE

Raphael� COOL� RUDE� RED

Donatello� MACHINES� PURPLE

� nil

�Function�hashtablerehashsize hashtable

�Function�hashtablerehashthreshold hashtable
�Function�hashtablesize hashtable

�Function�hashtabletest hashtable

X�J�� voted in March ���� h��i to add four accessor functions that return

values suitable for use in a call to makehashtable in order to produce a new

hash table with state corresponding to the current state of the argument hash

table�

hashtablerehashsize returns the current rehash size of a hash table�

hashtablerehashthreshold returns the current rehash threshold�

hashtablesize returns the current size of a hash table�

hashtabletest returns the test used for comparing keys� If the test is one

of the standard test functions� then the result will always be a symbol� even if

the function itself was speci�ed when the hash�table was created� For example�

��� COMMON LISP

�hashtabletest �makehashtable �test ��� equal�� � equal

Implementations that extend makehashtable by providing additional possi�
bilities for the �test argument may determine how the value returned by

hashtabletest is related to such additional tests�

����� Primitive Hash Function

The function sxhash is a convenient tool for the user who needs to create

more complicated hashed data structures than are provided by hashtable

objects�

�Function�sxhash object

sxhash computes a hash code for an object and returns the hash code as a
non�negative �xnum� A property of sxhash is that �equal x y� implies �

�sxhash x� �sxhash y���

The manner in which the hash code is computed is implementation�

dependent but independent of the particular �incarnation� or �core image��

Hash values produced by sxhash may be written out to �les� for example�
and meaningfully read in again into an instance of the same implementation�

��

Arrays

An array is an object with components arranged according to a rectilinear

coordinate system� In principle� an array in Common Lisp may have any
number of dimensions� including zero�
A zero�dimensional array has exactly

one element�� In practice� an implementation may limit the number of di�

mensions supported� but every Common Lisp implementation must support

arrays of up to seven dimensions� Each dimension is a non�negative integer�

if any dimension of an array is zero� the array has no elements�
An array may be a general array� meaning each element may be any Lisp

object� or it may be a specialized array� meaning that each element must be

of a given restricted type�

One�dimensional arrays are called vectors� General vectors may contain any
��

Lisp object� Vectors whose elements are restricted to type stringchar are

called strings� Vectors whose elements are restricted to type bit are called

bit�vectors�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

rede�ne the type string to be the union of one or more specialized vector
types� the types of whose elements are subtypes of the type character�

����� Array Creation

Do not be daunted by the many options of the function makearray� All that is

required to construct an array is a list of the dimensions� most of the options

are for relatively esoteric applications�

�Function�makearray dimensions �key �elementtype �initialelement

�initialcontents �adjustable �fillpointer �displacedto

�displacedindexoffset

This is the primitive function for making arrays� The dimensions argument

��	

��
 COMMON LISP

should be a list of non�negative integers that are to be the dimensions of the

array� the length of the list will be the dimensionality of the array� Each

dimension must be smaller than arraydimensionlimit� and the product of

all the dimensions must be smaller than arraytotalsizelimit� Note that if

dimensions is nil� then a zero�dimensional array is created� For convenience
when making a one�dimensional array� the single dimension may be provided

as an integer rather than as a list of one integer�

An implementation of Common Lisp may impose a limit on the rank of an

array� but this limit may not be smaller than �� Therefore� any Common Lisp
program may assume the use of arrays of rank � or less� The implementation�

dependent limit on array rank is re
ected in arrayranklimit�

The keyword arguments for makearray are as follows�

�element�type

This argument should be the name of the type of the elements of the array�
an array is constructed of the most specialized type that can nevertheless

accommodate elements of the given type� The type t speci�es a general

array� one whose elements may be any Lisp object� this is the default type�

X�J�� voted in January ���� h�i to change typep and subtypep so that the
specialized array type speci�er means the same thing for discrimination pur�

poses as for declaration purposes� it encompasses those arrays that can result

by specifying element�type as the element type to the function makearray�

Therefore we may say that if type is the �elementtype argument� then the

result will be an array of type �array type�� put another way� for any type
A�

�typep �makearray ��� �elementtype A ����

�array A���

is always true� See upgradedarrayelementtype�

�initial�element

This argument may be used to initialize each element of the array� The

value must be of the type speci�ed by the �elementtype argument� If

the �initialelement option is omitted� the initial values of the array el�

ements are unde�ned
unless the �initialcontents or �displacedto op�
tion is used�� The �initialelement option may not be used with the

�initialcontents or �displacedto option�

�initial�contents

ARRAYS ���

This argument may be used to initialize the contents of the array� The value

is a nested structure of sequences� If the array is zero�dimensional� then the

value speci�es the single element� Otherwise� the value must be a sequence

whose length is equal to the �rst dimension� each element must be a nested

structure for an array whose dimensions are the remaining dimensions� and
so on� For example�

�makearray �� � ��

�initialcontents

���a b c� �
 � ���

��d e f� ��
 ���

��g h i� �� �
��

��j k l� �� � �����

The numbers of levels in the structure must equal the rank of the array�

Each leaf of the nested structure must be of the type speci�ed by the �type

option� If the �initialcontents option is omitted� the initial values of the

array elements are unde�ned
unless the �initialelement or �displacedto
option is used�� The �initialcontents option may not be used with the

�initialelement or �displacedto option�

�adjustable

This argument� if speci�ed and not nil� indicates that it must be possible to

alter the array�s size dynamically after it is created� This argument defaults
to nil�

X�J�� voted in June ���� h�i to clarify that if this argument is non�nil

then the predicate adjustablearrayp will necessarily be true when applied

to the resulting array� but if this argument is nil
or omitted� then the result�

ing array may or may not be adjustable� depending on the implementation�
and therefore adjustablearraypmay be correspondingly true or false of the

resulting array� Common Lisp provides no portable way to create a non�

adjustable array� that is� an array for which adjustablearrayp is guaranteed

to be false�

�fill�pointer

This argument speci�es that the array should have a �ll pointer� If this option

is speci�ed and not nil� the array must be one�dimensional� The value is used

to initialize the �ll pointer for the array� If the value t is speci�ed� the length of

the array is used� otherwise the value must be an integer between �
inclusive�

and the length of the array
inclusive�� This argument defaults to nil�

��� COMMON LISP

�displaced�to

This argument� if speci�ed and not nil� speci�es that the array will be a
displaced array� The argument must then be an array� makearray will create

an indirect or shared array that shares its contents with the speci�ed array�

In this case the �displacedindexoffset option may be useful� It is an error

if the array given as the �displacedto argument does not have the same
�elementtype as the array being created� The �displacedto option may

not be used with the �initialelement or �initialcontents option� This

argument defaults to nil�

�displaced�index�offset

This argument may be used only in conjunction with the displacedto option�

It must be a non�negative integer
it defaults to zero�� it is made to be the
index�o	set of the created shared array�

When an array A is given as the �displacedto argument to makearray

when creating array B� then array B is said to be displaced to array A� Now
the total number of elements in an array� called the total size of the array� is

calculated as the product of all the dimensions
see arraytotalsize�� It is

required that the total size of A be no smaller than the sum of the total size of

B plus the o	set n speci�ed by the �displacedindexoffset argument� The

e	ect of displacing is that array B does not have any elements of its own but
instead maps accesses to itself into accesses to array A� The mapping treats

both arrays as if they were one�dimensional by taking the elements in row�

major order� and then maps an access to element k of array B to an access to

element k#n of array A�

If makearray is called with each of the �adjustable� �fillpointer� and

�displacedto arguments either unspeci�ed or nil� then the resulting array

is guaranteed to be a simple array
see section �����

X�J�� voted in June ���� h�i to clarify that if one or more of the

�adjustable� �fillpointer� and �displacedto arguments is true� then

whether the resulting array is simple is unspeci�ed�

Here are some examples of the use of makearray�

��� Create a onedimensional array of five elements�

�makearray ��

��� Create a twodimensional array� � by �� with fourbit elements�

�makearray �� �� �elementtype �mod
���

ARRAYS ���

��� Create an array of singlefloats�

�makearray � �elementtype singlefloat��

��� Making a shared array�

�setq a �makearray �� ����

�setq b �makearray � �displacedto a

�displacedindexoffset ���

��� Now it is the case that�

�aref b �� � �aref a � ��

�aref b
� � �aref a
 ��

�aref b �� � �aref a

�

�aref b �� � �aref a
 ��

�aref b �� � �aref a � ��

�aref b �� � �aref a �
�

�aref b �� � �aref a � ��

�aref b 	� � �aref a � ��

The last example depends on the fact that arrays are� in e	ect� stored in

row�major order for purposes of sharing� Put another way� the indices for the

elements of an array are ordered lexicographically�

Compatibility note� Both Lisp Machine Lisp� as described in reference ����� and
Fortran ���� �� store arrays in column
major order�

�Constant �arrayranklimit

The value of arrayranklimit is a positive integer that is the upper exclusive
bound on the rank of an array� This bound depends on the implementation

but will not be smaller than �� therefore every Common Lisp implementation

supports arrays whose rank is between � and �
inclusive��
Implementors

are encouraged to make this limit as large as practicable without sacri�cing

performance��

�Constant �arraydimensionlimit

The value of arraydimensionlimit is a positive integer that is the upper

exclusive bound on each individual dimension of an array� This bound depends

on the implementation but will not be smaller than �����
Implementors

are encouraged to make this limit as large as practicable without sacri�cing

performance��

��� COMMON LISP

X�J�� voted in January ���� h��i to specify that the value of array

dimensionlimit must be of type fixnum� This in turn implies that all valid

array indices will be �xnums�

�Constant �arraytotalsizelimit

The value of arraytotalsizelimit is a positive integer that is the upper
exclusive bound on the total number of elements in an array� This bound

depends on the implementation but will not be smaller than �����
Imple�

mentors are encouraged to make this limit as large as practicable without

sacri�cing performance��

The actual limit on array size imposed by the implementation may vary
according to the �elementtype of the array� in this case the value of

arraytotalsizelimit will be the smallest of these individual limits�

�Function�vector �rest objects

The function vector is a convenient means for creating a simple general vector
with speci�ed initial contents� It is analogous to the function list�

�vector a� a� ��� an�

� �makearray �list n� �elementtype t

�initialcontents �list a� a� ��� an��

����� Array Access

The function aref is normally used for accessing an element of an array�

Other access functions� such as svref� char� and bit� may be more e�cient
in specialized circumstances�

�Function�aref array �rest subscripts

This accesses and returns the element of array speci�ed by the subscripts� The

number of subscripts must equal the rank of the array� and each subscript must

be a non�negative integer less than the corresponding array dimension�
aref is unusual among the functions that operate on arrays in that it com�

pletely ignores �ll pointers� aref can access without error any array element�

whether active or not� The generic sequence function elt� however� observes

the �ll pointer� accessing an element beyond the �ll pointer with elt is an

error�

ARRAYS ���

Note that this remark� predating the design of the Common Lisp Object

System� uses the term �generic� in a generic sense and not necessarily in the

technical sense used by CLOS
see chapter ���

setf may be used with aref to destructively replace an array element with

a new value�

Under some circumstances it is desirable to write code that will extract an
element from an array a given a list z of the indices� in such a way that the

code works regardless of the rank of the array� This is easy using apply�

�apply ��� aref a z�

The length of the list must of course equal the rank of the array�� This

construction may be used with setf to alter the element so selected to some

new value w�

�setf �apply ��� aref a z� w�

�Function�svref simplevector index

The �rst argument must be a simple general vector� that is� an object of type

simplevector� The element of the simple�vector speci�ed by the integer index
is returned�

The index must be non�negative and less than the length of the vector�

setf may be used with svref to destructively replace a simple�vector ele�

ment with a new value�

svref is identical to aref except that it requires its �rst argument to be

a simple vector� In some implementations of Common Lisp� svref may be
faster than aref in situations where it is applicable� See also schar and sbit�

����� Array Information

The following functions extract from an array interesting information other

than the elements�

�Function�arrayelementtype array

arrayelementtype returns a type speci�er for the set of objects that can be

stored in the array� This set may be larger than the set requested when the

array was created� for example� the result of

�arrayelementtype �makearray � �elementtype �mod ����

��� COMMON LISP

could be �mod ��� �mod ��� fixnum� t� or any other type of which �mod ��

is a subtype� See subtypep�

�Function�arrayrank array

This returns the number of dimensions
axes� of array� This will be a non�

negative integer� See arrayranklimit�

Compatibility note� In Lisp Machine Lisp� this is called array���dims� This name
causes problems in other Lisp dialects because of the ��� character�

�Function�arraydimension array axisnumber

The length of dimension number axis�number of the array is returned� array
may be any kind of array� and axis�number should be a non�negative inte�

ger less than the rank of array� If the array is a vector with a �ll pointer�

arraydimension returns the total size of the vector� including inactive ele�

ments� not the size indicated by the �ll pointer�
The function length will

return the size indicated by the �ll pointer��

Compatibility note� This is similar to the Lisp Machine Lisp function
arraydimensionn� but takes its arguments in the other order� and is zero
origin
for consistency instead of one
origin� In Lisp Machine Lisp �arraydimensionn
�

returns the length of the array leader�

�Function�arraydimensions array

arraydimensions returns a list whose elements are the dimensions of array�

�Function�arraytotalsize array

arraytotalsize returns the total number of elements in the array� calculated

as the product of all the dimensions�

�arraytotalsize x�

� �apply ���
 �arraydimensions x��

� �reduce ���
 �arraydimensions x��

ARRAYS ���

Note that the total size of a zero�dimensional array is
� The total size of a

one�dimensional array is calculated without regard for any �ll pointer�

�Function�arrayinboundsp array �rest subscripts

This predicate checks whether the subscripts are all legal subscripts for array�

The predicate is true if they are all legal� otherwise it is false� The subscripts

must be integers� The number of subscripts supplied must equal the rank of

the array� Like aref� arrayinboundsp ignores �ll pointers�

�Function�arrayrowmajorindex array �rest subscripts

This function takes an array and valid subscripts for the array and returns a

single non�negative integer less than the total size of the array that identi�es

the accessed element in the row�major ordering of the elements� The number
of subscripts supplied must equal the rank of the array� Each subscript must

be a non�negative integer less than the corresponding array dimension� Like

aref� arrayrowmajorindex ignores �ll pointers�

A possible de�nition of arrayrowmajorindex� with no error checking� would
be

�defun arrayrowmajorindex �a �rest subscripts�

�apply ��� � �maplist ��� �lambda �x y�

�
 �car x� �apply ���
 �cdr y����

subscripts

�arraydimensions a����

For a one�dimensional array� the result of arrayrowmajorindex always equals
the supplied subscript�

�Function�rowmajoraref array index

X�J�� voted in March ���� h�i to add the function rowmajoraref� This
allows any array element to be accessed as if the containing array were one�

dimensional� The index must be a non�negative integer less than the total

size of the array� It indexes into the array as if its elements were arranged

one�dimensionally in row�major order� It may be understood in terms of aref

as follows�

��� COMMON LISP

�rowmajoraref array index� �
�aref �makearray �arraytotalsize array��

�displacedto array

�elementtype �arrayelementtype array��

index�

In other words� one may treat an array as one�dimensional by creating a new

one�dimensional array that is displaced to the old one and then accessing the

new array� Alternatively� aref may be understood in terms of rowmajoraref�

�aref array i� i� ��� in�� �
�rowmajoraref array

�arrayrowmajorindex array i� i� ��� in��

That is� a multidimensional array access is equivalent to a row�major access

using an equivalent row�major index�

Like aref� rowmajoraref completely ignores �ll pointers� A call to

rowmajorsetf is suitable for use as a place for setf�

This operation makes it easier to write code that e�ciently processes arrays

of any rank� Suppose� for example� that one wishes to set every element of an

array tennisscores to zero� One might write

�fill �makearray �arraytotalsize tennisscores�

�elementtype �arrayelementtype tennisscores�

�displacedto tennisscores�

��

Unfortunately� this incurs the overhead of creating a displaced array� and fill

cannot be applied to multidimensional arrays� Another approach would be to

handle each possible rank separately�

�ecase �arrayrank tennisscores�

�� �setf �aref tennisscores� ���

�
 �dotimes �i� �arraydimension tennisscores ���

�setf �aref tennisscores i�� ����

�� �dotimes �i� �arraydimension tennisscores ���

�dotimes �i
 �arraydimension tennisscores
��

�setf �aref tennisscores i� i
� �����

���

�	 �dotimes �i� �arraydimension tennisscores ���

�dotimes �i
 �arraydimension tennisscores
��

�dotimes �i� �arraydimension tennisscores
��

ARRAYS ��	

�dotimes �i� �arraydimension tennisscores
��

�dotimes �i� �arraydimension tennisscores
��

�dotimes �i� �arraydimension tennisscores
��

�dotimes �i� �arraydimension tennisscores
��

�setf �aref tennisscores i� i
 i� i� i� i� i��

����������

�

It is easy to get tired of writing such code� Furthermore� this approach is un�
desirable because some implementations of Common Lisp will in fact correctly

support arrays of rank greater than �
though no implementation is required

to do so�� A recursively nested loop does the job� but it is still pretty hairy�

�labels

��grokanyrank ��rest indices�

�let ��d � �arrayrank tennisscores� �length indices���

�if � d ��

�setf �apply ��� rowmajoraref indices� ��

�dotimes �i �arraydimension tennisscores � d
���

�apply ��� grokanyrank i indices������

�grokanyrank��

Whether this code is particularly e�cient depends on many implementation
parameters� such as how �rest arguments are handled and how cleverly calls

to apply are compiled� How much easier it is to use rowmajoraref�

�dotimes �i �arraytotalsize tennisscores��

�setf �rowmajoraref tennisscores i� ���

Surely this code is sweeter than the honeycomb�

�Function�adjustablearrayp array

This predicate is true if the argument
which must be an array� is adjustable�

and otherwise is false�

X�J�� voted in June ���� h�i to clarify that adjustablearrayp is true
of an array if and only if adjustarray� when applied to that array� will

return the same array� that is� an array eq to the original array� If the

�adjustable argument to makearray is non�nil when an array is created�

then adjustablearraypmust be true of that array� If an array is created with

the �adjustable argument nil
or omitted�� then adjustablearrayp may

��
 COMMON LISP

be true or false of that array� depending on the implementation� X�J�� fur�

ther voted to de
ne the terminology �adjustable array� to mean precisely �an

array of which adjustablearrayp is true�� See makearray and adjustarray�

����� Functions on Arrays of Bits

The functions described in this section operate only on arrays of bits� that is�

specialized arrays whose elements are all � or
�

�Function�bit bitarray �rest subscripts

�Function�sbit simplebitarray �rest subscripts

bit is exactly like aref but requires an array of bits� that is� one of type
�array bit�� The result will always be � or
� sbit is like bit but addition�

ally requires that the �rst argument be a simple array
see section ����� Note

that bit and sbit� unlike char and schar� allow the �rst argument to be an

array of any rank�
setf may be used with bit or sbit to destructively replace a bit�array

element with a new value�

bit and sbit are identical to aref except for the more speci�c type re�

quirements on the �rst argument� In some implementations of Common Lisp�

bit may be faster than aref in situations where it is applicable� and sbit

may similarly be faster than bit�

�Function�bitand bitarray� bitarray� �optional resultbitarray

�Function�bitior bitarray� bitarray� �optional resultbitarray
�Function�bitxor bitarray� bitarray� �optional resultbitarray

�Function�biteqv bitarray� bitarray� �optional resultbitarray

�Function�bitnand bitarray� bitarray� �optional resultbitarray

�Function�bitnor bitarray� bitarray� �optional resultbitarray

�Function�bitandc
 bitarray� bitarray� �optional resultbitarray
�Function�bitandc� bitarray� bitarray� �optional resultbitarray

�Function�bitorc
 bitarray� bitarray� �optional resultbitarray

�Function�bitorc� bitarray� bitarray� �optional resultbitarray

These functions perform bit�wise logical operations on bit�arrays� All of the

arguments to any of these functions must be bit�arrays of the same rank and

dimensions� The result is a bit�array of matching rank and dimensions� such

that any given bit of the result is produced by operating on corresponding

bits from each of the arguments�

ARRAYS ���

If the third argument is nil or omitted� a new array is created to contain

the result� If the third argument is a bit�array� the result is destructively

placed into that array� If the third argument is t� then the �rst argument is

also used as the third argument� that is� the result is placed back in the �rst

array�

The following table indicates what the result bit is for each operation as a

function of the two corresponding argument bits�

argument� � �

argument� �
 �
 Operation name

bitand � � �
 and

bitior �

 inclusive or

bitxor �

 � exclusive or

biteqv
 � �
 equivalence
exclusive nor�

bitnand

 � not�and
bitnor
 � � � not�or

bitandc
 �
 � � and complement of argument� with argument�

bitandc� � �
 � and argument� with complement of argument�

bitorc

 �
 or complement of argument� with argument�
bitorc�
 �

 or argument� with complement of argument�

For example�

�bitand ���

�� ���

�
�� � ���

���

�bitxor ���

�� ���

�
�� � ���
�

�

�bitandc
 ���

�� ���

�
�� � ���
�
��

See logand and related functions�

�Function�bitnot bitarray �optional resultbitarray

The �rst argument must be an array of bits� A bit�array of matching rank

and dimensions is returned that contains a copy of the argument with all the

bits inverted� See lognot�

If the second argument is nil or omitted� a new array is created to contain

the result� If the second argument is a bit�array� the result is destructively

placed into that array� If the second argument is t� then the �rst argument

is also used as the second argument� that is� the result is placed back in the
�rst array�

��� COMMON LISP

����� Fill Pointers

Several functions for manipulating a
ll pointer are provided in Common Lisp
to make it easy to incrementally �ll in the contents of a vector and� more

generally� to allow e�cient varying of the length of a vector� For example�

a string with a �ll pointer has most of the characteristics of a PL�I varying

string�

The �ll pointer is a non�negative integer no larger than the total number of

elements in the vector
as returned by arraydimension�� it is the number of
�active� or ��lled�in� elements in the vector� The �ll pointer constitutes the

�active length� of the vector� all vector elements whose index is less than the

�ll pointer are active� and the others are inactive� Nearly all functions that

operate on the contents of a vector will operate only on the active elements�

An important exception is aref� which can be used to access any vector
element whether in the active region of the vector or not� It is important to

note that vector elements not in the active region are still considered part of

the vector�

Implementation note� An implication of this rule is that vector elements outside
the active region may not be garbage
collected�

Only vectors
one�dimensional arrays� may have �ll pointers� multidimen�

sional arrays may not�
Note� however� that one can create a multidimensional

array that is displaced to a vector that has a �ll pointer��

�Function�arrayhasfillpointerp array

The argument must be an array� arrayhasfillpointerp returns t if the

array has a �ll pointer� and otherwise returns nil� Note that arrayhasfill

pointerp always returns nil if the array is not one�dimensional�

�Function�fillpointer vector

The �ll pointer of vector is returned� It is an error if the vector does not have

a �ll pointer�

setf may be used with fillpointer to change the �ll pointer of a vector�

The �ll pointer of a vector must always be an integer between zero and the

size of the vector
inclusive��

ARRAYS ���

�Function�vectorpush newelement vector

vectormust be a one�dimensional array that has a �ll pointer� and new�element

may be any object� vectorpush attempts to store new�element in the element

of the vector designated by the �ll pointer� and to increase the �ll pointer by

�� If the �ll pointer does not designate an element of the vector
speci�cally�
when it gets too big�� it is una	ected and vectorpush returns nil� Otherwise�

the store and increment take place and vectorpush returns the former value

of the �ll pointer
� less than the one it leaves in the vector�� thus the value

of vectorpush is the index of the new element pushed�

It is instructive to compare vectorpush� which is a function� with push�
which is a macro that requires a place suitable for setf� A vector with a �ll

pointer e	ectively contains the place to be modi�ed in its fillpointer slot�

�Function�vectorpushextend newelement vector �optional extension

vectorpushextend is just like vectorpush except that if the �ll pointer

gets too large� the vector is extended
using adjustarray� so that it can

contain more elements� If� however� the vector is not adjustable� then

vectorpushextend signals an error�

X�J�� voted in June ���� h�i to clarify that vectorpushextend regards an
array as not adjustable if and only if adjustablearrayp is false of that array�

The optional argument extension� which must be a positive integer� is the

minimum number of elements to be added to the vector if it must be extended�

it defaults to a �reasonable� implementation�dependent value�

�Function�vectorpop vector

vectormust be a one�dimensional array that has a �ll pointer� If the �ll pointer

is zero� vectorpop signals an error� Otherwise the �ll pointer is decreased by

�� and the vector element designated by the new value of the �ll pointer is

returned�

����� Changing the Dimensions of an Array

This function may be used to resize or reshape an array� Its options are similar

to those of makearray�

��� COMMON LISP

�Function�adjustarray array newdimensions �key �elementtype

�initialelement �initialcontents �fillpointer

�displacedto �displacedindexoffset

adjustarray takes an array and a number of other arguments as for

makearray� The number of dimensions speci�ed by new�dimensions must

equal the rank of array�

adjustarray returns an array of the same type and rank as array� with

the speci�ed new�dimensions� In e	ect� the array argument itself is modi�ed
to conform to the new speci�cations� but this may be achieved either by

modifying the array or by creating a new array and modifying the array

argument to be displaced to the new array�

In the simplest case� one speci�es only the new�dimensions and possibly an

�initialelement argument� Those elements of array that are still in bounds

appear in the new array� The elements of the new array that are not in the

bounds of array are initialized to the �initialelement� if this argument is
not provided� then the initial contents of any new elements are unde�ned�

If �elementtype is speci�ed� then array must be such that it could have
been originally created with that type� otherwise an error is signaled� Spec�

ifying �elementtype to adjustarray serves only to require such an error

check�

If �initialcontents or �displacedto is speci�ed� then it is treated as for

makearray� In this case none of the original contents of array appears in the

new array�

If �fillpointer is speci�ed� the �ll pointer of the array is reset as speci�ed�

An error is signaled if array had no �ll pointer already�

X�J�� voted in June ���� h�i to clarify the treatment of the �fillpointer

argument as follows�

If the �fillpointer argument is not supplied� then the �ll pointer of the

array is left alone� It is an error to try to adjust the array to a total size that

is smaller than its �ll pointer�

If the �fillpointer argument is supplied� then its value must be either

an integer� t� or nil� If it is an integer� then it is the new value for the �ll
pointer� it must be non�negative and no greater than the new size to which

the array is being adjusted� If it is t� then the �ll pointer is set equal to the

new size for the array� If it is nil� then the �ll pointer is left alone� it is as

if the argument had not been supplied� Again� it is an error to try to adjust

the array to a total size that is smaller than its �ll pointer�

An error is signaled if a non�nil �fillpointer value is supplied and the

array to be adjusted does not already have a �ll pointer�

ARRAYS ���

This extended treatment of the �fillpointer argument to adjustarray

is consistent with the previously existing treatment of the �fillpointer ar�

gument to makearray�

adjustarray may� depending on the implementation and the arguments�

simply alter the given array or create and return a new one� In the latter case
the given array will be altered so as to be displaced to the new array and have

the given new dimensions�

It is not permitted to call adjustarray on an array that was not created
���

with the �adjustable option� The predicate adjustablearraypmay be used
to determine whether or not an array is adjustable�

X�J�� voted in January ���� h�i to allow adjustarray to be applied to

any array� If adjustarray is applied to an array that was originally created

with �adjustable true� the array returned is eq to its �rst argument� It is

not speci�ed whether adjustarray returns an array eq to its �rst argument
for any other arrays� If the array returned by adjustarray is not eq to its

�rst argument� the original array is unchanged and does not share storage

with the new array�

Under this new de�nition� it is wise to treat adjustarray in the same
manner as delete and nconc� one should carefully retain the returned value�

for example by writing

�setq myarray �adjustarray myarray �����

rather than relying solely on a side e	ect�

If adjustarray is applied to an array that is displaced to another array x�

then afterwards neither array nor the returned result is displaced to x unless

such displacement is explicitly re�speci�ed in the call to adjustarray�
For example� suppose that the ��by�� array m looks like this�

����A� � alpha beta gamma delta �

� epsilon zeta eta theta �

� iota kappa lambda mu �

� nu xi omicron pi � �

Then the result of

�adjustarray m �� �� �initialelement baz�

is a ��by�� array with contents

����A� � alpha beta gamma delta baz �

� epsilon zeta eta theta baz �

� iota kappa lambda mu baz � �

��� COMMON LISP

Note that if array a is created displaced to array b and subsequently array b

is given to adjustarray� array a will still be displaced to array b� the e	ects

of this displacement and the rule of row�major storage order must be taken

into account�

X�J�� voted in June ���� h�i to clarify the interaction of adjustarraywith

array displacement�

Suppose that an array A is to be adjusted� There are four cases according

to whether or not A was displaced before adjustment and whether or not the
result is displaced after adjustment�

� Suppose A is not displaced either before or after� The dimensions of A

are altered� and the contents are rearranged as appropriate� Additional
elements of A are taken from the �initialelement argument� However�

the use of the �initialcontents argument causes all old contents to be

discarded�

� Suppose A is not displaced before� but is displaced to array C after� None
of the original contents of A appears in A afterwards� A now contains
some

of� the contents of C� without any rearrangement of C�

� Suppose A is displaced to array B before the call� and is displaced to array C

after the call�
Note that B and C may be the same array�� The contents of
B do not appear in A afterwards
unless such contents also happen to be in

C� as when B and C are the same� for example�� If �displacedindexoffset

is not speci�ed in the call to adjustarray� it defaults to zero� the old o	set

into B� is not retained�

� Suppose A is displaced to array B before the call� but is not displaced
afterwards� In this case A gets a new �data region� and
some of� the

contents of B are copied into it as appropriate to maintain the existing old

contents� Additional elements of A are taken from the �initialelement

argument� However� the use of the �initialcontents argument causes all
old contents to be discarded�

If array X is displaced to array Y� and array Y is displaced to array Z� and
array Y is altered by adjustarray� array X must now refer to the adjusted

contents of Y� This means that an implementation may not collapse the chain

to make X refer to Z directly and forget that the chain of reference passes

through array Y�
Caching techniques are of course permitted� as long as they

preserve the semantics speci�ed here��

If X is displaced to Y� it is an error to adjust Y in such a way that it no

longer has enough elements to satisfy X� This error may be signaled at the

ARRAYS ���

time of the adjustment� but this is not required�

Note that omitting the �displacedto argument to adjustarray is equiva�

lent to specifying �displacedto nil� in either case� the array is not displaced

after the call regardless of whether it was displaced before the call�

��

Strings

A string is a specialized vector
one�dimensional array� whose elements are

characters�

Speci�cally� the type string is identical to the type �vector stringchar��
���

which in turn is the same as �array stringchar �
���

X�J�� voted in March ���� h��i to eliminate the type stringchar and to
rede�ne the type string to be the union of one or more specialized vector

types� the types of whose elements are subtypes of the type character�

Any string�speci�c function de�ned in this chapter whose name begins with
the pre�x string will accept a symbol instead of a string as an argument pro�

vided that the operation never modi�es that argument� the print name of the

symbol is used� In this respect the string�speci�c sequence operations are

not simply specializations of generic versions� the generic sequence operations
described in chapter �� never accept symbols as sequences� This slight inel�

egance is permitted in Common Lisp in the name of pragmatic utility� One

may get the e	ect of having a generic sequence function operate on either

symbols or strings by applying the coercion function string to any argument

whose data type is in doubt�

Note that this remark� predating the design of the Common Lisp Object

System� uses the term �generic� in a generic sense and not necessarily in the

technical sense used by CLOS
see chapter ���

Also� there is a slight non�parallelism in the names of string functions�

Where the su�xes equalp and eql would be more appropriate� for histori�
cal compatibility the su�xes equal and are used instead to indicate case�

insensitive and case�sensitive character comparison� respectively�

Any Lisp object may be tested for being a string by the predicate stringp�

Note that strings� like all vectors� may have �ll pointers
though such strings

are not necessarily simple�� String operations generally operate only on the

active portion of the string
below the �ll pointer�� See fillpointer and

���

STRINGS ��	

related functions�

�
��� String Access

The following functions access a single character element of a string�

�Function�char string index

�Function�schar simplestring index

The given index must be a non�negative integer less than the length of string�
which must be a string� The character at position index of the string is

returned as a character object�

This character will necessarily satisfy the predicate stringcharp��
���

X�J�� voted in March ���� h��i to eliminate stringcharp�
As with all sequences in Common Lisp� indexing is zero�origin� For example�

�char �FloobBooberBabBooberBubs� �� � ����F

�char �FloobBooberBabBooberBubs�
� � ����l

See aref and elt� In e	ect�

�char s j� � �aref �the string s� j�

setf may be used with char to destructively replace a character within a
string�

For char� the string may be any string� for schar� it must be a simple

string� In some implementations of Common Lisp� the function schar may

be faster than char when it is applicable�

�
��� String Comparison

The naming conventions for these functions and for their keyword arguments

generally follow the conventions for the generic sequence functions
see chapter

����

Note that this remark� predating the design of the Common Lisp Object
System� uses the term �generic� in a generic sense and not necessarily in the

technical sense used by CLOS
see chapter ���

�Function�string string� string� �key �start
 �end
 �start� �end�

string compares two strings and is true if they are the same
corresponding

characters are identical� but is false if they are not� The function equal calls

string if applied to two strings�

��
 COMMON LISP

The keyword arguments �start
 and �start� are the places in the strings

to start the comparison� The arguments �end
 and �end� are the places

in the strings to stop comparing� comparison stops just before the position

speci�ed by a limit� The �start� arguments default to zero
beginning of

string�� and the �end� arguments
if either omitted or nil� default to the
lengths of the strings
end of string�� so that by default the entirety of each

string is examined� These arguments are provided so that substrings can be

compared e�ciently�

string is necessarily false if the
sub�strings being compared are of unequal
length� that is� if

�not � � end
 start
� � end� start����

is true� then string is false�

�string �foo� �foo�� is true
�string �foo� �Foo�� is false

�string �foo� �bar�� is false

�string �together� �frog� �start

 �end
 � �start� ��

is true

X�J�� voted in June ���� h���i to clarify string coercion
see string��

Compatibility note� string is called strequal in Interlisp�

�Function�stringequal string� string� �key �start
 �end

�start� �end�

stringequal is just like string except that di	erences in case are ignored�

two characters are considered to be the same if charequal is true of them�

For example�

�stringequal �foo� �Foo�� is true

X�J�� voted in June ���� h���i to clarify string coercion
see string��

�Function�string� string� string� �key �start
 �end
 �start� �end�

�Function�string� string� string� �key �start
 �end
 �start� �end�

�Function�string� string� string� �key �start
 �end
 �start� �end�

�Function�string� string� string� �key �start
 �end
 �start� �end�

�Function�string string� string� �key �start
 �end
 �start� �end�

These functions compare the two string arguments lexicographically� and the

STRINGS ���

result is nil unless string� is respectively less than� greater than� less than or

equal to� greater than or equal to� or not equal to string�� If the condition is

satis�ed� however� then the result is the index within the strings of the �rst

character position at which the strings fail to match� put another way� the

result is the length of the longest common pre�x of the strings�

A string a is less than a string b if in the �rst position in which they di	er

the character of a is less than the corresponding character of b according to

the function char�� or if string a is a proper pre�x of string b
of shorter
length and matching in all the characters of a��

The keyword arguments �start
 and �start� are the places in the strings

to start the comparison� The keyword arguments �end
 and �end� are the
places in the strings to stop comparing� comparison stops just before the

position speci�ed by a limit� The �start� arguments default to zero
beginning

of string�� and the �end� arguments
if either omitted or nil� default to the

lengths of the strings
end of string�� so that by default the entirety of each
string is examined� These arguments are provided so that substrings can be

compared e�ciently� The index returned in case of a mismatch is an index

into string��

X�J�� voted in June ���� h���i to clarify string coercion
see string��

�Function�stringlessp string� string� �key �start
 �end

�start� �end�

�Function�stringgreaterp string� string� �key �start
 �end

�start� �end�

�Function�stringnotgreaterp string� string� �key �start
 �end

�start� �end�

�Function�stringnotlessp string� string� �key �start
 �end

�start� �end�

�Function�stringnotequal string� string� �key �start
 �end

�start� �end�

These are exactly like string�� string�� string�� string�� and string �
respectively� except that distinctions between uppercase and lowercase letters

are ignored� It is as if charlessp were used instead of char� for comparing

characters�

X�J�� voted in June ���� h���i to clarify string coercion
see string��

��� COMMON LISP

�
��� String Construction and Manipulation

Most of the interesting operations on strings may be performed with the
generic sequence functions described in chapter ��� The following functions

perform additional operations that are speci�c to strings�

Note that this remark� predating the design of the Common Lisp Object

System� uses the term �generic� in a generic sense and not necessarily in the

technical sense used by CLOS
see chapter ���

�Function�makestring size �key �initialelement
��

This returns a string
in fact a simple string� of length size� each of whose

characters has been initialized to the �initialelement argument� If an

�initialelement argument is not speci�ed� then the string will be initialized

in an implementation�dependent way�

Implementation note� It may be convenient to initialize the string to null char

acters� or to spaces� or to garbage ��whatever was there���

A string is really just a one�dimensional array of �string characters�
that

is� those characters that are members of type stringchar�� More complex

character arrays may be constructed using the function makearray�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

add a keyword argument �elementtype to makestring� The new function

description is as follows�

�Function�makestring size �key �initialelement �elementtype

This returns a simple string of length size� each of whose characters has been
initialized to the �initialelement argument� If an �initialelement argu�

ment is not speci�ed� then the string will be initialized in an implementation�

dependent way�

The �elementtype argument names the type of the elements of the string�
a string is constructed of the most specialized type that can accommodate

elements of the given type� If �elementtype is omitted� the type character

is the default�

X�J�� voted in January ���� h�i to clarify that the size argument must be

a non�negative integer less than the value of arraydimensionlimit�

STRINGS ���

�Function�stringtrim characterbag string

�Function�stringlefttrim characterbag string

�Function�stringrighttrim characterbag string

stringtrim returns a substring of string� with all characters in character�
bag stripped o	 the beginning and end� The function stringlefttrim is

similar but strips characters o	 only the beginning� stringrighttrim strips

o	 only the end� The argument character�bag may be any sequence containing

characters� For example�

�stringtrim �����Space ����Tab ����Newline� � garbanzo beans

�� � �garbanzo beans�

�stringtrim � �
�� � �
three �silly� words
 � ��

� �three �silly� words�

�stringlefttrim � �
�� � �
three �silly� words
 � ��

� �three �silly� words
 � �

�stringrighttrim � �
�� � �
three �silly� words
 � ��

� � �
three �silly� words�

If no characters need to be trimmed from the string� then either the argu�

ment string itself or a copy of it may be returned� at the discretion of the
implementation�

X�J�� voted in June ���� h���i to clarify string coercion
see string��

�Function�stringupcase string �key �start �end

�Function�stringdowncase string �key �start �end

�Function�stringcapitalize string �key �start �end

stringupcase returns a string just like string with all lowercase characters

replaced by the corresponding uppercase characters� More precisely� each

character of the result string is produced by applying the function charupcase

to the corresponding character of string�
stringdowncase is similar� except that uppercase characters are converted

to lowercase characters
using chardowncase��

The keyword arguments �start and �end delimit the portion of the string

to be a	ected� The result is always of the same length as string� however�
The argument is not destroyed� However� if no characters in the argument

require conversion� the result may be either the argument or a copy of it� at

the implementation�s discretion� For example�

�stringupcase �Dr� Livingstone� I presume���

� �DR� LIVINGSTONE� I PRESUME��

	�� COMMON LISP

�stringdowncase �Dr� Livingstone� I presume���

� �dr� livingstone� i presume��

�stringupcase �Dr� Livingstone� I presume�� �start � �end
��

� �Dr� LiVINGstone� I presume��

stringcapitalize produces a copy of string such that� for every word in

the copy� the �rst character of the word� if case�modi�able� is uppercase and
any other case�modi�able characters in the word are lowercase� For the pur�

poses of stringcapitalize� a word is de�ned to be a consecutive subsequence

consisting of alphanumeric characters or digits� delimited at each end either

by a non�alphanumeric character or by an end of the string� For example�

�stringcapitalize � hello �� � � Hello �

�stringcapitalize

�occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION��

� �Occluded Casements Forestall Inadvertent Defenestration�

�stringcapitalize kludgyhashsearch� � �KludgyHashSearch�

�stringcapitalize �DON T��� � �Don T�� �not �Don t��

�stringcapitalize �pipe
�a� foo
�c�� � �Pipe
�a� Foo
�c�

X�J�� voted in June ���� h���i to clarify string coercion
see string��

Compatibility note� Some very approximate Interlisp equivalents to
stringupcase� stringdowncase� and stringcapitalize are ucase� lcase with sec

ond argument nil� and lcase with second argument t�

�Function�nstringupcase string �key �start �end

�Function�nstringdowncase string �key �start �end

�Function�nstringcapitalize string �key �start �end

These three functions are just like stringupcase� stringdowncase� and

stringcapitalize but destructively modify the argument string by altering
case�modi�able characters as necessary�

The keyword arguments �start and �end delimit the portion of the string

to be a	ected� The argument string is returned as the result�

�Function�string x

Most of the string functions e	ectively apply string to such of their argu�

ments as are supposed to be strings� If x is a string� it is returned� If x is a

symbol� its print name is returned�

STRINGS 	��

If x is a string character
a character of type stringchar�� then a string
��

containing that one character is returned�

X�J�� voted in March ���� h��i to eliminate the type stringchar and to

rede�ne the type string to be the union of one or more specialized vector

types� the types of whose elements are subtypes of the type character� Pre�
sumably converting a character to a string always works according to this

vote�

In any other situation� an error is signaled�

To convert a sequence of characters to a string� use coerce�
Note that
�coerce x string� will not succeed if x is a symbol� Conversely� string

will not convert a list or other sequence to be a string��

To get the string representation of a number or any other Lisp object� use

prin
tostring� princtostring� or format�

X�J�� voted in June ���� h���i to specify that the following functions
perform coercion on their string arguments identical to that performed by the

function string�

string stringequal stringtrim

string� stringlessp stringlefttrim

string� stringgreaterp stringrighttrim

string� stringnotgreaterp stringupcase

string� stringnotlessp stringdowncase

string stringnotequal stringcapitalize

Note that nstringupcase� nstringdowncase� and nstringcapitalize are

absent from this list� because they modify destructively� the argument must

be a string�

As part of the same vote X�J�� speci�ed that string may perform addi�
tional implementation�dependent coercions but the returned value must be

of type string� Only when no coercion is de�ned� whether standard or

implementation�dependent� is string required to signal an error� in which

case the error condition must be of type typeerror�

��

Structures

Common Lisp provides a facility for creating named record structures with

named components� In e	ect� the user can de�ne a new data type� every data

structure of that type has components with speci�ed names� Constructor�

access� and assignment constructs are automatically de�ned when the data
type is de�ned�

This chapter is divided into two parts� The �rst part discusses the basics

of the structure facility� which is very simple and allows the user to take

advantage of the type�checking� modularity� and convenience of user�de�ned

record data types� The second part� beginning with section ����� discusses a

number of specialized features of the facility that have advanced applications�
These features are completely optional� and you needn�t even know they exist

in order to take advantage of the basics�

����� Introduction to Structures

The structure facility is embodied in the defstruct macro� which allows the

user to create and use aggregate data types with named elements� These are

like �structures� in PL�I� or �records� in Pascal�

As an example� assume you are writing a Lisp program that deals with space

ships in a two�dimensional plane� In your program� you need to represent a

space ship by a Lisp object of some kind� The interesting things about a
space ship� as far as your program is concerned� are its position
represented

as x and y coordinates�� velocity
represented as components along the x and

y axes�� and mass�

A ship might therefore be represented as a record structure with �ve compo�

nents� x�position� y�position� x�velocity� y�velocity� and mass� This structure

could in turn be implemented as a Lisp object in a number of ways� It could be

a list of �ve elements� the x�position could be the car� the y�position the cadr�

	��

STRUCTURES 	��

and so on� Equally well it could be a vector of �ve elements� the x�position

could be element �� the y�position element �� and so on� The problem with

either of these representations is that the components occupy places in the

object that are quite arbitrary and hard to remember� Someone looking at

�cadddr ship
� or �aref ship
 �� in a piece of code might �nd it di�cult
to determine that this is accessing the y�velocity component of ship
� More�

over� if the representation of a ship should have to be changed� it would be

very di�cult to �nd all the places in the code to be changed to match
not

all occurrences of cadddr are intended to extract the y�velocity from a ship��

Ideally components of record structures should have names� One would like

to write something like �shipyvelocity ship
� instead of �cadddr ship
��
One would also like a more mnemonic way to create a ship than this�

�list � � � � ��

Indeed� one would like ship to be a new data type� just like other Lisp data

types� that one could test with typep� for example� The defstruct facility
provides all of this�

defstruct itself is a macro that de�nes a structure� For the space ship

example� one might de�ne the structure by saying�

�defstruct ship

xposition

yposition

xvelocity

yvelocity

mass�

This declares that every ship is an object with �ve named components� The
evaluation of this form does several things�

� It de�nes shipxposition to be a function of one argument� a ship� that

returns the x�position of the ship� shipyposition and the other components
are given similar function de�nitions� These functions are called the access

functions� as they are used to access elements of the structure�

� The symbol ship becomes the name of a data type of which instances of

ships are elements� This name becomes acceptable to typep� for example�

�typep x ship� is true if x is a ship and false if x is any object other than

a ship�

� A function named shipp of one argument is de�ned� it is a predicate that

is true if its argument is a ship and is false otherwise�

	�� COMMON LISP

� A function called makeship is de�ned that� when invoked� will create a data

structure with �ve components� suitable for use with the access functions�

Thus executing

�setq ship� �makeship��

sets ship� to a newly created ship object� One can specify the initial

values of any desired component in the call to makeship by using keyword
arguments in this way�

�setq ship� �makeship �mass
defaultshipmass

�xposition �

�yposition ���

This constructs a new ship and initializes three of its components� This
function is called the constructor function because it constructs a new struc�

ture�

� The ���S syntax can be used to read instances of ship structures� and a

printer function is provided for printing out ship structures� For example�

the value of the variable ship� shown above might be printed as

���S�ship xposition � yposition � xvelocity nil

yvelocity nil mass
	�������

� A function called copyship of one argument is de�ned that� when given a

ship object� will create a new ship object that is a copy of the given one�

This function is called the copier function�

� One may use setf to alter the components of a ship�

�setf �shipxposition ship��
���

This alters the x�position of ship� to be
��� This works because defstruct

behaves as if it generates an appropriate defsetf form for each access

function�

This simple example illustrates the power of defstruct to provide abstract

record structures in a convenient manner� defstruct has many other features

as well for specialized purposes�

����� How to Use Defstruct

All structures are de�ned through the defstruct construct� A call to

defstruct de�nes a new data type whose instances have named slots�

STRUCTURES 	�	

�Macro�defstruct name�and�options �doc�string� fslot�descriptiong�

X�J�� voted in June ���� h��i to allow a defstruct de�nition to have no
slot�description at all� in other words� the occurrence of fslot�descriptiong�
in the preceding header line would be replaced by fslot�descriptiong� �
Such structure de�nitions are particularly useful if the �include option

is used� perhaps with other options� for example� one can have two struc�

tures that are exactly alike except that they print di	erently
having di	erent
�printfunction options��

Implementors are encouraged to permit this simple extension as soon as

convenient� Users� however� may wish to maximize portability of their code

by avoiding the use of this extension unless and until it is adopted as part of

the ANSI standard�

This de�nes a record�structure data type� A general call to defstruct

looks like the following example�

�defstruct �name option�� option�� ��� option�m�

doc�string

slot�description��

slot�description��
���

slot�description�n�

The name must be a symbol� it becomes the name of a new data type consist�

ing of all instances of the structure� The function typep will accept and use

this name as appropriate� The name is returned as the value of the defstruct

form�

Usually no options are needed at all� If no options are speci�ed� then one
may write simply name instead of �name� after the word defstruct� The

syntax of options and the options provided are discussed in section �����

If the optional documentation string doc�string is present� then it is at�

tached to the name as a documentation string of type structure� see

documentation�

Each slot�description�j is of the form

�slot�name default�init

slot�option�name�� slot�option�value��

slot�option�name�� slot�option�value��

���

slot�option�name�kj slot�option�value�kj�

	�
 COMMON LISP

Each slot�name must be a symbol� an access function is de�ned for each slot�

If no options and no default�init are speci�ed� then one may write simply

slot�name instead of �slotname� as the slot description�

The default�init is a form that is evaluated each time a structure is to be
���

constructed� the value is used as the initial value of the slot�

X�J�� voted in October ���� h��i to clarify that a default�init form is eval�

uated only if the corresponding argument is not supplied to the constructor

function� The preceding sentence should therefore read as follows�

The default�init is a form that is evaluated each time its value is to be used
as the initial value of the slot�

If no default�init is speci�ed� then the initial contents of the slot are unde�
�ned and implementation�dependent� The available slot�options are described

in section �����

Compatibility note� Slot
options are not currently provided in Lisp Machine Lisp�
but this is an upward
compatible extension�

X�J�� voted in January ���� h��i to specify that it is an error for two

slots to have the same name� more precisely� no two slots may have names for
whose print names string would be true� Under this interpretation

�defstruct lotsaslots slot slot�

obviously is incorrect but the following one is also in error� even assuming that

the symbols coin�slot and blot�slot really are distinct
non�eql� symbols�

�defstruct nodice coin�slot blot�slot�

To illustrate another case� the �rst defstruct form below is correct� but the

second one is in error�

�defstruct oneslot slot�

�defstruct �twoslots ��include oneslot�� slot�

Rationale� Print names are the criterion for slot
names being the same� rather than
the symbols themselves� because defstruct constructs names of accessor functions
from the print names and interns the resulting new names in the current package�

X�J�� recommended that expanding a defstruct form violating this re�

striction should signal an error and noted� with an eye to the Common Lisp

Object System h��i� that the restriction applies only to the operation of the

STRUCTURES 	��

defstruct macro as such and not to the structureclass or structures de�

�ned with defclass�

X�J�� voted in March ���� h��i to clarify that� while de�ning forms nor�

mally appear at top level� it is meaningful to place them in non�top�level

contexts� defstruct must treat slot default�init forms and any initialization

	�� COMMON LISP

forms within the speci�cation of a by�position constructor function as occur�

ring within the enclosing lexical environment� not within the global environ�

ment�

defstruct not only de�nes an access function for each slot� but also ar�

ranges for setf to work properly on such access functions� de�nes a predicate
named namep� de�nes a constructor function named makename� and de�nes

a copier function named copyname� All names of automatically created func�

tions are interned in whatever package is current at the time the defstruct

form is processed
see
package
�� Also� all such functions may be declared
inline at the discretion of the implementation to improve e�ciency� if you

do not want some function declared inline� follow the defstruct form with

a notinline declaration to override any automatic inline declaration�

X�J�� voted in January ���� h��i to specify that the results of rede�ning a

defstruct structure
that is� evaluating more than one defstruct structure
for the same name� are unde�ned�

The problem is that if instances have been created under the old de�nition

and then remain accessible after the new de�nition has been evaluated� the

accessors and other functions for the new de�nition may be incompatible with
the old instances� Conversely� functions associated with the old de�nition may

have been declared inline and compiled into code that remains accessible

after the new de�nition has been evaluated� such code may be incompatible

with the new instances�

In practice this restriction a	ects the development and debugging process
rather than production runs of fully developed code� The defstruct feature is

intended to provide �the most e�cient� structure class� CLOS classes de�ned

by defclass allow much more
exible structures to be de�ned and rede�ned�

Programming environments are allowed and encouraged to permit
defstruct rede�nition� perhaps with warning messages about possible inter�

actions with other parts of the programming environment or memory state�

It is beyond the scope of the Common Lisp language standard to de�ne those

interactions except to note that they are not portable�

����� Using the Automatically De
ned Constructor Func	
tion

After you have de�ned a new structure with defstruct� you can create

instances of this structure by using the constructor function� By default�

defstruct de�nes this function automatically� For a structure named foo�

the constructor function is normally named makefoo� you can specify a di	er�

ent name by giving it as the argument to the �constructor option� or specify

STRUCTURES 	��

that you don�t want a normal constructor function at all by using nil as the

argument
in which case one or more �by�position� constructors should be

requested� see section ������

A call to a constructor function� in general� has the form

�name�of�constructor�function

slot�keyword�� form��

slot�keyword�� form��

����

All arguments are keyword arguments� Each slot�keyword should be a key�
word whose name matches the name of a slot of the structure
defstruct

determines the possible keywords simply by interning each slot�name in the

keyword package�� All the keywords and forms are evaluated� In short� it

is just as if the constructor function took all its arguments as �key parame�

ters� For example� the ship structure shown in section ���� has a constructor
function that takes arguments roughly as if its de�nition were

�defun makeship ��key xposition yposition

xvelocity yvelocity mass�

����

If slot�keyword�j names a slot� then that element of the created structure

will be initialized to the value of form�j� If no pair slot�keyword�j and form�j
is present for a given slot� then the slot will be initialized by evaluating the

default�init form speci�ed for that slot in the call to defstruct�
In other

words� the initialization speci�ed in the defstruct defers to any speci�ed in

a call to the constructor function�� If the default initialization form is used�

it is evaluated at construction time� but in the lexical environment of the
defstruct form in which it appeared� If the defstruct itself also did not

specify any initialization� the element�s initial value is unde�ned� You should

always specify the initialization� either in the defstruct or in the call to the

constructor function� if you care about the initial value of the slot�

Each initialization form speci�ed for a defstruct component� when used

by the constructor function for an otherwise unspeci�ed component� is re�

evaluated on every call to the constructor function� It is as if the initialization
forms were used as init forms for the keyword parameters of the constructor

function� For example� if the form �gensym� were used as an initialization

form� either in the constructor�function call or as the default initialization

form in the defstruct form� then every call to the constructor function would

call gensym once to generate a new symbol�

	�� COMMON LISP

X�J�� voted in October ���� h��i to clarify that the default value in a

defstruct slot is not evaluated unless it is needed in the creation of a particular

structure instance� If it is never needed� there can be no type�mismatch error�

even if the type of the slot is speci�ed� and no warning should be issued�

For example� in the following sequence only the last form is in error�

�defstruct person �name ���	 �type string��

�makeperson �name �James��

�makeperson� �Error to give name the value ���	

����� Defstruct Slot	Options

Each slot�description in a defstruct form may specify one or more slot�

options� A slot�option consists of a pair of a keyword and a value
which is

not a form to be evaluated� but the value itself�� For example�

�defstruct ship

�xposition ��� �type shortfloat�

�yposition ��� �type shortfloat�

�xvelocity ��� �type shortfloat�

�yvelocity ��� �type shortfloat�

�mass
defaultshipmass
 �type shortfloat �readonly t��

This speci�es that each slot will always contain a short�format
oating�point

number� and that the last slot may not be altered once a ship is constructed�

The available slot�options are as follows�

�type

The option �type type speci�es that the contents of the slot will always be
of the speci�ed data type� This is entirely analogous to the declaration of a

variable or function� indeed� it e	ectively declares the result type of the access

function� An implementation may or may not choose to check the type of the

new object when initializing or assigning to a slot� Note that the argument

form type is not evaluated� it must be a valid type speci�er�

�read�only

The option �readonly x� where x is not nil� speci�es that this slot may not

be altered� it will always contain the value speci�ed at construction time� setf

STRUCTURES 	��

will not accept the access function for this slot� If x is nil� this slot�option

has no e	ect� Note that the argument form x is not evaluated�

Note that it is impossible to specify a slot�option unless a default value is

speci�ed �rst�

����� Defstruct Options

The preceding description of defstruct is all that the average user will need

or want� to know in order to use structures� The remainder of this chapter

discusses more complex features of the defstruct facility�

This section explains each of the options that can be given to defstruct�

A defstruct option may be either a keyword or a list of a keyword and
arguments for that keyword�
Note that the syntax for defstruct options

di	ers from the pair syntax used for slot�options� No part of any of these

options is evaluated��

�conc�name

This provides for automatic pre�xing of names of access functions� It is con�

ventional to begin the names of all the access functions of a structure with a
speci�c pre�x� the name of the structure followed by a hyphen� This is the

default behavior�

The argument to the �concname option speci�es an alternative pre�x to be

used�
If a hyphen is to be used as a separator� it must be speci�ed as part

of the pre�x�� If nil is speci�ed as an argument� then no pre�x is used� then

the names of the access functions are the same as the slot�names� and it is up
to the user to name the slots reasonably�

Note that no matter what is speci�ed for �concname� with a constructor
function one uses slot keywords that match the slot�names� with no pre�x

attached� On the other hand� one uses the access�function name when using

setf� Here is an example�

�defstruct door knobcolor width material�

�setq mydoor

�makedoor �knobcolor red �width �����

�doorwidth mydoor� � ���

�setf �doorwidth mydoor� ���	�

�doorwidth mydoor� � ���	

�doorknobcolor mydoor� � red

	�� COMMON LISP

�constructor

This option takes one argument� a symbol� which speci�es the name of the
constructor function� If the argument is not provided or if the option itself

is not provided� the name of the constructor is produced by concatenating

the string �MAKE� and the name of the structure� putting the name in what�

ever package is current at the time the defstruct form is processed
see

package
�� If the argument is provided and is nil� no constructor function

is de�ned�

This option actually has a more general syntax that is explained in sec�

tion �����

�copier

This option takes one argument� a symbol� which speci�es the name of the
copier function� If the argument is not provided or if the option itself is

not provided� the name of the copier is produced by concatenating the string

�COPY� and the name of the structure� putting the name in whatever package

is current at the time the defstruct form is processed
see
package
�� If

the argument is provided and is nil� no copier function is de�ned�

The automatically de�ned copier function simply makes a new structure

and transfers all components verbatim from the argument into the newly

created structure� No attempt is made to make copies of the components�

Corresponding components of the old and new structures will therefore be
eql�

�predicate

This option takes one argument� which speci�es the name of the type predi�

cate� If the argument is not provided or if the option itself is not provided�

the name of the predicate is made by concatenating the name of the structure

to the string �P�� putting the name in whatever package is current at the
time the defstruct form is processed
see
package
�� If the argument is

provided and is nil� no predicate is de�ned� A predicate can be de�ned only

if the structure is �named�� if the �type option is speci�ed and the �named

option is not speci�ed� then the �predicate option must either be unspeci�ed
or have the value nil�

�include

This option is used for building a new structure de�nition as an extension

of an old structure de�nition� As an example� suppose you have a structure

called person that looks like this�

STRUCTURES 	��

�defstruct person name age sex�

Now suppose you want to make a new structure to represent an astronaut�
Since astronauts are people too� you would like them also to have the at�

tributes of name� age� and sex� and you would like Lisp functions that operate

on person structures to operate just as well on astronaut structures� You

can do this by de�ning astronaut with the �include option� as follows�

�defstruct �astronaut ��include person�

��concname astro��

helmetsize

�favoritebeverage tang��

The �include option causes the structure being de�ned to have the same

slots as the included structure� This is done in such a way that the access

functions for the included structure will also work on the structure being

de�ned� In this example� an astronaut will therefore have �ve slots� the
three de�ned in person and the two de�ned in astronaut itself� The access

functions de�ned by the person structure can be applied to instances of the

astronaut structure� and they will work correctly� Moreover� astronaut will

have its own access functions for components de�ned by the person structure�

The following examples illustrate how you can use astronaut structures�

�setq x �makeastronaut �name buzz

�age ��

�sex t

�helmetsize
	����

�personname x� � buzz

�astroname x� � buzz

�astrofavoritebeverage x� � tang

The di	erence between the access functions personname and astroname is

that personname may be correctly applied to any person� including an

astronaut� while astroname may be correctly applied only to an astronaut�

An implementation may or may not check for incorrect use of access func�

tions��

At most one �include option may be speci�ed in a single defstruct form�

The argument to the �include option is required and must be the name

	�� COMMON LISP

of some previously de�ned structure� If the structure being de�ned has no

�type option� then the included structure must also have had no �type option

speci�ed for it� If the structure being de�ned has a �type option� then the

included structure must have been declared with a �type option specifying

the same representation type�
If no �type option is involved� then the structure name of the including

structure de�nition becomes the name of a data type� of course� and therefore

a valid type speci�er recognizable by typep� moreover� it becomes a subtype

of the included structure� In the above example� astronaut is a subtype of
person� hence

�typep �makeastronaut� person�

is true� indicating that all operations on persons will also work on astronauts�

The following is an advanced feature of the �include option� Sometimes�
when one structure includes another� the default values or slot�options for

the slots that came from the included structure are not what you want� The

new structure can specify default values or slot�options for the included slots

di	erent from those the included structure speci�es� by giving the �include

option as

��include name slot�description�� slot�description�� ����

Each slot�description�j must have a slot�name or slot�keyword that is the same

as that of some slot in the included structure� If slot�description�j has no

default�init� then in the new structure the slot will have no initial value�
Otherwise its initial value form will be replaced by the default�init in slot�

description�j� A normally writable slot may be made read�only� If a slot is

read�only in the included structure� then it must also be so in the including

structure� If a type is speci�ed for a slot� it must be the same as� or a subtype
of� the type speci�ed in the included structure� If it is a strict subtype� the

implementation may or may not choose to error�check assignments�

For example� if we had wanted to de�ne astronaut so that the default age

for an astronaut is ��� then we could have said�

�defstruct �astronaut ��include person �age �����

helmetsize

�favoritebeverage tang��

X�J�� voted in June ���� h��i to require any structure type created by

defstruct
or defclass� to be disjoint from any of the types cons� symbol�

STRUCTURES 	�	

array� number� character� hashtable� readtable� package� pathname�

stream� and randomstate� A consequence of this requirement is that it is an

error to specify any of these types� or any of their subtypes� to the defstruct

�include option�
The �rst edition said nothing explicitly about this� Inas�

much as using such a type with the �include option was not de�ned to work�
one might argue that such use was an error in Common Lisp as de�ned by

the �rst edition��

�print�function

This option may be used only if the �type option is not speci�ed� The ar�
gument to the �printfunction option should be a function of three argu�

ments� in a form acceptable to the function special form� to be used to print

structures of this type� When a structure of this type is to be printed� the

function is called on three arguments� the structure to be printed� a stream

to print to� and an integer indicating the current depth
to be compared
against
printlevel
�� The printing function should observe the values of

such printer�control variables as
printescape
 and
printpretty
�

If the �printfunction option is not speci�ed and the �type option also

not speci�ed� then a default printing function is provided for the structure

that will print out all its slots using ���S syntax
see section ��������

X�J�� voted in January ���� h���i to specify that user�de�ned printing

functions for the defstruct �printfunction option may print objects to

the supplied stream using write� print
� princ� format� or printobject

and expect circularities to be detected and printed using ���n��� syntax
when

printcircle
 is non�nil� of course�� See
printcircle
�

X�J�� voted in January ���� h��i to clarify that if the �printfunction

option is not speci�ed but the �include option is speci�ed� then the print

function is inherited from the included structure type� Thus� for example�

an astronaut will be printed by the same printing function that is used for

person�

X�J�� in the same vote extended the printfunction option as follows�

If the printfunction option is speci�ed but with no argument� then the

standard default printing function
that uses ���S syntax� will be used� This

provides a means of overriding the inheritance rule� For example� if person

and astronaut had been de�ned as

	�
 COMMON LISP

�defstruct �person

��printfunction �Special print function

�lambda �p s k�

�format s �� A� age D��

�personname p�

�personage p�����

name age sex�

�defstruct �astronaut

��include person�

��concname astro�

��printfunction�� �Use default print function

helmetsize

�favoritebeverage tang��

then an ordinary person would be printed as ��Joe Schmoe� age �	�� but

an astronaut would be printed as� for example�

���S�ASTRONAUT NAME BUZZ AGE �� SEX T

HELMETSIZE
	�� FAVORITEBEVERAGE TANG�

using the default ���S syntax
yuk��

These changes make the behavior of defstruct with respect to the

�include option a bit more like the behavior of classes in CLOS�

�type

The �type option explicitly speci�es the representation to be used for the
structure� It takes one argument� which must be one of the types enumerated

below�

Specifying this option has the e	ect of forcing a speci�c representation and

of forcing the components to be stored in the order speci�ed in the defstruct

form in corresponding successive elements of the speci�ed representation� It
also prevents the structure name from becoming a valid type speci�er recog�

nizable by typep
see section ������

Normally this option is not speci�ed� in which case the structure is repre�

sented in an implementation�dependent manner�

vector

This produces the same result as specifying �vector t�� The structure is

represented as a general vector� storing components as vector elements� The

STRUCTURES 	��

�rst component is vector element � if the structure is �named� and element

� otherwise�

�vector element�type�

The structure is represented as a
possibly specialized� vector� storing com�
ponents as vector elements� Every component must be of a type that can

be stored in a vector of the type speci�ed� The �rst component is vector

element � if the structure is �named� and element � otherwise� The struc�

ture may be �named only if the type symbol is a subtype of the speci�ed
elementtype�

list

The structure is represented as a list� The �rst component is the cadr if the

structure is �named� and the car if it is �unnamed�

�named

The �named option speci�es that the structure is �named�� this option takes

no argument� If no �type option is speci�ed� then the structure is always
named� so this option is useful only in conjunction with the �type option�

See section ���� for a further description of this option�

�initial�offset

This allows you to tell defstruct to skip over a certain number of slots before

it starts allocating the slots described in the body� This option requires an
argument� a non�negative integer� which is the number of slots you want

defstruct to skip� The �initialoffset option may be used only if the

�type option is also speci�ed� See section ������ for a further description of

this option�

����� By	Position Constructor Functions

If the �constructor option is given as ��constructor name arglist�� then

instead of making a keyword�driven constructor function� defstruct de�nes

a �positional� constructor function� taking arguments whose meaning is de�
termined by the argument�s position rather than by a keyword� The arglist is

used to describe what the arguments to the constructor will be� In the sim�

plest case something like ��constructor makefoo �a b c�� de�nes makefoo

to be a three�argument constructor function whose arguments are used to ini�

tialize the slots named a� b� and c�

	�� COMMON LISP

In addition� the keywords �optional� �rest� and �aux are recognized in

the argument list� They work in the way you might expect� but there are a

few �ne points worthy of explanation� Consider this example�

��constructor createfoo

�a �optional b �c sea� �rest d �aux e �f eff���

This de�nes createfoo to be a constructor of one or more arguments� The

�rst argument is used to initialize the a slot� The second argument is used
to initialize the b slot� If there isn�t any second argument� then the default

value given in the body of the defstruct
if given� is used instead� The third

argument is used to initialize the c slot� If there isn�t any third argument� then

the symbol sea is used instead� Any arguments following the third argument

are collected into a list and used to initialize the d slot� If there are three or
fewer arguments� then nil is placed in the d slot� The e slot is not initialized�

its initial value is unde�ned� Finally� the f slot is initialized to contain the

symbol eff�

The actions taken in the b and e cases were carefully chosen to allow the
user to specify all possible behaviors� Note that the �aux �variables� can be

used to completely override the default initializations given in the body�

With this de�nition� one can write

�createfoo
 ��

instead of

�makefoo �a
 �b ��

and of course createfoo provides defaulting di	erent from that of makefoo�

It is permissible to use the �constructor option more than once� so that

you can de�ne several di	erent constructor functions� each taking di	erent
parameters�

Because a constructor of this type operates By Order of Arguments� it is

sometimes known as a BOA constructor�

X�J�� voted in January ���� h��i to allow �key and �allowotherkeys in

the parameter list of a �positional� constructor� The initialization of slots
corresponding to keyword parameters is performed in the same manner as for

�optional parameters� A variant of the example shown above illustrates this�

��constructor createfoo

�a �optional b �c sea�

�key p �q cue� ���why y�� ���you u� ewe�

�aux e �f eff���

STRUCTURES 	��

The treatment of slots a� b� c� e� and f is the same as in the original example�

In addition� if there is a �p keyword argument� it is used to initialize the p

slot� if there isn�t any �p keyword argument� then the default value given in

the body of the defstruct
if given� is used instead� Similarly� if there is a

�q keyword argument� it is used to initialize the q slot� if there isn�t any �q

keyword argument� then the symbol cue is used instead�

In order thoroughly to
og this presumably already dead horse� we further
observe that if there is a �why keyword argument� it is used to initialize the y

slot� otherwise the default value for slot y is used instead� Similarly� if there

is a �you keyword argument� it is used to initialize the u slot� otherwise the

symbol ewe is used instead�

If memory serves me correctly� defstruct was included in the original de�

sign for Common Lisp some time before keyword arguments were approved�
The failure of positional constructors to accept keyword arguments may well

have been an oversight on my part� there is no logical reason to exclude them�

I am grateful to X�J�� for rectifying this�

A remaining di�culty is that the possibility of keyword arguments renders

the term �positional constructor� a misnomer� Worse yet� it ruins the term

�BOA constructor�� I suggest that they continue to be called BOA construc�
tors� as I refuse to abandon a good pun�
I regret appearing to have more

compassion for puns than for horses��

As part of the same vote X�J�� also changed defstruct to allow BOA

constructors to have parameters
including supplied�p parameters� that do

not correspond to any slot� Such parameters may be used in subsequent

initialization forms in the parameter list� Consider this example�

�defstruct �icecreamfactory

��constructor fabricatefactory

��key �capacity ��

location

�localflavors

�case location

��hawaii� �pineapple macadamia guava��

��massachusetts� �lobster bakedbean��

��california� �ginger lotus avocado

beansprout garlic��

��texas� �jalapeno barbecue����

	�� COMMON LISP

�flavors �subseq �append localflavors

�vanilla

chocolate

strawberry

pistachio

maplewalnut

peppermint��

� capacity�����

�capacity ��

�flavors �vanilla chocolate strawberry mango���

The structure type icecreamfactory has two constructors� The standard
constructor� makeicecreamfactory� takes two keyword arguments named

�capacity and �flavors� For this constructor� the default for the capacity

slot is � and the default list of flavors is America�s favorite threesome and

a dark horse
not a dead one�� The BOA constructor fabricatefactory ac�

cepts four di	erent keyword arguments� The �capacity argument defaults
to �� and the �flavors argument defaults in a complicated manner based on

the other three� The �localflavors argument may be speci�ed directly� or

may be allowed to default based on the �location of the factory� Here are

examples of various factories�

�setq houston �fabricatefactory �capacity � �location texas��

�setq cambridge �fabricatefactory �location massachusetts��

�setq seattle �fabricatefactory �localflavors �salmon���

�setq wheaton �fabricatefactory �capacity � �location illinois��

�setq pittsburgh �fabricatefactory �capacity ���

�setq cleveland �makefactory �capacity ���

�icecreamfactoryflavors houston�

� �jalapeno barbecue vanilla chocolate�

STRUCTURES 	��

�icecreamfactoryflavors cambridge�

� �lobster bakedbean vanilla chocolate strawberry�

�icecreamfactoryflavors seattle�

� �salmon vanilla chocolate strawberry pistachio�

�icecreamfactoryflavors wheaton�

� �vanilla chocolate strawberry pistachio�

�icecreamfactoryflavors pittsburgh�

� �vanilla chocolate strawberry pistachio�

�icecreamfactoryflavors cleveland�

� �vanilla chocolate strawberry mango�

����� Structures of Explicitly Speci
ed Representational
Type

Sometimes it is important to have explicit control over the representation of

a structure� The �type option allows one to specify that a structure must
be implemented in a particular way� using a list or a speci�c kind of vector�

and to specify the exact allocation of structure slots to components of the

representation� A structure may also be �unnamed� or �named�� according

to whether the structure name is stored in
and thus recoverable from� the

structure�

������� Unnamed Structures

Sometimes a particular data representation is imposed by external require�
ments� and yet it is desirable to document the data format as a defstruct�

style structure� For example� consider expressions built up from numbers�

symbols� and binary operations such as � and
� An operation might be rep�

resented as it is in Lisp� as a list of the operator and the two operands� This
fact can be expressed succinctly with defstruct in this manner�

�defstruct �binop ��type list��

�operator � �type symbol�

operand

operand��

	�� COMMON LISP

This will de�ne a constructor function makebinop and three selector functions�

namely binopoperator� binopoperand
� and binopoperand��
It will not�

however� de�ne a predicate binopp� for reasons explained below��

The e	ect of makebinop is simply to construct a list of length ��

�makebinop �operator � �operand
 x �operand� ��

� �� x ��

�makebinop �operand� � �operator
�

� �
 nil ��

It is just like the function list except that it takes keyword arguments

and performs slot defaulting appropriate to the binop conceptual data

type� Similarly� the selector functions binopoperator� binopoperand
� and
binopoperand� are essentially equivalent to car� cadr� and caddr� respec�

tively�
They might not be completely equivalent because� for example� an

implementation would be justi�ed in adding error�checking code to ensure

that the argument to each selector function is a length�� list��

We speak of binop as being a �conceptual� data type because binop is

not made a part of the Common Lisp type system� The predicate typep

will not recognize binop as a type speci�er� and typeof will return list

when given a binop structure� Indeed� there is no way to distinguish a data

structure constructed by makebinop from any other list that happens to have

the correct structure�

There is not even any way to recover the structure name binop from a

structure created by makebinop� This can be done� however� if the structure

is �named��

������� Named Structures

A �named� structure has the property that� given an instance of the structure�

the structure name
that names the type� can be reliably recovered� For

structures de�ned with no �type option� the structure name actually becomes
part of the Common Lisp data�type system� The function typeof� when

applied to such a structure� will return the structure name as the type of the

object� the predicate typep will recognize the structure name as a valid type

speci�er�

For structures de�ned with a �type option� typeof will return a type spec�

i�er such as list or �vector t�� depending on the type speci�ed to the

�type option� The structure name does not become a valid type speci�er�

STRUCTURES 	��

However� if the �named option is also speci�ed� then the �rst component of

the structure
as created by a defstruct constructor function� will always

contain the structure name� This allows the structure name to be recovered

from an instance of the structure and allows a reasonable predicate for the

conceptual type to be de�ned� the automatically de�ned namep predicate for
the structure operates by �rst checking that its argument is of the proper

type
list� �vector t�� or whatever� and then checking whether the �rst

component contains the appropriate type name�

Consider the binop example shown above� modi�ed only to include the
�named option�

�defstruct �binop ��type list� �named�

�operator � �type symbol�

operand

operand��

As before� this will de�ne a constructor function makebinop and three selector

functions binopoperator� binopoperand
� and binopoperand�� It will also

de�ne a predicate binopp�

The e	ect of makebinop is now to construct a list of length ��

�makebinop �operator � �operand
 x �operand� ��

� �binop � x ��

�makebinop �operand� � �operator
�

� �binop
 nil ��

The structure has the same layout as before except that the structure

name binop is included as the �rst list element� The selector functions

binopoperator� binopoperand
� and binopoperand� are essentially equiva�

lent to cadr� caddr� and cadddr� respectively� The predicate binopp is more

or less equivalent to the following de�nition�

�defun binopp �x�

�and �consp x� �eq �car x� binop���

The name binop is still not a valid type speci�er recognizable to typep� but

at least there is a way of distinguishing binop structures from other similarly

de�ned structures�

	�� COMMON LISP

������� Other Aspects of Explicitly Speci
ed Structures

The �initialoffset option allows one to specify that slots be allocated

beginning at a representational element other than the �rst� For example�
the form

�defstruct �binop ��type list� ��initialoffset ���

�operator � �type symbol�

operand

operand��

would result in the following behavior for makebinop�

�makebinop �operator � �operand
 x �operand� ��

� �nil nil � x ��

�makebinop �operand� � �operator
�

� �nil nil
 nil ��

The selectors binopoperator� binopoperand
� and binopoperand� would

be essentially equivalent to caddr� cadddr� and car of cddddr� respectively�

Similarly� the form

�defstruct �binop ��type list� �named ��initialoffset ���

�operator � �type symbol�

operand

operand��

would result in the following behavior for makebinop�

�makebinop �operator � �operand
 x �operand� ��

� �nil nil binop � x ��

�makebinop �operand� � �operator
�

� �nil nil binop
 nil ��

If the �include is used with the �type option� then the e	ect is �rst to

skip over as many representation elements as needed to represent the in�

cluded structure� then to skip over any additional elements speci�ed by the

�initialoffset option� and then to begin allocation of elements from that
point� For example�

�defstruct �binop ��type list� �named ��initialoffset ���

�operator � �type symbol�

STRUCTURES 	�	

operand

operand��

�defstruct �annotatedbinop ��type list�

��initialoffset ��

��include binop��

commutative associative identity�

�makeannotatedbinop �operator

�operand
 x

�operand� �

�commutative t

�associative t

�identity
�

� �nil nil binop
 x � nil nil nil t t
�

The �rst two nil elements stem from the �initialoffset of � in the de�ni�
tion of binop� The next four elements contain the structure name and three

slots for binop� The next three nil elements stem from the �initialoffset

of � in the de�nition of annotatedbinop� The last three list elements contain

the additional slots for an annotatedbinop�

�	

The Evaluator

The mechanism that executes Lisp programs is called the evaluator� More
precisely� the evaluator accepts a form and performs the computation speci�ed

by the form� This mechanism is made available to the user through the

function eval�

The evaluator is typically implemented as an interpreter that traverses the

given form recursively� performing each step of the computation as it goes�

An interpretive implementation is not required� however� A permissible alter�
native approach is for the evaluator �rst to completely compile the form into

machine�executable code and then invoke the resulting code� This technique

virtually eliminates incompatibilities between interpreted and compiled code

but also renders the evalhook mechanism relatively useless� Various mixed

strategies are also possible� All of these approaches should produce the same
results when executing a correct program but may produce di	erent results

for incorrect programs� For example� the approaches may di	er as to when

macro calls are expanded� macro de�nitions should not depend on the time

at which they are expanded� Implementors should document the evaluation
strategy for each implementation�

����� Run	Time Evaluation of Forms

The function eval is the main user interface to the evaluator� Hooks are pro�

vided for user�supplied debugging routines to obtain control during the exe�

cution of an interpretive evaluator� The functions evalhook and applyhook

provide alternative interfaces to the evaluator mechanism for use by these

debugging routines�

	�

THE EVALUATOR 	��

�Function�eval form

The form is evaluated in the current dynamic environment and a null lexical

environment� Whatever results from the evaluation is returned from the call
to eval�

Note that when you write a call to eval two levels of evaluation occur

on the argument form you write� First the argument form is evaluated� as
for arguments to any function� by the usual argument evaluation mechanism

which involves an implicit use of eval�� Then the argument is passed to the

eval function� where another evaluation occurs� For example�

�eval �list cdr �car ��quote �a � b�� c���� � b

The argument form �list cdr �car ��quote �a � b�� c��� is evalu�

ated in the usual way to produce the argument �cdr �quote �a � b����

this is then given to eval because eval is being called explicitly� and eval

evaluates its argument �cdr �quote �a � b��� to produce b�

If all that is required for some application is to obtain the current dynamic

value of a given symbol� the function symbolvaluemay be more e�cient than
eval�

X�J�� voted in January ���� h���i to restrict user side e	ects� see sec�

tion ����

�Variable�
evalhook

�Variable�
applyhook

If the value of
evalhook
 is not nil� then eval behaves in a special way� The

non�nil value of
evalhook
 should be a function that takes two arguments�

a form and an environment� this is called the eval hook function� When a

form is to be evaluated
any form at all� even a number or a symbol�� whether
implicitly or via an explicit call to eval� no attempt is made to evaluate the

form� Instead� the hook function is invoked and is passed the form to be

evaluated as its �rst argument� The hook function is then responsible for

evaluating the form� whatever is returned by the hook function is assumed to
be the result of evaluating the form�

The variable
applyhook
 is similar to
evalhook
 but is used when a

function is about to be applied to arguments� If the value of
applyhook
 is
not nil� then eval behaves in a special way�

The non�nil value of
applyhook
 should be a function that takes three
��

arguments� a function� a list of arguments� and an environment� this is called

the apply hook function�

	�� COMMON LISP

X�J�� voted in January ���� h�i to revise the de�nition of
applyhook
�

Its value should be a function of two arguments� a function and a list of

arguments� no environment information is passed to an apply hook function�

This was simply a
aw in the �rst edition� Sorry about that�

When a function is about to be applied to a list of arguments� no attempt
is made to apply the function� Instead� the hook function is invoked and is

passed the function and the list of arguments as its �rst and second arguments�

The hook function is then responsible for evaluating the form� whatever is re�

turned by the hook function is assumed to be the result of evaluating the
form� The apply hook function is used only for application of ordinary func�

tions within eval� It is not used for applications via apply or funcall� for

applications by such functions as map or reduce� or for invocation of macro�

expansion functions by either eval or macroexpand�

X�J�� voted in June ���� h��i to specify that the value of

macroexpandhook
 is �rst coerced to a function before being called as the

expansion interface hook� This vote made no mention of
evalhook
 or

applyhook
� but this may have been an oversight�

A proposal was submitted to X�J�� in September ���� to specify that the
value of
evalhook
 or
applyhook
 is �rst coerced to a function before being

called� If this proposal is accepted� the value of either variable may be nil�

any other symbol� a lambda�expression� or any object of type function�

The last argument passed to either kind of hook function contains informa�

tion about the lexical environment in an implementation�dependent format�

These arguments are suitable for the functions evalhook� applyhook� and

macroexpand�

When either kind of hook function is invoked� both of the variables

evalhook
 and
applyhook
 are rebound to the value nil around the in�

vocation of the hook function� This is so that the hook function will not be
invoked recursively on evaluations and applications that occur in the course

of executing the code of the hook function� The functions evalhook and

applyhook are useful for performing recursive evaluations and applications

within the hook function�

The hook feature is provided as an aid to debugging� The step facility is

implemented using this hook�

If a non�local exit causes a throw back to the top level of Lisp� perhaps

because an error could not be corrected� then
evalhook
 and
applyhook

are automatically reset to nil as a safety feature�

THE EVALUATOR 	��

�Function�evalhook form evalhookfn applyhookfn �optional env

�Function�applyhook function args evalhookfn applyhookfn �optional

env

The functions evalhook and applyhook are provided to make it easier to

exploit the hook feature�

In the case of evalhook� the form is evaluated� In the case of applyhook�

the function is applied to the list of arguments args� In either case� for the

duration of the operation the variable
evalhook
 is bound to evalhookfn�

and
applyhook
 is bound to applyhookfn� Furthermore� the env argument
is used as the lexical environment for the operation� env defaults to the null

environment� The check for a hook function is bypassed for the evaluation of

the form itself
for evalhook� or for the application of the function to the args

itself
for applyhook�� but not for subsidiary evaluations and applications such

as evaluations of subforms� It is this one�shot bypass that makes evalhook
and applyhook so useful�

X�J�� voted in January ���� h�i to eliminate the optional env parameter to
applyhook� because it is not
and cannot� be useful� Any function that can be

applied carries its own environment and does not need another environment

to be speci�ed separately� This was a
aw in the �rst edition�

Here is an example of a very simple tracing routine that uses just the

evalhook feature�

�defvar
hooklevel
 ��

�defun hook �x�

�let ��
evalhook
 evalhookfunction��

�eval x���

�defun evalhookfunction �form �rest env�

�let ��
hooklevel
 ��
hooklevel

���

�format
traceoutput
 � " V#TForm� S�

�

hooklevel
 �� form�

�let ��values �multiplevaluelist

�evalhook form

��� evalhookfunction

nil

env����

�format
traceoutput
 � " V#TValue� � S ��

�

hooklevel
 �� values�

�valueslist values����

	�� COMMON LISP

Using these routines� one might see the following interaction�

�hook �cons �floor
printbase
 �� b��

Form� �CONS �FLOOR
PRINTBASE
 �� �QUOTE B��

Form� �FLOOR
PRINTBASE
 ��

Form�
PRINTBASE

Value�
�

Form� �

Value� �

Value� �

Form� �QUOTE B�

Value� B

Value� �� � B�

�� � B�

�Function�constantp object

If the predicate constantp is true of an object� then that object� when con�

sidered as a form to be evaluated� always evaluates to the same thing� it is a

constant� This includes self�evaluating objects such as numbers� characters�
strings� bit�vectors� and keywords� as well as all constant symbols declared by

defconstant� such as nil� t� and pi� In addition� a list whose car is quote�

such as �quote foo�� is considered to be a constant�

If constantp is false of an object� then that object� considered as a form�

might or might not always evaluate to the same thing�

����� The Top	Level Loop

Normally one interacts with Lisp through a �top�level read�eval�print loop��

so called because it is the highest level of control and consists of an endless
loop that reads an expression� evaluates it� and prints the results� One has

an e	ect on the state of the Lisp system only by invoking actions that have

side e	ects�

The precise nature of the top�level loop for Common Lisp is purposely not
rigorously speci�ed here so that implementors can experiment to improve the

user interface� For example� an implementor may choose to require line�at�a�

time input� or may provide a fancy editor or complex graphics�display inter�

face� An implementor may choose to provide explicit prompts for input� or

may choose
as MacLisp does� not to clutter up the transcript with prompts�

THE EVALUATOR 	��

The top�level loop is required to trap all throws and recover gracefully� It is

also required to print all values resulting from evaluation of a form� perhaps

on separate lines� If a form returns zero values� as little as possible should be

printed�

The following variables are maintained by the top�level loop as a limited
safety net� in case the user forgets to save an interesting input expression or

output value�
Note that the names of some of these variables violate the

convention that names of global variables begin and end with an asterisk��

These are intended primarily for user interaction� which is why they have
short names� Use of these variables should be avoided in programs�

�Variable��

�Variable���

�Variable����

While a form is being evaluated by the top�level loop� the variable � is bound

to the previous form read by the loop� The variable �� holds the previous

value of �
that is� the form evaluated two interactions ago�� and ��� holds

the previous value of ���

�Variable�

While a form is being evaluated by the top�level loop� the variable is bound

to the form itself� that is� it is the value about to be given to � once this

interaction is done�

Notice of correction� In the �rst edition� the name of the variable was
inadvertently omitted�

�Variable�

�Variable�

�Variable�

While a form is being evaluated by the top�level loop� the variable
 is bound

to the result printed at the end of the last time through the loop� that is�

it is the value produced by evaluating the form in �� If several values were

produced�
 contains the �rst value only�
 contains nil if zero values were
produced� The variable

 holds the previous value of

that is� the result

printed two interactions ago�� and

 holds the previous value of

�

If the evaluation of � is aborted for some reason� then the values associated

with
�

� and

 are not updated� they are updated only if the printing of

values is at least begun
though not necessarily completed��

	�� COMMON LISP

�Variable�

�Variable�

�Variable�

While a form is being evaluated by the top�level loop� the variable is bound
to a list of the results printed at the end of the last time through the loop�

that is� it is a list of all values produced by evaluating the form in �� The

value of
 should always be the same as the car of the value of � The variable

 holds the previous value of
that is� the results printed two interactions
ago�� and holds the previous value of � Therefore the value of

 should

always be the same as the car of � and similarly for

 and �

If the evaluation of � is aborted for some reason� then the values associated

with � � and are not updated� they are updated only if the printing of

values is at least begun
though not necessarily completed��

As an example of the processing of these variables� consider the following

possible transcript� where � is a prompt by the top�level loop for user input�

��cons � �Interaction �

��CONS � CONS � �Cute� huh$

��values� �Interaction �

�Nothing to print

��cons a b� �Interaction �

�A � B� �There is a single value

��hairyloop� G �Interaction �

��������� QUIT to top level� �
User aborts the computation��

��floor
� �� �Interaction �
� �There are two values

At this point we have�

��� � �cons a b�

 � NIL � ��

�� � �hairyloop�

 � �A � B� � ��A � B��

� � �floor
� ��
 � � � ��
�

��

Streams

Streams are objects that serve as sources or sinks of data� Character streams

produce or absorb characters� binary streams produce or absorb integers� The
normal action of a Common Lisp system is to read characters from a character

input stream� parse the characters as representations of Common Lisp data

objects� evaluate each object
as a form� as it is read� and print representations

of the results of evaluation to an output character stream�

Typically streams are connected to �les or to an interactive terminal�

Streams� being Lisp objects� serve as the ambassadors of external devices
by which input�output is accomplished�

A stream� whether a character stream or a binary stream� may be input�
only� output�only� or bidirectional� What operations may be performed on a

stream depends on which of the six types of stream it is�

����� Standard Streams

There are several variables whose values are streams used by many functions in

the Lisp system� These variables and their uses are listed here� By convention�

variables that are expected to hold a stream capable of input have names

ending with input� and variables that are expected to hold a stream capable

of output have names ending with output� Variables expected to hold a
bidirectional stream have names ending with io�

�Variable�
standardinput

In the normal Lisp top�level loop� input is read from
standardinput

that

is� whatever stream is the value of the global variable
standardinput
��

Many input functions� including read and readchar� take a stream argument

that defaults to
standardinput
�

	��

	�� COMMON LISP

�Variable�
standardoutput

In the normal Lisp top�level loop� output is sent to
standardoutput

that is�
whatever stream is the value of the global variable
standardoutput
�� Many

output functions� including print and writechar� take a stream argument

that defaults to
standardoutput
�

�Variable�
erroroutput

The value of
erroroutput
 is a stream to which error messages

should be sent� Normally this is the same as
standardoutput
� but

standardoutput
might be bound to a �le and
erroroutput
 left going to

the terminal or to a separate �le of error messages�

�Variable�
queryio

The value of
queryio
 is a stream to be used when asking questions of the

user� The question should be output to this stream� and the answer read from

it� When the normal input to a program may be coming from a �le� questions

such as �Do you really want to delete all of the �les in your directory$� should
nevertheless be sent directly to the user� and the answer should come from

the user� not from the data �le� For such purposes
queryio
 should be used

instead of
standardinput
 and
standardoutput
�
queryio
 is used by

such functions as yesornop�

�Variable�
debugio

The value of
debugio
 is a stream to be used for interactive debugging

purposes� This is often the same as the value of
queryio
� but need not be�

�Variable�
terminalio

The value of
terminalio
 is ordinarily the stream that connects to the user�s
console� Typically� writing to this stream would cause the output to appear

on a display screen� for example� and reading from the stream would accept

input from a keyboard�

It is intended that standard input functions such as read and readchar�

when used with this stream� would cause �echoing� of the input into the

output side of the stream�
The means by which this is accomplished are of

course highly implementation�dependent��

STREAMS 	�	

�Variable�
traceoutput

The value of
traceoutput
 is the stream on which the trace function prints

its output�

The variables
standardinput
�
standardoutput
�
erroroutput
�

traceoutput
�
queryio
� and
debugio
 are initially bound to synonym
streams that pass all operations on to the stream that is the value of

terminalio
�
See makesynonymstream�� Thus any operations performed

on those streams will go to the terminal�

X�J�� voted in January ���� h���i to replace the requirements of the pre�
ceding paragraph with the following new requirements�

The seven standard stream variables�
standardinput
�

standardoutput
�
queryio
�
debugio
�
terminalio
�
erroroutput
�

and
traceoutput
� are initially bound to open streams�
These will be called
the standard initial streams��

The streams that are the initial values of
standardinput
�
queryio
�

debugio
� and
terminalio
 must support input�

The streams that are the initial values of
standardoutput
�
error

output
�
traceoutput
�
queryio
�
debugio
� and
terminalio
 must

support output�

None of the standard initial streams
including the one to which

terminalio
 is initially bound� may be a synonym� either directly or indi�
rectly� for any of the standard stream variables except
terminalio
� For

example� the initial value of
traceoutput
 may be a synonym stream

for
terminalio
 but not a synonym stream for
standardoutput
 or

queryio
�
These are examples of direct synonyms�� As another example�

queryio
 may be a two�way stream or echo stream whose input component

is a synonym for
terminalio
� but its input component may not be a syn�

onym for
standardinput
 or
debugio
�
These are examples of indirect

synonyms��

Any or all of the standard initial streams may be direct or indirect synonyms

for one or more common implementation�dependent streams� For example�

the standard initial streams might all be synonym streams
or two�way or

echo streams whose components are synonym streams� to a pair of hidden

terminal input and output streams maintained by the implementation�

Part of the intent of these rules is to ensure that it is always safe to bind

any standard stream variable to the value of any other standard stream vari�

able
that is� unworkable circularities are avoided� without unduly restricting

implementation
exibility�

	�
 COMMON LISP

No user program should ever change the value of
terminalio
� A program

that wants
for example� to divert output to a �le should do so by binding the

value of
standardoutput
� that way error messages sent to
erroroutput

can still get to the user by going through
terminalio
� which is usually

what is desired�

����� Creating New Streams

Perhaps the most important constructs for creating new streams are those that

open �les� see withopenfile and open� The following functions construct

streams without reference to a �le system�

�Function�makesynonymstream symbol

makesynonymstream creates and returns a synonym stream� Any operations

on the new stream will be performed on the stream that is then the value
of the dynamic variable named by the symbol� If the value of the variable

should change or be bound� then the synonym stream will operate on the new

stream�

X�J�� voted in January ���� h���i to specify that the result of make

synonymstream is always a stream of type synonymstream� Note that the

type of a synonym stream is always synonymstream� regardless of the type of

the stream for which it is a synonym�

�Function�makebroadcaststream �rest streams

This returns a stream that works only in the output direction� Any output

sent to this stream will be sent to all of the streams given� The set of operations
that may be performed on the new stream is the intersection of those for the

given streams� The results returned by a stream operation are the values

resulting from performing the operation on the last stream in streams� the

results of performing the operation on all preceding streams are discarded� If

no streams are given as arguments� then the result is a �bit sink�� all output
to the resulting stream is discarded�

X�J�� voted in January ���� h���i to specify that the result of make

broadcaststream is always a stream of type broadcaststream�

�Function�makeconcatenatedstream �rest streams

This returns a stream that works only in the input direction� Input is taken

from the �rst of the streams until it reaches end�of��le� then that stream is

STREAMS 	��

discarded� and input is taken from the next of the streams� and so on� If no

arguments are given� the result is a stream with no content� any input attempt

will result in end�of��le�

X�J�� voted in January ���� h���i to specify that the result of make

concatenatedstream is always a stream of type concatenatedstream�

�Function�maketwowaystream inputstream outputstream

This returns a bidirectional stream that gets its input from input�stream and

sends its output to output�stream�

X�J�� voted in January ���� h���i to specify that the result of make

twowaystream is always a stream of type twowaystream�

�Function�makeechostream inputstream outputstream

This returns a bidirectional stream that gets its input from input�stream and
sends its output to output�stream� In addition� all input taken from input�

stream is echoed to output�stream�

X�J�� voted in January ���� h���i to specify that the result of make

echostream is always a stream of type echostream�

X�J�� voted in January ���� h���i to clarify the interaction of readchar�
unreadchar� and peekchar with echo streams�
See the descriptions of those

functions for details��

X�J�� explicitly noted that the bidirectional streams that are the initial

values of
queryio
�
debugio
� and
terminalio
� even though they may
have some echoing behavior� conceptually are not necessarily the products of

calls to makeechostream and therefore are not subject to the new rules about

echoing on echo streams� Instead� these initial interactive streams may have

implementation�dependent echoing behavior�

�Function�makestringinputstream string �optional start end

This returns an input stream� The input stream will supply� in order� the

characters in the substring of string delimited by start and end� after the last

character has been supplied� the stream will then be at end�of��le�

X�J�� voted in January ���� h���i to specify that the result of make

stringinputstream is always a stream of type stringstream�

�Function�makestringoutputstream
��

This returns an output stream that will accumulate all output given it for the

bene�t of the function getoutputstreamstring�

	�� COMMON LISP

X�J�� voted in June ���� h���i to let makestringoutputstream take an

�elementtype argument�

�Function�makestringoutputstream �key �elementtype

This returns an output stream that will accumulate all output given it for the

bene�t of the function getoutputstreamstring�

The �elementtype argument speci�es what characters must be accepted

by the created stream� If the �elementtype argument is omitted� the created

stream must accept all characters�

X�J�� voted in January ���� h���i to specify that the result of make

stringoutputstream is always a stream of type stringstream�

�Function�getoutputstreamstring stringoutputstream

Given a stream produced by makestringoutputstream� this returns a string
containing all the characters output to the stream so far� The stream is then

reset� thus each call to getoutputstreamstring gets only the characters since

the last such call
or the creation of the stream� if no such previous call has

been made��

�Macro�withopenstream �var stream� fdeclarationg� f formg�

The form stream is evaluated and must produce a stream� The variable var is

bound with the stream as its value� and then the forms of the body are exe�
cuted as an implicit progn� the results of evaluating the last form are returned

as the value of the withopenstream form� The stream is automatically closed

on exit from the withopenstream form� no matter whether the exit is normal

or abnormal� see close� The stream should be regarded as having dynamic

extent�

X�J�� voted in January ���� h���i to specify that the stream created by
withopenstream is always of type filestream�

�Macro�withinputfromstring �var string fkeyword valueg� �
fdeclarationg� f formg�

The body is executed as an implicit progn with the variable var bound to a

character input stream that supplies successive characters from the value of

the form string� withinputfromstring returns the results from the last form

of the body�

STREAMS 	��

The input stream is automatically closed on exit from the withinput

fromstring form� no matter whether the exit is normal or abnormal� The

stream should be regarded as having dynamic extent�

X�J�� voted in January ���� h���i to specify that the stream created by

withinputfromstring is always of type stringstream�

The following keyword options may be used�

�index

The form after the �index keyword should be a place acceptable to setf�

If the withinputfromstring form is exited normally� then the place will

have stored into it the index into the string indicating the �rst character

not read
the length of the string if all characters were used�� The place is
not updated as reading progresses� but only at the end of the operation�

�start

The �start keyword takes an argument indicating� in the manner usual for

sequence functions� the beginning of a substring of string to be used�

�end

The �end keyword takes an argument indicating� in the manner usual for

sequence functions� the end of a substring of string to be used�

Here is an example of the use of withinputfromstring�

�withinputfromstring �s �Animal Crackers� �index j �start ��

�read s�� � crackers

As a side e	ect� the variable j is set to
��

The �start and �index keywords may both specify the same variable�

which is a pointer within the string to be advanced� perhaps repeatedly by

some containing loop�

X�J�� voted in January ���� h���i to restrict user side e	ects� see section

����

��

�Macro�withoutputtostring �var �string� � fdeclarationg� f formg�

The body is executed as an implicit progn with the variable var bound to a

character output stream� All output to that stream is saved in a string� This
may be done in one of two ways�

If no string argument is provided� then the value of withoutputfromstring

is a string containing all the collected output�

��

	�� COMMON LISP

If string is speci�ed� it must be a string with a �ll pointer� the output

is incrementally appended to the string� as if using vectorpushextend if

the string is adjustable� and otherwise as if using vectorpush� In this case

withoutputtostring returns the results from the last form of the body�

In either case� the output stream is automatically closed on exit from the
withoutputfromstring form� no matter whether the exit is normal or abnor�

mal� The stream should be regarded as having dynamic extent�

X�J�� voted in June ���� h���i to let withoutputtostring take an

�elementtype argument�

�Macro�withoutputtostring �var �string ��element�type type� � �

fdeclarationg� f formg�

One may specify nil instead of a string as the string and use the

�elementtype argument to specify what characters must be accepted by the

created stream� If no string argument is provided� or if it is nil and no

�elementtype is speci�ed� the created stream must accept all characters�
X�J�� voted in October ���� h���i to specify that if string is speci�ed� it

must be a string with a �ll pointer� the output is incrementally appended to

the string
as if by use of vectorpushextend��

In this way output cannot be accidentally lost� This change makes with

outputtostring behave in the same way that format does when given a
string as its �rst argument�

X�J�� voted in January ���� h���i to specify that the stream created by

withoutputtostring is always of type stringstream�

X�J�� voted in January ���� h���i to restrict user side e	ects� see section
����

����� Operations on Streams

This section contains discussion of only those operations that are common to
all streams� Input and output is rather complicated and is discussed separately

in chapter ��� The interface between streams and the �le system is discussed

in chapter ���

�Function�streamp object

streamp is true if its argument is a stream� and otherwise is false�

�streamp x� � �typep x stream�

STREAMS 	��

X�J�� voted in January ���� h��i to specify that streamp is una	ected by

whether its argument� if a stream� is open or closed� In either case it returns

true�

�Function�openstreamp stream

X�J�� voted in January ���� h���i to add the predicate openstreamp� It is
true if its argument
which must be a stream� is open� and otherwise is false�

A stream is always created open� it remains open until closed with

the close function� The macros withopenstream� withinputfromstring�

withoutputtostring� and withopenfile automatically close the created
stream as control leaves their bodies� in e	ect imposing dynamic extent on

the openness of the stream�

�Function�inputstreamp stream

This predicate is true if its argument
which must be a stream� can handle
input operations� and otherwise is false�

�Function�outputstreamp stream

This predicate is true if its argument
which must be a stream� can handle

output operations� and otherwise is false�

�Function�streamelementtype stream

A type speci�er is returned to indicate what objects may be read from or

written to the argument stream� which must be a stream� Streams created

by open will have an element type restricted to a subset of character or

integer� but in principle a stream may conduct transactions using any Lisp
objects�

�Function�close stream �key �abort

The argument must be a stream� The stream is closed� No further in�

put�output operations may be performed on it� However� certain inquiry
operations may still be performed� and it is permissible to close an already

closed stream�

X�J�� voted in January ���� h��i and revised the vote in March ���� to

specify that if close is called on an open stream� the stream is closed and

t is returned� but if close is called on a closed stream� it succeeds without

	�� COMMON LISP

error and returns an unspeci�ed value�
The rationale for not specifying the

value returned for a closed stream is that in some implementations closing

certain streams does not really have an e	ect on them!for example� closing

the
terminalio
 stream might not �really� close it!and it is not desirable

to force such implementations to keep otherwise unnecessary state� Portable
programs will of course not rely on such behavior��

X�J�� also voted in January ���� to specify exactly which inquiry functions
may be applied to closed streams�

streamp pathnamehost namestring

pathname pathnamedevice filenamestring

truename pathnamedirectory directorynamestring

mergepathnames pathnamename hostnamestring

open pathnametype enoughnamestring

probefile pathnameversion directory

See the individual descriptions of these functions for more information on how

they operate on closed streams�

X�J�� voted in January ���� h��i to clarify the e	ect of closing various

kinds of streams� First some terminology�

� A composite stream is one that was returned by a call to makesynonym

stream� makebroadcaststream� makeconcatenatedstream� maketwoway

stream� or makeechostream�

� The constituents of a composite stream are the streams that were given

as arguments to the function that constructed it or� in the case of make

synonymstream� the stream that is the symbolvalue of the symbol that

was given as an argument�
The constituent of a synonym stream may
therefore vary over time��

� A constructed stream is either a composite stream or one returned by
a call to makestringinputstream� makestringoutputstream� withinput

fromstring� or withoutputtostring�

The e	ect of applying close to a constructed stream is to close that stream

only� No input�output operations are permitted on the constructed stream

once it has been closed
though certain inquiry functions are still permitted�
as described above��

Closing a composite stream has no e	ect on its constituents� any con�
stituents that are open remain open�

If a stream created by makestringoutputstream is closed� the result of

then applying getoutputstreamstring to the stream is unspeci�ed�

STREAMS 	��

If the �abort parameter is not nil
it defaults to nil�� it indicates an

abnormal termination of the use of the stream� An attempt is made to clean

up any side e	ects of having created the stream in the �rst place� For example�

if the stream performs output to a �le that was newly created when the stream

was created� then if possible the �le is deleted and any previously existing �le
is not superseded�

X�J�� voted in January ���� h���i to add the following accessor functions

for obtaining information about streams�

�Function�broadcaststreamstreams broadcaststream

The argument must be of type broadcaststream� A list of the constituent

output streams
whether open or not� is returned�

�Function�concatenatedstreamstreams concatenatedstream

The argument must be of type concatenatedstream� A list of constituent

streams
whether open or not� is returned� This list represents the ordered
set of input streams from which the concatenated stream may yet read� the

stream from which it is currently reading is �rst in the list� The list may be

empty if no more streams remain to be read�

�Function�echostreaminputstream echostream

�Function�echostreamoutputstream echostream

The argument must be of type echostream� The function echostreaminput

stream returns the constituent input stream� echostreamoutputstream re�
turns the constituent output stream�

�Function�synonymstreamsymbol synonymstream

The argument must be of type synonymstream� This function returns the

symbol for whose value the synonym�stream is a synonym�

�Function�twowaystreaminputstream twowaystream
�Function�twowaystreamoutputstream twowaystream

The argument must be of type twowaystream� The function twowaystream

inputstream returns the constituent input stream� twowaystreamoutput

stream returns the constituent output stream�

	�� COMMON LISP

�Function�interactivestreamp stream

X�J�� voted in June ���� h���i to add the predicate interactivestreamp�

which returns t if the stream is interactive and otherwise returns nil� A

typeerror error is signalled if the argument is not of type stream�
The precise meaning of interactivestreamp is implementation�dependent

and may depend on the underlying operating system� The intent is to distin�

guish between interactive and batch
background� command��le� operations�

Some characteristics that might distinguish a stream as interactive�

� The stream is connected to a person
or the equivalent� in such a way that
the program can prompt for information and expect to receive input that

might depend on the prompt�

� The program is expected to prompt for input and to support �normal input

editing protocol� for that operating environment�

� A call to readcharmight hang waiting for the user to type something rather

than quickly returning a character or an end�of��le indication�

The value of
terminalio
 might or might not be interactive�

�Function�streamexternalformat stream

X�J�� voted in June ���� h���i to add the function streamexternalformat�

which returns a speci�er for the implementation�recognized scheme used for

representing characters in the argument stream� See the �externalformat

argument to open�

��

Input�Output

Common Lisp provides a rich set of facilities for performing input�output�

All input�output operations are performed on streams of various kinds� This

chapter is devoted to stream data transfer operations� Streams are discussed

in chapter ��� and ways of manipulating �les through streams are discussed

in chapter ���

While there is provision for reading and writing binary data� most of the

I�O operations in Common Lisp read or write characters� There are simple
primitives for reading and writing single characters or lines of data� The

format function can perform complex formatting of output data� directed by

a control string in manner similar to a Fortran FORMAT statement or a PL�I

PUT EDIT statement� The most useful I�O operations� however� read and
write printed representations of arbitrary Lisp objects�

����� Printed Representation of Lisp Objects

Lisp objects in general are not text strings but complex data structures� They

have very di	erent properties from text strings as a consequence of their inter�
nal representation� However� to make it possible to get at and talk about Lisp

objects� Lisp provides a representation of most objects in the form of printed

text� this is called the printed representation� which is used for input�output

purposes and in the examples throughout this book� Functions such as print

take a Lisp object and send the characters of its printed representation to
a stream� The collection of routines that does this is known as the
Lisp�

printer� The read function takes characters from a stream� interprets them

as a printed representation of a Lisp object� builds that object� and returns

it� the collection of routines that does this is called the
Lisp� reader�

Ideally� one could print a Lisp object and then read the printed represen�

tation back in� and so obtain the same identical object� In practice this is

	�	

	�
 COMMON LISP

di�cult and for some purposes not even desirable� Instead� reading a printed

representation produces an object that is
with obscure technical exceptions�

equal to the originally printed object�

Most Lisp objects have more than one possible printed representation� For

example� the integer twenty�seven can be written in any of these ways�

�	 �	� ���o�� ���x
B ���b

�

 �����
 � � �� �
 �

A list of two symbols A and B can be printed in many ways�

�A B� �a b� � a b � ��A �B��

���A�

B

�

The last example� which is spread over three lines� may be ugly� but it is

legitimate� In general� wherever whitespace is permissible in a printed repre�
sentation� any number of spaces and newlines may appear�

When print produces a printed representation� it must choose arbitrarily

from among many possible printed representations� It attempts to choose one

that is readable� There are a number of global variables that can be used to

control the actions of print� and a number of di	erent printing functions�
This section describes in detail what is the standard printed representation

for any Lisp object and also describes how read operates�

������� What the Read Function Accepts

The purpose of the Lisp reader is to accept characters� interpret them as

the printed representation of a Lisp object� and construct and return such

an object� The reader cannot accept everything that the printer produces�

for example� the printed representations of compiled code objects cannot be
read in� However� the reader has many features that are not used by the

output of the printer at all� such as comments� alternative representations�

and convenient abbreviations for frequently used but unwieldy constructs�

The reader is also parameterized in such a way that it can be used as a lexical

analyzer for a more general user�written parser�
The reader is organized as a recursive�descent parser� Broadly speaking� the

reader operates by reading a character from the input stream and treating it in

one of three ways� Whitespace characters serve as separators but are otherwise

ignored� Constituent and escape characters are accumulated to make a token�

which is then interpreted as a number or symbol� Macro characters trigger

INPUT
OUTPUT 	��

the invocation of functions
possibly user�supplied� that can perform arbitrary

parsing actions� including recursive invocation of the reader�

More precisely� when the reader is invoked� it reads a single character from

the input stream and dispatches according to the syntactic type of that char�

acter� Every character that can appear in the input stream must be of exactly

one of the following kinds� illegal� whitespace� constituent� single escape� mul�

tiple escape� or macro� Macro characters are further divided into the types
terminating and non�terminating
of tokens��
Note that macro characters

have nothing whatever to do with macros in their operation� There is a

super�cial similarity in that macros allow the user to extend the syntax of

Common Lisp at the level of forms� while macro characters allow the user
to extend the syntax at the level of characters�� Constituents additionally

have one or more attributes� the most important of which is alphabetic� these

attributes are discussed further in section �������

The parsing of Common Lisp expressions is discussed in terms of these

syntactic character types because the types of individual characters are

not �xed but may be altered by the user
see setsyntaxfromchar and
setmacrocharacter�� The characters of the standard character set initially

have the syntactic types shown in table ����� Note that the brackets� braces�

question mark� and exclamation point
that is� �� �� �� �� �� and �� are nor�

mally de�ned to be constituents� but they are not used for any purpose in

standard Common Lisp syntax and do not occur in the names of built�in
Common Lisp functions or variables� These characters are explicitly reserved

to the user� The primary intent is that they be used as macro characters� but

a user might choose� for example� to make � be a single escape character
as

it is in Portable Standard Lisp��

The algorithm performed by the Common Lisp reader is roughly as follows�

�� If at end of �le� perform end�of��le processing
as speci�ed by the caller of

the read function�� Otherwise� read one character from the input stream�

call it x� and dispatch according to the syntactic type of x to one of steps �
to ��

�� If x is an illegal character� signal an error�

�� If x is a whitespace character� then discard it and go back to step ��

�� If x is a macro character
at this point the distinction between terminating

and non�terminating macro characters does not matter�� then execute the

function associated with that character� The function may return zero

values or one value
see values��

	�� COMMON LISP

Table ����� Standard Character Syntax Types

htabi whitespace hpagei whitespace hnewlinei whitespace
hspacei whitespace � constituent terminating macro
� constituent ! A constituent a constituent
� terminating macro B constituent b constituent
��� non�terminating macro C constituent c constituent
 constituent D constituent d constituent
� constituent E constituent e constituent
� constituent F constituent f constituent

terminating macro G constituent g constituent
� terminating macro H constituent h constituent
� terminating macro I constituent i constituent
� constituent J constituent j constituent
� constituent K constituent k constituent
� terminating macro L constituent l constituent
constituent M constituent m constituent

� constituent N constituent n constituent
� constituent O constituent o constituent

 constituent P constituent p constituent
	 constituent Q constituent q constituent
� constituent R constituent r constituent
� constituent S constituent s constituent
� constituent T constituent t constituent
� constituent U constituent u constituent
� constituent V constituent v constituent

 constituent W constituent w constituent
� constituent X constituent x constituent
� constituent Y constituent y constituent
� constituent Z constituent z constituent
� terminating macro � constituent ! ! constituent !
� constituent � single escape " multiple escape
constituent � constituent ! # constituent !

� constituent constituent constituent
� constituent ! $ constituent hrubouti constituent
hbackspacei constituent hreturni whitespace hlinefeedi whitespace

The characters marked with an asterisk are initially constituents but are reserved
to the user for use as macro characters or for any other desired purpose�

INPUT
OUTPUT 	��

The macro�character function may of course read characters from the input

stream� if it does� it will see those characters following the macro character�

The function may even invoke the reader recursively� This is how the macro

character � constructs a list� by invoking the reader recursively to read

the elements of the list�

If one value is returned� then return that value as the result of the read

operation� the algorithm is done� If zero values are returned� then go back

to step ��

�� If x is a single escape character
normally ��� then read the next character

and call it y
but if at end of �le� signal an error instead�� Ignore the

usual syntax of y and pretend it is a constituent whose only attribute is

alphabetic�

If y is a lowercase character� leave it alone� do not replace it with the
��

corresponding uppercase character��

For the purposes of readtablecase� y is not replaceable�

Use y to begin a token� and go to step ��

�� If x is amultiple escape character
normally ��� then begin a token
initially

containing no characters� and go to step ��

�� If x is a constituent character� then it begins an extended token� After the
entire token is read in� it will be interpreted either as representing a Lisp

object such as a symbol or number
in which case that object is returned

as the result of the read operation�� or as being of illegal syntax
in which

case an error is signaled��

If x is a lowercase character� replace it with the corresponding uppercase
��

character�

X�J�� voted in June ���� h���i to introduce readtablecase� Conse�

quently� the preceding sentence should be ignored� The case of x should
not be altered� instead� x should be regarded as replaceable�

Use x to begin a token� and go on to step ��

��
At this point a token is being accumulated� and an even number of mul�
tiple escape characters have been encountered�� If at end of �le� go to

step ��� Otherwise� read a character
call it y�� and perform one of the

following actions according to its syntactic type�

� If y is a constituent or non�terminating macro� then do the following�

		� COMMON LISP

If y is a lowercase character� replace it with the corresponding uppercase
��

character�

X�J�� voted in June ���� h���i to introduce readtablecase� Conse�

quently� the preceding sentence should be ignored� The case of y should
not be altered� instead� y should be regarded as replaceable�

Append y to the token being built� and repeat step ��

� If y is a single escape character� then read the next character and call it

z
but if at end of �le� signal an error instead�� Ignore the usual syntax

of z and pretend it is a constituent whose only attribute is alphabetic�

If z is a lowercase character� leave it alone� do not replace it with the
��

corresponding uppercase character��

For the purposes of readtablecase� z is not replaceable�

Append z to the token being built� and repeat step ��

� If y is a multiple escape character� then go to step ��

� If y is an illegal character� signal an error�

� If y is a terminating macro character� it terminates the token� First
�unread� the character y
see unreadchar�� then go to step ���

� If y is a whitespace character� it terminates the token� First �unread� y
if appropriate
see readpreservingwhitespace�� then go to step ���

��
At this point a token is being accumulated� and an odd number ofmultiple
escape characters have been encountered�� If at end of �le� signal an error�

Otherwise� read a character
call it y�� and perform one of the following

actions according to its syntactic type�

� If y is a constituent� macro� or whitespace character� then ignore the

usual syntax of that character and pretend it is a constituent whose

only attribute is alphabetic�

If y is a lowercase character� leave it alone� do not replace it with the
���

corresponding uppercase character��

For the purposes of readtablecase� y is not replaceable�

Append y to the token being built� and repeat step ��

� If y is a single escape character� then read the next character and call it

z
but if at end of �le� signal an error instead�� Ignore the usual syntax

of z and pretend it is a constituent whose only attribute is alphabetic�

��

INPUT
OUTPUT 		�

If z is a lowercase character� leave it alone� do not replace it with the
��

corresponding uppercase character��

For the purposes of readtablecase� z is not replaceable�

Append z to the token being built� and repeat step ��

� If y is a multiple escape character� then go to step ��

� If y is an illegal character� signal an error�

��� An entire token has been accumulated�

X�J�� voted in June ���� h���i to introduce readtablecase� If the ac�

cumulated token is to be interpreted as a symbol� any case conversion of

replaceable characters should be performed at this point according to the

value of the readtablecase slot of the current readtable
the value of

readtable
��

Interpret the token as representing a Lisp object and return that object

as the result of the read operation� or signal an error if the token is not of

legal syntax�

X�J�� voted in March ���� h��i to specify that implementation�de�ned

attributes may be removed from the characters of a symbol token when

constructing the print name� It is implementation�dependent which at�

tributes are removed�

As a rule� a single escape character never stands for itself but always serves

to cause the following character to be treated as a simple alphabetic character�
A single escape character can be included in a token only if preceded by

another single escape character�

A multiple escape character also never stands for itself� The characters

between a pair of multiple escape characters are all treated as simple alpha�

betic characters� except that single escape andmultiple escape characters must

nevertheless be preceded by a single escape character to be included�

Compatibility note� In MacLisp� the " character is implemented as a macro
character that reads characters up to the next unescaped " and then makes a token�
no characters are ever read beyond the second " of a matching pair� In Common
Lisp� the second " does not terminate the token being read but merely reverts to the
ordinary �rather than multiple
escape� mode of token accumulation� This results in
some di�erences in the way certain character sequences are interpreted� For example�
the sequence "foo""bar" would be read in MacLisp as two distinct tokens� "foo" and
"bar"� whereas in Common Lisp it would be treated as a single token equivalent to
"foobar"� The sequence "foo"bar"baz" would be read in MacLisp as three distinct

		� COMMON LISP

tokens� "foo"� bar� and "baz"� whereas in Common Lisp it would be treated as a
single token equivalent to "fooBARbaz"� note that the middle three lowercase letters
are converted to uppercase letters as they do not fall within a matching pair of
vertical bars�
One reason for the di�erent treatment of " in Common Lisp lies in the syntax

for package
quali�ed symbol names� A sequence such as "foo�bar" ought to be
interpreted as a symbol whose name is foo�bar� the colon should be treated as
a simple alphabetic character because it lies within a pair of vertical bars� The
symbol "bar" within the package "foo" can be notated not as "foo�bar" but as
"foo"�"bar"� the colon can serve as a package marker because it falls outside the
vertical bars� and yet the notation is treated as a single token thanks to the new
rules adopted in Common Lisp�
In MacLisp� the parentheses are treated as additional character types� In Common

Lisp they are simply macro characters� as described in section �������
What MacLisp calls �single character objects� �tokens of type single� are not

provided for explicitly in Common Lisp� They can be viewed as simply a kind of
macro character� That is� the e�ect of

�setsyntax single nil�

�setsyntax � single nil�

in MacLisp can be achieved in Common Lisp by

�defun singlemacrocharacter �stream char�

�declare �ignore stream��

�intern �string char���

�setmacrocharacter ��� singlemacrocharacter�

�setmacrocharacter � ��� singlemacrocharacter�

������� Parsing of Numbers and Symbols

When an extended token is read� it is interpreted as a number or symbol�

In general� the token is interpreted as a number if it satis�es the syntax for

numbers speci�ed in table ����� this is discussed in more detail below�
The characters of the extended token may serve various syntactic functions

as shown in table ����� but it must be remembered that any character included

in a token under the control of an escape character is treated as alphabetic

rather than according to the attributes shown in the table� One consequence of
this rule is that a whitespace� macro� or escape character will always be treated

as alphabetic within an extended token because such a character cannot be

included in an extended token except under the control of an escape character�

To allow for extensions to the syntax of numbers� a syntax for potential

numbers is de�ned in Common Lisp that is more general than the actual

INPUT
OUTPUT 		�

Table ����� Actual Syntax of Numbers

number ��" integer j ratio j 	oating�point�number
integer ��" �sign� fdigitg� �decimal�point �

ratio ��" �sign� fdigitg� fdigitg�
	oating�point�number ��" �sign� fdigitg� decimal�point fdigitg� �exponent �

j �sign� fdigitg� �decimal�point fdigitg� � exponent
sign ��" � j
decimal�point ��" �

digit ��" � j
 j � j � j � j � j � j 	 j � j �
exponent ��" exponent�marker �sign� fdigitg�
exponent�marker ��" e j s j f j d j l j E j S j F j D j L

syntax for numbers� Any token that is not a potential number and does not

consist entirely of dots will always be taken to be a symbol� now and in the

future� programs may rely on this fact� Any token that is a potential number

but does not �t the actual number syntax de�ned below is a reserved token
and has an implementation�dependent interpretation� an implementation may

signal an error� quietly treat the token as a symbol� or take some other action�

Programmers should avoid the use of such reserved tokens�
A symbol whose

name looks like a reserved token can always be written using one or more

escape characters��

Just as bignum is the standard term used by Lisp implementors for very

large integers� and 	onum
rhymes with �low hum�� refers to a
oating�point

number� the term potnum has been used widely as an abbreviation for �po�

tential number�� �Potnum� rhymes with �hot rum��

A token is a potential number if it satis�es the following requirements�

� It consists entirely of digits� signs
� or �� ratio markers
 �� decimal points

��� extension characters
 or $�� and number markers�
A number marker

is a letter� Whether a letter may be treated as a number marker depends on

context� but no letter that is adjacent to another letter may ever be treated
as a number marker� Floating�point exponent markers are instances of

number markers��

� It contains at least one digit�
Letters may be considered to be digits�

depending on the value of
readbase
� but only in tokens containing no

decimal points��

		� COMMON LISP

� It begins with a digit� sign� decimal point� or extension character�

� It does not end with a sign�

As examples� the following tokens are potential numbers� but they are not
actually numbers as de�ned below� and so are reserved tokens�
They do

indicate some interesting possibilities for future extensions��

b���� 						q
�	J � ����	J
� �� ��

�	
� � � � � 	 ��
���� ��

��
�
$���$���$���$	��$���$� ��	����i��
	j�
���k

The following tokens are not potential numbers but are always treated as

symbols�

 � �
�

foo� ab�cd $

The following tokens are potential numbers if the value of
readbase
 is
�

an abnormal situation�� but they are always treated as symbols if the value

of
readbase
 is
�
the usual value��

badface ��dec�� a b fad$cafe f

It is possible for there to be an ambiguity as to whether a letter should be

treated as a digit or as a number marker� In such a case� the letter is always
treated as a digit rather than as a number marker�

Note that the printed representation for a potential number may not contain

any escape characters� An escape character robs the following character of all

syntactic qualities� forcing it to be strictly alphabetic and therefore unsuitable

for use in a potential number� For example� all of the following representations

are interpreted as symbols� not numbers�

���� �����
���E� �
��� ���
�
�� �� �� �� � ���

In each case� removing the escape character
s� would allow the token to be

treated as a number�

If a potential number can in fact be interpreted as a number according to
the BNF syntax in table ����� then a number object of the appropriate type is

constructed and returned� It should be noted that in a given implementation

it may be that not all tokens conforming to the actual syntax for numbers can

actually be converted into number objects� For example� specifying too large

or too small an exponent for a
oating�point number may make the number

INPUT
OUTPUT 			

Table ����� Standard Constituent Character Attributes

� alphabetic hpagei illegal hbackspacei illegal
� alphabetic ! hreturni illegal ! htabi illegal !
��� alphabetic ! hspacei illegal ! hnewlinei illegal !
 alphabetic hrubouti illegal hlinefeedi illegal !
� alphabetic � alphabetic� dot� decimal point
� alphabetic � alphabetic� plus sign

alphabetic ! alphabetic� minus sign
� alphabetic ! � alphabetic
� alphabetic ! � alphabetic� ratio marker
� alphabetic ! � alphabetic

 alphadigit A� a alphadigit
	 alphadigit B� b alphadigit
� alphadigit C� c alphadigit
� alphadigit D� d alphadigit� double��oat exponent marker
� alphadigit E� e alphadigit� �oat exponent marker
� alphadigit F� f alphadigit� single��oat exponent marker
� alphadigit G� g alphadigit

 alphadigit H� h alphadigit
� alphadigit I� i alphadigit
� alphadigit J� j alphadigit
� package marker K� k alphadigit
� alphabetic ! L� l alphadigit� long��oat exponent marker
� alphabetic M� m alphadigit

alphabetic N� n alphadigit
� alphabetic O� o alphadigit
� alphabetic P� p alphadigit
� alphabetic Q� q alphadigit
� alphabetic ! R� r alphadigit
� alphabetic S� s alphadigit� short��oat exponent marker

alphabetic T� t alphadigit
$ alphabetic U� u alphadigit

alphabetic ! V� v alphadigit
! alphabetic W� w alphadigit
" alphabetic ! X� x alphadigit
alphabetic Y� y alphadigit

alphabetic Z� z alphadigit
These interpretations apply only to characters whose syntactic type is constituent� Entries

marked with an asterisk are normally shadowed because the characters are of syntactic type

whitespace� macro� single escape� or multiple escape� An alphadigit character is interpreted

as a digit if it is a valid digit in the radix speci�ed by �readbase�� otherwise it is alphabetic�

Characters with an illegal attribute can never appear in a token except under the control

of an escape character�

		
 COMMON LISP

impossible to represent in the implementation� Similarly� a ratio with denom�

inator zero
such as �� ���� cannot be represented in any implementation�

In any such circumstance where a token with the syntax of a number cannot

be converted to an internal number object� an error is signaled�
On the other

hand� an error must not be signaled for specifying too many signi�cant dig�
its for a
oating�point number� an appropriately truncated or rounded value

should be produced��

There is an omission in the syntax of numbers as described in table �����
in that the syntax does not account for the possible use of letters as digits�

The radix used for reading integers and ratios is normally decimal� However�

this radix is actually determined by the value of the variable
readbase
�

whose initial value is
��
readbase
may take on any integral value between
� and ��� let this value be n� Then a token x is interpreted as an integer or

ratio in base n if it could be properly so interpreted in the syntax ���nRx
see

section �������� So� for example� if the value of
readbase
 is
�� then the

printed representation

�a small face in a bad place�

would be interpreted as if the following representation had been read with

readbase
 set to
��

�
� small ����� in
� ���� place�

because four of the seven tokens in the list can be interpreted as hexadecimal

numbers� This facility is intended to be used in reading �les of data that for
some reason contain numbers not in decimal radix� it may also be used for

reading programs written in Lisp dialects
such as MacLisp� whose default

number radix is not decimal� Non�decimal constants in Common Lisp pro�

grams or portable Common Lisp data �les should be written using ���O� ���X� ���B�

or ���nR syntax�

When
readbase
 has a value greater than
�� an ambiguity is introduced

into the actual syntax for numbers because a letter can serve as either a digit
or an exponent marker� a simple example is
E� when the value of
readbase

is
�� The ambiguity is resolved in accordance with the general principle that

interpretation as a digit is preferred to interpretation as a number marker�

The consequence in this case is that if a token can be interpreted as either an

integer or a
oating�point number� then it is taken to be an integer�

If a token consists solely of dots
with no escape characters�� then an error is

signaled� except in one circumstance� if the token is a single dot and occurs in

a situation appropriate to �dotted list� syntax� then it is accepted as a part of

INPUT
OUTPUT 		�

such syntax� Signaling an error catches not only misplaced dots in dotted list

syntax but also lists that were truncated by
printlength
 cuto	� because

such lists end with a three�dot sequence
����� Examples�

�a � b� �A dotted pair of a and b

�a�b� �A list of one element� the symbol named a�b

�a� b� �A list of two elements a� and b

�a �b� �A list of two elements a and �b

�a �� b� �A list of three elements a� �� and b

�a ��� b� �A list of three elements a� �� and b

�a ���� b� �A list of three elements a� ���� and b

�a ����� b� �A list of three elements a� ���� and b

�a b � c� �A dotted list of a and b with c at the end

�iot �The symbol whose name is �iot

�� b� �Illegal� an error is signaled

�a �� �Illegal� an error is signaled
�a �� b� �Illegal� an error is signaled

�a � � b� �Illegal� an error is signaled

�a b c ���� �Illegal� an error is signaled

In all other cases� the token is construed to be the name of a symbol� If

there are any package markers
colons� in the token� they divide the token

into pieces used to control the lookup and creation of the symbol�
If there is a single package marker� and it occurs at the beginning of the

��

token� then the token is interpreted as a keyword� that is� a symbol in the

keyword package� The part of the token after the package marker must not

have the syntax of a number�
If there is a single package marker not at the beginning or end of the token�

then it divides the token into two parts� The �rst part speci�es a package�

the second part is the name of an external symbol available in that package�

Neither of the two parts may have the syntax of a number�

If there are two adjacent package markers not at the beginning or end of
the token� then they divide the token into two parts� The �rst part speci�es

a package� the second part is the name of a symbol within that package

possibly an internal symbol�� Neither of the two parts may have the syntax

of a number�
X�J�� voted in March ���� h��i to clarify that� in the situations described

in the preceding three paragraphs� the restriction on the syntax of the parts

should be strengthened� none of the parts may have the syntax of even a

potential number� Tokens such as ������ �
 �� and editor���
�
�� were

already ruled out� this clari�cation further declares that such tokens as �� ��

		� COMMON LISP

compiler�
�	J� and Christmas�
� �� �� are also in error and therefore

should not be used in portable programs� Implementations may di	er in their

treatment of such package�marked potential numbers�

If a symbol token contains no package markers� then the entire token is the

name of the symbol� The symbol is looked up in the default package� which
is the value of the variable
package
�

All other patterns of package markers� including the cases where there are

more than two package markers or where a package marker appears at the

end of the token� at present do not mean anything in Common Lisp
see chap�
ter ���� It is therefore currently an error to use such patterns in a Common

Lisp program� The valid patterns for tokens may be summarized as follows�

nnnnn a number

xxxxx a symbol in the current package

�xxxxx a symbol in the keyword package

ppppp�xxxxx an external symbol in the ppppp package

ppppp��xxxxx a
possibly internal� symbol in the ppppp package

where nnnnn has the syntax of a number� and xxxxx and ppppp do not have

the syntax of a number�
In accordance with the X�J�� decision noted above h��i� xxxxx and ppppp

may not have the syntax of even a potential number�

�Variable�
readbase

The value of
readbase
 controls the interpretation of tokens by read as

being integers or ratios� Its value is the radix in which integers and ratios
are to be read� the value may be any integer from � to ��
inclusive� and

is normally
�
decimal radix�� Its value a	ects only the reading of integers

and ratios� In particular�
oating�point numbers are always read in decimal

radix� The value of
readbase
 does not a	ect the radix for rational numbers

whose radix is explicitly indicated by ���O� ���X� ���B� or ���nR syntax or by a trailing
decimal point�

Care should be taken when setting
readbase
 to a value larger than
��

because tokens that would normally be interpreted as symbols may be inter�

preted as numbers instead� For example� with
readbase
 set to
�
hex�
adecimal radix�� variables with names such as a� b� f� bad� and face will be

treated by the reader as numbers
with decimal values ��� ��� ��� ����� and

������ respectively�� The ability to alter the input radix is provided in Com�

mon Lisp primarily for the purpose of reading data �les in special formats�

rather than for the purpose of altering the default radix in which to read

INPUT
OUTPUT 		�

programs� The user is strongly encouraged to use ���O� ���X� ���B� or ���nR syntax

when notating non�decimal constants in programs�

Compatibility note� This variable corresponds to the variable called ibase in
MacLisp and to the function called radix in Interlisp�

�Variable�
readsuppress

When the value of
readsuppress
 is nil� the Lisp reader operates normally�

When it is not nil� then most of the interesting operations of the reader are
suppressed� input characters are parsed� but much of what is read is not

interpreted�

The primary purpose of
readsuppress
 is to support the operation of the
read�time conditional constructs ���� and ���
see section �������� It is important

for these constructs to be able to skip over the printed representation of a Lisp

expression despite the possibility that the syntax of the skipped expression

may not be entirely legal for the current implementation� this is because a
primary application of ���� and ��� is to allow the same program to be shared

among several Lisp implementations despite small incompatibilities of syntax�

A non�nil value of
readsuppress
 has the following speci�c e	ects on
the Common Lisp reader�

� All extended tokens are completely uninterpreted� It matters not whether

the token looks like a number� much less like a valid number� the pattern

of package markers also does not matter� An extended token is simply
discarded and treated as if it were nil� that is� reading an extended token

when
readsuppress
 is non�nil simply returns nil�
One consequence

of this is that the error concerning improper dotted�list syntax will not be

signaled��

� Any standard ��� macro�character construction that requires� permits� or

disallows an in�x numerical argument� such as ���nR� will not enforce any
constraint on the presence� absence� or value of such an argument�

� The ���� construction always produces the value nil� It will not signal an

error even if an unknown character name is seen�

� Each of the ���B� ���O� ���X� and ���R constructions always scans over a following

token and produces the value nil� It will not signal an error even if the

token does not have the syntax of a rational number�

	
� COMMON LISP

� The ���
 construction always scans over a following token and produces the

value nil� It will not signal an error even if the token does not consist

solely of the characters � and
�

� Each of the ���� and ���� constructions reads the following form
in suppressed
���

mode� of course� but does not evaluate it� The form is discarded and nil

is produced�

X�J�� voted in January ���� h���i to remove ���� from the language�

� Each of the ���A� ���S� and ���� constructions reads the following form
in sup�

pressed mode� of course� but does not interpret it in any way� it need not

even be a list in the case of ���S� or a symbol in the case of ����� The form is

discarded and nil is produced�

� The ��� construction is totally ignored� It does not read a following form� It

produces no object� but is treated as whitespace�

� The ������ construction always produces nil�

Note that� no matter what the value of
readsuppress
� parentheses still con�

tinue to delimit
and construct� lists� the ���� construction continues to delimit
vectors� and comments� strings� and the quote and backquote constructions

continue to be interpreted properly� Furthermore� such situations as �� �����

����� and ���hspacei continue to signal errors�

In some cases� it may be appropriate for a user�written macro�character

de�nition to check the value of
readsuppress
 and to avoid certain compu�

tations or side e	ects if its value is not nil�

�Variable�
readeval

X�J�� voted in June ���� h��i to add a new reader control variable�

readeval
� whose default value is t� If
readeval
 is false� the ���� reader

macro signals an error�

Printing is also a	ected� If
readeval
 is false and
printreadably
 is
true� any printobject method that would otherwise output a ���� reader

macro must either output something di	erent or signal an error of type

printnotreadable�

Binding
readeval
 to nil is useful when reading data that came from an

untrusted source� such as a network or a user�supplied data �le� it prevents the

���� reader macro from being exploited as a �Trojan horse� to cause arbitrary

forms to be evaluated�

INPUT
OUTPUT 	
�

������� Macro Characters

If the reader encounters a macro character� then the function associated with
that macro character is invoked and may produce an object to be returned�

This function may read following characters in the stream in whatever syntax

it likes
it may even call read recursively� and return the object represented

by that syntax� Macro characters may or may not be recognized� of course�

when read as part of other special syntaxes
such as for strings��
The reader is therefore organized into two parts� the basic dispatch loop�

which also distinguishes symbols and numbers� and the collection of macro

characters� Any character can be reprogrammed as a macro character� this is

a means by which the reader can be extended� The macro characters normally
de�ned are as follows�

�

The left�parenthesis character initiates reading of a pair or list� The func�

tion read is called recursively to read successive objects until a right paren�
thesis is found to be next in the input stream� A list of the objects read is

returned� Thus the input sequence

�a b c�

is read as a list of three objects
the symbols a� b� and c�� The right parenthesis

need not immediately follow the printed representation of the last object�
whitespace characters and comments may precede it� This can be useful for

putting one object on each line and making it easy to add new objects�

�defun trafficlight �color�

�case color

�green�

�red �stop��

�amber �accelerate�� �Insert more colors after this line

��

It may be that no objects precede the right parenthesis� as in �� or � ��

this reads as a list of zero objects
the empty list��

If a token that is just a dot� not preceded by an escape character� is read
after some object� then exactly one more object must follow the dot� possibly

followed by whitespace� followed by the right parenthesis�

�a b c � d�

	
� COMMON LISP

This means that the cdr of the last pair in the list is not nil� but rather the

object whose representation followed the dot� The above example might have

been the result of evaluating

�cons a �cons b �cons c d��� � �a b c � d�

Similarly� we have

�cons znets wolqzorbitan� � �znets � wolqzorbitan�

It is permissible for the object following the dot to be a list�

�a b c d � �e f � �g���

is the same as

�a b c d e f g�

but a list following a dot is a non�standard form that printwill never produce�

�

The right�parenthesis character is part of various constructs
such as the syn�

tax for lists� using the left�parenthesis character and is invalid except when

used in such a construct�

INPUT
OUTPUT 	
�

The single�quote
accent acute� character provides an abbreviation to make it

easier to put constants in programs� The form foo reads the same as �quote

foo�� a list of the symbol quote and foo�

�

Semicolon is used to write comments� The semicolon and all characters up

to and including the next newline are ignored� Thus a comment can be put at

the end of any line without a	ecting the reader�
A comment will terminate

a token� but a newline would terminate the token anyway��

There is no functional di	erence between using one semicolon and using

more than one� but the conventions shown here are in common use�

���� COMMENTEXAMPLE function�

��� This function is useless except to demonstrate comments�

��� �Actually� this example is much too cluttered with them��

�defun commentexample �x y� �X is anything� Y is an alist�

�cond ��listp x� x� �If X is a list� use that�

�� X is now not a list� There are two other cases�

��symbolp x�

�� Look up a symbol in the alist�

�cdr �assoc x y��� �Remember� �cdr nil� is nil�

�� Do this when all else fails�

�t �cons x �Add x to a default list�

��lisp t� �LISP is okay�

�fortran nil� �FORTRAN is not�

�pl i ���� �Note that you can put comments in

�ada ���
� � �data� as well as in �programs��

�� COBOL��

�teco
��e�������

In this example� comments may begin with one to four semicolons�

� Single�semicolon comments are all aligned to the same column at the right�

usually each comment concerns only the code it is next to� Occasionally

a comment is long enough to occupy two or three lines� in this case� it is

conventional to indent the continued lines of the comment one space
after

the semicolon��

	
� COMMON LISP

� Double�semicolon comments are aligned to the level of indentation of the

code� A space conventionally follows the two semicolons� Such comments

usually describe the state of the program at that point or the code section

that follows the comment�

� Triple�semicolon comments are aligned to the left margin� They usually
document whole programs or large code blocks�

� Quadruple�semicolon comments usually indicate titles of whole programs

or large code blocks�

Compatibility note� These conventions arose among users of MacLisp and have
been found to be very useful� The conventions are conveniently exploited by cer

tain software tools� such as the EMACS editor and the ATSIGN listing program
developed at MIT�
The ATSIGN listing program� alas� is no longer in use� but EMACS is widely

available� especially the GNU EMACS implementation� which is available from the
Free Software Foundation� 	�� Massachusetts Avenue� Cambridge� Massachusetts

����� Remember� GNU�s Not UNIX�

�

The double quote character begins the printed representation of a string�

Successive characters are read from the input stream and accumulated until
another double quote is encountered� An exception to this occurs if a single

escape character is seen� the escape character is discarded� the next character

is accumulated� and accumulation continues� When a matching double quote

is seen� all the accumulated characters up to but not including the matching

double quote are made into a simple string and returned�

The backquote
accent grave� character makes it easier to write programs to

construct complex data structures by using a template�

Notice of correction� In the �rst edition� the backquote character h i ap�
pearing at the left margin above was inadvertently omitted�
As an example� writing

�cond ��numberp �x� �#y� �t �print �x� �#y��

is roughly equivalent to writing

�list cond

INPUT
OUTPUT 	
	

�cons �list numberp x� y�

�list
 t �list print x� y��

The general idea is that the backquote is followed by a template� a picture of

a data structure to be built� This template is copied� except that within the

template commas can appear� Where a comma occurs� the form following the

comma is to be evaluated to produce an object to be inserted at that point�
Assume b has the value �� then evaluating the form denoted by �a b �b ���

b
� b� produces the result �a b � � b��

If a comma is immediately followed by an at�sign
#�� then the form fol�

lowing the at�sign is evaluated to produce a list of objects� These objects are

then �spliced� into place in the template� For example� if x has the value �a
b c�� then

�x �x �#x foo ��cadr x� bar ��cdr x� baz �#�cdr x��

� �x �a b c� a b c foo b bar �b c� baz b c�

The backquote syntax can be summarized formally as follows� For each of

several situations in which backquote can be used� a possible interpretation

of that situation as an equivalent form is given� Note that the form is equiv�
alent only in the sense that when it is evaluated it will calculate the correct

result� An implementation is quite free to interpret backquote in any way

such that a backquoted form� when evaluated� will produce a result equal to

that produced by the interpretation shown here�

� basic is the same as basic� that is� �quote basic�� for any form basic that
is not a list or a general vector�

� �form is the same as form� for any form� provided that the representation

of form does not begin with �#� or ����
A similar caveat holds for all

occurrences of a form after a comma��

� �#form is an error�

� �x� x� x� ��� xn � atom� may be interpreted to mean

�append �x�� �x�� �x�� ��� �xn� �quote atom��

where the brackets are used to indicate a transformation of an xj as follows�

� �form� is interpreted as �list form�� which contains a backquoted form

that must then be further interpreted�

� ��form� is interpreted as �list form��

	

 COMMON LISP

� ��#form� is interpreted simply as form�

� �x� x� x� ��� xn� may be interpreted to mean the same as the back�

quoted form �x� x� x� ��� xn � nil�� thereby reducing it to the previ�

ous case�

� �x� x� x� ��� xn � �form� may be interpreted to mean

�append �x�� �x�� �x�� ��� �xn� form�

where the brackets indicate a transformation of an xj as described above�

� �x� x� x� ��� xn � �#form� is an error�

� ����x� x� x� ��� xn� may be interpreted to mean

�apply ��� vector �x� x� x� ��� xn��

No other uses of comma are permitted� in particular� it may not appear

within the ���A or ���S syntax�

Anywhere ��#� may be used� the syntax ���� may be used instead to
indicate that it is permissible to destroy the list produced by the form following

the ����� this may permit more e�cient code� using nconc instead of append�

for example�

If the backquote syntax is nested� the innermost backquoted form should

be expanded �rst� This means that if several commas occur in a row� the
leftmost one belongs to the innermost backquote�

Once again� it is emphasized that an implementation is free to interpret

a backquoted form as any form that� when evaluated� will produce a result

that is equal to the result implied by the above de�nition� In particular� no
guarantees are made as to whether the constructed copy of the template will

or will not share list structure with the template itself� As an example� the

above de�nition implies that

���a b� �c �#d�

will be interpreted as if it were

�append �list �append �list a� �list b� nil�� �list c� d nil�

but it could also be legitimately interpreted to mean any of the following�

�append �list �append �list a� �list b��� �list c� d�

�append �list �append �list a� �b��� �list c� d�

INPUT
OUTPUT 	
�

�append �list �cons a �b��� �list c� d�

�list
 �cons a �b�� c d�

�list
 �cons a �list b�� c d�

�list
 �cons a �b�� c �copylist d��

There is no good reason why copylist should be performed� but it is not

prohibited��

	
� COMMON LISP

Some users complain that backquote syntax is di�cult to read� especially

when it is nested� I agree that it can get complicated� but in some situations

such as writing macros that expand into de�nitions for other macros� such

complexity is to be expected� and the alternative is much worse�

After I gained some experience in writing nested backquote forms� I found

that I was not stopping to analyze the various patterns of nested backquotes

and interleaved commas and quotes� instead� I was recognizing standard id�
ioms wholesale� in the same manner that I recognize cadar as the primitive

for �extract the lambda�list from the form ��lambda ���� ������ without

stopping to analyze it into �car of cdr of car�� For example� �x within

a doubly�nested backquote form means �the value of x available during the
second evaluation will appear here once the form has been twice evaluated��

whereas � �x means �the value of x available during the �rst evaluation will

appear here once the form has been twice evaluated� and ��x means �the

value of the value of x will appear here��

See appendix C for a systematic set of examples of the use of nested back�

quotes�

�

The comma character is part of the backquote syntax and is invalid if used

other than inside the body of a backquote construction as described above�

���

This is a dispatching macro character� It reads an optional digit string and

then one more character� and uses that character to select a function to run
as a macro�character function�

The ��� character also happens to be a non�terminating macro character� This
is completely independent of the fact that it is a dispatching macro character�

it is a coincidence that the only standard dispatching macro character in

Common Lisp is also the only standard non�terminating macro character�

See the next section for prede�ned ��� macro�character constructions�

������� Standard Dispatching Macro Character Syntax

The standard syntax includes forms introduced by the ��� character� These

take the general form of a ���� a second character that identi�es the syntax�

and following arguments in some form� If the second character is a letter�

then case is not important� ���O and ���o are considered to be equivalent� for

example�

INPUT
OUTPUT 	
�

Certain ��� forms allow an unsigned decimal number to appear between the

��� and the second character� some other forms even require it� Those forms

that do not explicitly permit such a number to appear forbid it�

The currently de�ned ��� constructs are described below and summarized in

table ����� more are likely to be added in the future� However� the constructs

����� ����� ����� ����� ����� and ���� are explicitly reserved for the user and will never
be de�ned by the Common Lisp standard�

����

����x reads in as a character object that represents the character x� Also�
����name reads in as the character object whose name is name� Note that the

backslash � allows this construct to be parsed easily by EMACS�like editors�

In the single�character case� the character x must be followed by a non�

constituent character� lest a name appear to follow the ����� A good model

of what happens is that after ���� is read� the reader backs up over the � and

then reads an extended token� treating the initial � as an escape character

whether it really is or not in the current readtable��

Uppercase and lowercase letters are distinguished after ����� ����A and ����a de�
note di	erent character objects� Any character works after ����� even those that

are normally special to read� such as parentheses� Non�printing characters

may be used after ����� although for them names are generally preferred�

����name reads in as a character object whose name is name
actually� whose

name is �stringupcase name�� therefore the syntax is case�insensitive�� The

name should have the syntax of a symbol� The following names are standard
across all implementations�

newline The character that represents the division between lines
space The space or blank character

The following names are semi�standard� if an implementation supports them�

they should be used for the described characters and no others�

rubout The rubout or delete character�

page The form�feed or page�separator character
tab The tabulate character

backspace The backspace character

return The carriage return character

linefeed The line�feed character

In some implementations� one or more of these characters might be a synonym

	�� COMMON LISP

Table ����� Standard " Macro Character Syntax

���� unde�ned ! ���hbackspacei signals error
���� unde�ned ���htabi signals error
������ reference to ��� label ���hnewlinei signals error
��� unde�ned ���hlinefeedi signals error
���� unde�ned ���hpagei signals error
���� unde�ned ���hreturni signals error
��� function abbreviation ���hspacei signals error
���� simple vector ���� read�time conditional
���� signals error ��� read�time conditional
���� bit�vector ���� read�time evaluation
���� load�time evaluation ���� unde�ned
���
 used for in�x arguments ���A� ���a array
���	 used for in�x arguments ���B� ���b binary rational
���� used for in�x arguments ���C� ���c complex number
���� used for in�x arguments ���D� ���d unde�ned
���� used for in�x arguments ���E� ���e unde�ned
���� used for in�x arguments ���F� ���f unde�ned
���� used for in�x arguments ���G� ���g unde�ned
���
 used for in�x arguments ���H� ���h unde�ned
���� used for in�x arguments ���I� ���i unde�ned
���� used for in�x arguments ���J� ���j unde�ned
���� uninterned symbol ���K� ���k unde�ned
���� unde�ned ���L� ���l unde�ned
���� signals error ���M� ���m unde�ned
��� label following object ���N� ���n unde�ned
���� unde�ned ���O� ���o octal rational
���� unde�ned ! ���P� ���p pathname
���� unde�ned ���Q� ���q unde�ned
���� unde�ned ! ���R� ���r radix�n rational
���� character object ���S� ���s structure
���� unde�ned ! ���T� ���t unde�ned
��� unde�ned ���U� ���u unde�ned
���$ unde�ned ���V� ���v unde�ned
��� unde�ned ���W� ���w unde�ned
���! unde�ned ! ���X� ���x hexadecimal rational
���" balanced comment ���Y� ���y unde�ned
���# unde�ned ! ���Z� ���z unde�ned
��� unde�ned ���hrubouti unde�ned

The combinations marked by an asterisk are explicitly reserved to the user and will
never be de�ned by Common Lisp�
X�J�� voted in June ���� h���i to specify ���P and ���p �unde�ned in the �rst edition��

INPUT
OUTPUT 	��

for a standard character� the ����Linefeed character might be the same as

����Newline� for example�

When the Lisp printer types out the name of a special character� it uses the

same table as the ���� reader� therefore any character name you see typed out

is acceptable as input
in that implementation�� Standard names are always
preferred over non�standard names for printing�

The following convention is used in implementations that support non�zero

bits attributes for character objects� If a name after ���� is longer than one

character and has a hyphen in it� then it may be split into the two parts pre�
ceding and following the �rst hyphen� the �rst part
actually� stringupcase

of the �rst part� may then be interpreted as the name or initial of a bit� and

the second part as the name of the character
which may in turn contain a

hyphen and be subject to further splitting�� For example�

����ControlSpace ����ControlMetaTab

����CMReturn ����HSMCRubout

If the character name consists of a single character� then that character is
used� Another � may be necessary to quote the character�

����Control" ����ControlMeta��

����Control�a ����Meta�

If an unsigned decimal integer appears between the ��� and �� it is interpreted
��

as a font number� to become the font attribute of the character object
see

charfont��

X�J�� voted in March ���� h��i to replace the notion of bits and font
attributes with that of implementation�de�ned attributes� Presumably this

eliminates the portable use of this syntax for font information� although the

vote did not address this question directly�

���&

��� foo is an abbreviation for �function foo�� foo may be the printed represen�

tation of any Lisp object� This abbreviation may be remembered by analogy
with the macro character� since the function and quote special forms are

similar in form�

����

A series of representations of objects enclosed by ���� and � is read as a simple

vector of those objects� This is analogous to the notation for lists�

	�� COMMON LISP

If an unsigned decimal integer appears between the ��� and �� it speci�es

explicitly the length of the vector� In that case� it is an error if too many

objects are speci�ed before the closing �� and if too few are speci�ed� the last

object
it is an error if there are none in this case� is used to �ll all remaining

elements of the vector� For example�

����a b c c c c� �����a b c c c c� �����a b c� �����a b c c�

all mean the same thing� a vector of length � with elements a� b� and four

instances of c� The notation ����� denotes an empty vector� as does ������
which

is legitimate because it is not the case that too few elements are speci�ed��

���

A series of binary digits
� and
� preceded by ���
 is read as a simple bit�

vector containing those bits� the leftmost bit in the series being bit � of the

bit�vector�

If an unsigned decimal integer appears between the ��� and
� it speci�es

explicitly the length of the vector� In that case� it is an error if too many bits
are speci�ed� and if too few are speci�ed the last one
it is an error if there

are none in this case� is used to �ll all remaining elements of the bit�vector�

For example�

���

�

 ����

�

 ����

�
 ����

�

all mean the same thing� a vector of length � with elements
� ��
�
�
�
and
� The notation ���
 denotes an empty bit�vector� as does ����

which is

legitimate because it is not the case that too few elements are speci�ed��

Compare this to ���B� used for expressing integers in binary notation�

����

����foo requires foo to have the syntax of an unquali�ed symbol name
no
embedded colons�� It denotes an uninterned symbol whose name is foo� Every

time this syntax is encountered� a di	erent uninterned symbol is created� If

it is necessary to refer to the same uninterned symbol more than once in the

same expression� the ��� syntax may be useful�

����

����foo is read as the object resulting from the evaluation of the Lisp object

represented by foo� which may be the printed representation of any Lisp object�

INPUT
OUTPUT 	��

The evaluation is done during the read process� when the ���� construct is

encountered�

X�J�� voted in June ���� h��i to add a new reader control variable�

readeval
� If it is true� the ���� reader macro behaves as described above� if

it is false� the ���� reader macro signals an error�

The ���� syntax therefore performs a read�time evaluation of foo� By contrast�
����
see below� performs a load�time evaluation�

Both ���� and ���� allow you to include� in an expression being read� an object

that does not have a convenient printed representation� instead of writing a

representation for the object� you write an expression that will compute the

object�

��

����foo is read as the object resulting from the evaluation of the Lisp object

represented by foo� which may be the printed representation of any Lisp object�

The evaluation is done during the read process� unless the compiler is doing
the reading� in which case it is arranged that foo will be evaluated when the

�le of compiled code is loaded� The ���� syntax therefore performs a load�time

evaluation of foo� By contrast� ����
see above� performs a read�time evaluation�

In a sense� ���� is like specifying �eval load� to evalwhen� whereas ���� is

more like specifying �eval compile�� It makes no di	erence when loading
interpreted code� when code is to be compiled� however� ���� speci�es compile�

time evaluation and ���� speci�es load�time evaluation�

X�J�� voted in January ���� h���i to remove ���� from the language� X�J��
noted that the �rst edition failed to make it clear that ���� can be meaningful

only within quoted forms� All sorts of anomalies can arise� including inconsis�

tencies between the interpreter and compiler� if ���� is not properly restricted�

See loadtimeeval�

���B

���brational reads rational in binary
radix ��� For example� ���B

�
 �
�� and

���b
�

 � � ��

Compare this to ���
� used for expressing bit�vectors in binary notation�

���O

���orational reads rational in octal
radix ��� For example� ���o�	
� � �

��

and ���o			 � �

�

	�� COMMON LISP

���X

���xrational reads rational in hexadecimal
radix ���� The digits above � are

the letters A through F
the lowercase letters a through f are also acceptable��

For example� ���xF�� � �����

���nR

���radixrrational reads rational in radix radix� radix must consist of only digits�

and it is read in decimal� its value must be between � and ��
inclusive��

INPUT
OUTPUT 	�	

For example� ����r
�� is another way of writing

� and ���

R�� is another

way of writing ��� For radices larger than ��� letters of the alphabet are used

in order for the digits after ��

���nA

The syntax ���nAobject constructs an n�dimensional array� using object as the

value of the �initialcontents argument to makearray�

The value of n makes a di	erence� ����A���
 �� �foo � �hot dog���� for

example� represents a ��by�� matrix�

�
 �

foo � �hot dog�

In contrast� ���
A���
 �� �foo � �hot dog��� represents a length�� array

whose elements are lists�

��
 �� �foo � �hot dog��

Furthermore� ����A���

 �� �foo � �hot dog��� represents a zero�dimensional array whose sole
element is a list�

���
 �� �foo � �hot dog���

Similarly� ����Afoo
or� more readably� ����A foo� represents a zero�dimensional
array whose sole element is the symbol foo� The expression ���
Afoo would

not be legal because foo is not a sequence�

���S

The syntax ���s�name slot� value� slot� value� ���� denotes a structure�

This is legal only if name is the name of a structure already de�ned by
defstruct and if the structure has a standard constructor macro� which it

normally will� Let cm stand for the name of this constructor macro� then this

syntax is equivalent to

�����cm keyword� value� keyword� value� ����

where each keywordj is the result of computing

�intern �string slotj� keyword�

	�
 COMMON LISP

This computation is made so that one need not write a colon in front of every

slot name�� The net e	ect is that the constructor macro is called with the

speci�ed slots having the speci�ed values
note that one does not write quote

marks in the ���S syntax�� Whatever object the constructor macro returns is

returned by the ���S syntax�

���P

X�J�� voted in June ���� h���i to de�ne the reader syntax ���p����� to be

equivalent to �����parsenamestring ������� Presumably this was meant to

be taken descriptively and not literally� I would think� for example� that

the committee did not wish to quibble over the package in which the name
parsenamestring was to be read� Similarly� I would presume that the ���p

syntax operates normally rather than signaling an error when
readeval

is false� I interpret the intent of the vote to be that ���p reads a following

form� which should be a string� that is then converted to a pathname as if by
application of the standard function parsenamestring�

���n

The syntax ���nobject reads as whatever Lisp object has object as its printed
representation� However� that object is labelled by n� a required unsigned

decimal integer� for possible reference by the syntax ���n���
below�� The scope

of the label is the expression being read by the outermost call to read� Within

this expression the same label may not appear twice�

���n���

The syntax ���n���� where n is a required unsigned decimal integer� serves as a

reference to some object labelled by ���n� that is� ���n��� represents a pointer to the

same identical
eq� object labelled by ���n� This permits notation of structures

with shared or circular substructure� For example� a structure created in the
variable y by this code�

�setq x �list p q��

�setq y �list �list a b� x foo x��

�rplacd �last y� �cdr y��

could be represented in this way�

��a b� � ���
������p q� foo ������� � ���
�����

INPUT
OUTPUT 	��

Without this notation� but with
printlength
 set to
�� the structure would

print in this way�

��a b� �p q� foo �p q� �p q� foo �p q� �p q� foo �p q� ����

A reference ���n��� may occur only after a label ���n� forward references are not

permitted� In addition� the reference may not appear as the labelled object

itself
that is� one may not write ���n ���n����� because the object labelled by ���n
is not well de�ned in this case�

����

The ���� syntax provides a read�time conditionalization facility� the syntax is

����feature form

If feature is �true�� then this syntax represents a Lisp object whose printed

representation is form� If feature is �false�� then this syntax is e	ectively
whitespace� it is as if it did not appear�

The feature should be the printed representation of a symbol or list� If

feature is a symbol� then it is true if and only if it is a member of the list that

is the value of the global variable
features
�

Compatibility note� MacLisp uses the status special form for this purpose� and
Lisp Machine Lisp duplicates status essentially only for the sake of �status fea�

tures�� The use of a variable allows one to bind the features list� when compiling�
for example�

Otherwise� feature should be a Boolean expression composed of and� or�

and not operators on
recursive� feature expressions�
For example� suppose that in implementation A the features spice and

perq are true� and in implementation B the feature lispm is true� Then

the expressions on the left below are read the same as those on the right in

implementation A�

�cons ����spice �Spice� ����lispm �Lispm� x� �cons �Spice� x�

�setq a �
 � ����perq �� �����not perq� �	�� �setq a �
 � ����

�let ��a �� �����or spice lispm� �b ��� �let ��a �� �b ���

�foo a�� �foo a��

�cons a ����perq ���perq b c� �cons a c�

In implementation B� however� they are read in this way�

	�� COMMON LISP

�cons ����spice �Spice� ����lispm �Lispm� x� �cons �Lispm� x�

�setq a �
 � ����perq �� �����not perq� �	�� �setq a �
 � �	��

�let ��a �� �����or spice lispm� �b ��� �let ��a �� �b ���

�foo a�� �foo a��

�cons a ����perq ���perq b c� �cons a c�

INPUT
OUTPUT 	��

The ���� construction must be used judiciously if unreadable code is not to

result� The user should make a careful choice between read�time conditional�

ization and run�time conditionalization�

The ���� syntax operates by �rst reading the feature speci�cation and then
���

skipping over the form if the feature is �false�� This skipping of a form is
a bit tricky because of the possibility of user�de�ned macro characters and

side e	ects caused by the ���� and ���� constructions� It is accomplished by

binding the variable
readsuppress
 to a non�nil value and then calling the

read function� See the description of
readsuppress
 for the details of this
operation�

X�J�� voted in January ���� h���i to remove ���� from the language�

X�J�� voted in March ���� h���i to specify that the keyword package is the

default package during the reading of a feature speci�cation� Thus ����spice

means the same thing as �����spice� and �����or spice lispm�means the same
thing as �����or �spice �lispm�� Symbols in other packages may be used as

feature names� but one must use an explicit package pre�x to cite one after

�����

����

���feature form is equivalent to �����not feature� form�

����

����������� is treated as a comment by the reader� just as everything from a

semicolon to the next newline is treated as a comment� Anything may appear

in the comment� except that it must be balanced with respect to other occur�

rences of ���� and ����� Except for this nesting rule� the comment may contain

any characters whatsoever�
The main purpose of this construct is to allow �commenting out� of blocks

of code or data� The balancing rule allows such blocks to contain pieces

already so commented out� In this respect the ����������� syntax of Common

Lisp di	ers from the
���
 comment syntax used by PL�I and C�

����

This is not legal reader syntax� It is conventionally used in the printed repre�

sentation of objects that cannot be read back in� Attempting to read a ���� will
cause an error�
More precisely� it is legal syntax� but the macro�character

function for ���� signals an error��

The usual convention for printing unreadable data objects is to print some

identifying information
the internal machine address of the object� if nothing

else� preceded by ���� and followed by ��

	�� COMMON LISP

X�J�� voted in June ���� h��i to add printunreadableobject� a macro

that prints an object using �������� syntax and also takes care of checking the

variable
printreadably
�

���hspacei� ���htabi� ���hnewlinei� ���hpagei� ���hreturni
A ��� followed by a whitespace character is not legal reader syntax� This pre�
vents abbreviated forms produced via
printlevel
 cuto	 from reading in

again� as a safeguard against losing information�
More precisely� this is legal

syntax� but the macro�character function for it signals an error��

����

This is not legal reader syntax� This prevents abbreviated forms produced
via
printlevel
 cuto	 from reading in again� as a safeguard against losing

information�
More precisely� this is legal syntax� but the macro�character

function for it signals an error��

������� The Readtable

Previous sections describe the standard syntax accepted by the read function�
This section discusses the advanced topic of altering the standard syntax

either to provide extended syntax for Lisp objects or to aid the writing of

other parsers�

There is a data structure called the readtable that is used to control the

reader� It contains information about the syntax of each character equivalent

to that in table ����� It is set up exactly as in table ���� to give the standard

Common Lisp meanings to all the characters� but the user can change the
meanings of characters to alter and customize the syntax of characters� It is

also possible to have several readtables describing di	erent syntaxes and to

switch from one to another by binding the variable
readtable
�

Even if an implementation supports characters with non�zero bits and font
��

attributes� it need not
but may� allow for such characters to have syntax

descriptions in the readtable� However� every character of type stringchar

must be represented in the readtable�

X�J�� voted in March ���� h��i to remove the type stringchar and to re�
place the bits and font attributes with the notion of implementation�de�ned

attributes� If any implementation�de�ned attributes are supported� an imple�

mentation may
but need not� allow for such characters to have syntax descrip�

tions in the readtable� Characters that do not have non�standard values for

any implementation�de�ned attribute must be represented in the readtable�

INPUT
OUTPUT 	��

�Variable�
readtable

The value of
readtable
 is the current readtable� The initial value of this
is a readtable set up for standard Common Lisp syntax� You can bind this

variable to temporarily change the readtable being used�

To program the reader for a di	erent syntax� a set of functions are pro�
vided for manipulating readtables� Normally� you should begin with a copy

of the standard Common Lisp readtable and then customize the individual

characters within that copy�

�Function�copyreadtable �optional fromreadtable toreadtable

A copy is made of from�readtable� which defaults to the current readtable
the

value of the global variable
readtable
�� If from�readtable is nil� then a

copy of a standard Common Lisp readtable is made� For example�

�setq
readtable
 �copyreadtable nil��

will restore the input syntax to standard Common Lisp syntax� even if the

original readtable has been clobbered
assuming it is not so badly clobbered

that you cannot type in the above expression��� On the other hand�

�setq
readtable
 �copyreadtable��

will merely replace the current readtable with a copy of itself�

If to�readtable is unsupplied or nil� a fresh copy is made� Otherwise� to�

readtable must be a readtable� which is destructively copied into�

�Function�readtablep object

readtablep is true if its argument is a readtable� and otherwise is false�

�readtablep x� � �typep x readtable�

�Function�setsyntaxfromchar tochar fromchar �optional toreadtable

fromreadtable

This makes the syntax of to�char in to�readtable be the same as the syntax of

from�char in from�readtable� The to�readtable defaults to the current readtable

the value of the global variable
readtable
�� and from�readtable defaults

to nil� meaning to use the syntaxes from the standard Lisp readtable�

	�� COMMON LISP

X�J�� voted in January ���� h�i to clarify that the to�char and from�char

must each be a character�

Only attributes as shown in table ���� are copied� moreover� if a macro

character is copied� the macro de�nition function is copied also� However�

attributes as shown in table ���� are not copied� they are �hard�wired� into
the extended�token parser� For example� if the de�nition of S is copied to
�

then
 will become a constituent that is alphabetic but cannot be used as an

exponent indicator for short�format
oating�point number syntax�

It works to copy a macro de�nition from a character such as � to another
character� the standard de�nition for � looks for another character that is the

same as the character that invoked it� It doesn�t work to copy the de�nition of

� to �� for example� it can be done� but it lets one write lists in the form �a b

c�� not �a b c�� because the de�nition always looks for a closing parenthesis�

not a closing brace� See the function readdelimitedlist� which is useful in
this connection�

X�J�� voted in January ���� h���i to specify that the setsyntaxfromchar

function returns t�

�Function�setmacrocharacter char function �optional

nonterminatingp readtable

�Function�getmacrocharacter char �optional readtable

setmacrocharacter causes char to be a macro character that when seen

by read causes function to be called� If non�terminating�p is not nil
it

defaults to nil�� then it will be a non�terminating macro character� it may

be embedded within extended tokens� setmacrocharacter returns t�
getmacrocharacter returns the function associated with char and� as a sec�

ond value� returns the non�terminating�p
ag� it returns nil if char does not

have macro�character syntax� In each case� readtable defaults to the current

readtable�
X�J�� voted in January ���� h��i to specify that if nil is explicitly passed

as the second argument to getmacrocharacter� then the standard readtable

is used� This is consistent with the behavior of copyreadtable�

The function is called with two arguments� stream and char� The stream

is the input stream� and char is the macro character itself� In the simplest
case� function may return a Lisp object� This object is taken to be that whose

printed representation was the macro character and any following characters

read by the function� As an example� a plausible de�nition of the standard

single quote character is�

�defun singlequotereader �stream char�

INPUT
OUTPUT 	��

�declare �ignore char��

�list quote �read stream t nil t���

�setmacrocharacter ���� ��� singlequotereader�

Note that t is speci�ed for the recursive�p argument to read� see sec�

tion �������� The function reads an object following the single�quote and

returns a list of the symbol quote and that object� The char argument is

ignored�

	�� COMMON LISP

The function may choose instead to return zero values
for example� by using

�values� as the return expression�� In this case� the macro character and

whatever it may have read contribute nothing to the object being read� As an

example� here is a plausible de�nition for the standard semicolon
comment�

character�

�defun semicolonreader �stream char�

�declare �ignore char��

�� First swallow the rest of the current input line�

�� Endoffile is acceptable for terminating the comment�

�do �� ��char �readchar stream nil ����Newline t� ����Newline���

�� Return zero values�

�values��

�setmacrocharacter ����� ��� semicolonreader�

Note that t is speci�ed for the recursive�p argument to readchar� see sec�

tion ��������

The function should not have any side e	ects other than on the stream� Be�

cause of backtracking and restarting of the read operation� front ends
such

as editors and rubout handlers� to the reader may cause function to be called
repeatedly during the reading of a single expression in which the macro char�

acter only appears once�

Compatibility note� The ability to return either zero or one value is the closest
Common Lisp macro characters come to the splicing macro characters of MacLisp
or the splice macro characters of Interlisp� The Common Lisp de�nition does not
allow the splicing of arbitrarily many values� but it does allow a macro
character
function to decide after it is invoked whether or not to yield a value� an option not
possible in MacLisp or Interlisp�
MacLisp has nothing equivalent to non
terminating macro characters� The In

terlisp equivalents of terminating and non
terminating macro characters are macro
characters with the ALWAYS or FIRST option� respectively� Common Lisp has nothing
equivalent to the Interlisp ALONE macro
character option�

Here is an example of a more elaborate set of read�macro characters that I
used in the implementation of the original simulator for Connection Machine

Lisp ���� ���� a parallel dialect of Common Lisp� This simulator was used

to gain experience with the language before freezing its design for full�scale

implementation on a Connection Machine computer system� This example

illustrates the typical manner in which a language designer can embed a new

INPUT
OUTPUT 	�	

language within the syntactic and semantic framework of Lisp� saving the

e	ort of designing an implementation from scratch�

Connection Machine Lisp introduces a new data type called a xapping�

which is simply an unordered set of ordered pairs of Lisp objects� The �rst
element of each pair is called the index and the second element the value� We

say that the xapping maps each index to its corresponding value� No two

pairs of the same xapping may have the same
that is� eql� index� Xappings

may be �nite or in�nite sets of pairs� only certain kinds of in�nite xappings
are required� and special representations are used for them�

A �nite xapping is notated by writing the pairs between braces� separated

by whitespace� A pair is notated by writing the index and the value� separated

by a right arrow
or an exclamation point if the host Common Lisp has no
right�arrow character��

Remark� The original language design used the right arrow� the exclamation point
was chosen to replace it on ASCII
only terminals because it is one of the six char

acters � � f g � � reserved by Common Lisp to the user�
While preparing the TEX manuscript for this book I made a mistake in font se

lection and discovered that by an absolutely incredible coincidence the right arrow
has the same numerical code �octal ��� within TEX fonts as the ASCII exclama

tion point� The result was that although the manuscript called for right arrows�
exclamation points came out in the printed copy� Imagine my astonishment�

Here is an example of a xapping that maps three symbols to strings�

fmoe��Oh� a wise guy� eh�� larry��Hey� what s the idea��

curly��Nyuk� nyuk� nyuk��g
For convenience there are certain abbreviated notations� If the index and

value for a pair are the same object x� then instead of having to write �x� x�

or� worse yet� ������x����������� we may write simply x for the pair� If all pairs

of a xapping are of this form� we call the xapping a xet� For example� the

notation

fbaseball chess cricket curling bocce ��mansquamishg
is entirely equivalent in meaning to

fbaseball�baseball curling�curling cricket�cricket

chess�chess bocce�bocce ��mansquamish���mansquamishg
namely a xet of symbols naming six sports�

	�
 COMMON LISP

Another useful abbreviation covers the situation where the n pairs of a �nite

xapping are integers� collectively covering a range from zero to n � �� This

kind of xapping is called a xector and may be notated by writing the values

between brackets in ascending order of their indices� Thus

�tinker evers chance�

is merely an abbreviation for

ftinker�� evers�
 chance��g
There are two kinds of in�nite xapping� constant and universal� A constant

xapping f�zg maps every object to the same value z� The universal xapping

f�g maps every object to itself and is therefore the xet of all Lisp objects�

sometimes called simply the universe� Both kinds of in�nite xet may be

modi�ed by explicitly writing exceptions� One kind of exception is simply

a pair� which speci�es the value for a particular index� the other kind of
exception is simply k� indicating that the xapping does not have a pair with

index k after all� Thus the notation

fsky�blue grass�green idea� glass� �redg
indicates a xapping that maps sky to blue� grass to green� and every other
object except idea and glass to red� Note well that the presence or absence

of whitespace on either side of an arrow is crucial to the correct interpretation

of the notation�

Here is the representation of a xapping as a structure�

�defstruct

�xapping ��printfunction printxapping�

��constructor xap

�domain range �optional

�default �unknown defaultp�

�infinite �and defaultp �constant��

�exceptions ������

domain

range

default

�infinite nil �type �member nil �constant �universal�

exceptions�

The explicit pairs are represented as two parallel lists� one of indexes
domain�

and one of values
range�� The default slot is the default value� relevant only

INPUT
OUTPUT 	��

if the infinite slot is �constant� The exceptions slot is a list of indices

for which there are no values�
See the end of section ������ for the de�nition

of printxapping��

Here� then� is the code for reading xectors in bracket notation�

�defun openbracketmacrochar �stream macrochar�

�declare �ignore macrochar��

�let ��range �readdelimitedlist ����� stream t���

�xap �iotalist �length range�� range���

�setmacrocharacter ����� ��� openbracketmacrochar�

�setmacrocharacter ����� �getmacrocharacter ����� ��

�defun iotalist �n� �Return list of integers from � to n � �

�do ��j � n
� � j
��

�z �� �cons j z���

��� j �� z���

The code for reading xappings in the more general brace notation� with all
the possibilities for xets
or individual xet pairs�� in�nite xappings� and ex�

ceptions� is a bit more complicated� it is shown in table ����� That code is

used in conjunction with the initializations

�setmacrocharacter ����� ��� openbracemacrochar�

�setmacrocharacter ����� �getmacrocharacter ����� ��

�Function�makedispatchmacrocharacter char

�optional nonterminatingp readtable

This causes the character char to be a dispatching macro character in readtable

which defaults to the current readtable�� If non�terminating�p is not nil
it

defaults to nil�� then it will be a non�terminating macro character� it may be

embedded within extended tokens� makedispatchmacrocharacter returns t�

Initially every character in the dispatch table has a character�macro func�

tion that signals an error� Use setdispatchmacrocharacter to de�ne entries
in the dispatch table�

X�J�� voted in January ���� h�i to clarify that char must be a character�

	�� COMMON LISP

Table ����� Macro Character De�nition for Xapping Syntax

�defun openbracemacrochar �s macrochar�

�declare �ignore macrochar��

�do ��ch �peekchar t s t nil t� �peekchar t s t nil t��

�domain ��� �range ��� �exceptions ����

��char ch ����#�

�readchar s t nil t�

�constructxapping �reverse domain� �reverse range���

�cond ��char ch ������

�readchar s t nil t�

�let ��nextch �peekchar nil s t nil t���

�cond ��char nextch ����#�

�readchar s t nil t�

�return �xap �reverse domain�

�reverse range�

nil �universal exceptions���

�t �let ��item �read s t nil t���

�cond ��char �peekchar t s t nil t� ����#�

�readchar s t nil t�

�return �xap �reverse domain�

�reverse range�

item �constant

exceptions���

�t �readererror s

�Default � item must be last���������

�t �let ��item �readpreservingwhitespace s t nil t��

�nextch �peekchar nil s t nil t���

�cond ��char nextch ������

�readchar s t nil t�

�cond ��member �peekchar nil s t nil t�

�����Space ����Tab ����Newline��

�push item exceptions��

�t �push item domain�

�push �read s t nil t� range����

��char nch ����#�

�readchar s t nil t�

�push item domain�

�push item range�

�return �xap �reverse domain� �reverse range����

�t �push item domain�

�push item range��������

INPUT
OUTPUT 	��

�Function�setdispatchmacrocharacter dispchar subchar function

�optional readtable

�Function�getdispatchmacrocharacter dispchar subchar

�optional readtable

setdispatchmacrocharacter causes function to be called when the disp�char
followed by sub�char is read� The readtable defaults to the current readtable�

The arguments and return values for function are the same as for normal

macro characters except that function gets sub�char� not disp�char� as its

second argument and also receives a third argument that is the non�negative
integer whose decimal representation appeared between disp�char and sub�

char� or nil if no decimal integer appeared there�

The sub�char may not be one of the ten decimal digits� they are always

reserved for specifying an in�x integer argument� Moreover� if sub�char is a

lowercase character
see lowercasep�� its uppercase equivalent is used instead�

This is how the rule is enforced that the case of a dispatch sub�character
doesn�t matter��

setdispatchmacrocharacter returns t�

getdispatchmacrocharacter returns the macro�character function for sub�

char under disp�char� or nil if there is no function associated with sub�char�

If the sub�char is one of the ten decimal digits �
 � � � � � 	 � ��

getdispatchmacrocharacter always returns nil� If sub�char is a lowercase

character� its uppercase equivalent is used instead�

X�J�� voted in January ���� h��i to specify that if nil is explicitly passed
as the second argument to getdispatchmacrocharacter� then the standard

readtable is used� This is consistent with the behavior of copyreadtable�

For either function� an error is signaled if the speci�ed disp�char is not

in fact a dispatch character in the speci�ed readtable� It is necessary to

use makedispatchmacrocharacter to set up the dispatch character before
specifying its sub�characters�

As an example� suppose one would like ���!foo to be read as if it were

�dollars foo�� One might say�

�defun ����!reader� �stream subchar arg�

�declare �ignore subchar arg��

�list dollars �read stream t nil t���

�setdispatchmacrocharacter ������� ����! ��� ����!reader��

Compatibility note� This macro
character mechanism is di�erent from those in

	�� COMMON LISP

MacLisp� Interlisp� and Lisp Machine Lisp� Recently Lisp systems have implemented
very general readers� even readers so programmable that they can parse arbitrary
compiled BNF grammars� Unfortunately� these readers can be complicated to use�
This design is an attempt to make the reader as simple as possible to understand�
use� and implement� Splicing macros have been eliminated� a recent informal poll
indicates that no one uses them to produce other than zero or one value� The ability
to access parts of the object preceding the macro character has been eliminated� The
MacLisp single
character
object feature has been eliminated because it is seldom
used and trivially obtainable by de�ning a macro�
The user is encouraged to turn o� most macro characters� turn others into single

character
object macros� and then use read purely as a lexical analyzer on top of
which to build a parser� It is unnecessary� however� to cater to more complex lexical
analysis or parsing than that needed for Common Lisp�

�Function�readtablecase readtable

X�J�� voted in June ���� h���i to introduce the function readtablecase

to control the reader�s interpretation of case� It provides access to a slot
in a readtable� and may be used with setf to alter the state of that slot�

The possible values for the slot are �upcase� �downcase� �preserve� and

�invert� the readtablecase for the standard readtable is �upcase� Note

that copyreadtable is required to copy the readtablecase slot along with

all other readtable information�
Once the reader has accumulated a token as described in section �������

if the token is a symbol� �replaceable� characters
unescaped uppercase or

lowercase constituent characters� may be modi�ed under the control of the

readtablecase of the current readtable�

� For �upcase� replaceable characters are converted to uppercase�
This was
the behavior speci�ed by the �rst edition��

� For �downcase� replaceable characters are converted to lowercase�

� For �preserve� the cases of all characters remain unchanged�

� For �invert� if all of the replaceable letters in the extended token are of

the same case� they are all converted to the opposite case� otherwise the

cases of all characters in that token remain unchanged�

As an illustration� consider the following code�

�let ��
readtable
 �copyreadtable nil���

�format t �READTABLECASE Input Symbolname

"

"��

INPUT
OUTPUT 	��

�dolist �readtablecase ��upcase �downcase �preserve �invert��

�setf �readtablecase
readtable
� readtablecase�

�dolist �input ��ZEBRA� �Zebra� �zebra���

�format t �� A
�T A ��T A "�

�stringupcase readtablecase�

input

�symbolname �readfromstring input�������

The output from this test code should be

READTABLECASE Input Symbolname

�UPCASE ZEBRA ZEBRA

�UPCASE Zebra ZEBRA

�UPCASE zebra ZEBRA

�DOWNCASE ZEBRA zebra

�DOWNCASE Zebra zebra

�DOWNCASE zebra zebra

�PRESERVE ZEBRA ZEBRA

�PRESERVE Zebra Zebra

�PRESERVE zebra zebra

�INVERT ZEBRA zebra

�INVERT Zebra Zebra

�INVERT zebra ZEBRA

The readtablecase of the current readtable also a	ects the printing of

symbols
see
printcase
 and
printescape
��

������� What the Print Function Produces

The Common Lisp printer is controlled by a number of special variables�

These are referred to in the following discussion and are fully documented at

the end of this section�

How an expression is printed depends on its data type� as described in the

following paragraphs�

Integers

If appropriate� a radix speci�er may be printed� see the variable

printradix
� If an integer is negative� a minus sign is printed and then

the absolute value of the integer is printed� Integers are printed in the radix

	�� COMMON LISP

speci�ed by the variable
printbase
 in the usual positional notation� most

signi�cant digit �rst� The number zero is represented by the single digit �

and never has a sign� A decimal point may then be printed� depending on the

value of
printradix
�

Ratios

If appropriate� a radix speci�er may be printed� see the variable

printradix
� If the ratio is negative� a minus sign is printed� Then the

absolute value of the numerator is printed� as for an integer� then a � then

the denominator� The numerator and denominator are both printed in the

radix speci�ed by the variable
printbase
� they are obtained as if by the
numerator and denominator functions� and so ratios are always printed in

reduced form
lowest terms��

Floating�point numbers

If the sign of the number
as determined by the function floatsign� is nega�

tive� then a minus sign is printed� Then the magnitude is printed in one of two

ways� If the magnitude of the
oating�point number is either zero or between

����
inclusive� and ���
exclusive�� it may be printed as the integer part

of the number� then a decimal point� followed by the fractional part of the
number� there is always at least one digit on each side of the decimal point�

If the format of the number does not match that speci�ed by the variable

readdefaultfloatformat
� then the exponent marker for that format and

the digit � are also printed� For example� the base of the natural logarithms
as a short�format
oating�point number might be printed as ��	
���S��

For non�zero magnitudes outside of the range ���� to ���� a
oating�point

number will be printed in �computerized scienti�c notation�� The representa�

tion of the number is scaled to be between �
inclusive� and ��
exclusive� and

then printed� with one digit before the decimal point and at least one digit
after the decimal point� Next the exponent marker for the format is printed�

except that if the format of the number matches that speci�ed by the variable

readdefaultfloatformat
� then the exponent marker E is used� Finally�

the power of �� by which the fraction must be multiplied to equal the original
number is printed as a decimal integer� For example� Avogadro�s number as

a short�format
oating�point number might be printed as ����S���

Complex numbers

A complex number is printed as ���C� an open parenthesis� the printed repre�

sentation of its real part� a space� the printed representation of its imaginary

part� and �nally a close parenthesis�

��

INPUT
OUTPUT 	��

Characters��

When
printescape
 is nil� a character prints as itself� it is sent directly to
the output stream� When
printescape
 is not nil� then ���� syntax is used�

For example� the printed representation of the character ����A with control and

meta bits on would be ����CONTROLMETAA� and that of ����a with control and

meta bits on would be ����CONTROLMETA�a�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of other

printer control variables� For characters� the simplest approach is always to

use ���� syntax when
printreadably
 is not nil� regardless of the value of

printescape
�

Symbols��

When
printescape
 is nil� only the characters of the print name of the
symbol are output
but the case in which to print any uppercase characters

in the print name is controlled by the variable
printcase
��

X�J�� voted in June ���� h���i to specify that the new readtablecase

slot of the current readtable also controls the case in which letters
whether

uppercase or lowercase� in the print name of a symbol are output� no matter

what the value of
printescape
�

The remaining paragraphs describing the printing of symbols cover the sit�
���

uation when
printescape
 is not nil�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not
nil then every object must be printed in a readable form� regardless of other

printer control variables� For symbols� the simplest approach is to print them�

when
printreadably
 is not nil� as if
printescape
were not nil� regard�

less of the actual value of
printescape
�

Backslashes � and vertical bars � are included as required� In particular�

backslash or vertical�bar syntax is used when the name of the symbol would

be otherwise treated by the reader as a potential number
see section ��������

In making this decision� it is assumed that the value of
printbase
 being
used for printing would be used as the value of
readbase
 used for reading�

the value of
readbase
 at the time of printing is irrelevant� For example� if

the value of
printbase
 were
� when printing the symbol face� it would

have to be printed as �FACE or �Face or �FACE�� because the token face

would be read as a hexadecimal number
decimal value ������ if
readbase

were
��

The case in which to print any uppercase characters in the print name is
��

controlled by the variable
printcase
�

	�� COMMON LISP

X�J�� voted in June ���� h���i to clarify the interaction of
printcase

with
printescape
� see
printcase
�

As a special case �no pun intended�� nil may sometimes be printed as ��
instead� when
printescape
 and
printpretty
 are both not nil�

Package pre�xes may be printed
using colon syntax� if necessary� The rules

for package quali�ers are as follows� When the symbol is printed� if it is in

the keyword package� then it is printed with a preceding colon� otherwise� if
it is accessible in the current package� it is printed without any quali�cation�

otherwise� it is printed with quali�cation� See chapter ���

A symbol that is uninterned
has no home package� is printed preceded by
���

���� if the variables
printgensym
 and
printescape
 are both non�nil� if

either is nil� then the symbol is printed without a pre�x� as if it were in the

current package�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of other

printer control variables� For uninterned symbols� the simplest approach is

to print them� when
printreadably
 is not nil� as if
printescape
 and

printgensym
 were not nil� regardless of their actual values�

Implementation note� Because the ���� syntax does not intern the following sym

bol� it is necessary to use circular
list syntax if �printcircle� is not nil and the
same uninterned symbol appears several times in an expression to be printed� For
example� the result of

�let ��x �makesymbol �FOO���� �list x x��

would be printed as

�����foo ����foo�

if �printcircle� were nil� but as

����	����foo ���	����

if �printcircle� were not nil�

The case in which symbols are to be printed is controlled by the variable
���

printcase
�

It is also controlled by
printescape
 and the readtablecase slot of the

current readtable
the value of
readtable
��

��

INPUT
OUTPUT 	�	

Strings��

The characters of the string are output in order� If
printescape
 is not
nil� a double quote is output before and after� and all double quotes and

single escape characters are preceded by backslash� The printing of strings is

not a	ected by
printarray
� If the string has a �ll pointer� then only those

characters below the �ll pointer are printed�
X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of other

printer control variables� For strings� the simplest approach is to print them�

when
printreadably
 is not nil� as if
printescape
 were not nil� re�

gardless of the actual value of
printescape
�

Conses

Wherever possible� list notation is preferred over dot notation� Therefore the

following algorithm is used�

�� Print an open parenthesis� ��

�� Print the car of the cons�

�� If the cdr is a cons� make it the current cons� print a space� and go to step
��

�� If the cdr is not null� print a space� a dot� a space� and the cdr�

�� Print a close parenthesis� ��

This form of printing is clearer than showing each individual cons cell�

Although the two expressions below are equivalent� and the reader will accept

either one and produce the same data structure� the printer will always print

such a data structure in the second form�

�a � �b � ��c � �d � nil�� � �e � nil����

�a b �c d� e�

The printing of conses is a	ected by the variables
printlevel
 and
���

printlength
�
X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of other

printer control variables� For conses� the simplest approach is to print them�

when
printreadably
 is not nil� as if
printlevel
 and
printlength

were nil� regardless of their actual values�

��

	�
 COMMON LISP

Bit�vectors��

A bit�vector is printed as ���
 followed by the bits of the bit�vector in order�
If
printarray
 is nil� however� then the bit�vector is printed in a format

using ����� that is concise but not readable� If the bit�vector has a �ll pointer�

then only those bits below the �ll pointer are printed�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not
nil then every object must be printed in a readable form� regardless of other

printer control variables� For bit�vectors� the simplest approach is to print

them� when
printreadably
 is not nil� as if
printarray
 were not nil�

regardless of the actual value of
printarray
�

Vectors

Any vector other than a string or bit�vector is printed using general�vector
syntax� this means that information about specialized vector representations

will be lost� The printed representation of a zero�length vector is ������ The

printed representation of a non�zero�length vector begins with ����� Following

that� the �rst element of the vector is printed� If there are any other ele�

ments� they are printed in turn� with a space printed before each additional
element� A close parenthesis after the last element terminates the printed

representation of the vector�

The printing of vectors is a	ected by the variables
printlevel
 and
���

printlength
� If the vector has a �ll pointer� then only those elements
below the �ll pointer are printed�

If
printarray
 is nil� however� then the vector is not printed as described

above� but in a format
using ����� that is concise but not readable�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not
nil then every object must be printed in a readable form� regardless of other

printer control variables� For vectors� the simplest approach is to print them�

when
printreadably
 is not nil� as if
printlevel
 and
printlength

were nil and
printarray
 were not nil� regardless of their actual values�

Arrays

Normally any array other than a vector is printed using ���nA format� Let n be
the rank of the array� Then ��� is printed� then n as a decimal integer� then A�

then n open parentheses� Next the elements are scanned in row�major order�

Imagine the array indices being enumerated in odometer fashion� recalling

that the dimensions are numbered from � to n � �� Every time the index for
dimension j is incremented� the following actions are taken�

�� If j � n � �� then print a close parenthesis�

INPUT
OUTPUT 	��

�� If incrementing the index for dimension j caused it to equal dimension j�

reset that index to zero and increment dimension j ��
thereby performing

these three steps recursively�� unless j " �� in which case simply terminate

the entire algorithm� If incrementing the index for dimension j did not

cause it to equal dimension j� then print a space�

�� If j � n � �� then print an open parenthesis�

This causes the contents to be printed in a format suitable for use as the

�initialcontents argument to makearray�

The lists e	ectively printed by this procedure are subject to truncation by
���

printlevel
 and
printlength
�

If the array is of a specialized type� containing bits or string�characters�

then the innermost lists generated by the algorithm given above may instead
be printed using bit�vector or string syntax� provided that these innermost

lists would not be subject to truncation by
printlength
� For example� a

��by���by�� array of string�characters that would ordinarily be printed as

����A�������s ����t ����o ����p� �����s ����p ����o ����t��

������p ����o ����s ����t� �����p ����o ����t ����s��

������t ����o ����p ����s� �����o ����p ����t ����s���

may instead be printed more concisely as

����A���stop� �spot�� ��post� �pots�� ��tops� �opts���

If
printarray
 is nil� then the array is printed in a format
using �����
���

that is concise but not readable�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of other

printer control variables� For arrays� the simplest approach is to print them�

when
printreadably
 is not nil� as if
printlevel
 and
printlength

were nil and
printarray
 were not nil� regardless of their actual values�

Random�states

Common Lisp does not specify a speci�c syntax for printing objects of
type randomstate� However� every implementation must arrange to print

a random�state object in such a way that� within the same implementation

of Common Lisp� the function read can construct from the printed represen�

tation a copy of the random�state object as if the copy had been made by

makerandomstate�

��

	�� COMMON LISP

Pathnames��

Common Lisp does not specify a speci�c syntax for printing objects of type
pathname� However� every implementation must arrange to print a pathname

in such a way that� within the same implementation of Common Lisp� the

function read can construct from the printed representation an equivalent

instance of the pathname object�

X�J�� voted in June ���� h���i to specify that if
printescape
 is true�
a pathname should be printed by write as ���P����� where ����� is the

namestring representation of the pathname� If
printescape
 is false� write

prints a pathname by printing its namestring
presumably without escape

characters or surrounding double quotes��

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not
nil then every object must be printed in a readable form� regardless of other

printer control variables� For pathnames� the simplest approach is to print

them� when
printreadably
 is not nil� as if
printescape
 were nil�

regardless of its actual value�

Structures de�ned by defstruct are printed under the control of the user�

speci�ed �printfunction option to defstruct� If the user does not provide
a printing function explicitly� then a default printing function is supplied that

prints the structure using ���S syntax
see section ��������

Any other types are printed in an implementation�dependent manner� It is
��

recommended that printed representations of all such objects begin with the

characters ���� and end with � so that the reader will catch such objects and
not permit them to be read under normal circumstances� It is speci�cally and

purposely not required that a Common Lisp implementation be able to print

an object of type hashtable� readtable� package� stream� or function in

a way that can be read back in successfully by read� the use of ���� syntax is
especially recommended for the printing of such objects�

X�J�� voted in June ���� h��i to specify that if
printreadably
 is not

nil then every object must be printed in a readable form� regardless of the

values of other printer control variables� if this is not possible� then an error

of type printnotreadablemust be signaled to avoid printing an unreadable

syntax such as ���������
X�J�� voted in June ���� h��i to add printunreadableobject� a macro

that prints an object using �������� syntax and also takes care of checking the

variable
printreadably
�

When debugging or when frequently dealing with large or deep objects at

top level� the user may wish to restrict the printer from printing large amounts

of information� The variables
printlevel
 and
printlength
 allow the

INPUT
OUTPUT 	��

user to control how deep the printer will print and how many elements at a

given level the printer will print� Thus the user can see enough of the object

to identify it without having to wade through the entire expression�

�Variable�
printreadably

The default value of
printreadably
 is nil� If
printreadably
 is true�

then printing any object must either produce a printed representation that
the reader will accept or signal an error� If printing is successful� the reader

will� on reading the printed representation� produce an object that is �similar

as a constant�
see section ������� to the object that was printed�

If
printreadably
 is true and printing a readable printed representation

is not possible� the printer signals an error of type printnotreadable rather

than using an unreadable syntax such as ����� The printed representation

produced when
printreadably
 is true might or might not be the same as
the printed representation produced when
printreadably
 is false�

If
printreadably
 is true and another printer control variable
such
as
printlength
�
printlevel
�
printescape
�
printgensym
�
print

array
� or an implementation�de�ned printer control variable� would cause

the preceding requirements to be violated� that other printer control variable

is ignored�

The printing of interned symbols is not a	ected by
printreadably
�

Note that the �similar as a constant� rule for readable printing implies that

���A or ���� syntax cannot be used for arrays of element�type other than t� An

implementation will have to use another syntax or signal a printnotreadable

error� A printnotreadable error will not be signaled for strings or bit�
vectors�

All methods for printobject must obey
printreadably
� This rule ap�
plies to both user�de�ned methods and implementation�de�ned methods�

The reader control variable
readeval
 also a	ects printing� If
readeval

is false and
printreadably
 is true� any printobject method that would
otherwise output a ���� reader macro must either output something di	erent

or signal an error of type printnotreadable�

Readable printing of structures and objects of type standardobject is con�

trolled by their printobject methods� not by their makeloadform methods�

�Similarity as a constant� for these objects is application�dependent and hence

is de�ned to be whatever these methods do�

printreadably
 allows errors involving data with no readable printed

representation to be detected when writing the �le rather than later on when

the �le is read�

�� COMMON LISP

printreadably
 is more rigorous than
printescape
� output printed

with escapes must be merely generally recognizable by humans� with a good

chance of being recognizable by computers� whereas output printed readably

must be reliably recognizable by computers�

�Variable�
printescape

When this
ag is nil� then escape characters are not output when an expres�

sion is printed� In particular� a symbol is printed by simply printing the char�

acters of its print name� The function princ e	ectively binds
printescape

to nil�

When this
ag is not nil� then an attempt is made to print an expression

in such a way that it can be read again to produce an equal structure� The

function prin
 e	ectively binds
printescape
 to t� The initial value of this
variable is t�

Compatibility note� �printescape� controls what was called slashi�cation in
MacLisp�

�Variable�
printpretty

When this
ag is nil� then only a small amount of whitespace is output when

printing an expression�

When this
ag is not nil� then the printer will endeavor to insert extra
whitespace where appropriate to make the expression more readable� A few

other simple changes may be made� such as printing foo instead of �quote

foo��

The initial value of
printpretty
 is implementation�dependent�

X�J�� voted in January ���� h���i to adopt a facility for user�controlled
pretty printing in Common Lisp
see chapter ����

�Variable�
printcircle

When this
ag is nil
the default�� then the printing process proceeds by

recursive descent� an attempt to print a circular structure may lead to looping

behavior and failure to terminate�

When this
ag is not nil� then the printer will endeavor to detect cycles
��

in the structure to be printed� and to use ���n and ���n��� syntax to indicate the

circularities�

INPUT
OUTPUT
��

X�J�� voted in June ���� h���i to specify that if
printcircle
 is true�

the printer is required to detect not only cycles but shared substructure�

indicating both through the use of ���n and ���n��� syntax� As an example� under

the speci�cation of the �rst edition

�print ����
�a ���
���� ���
�����

might legitimately print ����
�A ���
���� ���
���� or ����
�A ���
���� �����A ���������� the
vote speci�es that the �rst form is required�

X�J�� voted in January ���� h���i to specify that user�de�ned printing

functions for the defstruct �printfunction option� as well as user�de�ned
methods for the CLOS generic function printobject� may print objects to

the supplied stream using write� print
� princ� format� or printobject

and expect circularities to be detected and printed using ���n��� syntax
when

printcircle
 is non�nil� of course��

It seems to me that the same ought to apply to abbreviation as controlled

by
printlevel
 and
printlength
� but that was not addressed by this

vote�

�Variable�
printbase

The value of
printbase
 determines in what radix the printer will print

rationals� This may be any integer from � to ��� inclusive� the default value

is
�
decimal radix�� For radices above
�� letters of the alphabet are used

to represent digits above ��

Compatibility note� MacLisp calls this variable base� and its default value is ��
not 	
�
In both MacLisp and Common Lisp� �oating
point numbers are always printed

in decimal� no matter what the value of �printbase��

�Variable�
printradix

If the variable
printradix
 is non�nil� the printer will print a radix speci�er

to indicate the radix in which it is printing a rational number� To prevent
confusion of the letter O with the digit �� and of the letter B with the digit

�� the radix speci�er is always printed using lowercase letters� For example�

if the current base is twenty�four
decimal�� the decimal integer twenty�three

would print as �����rN� If
printbase
 is �� �� or
�� then the radix speci�er

used is ���b� ���o� or ���x� For integers� base ten is indicated by a trailing decimal

�� COMMON LISP

point instead of a leading radix speci�er� for ratios� however� ���
�r is used�

The default value of
printradix
 is nil�

�Variable�
printcase

The read function normally converts lowercase characters appearing in sym�

bols to corresponding uppercase characters� so that internally print names
normally contain only uppercase characters� However� users may prefer to

see output using lowercase letters or letters of mixed case� This variable

controls the case
upper� lower� or mixed� in which to print any uppercase

characters in the names of symbols when vertical�bar syntax is not used� The
value of
printcase
 should be one of the keywords �upcase� �downcase� or

�capitalize� the initial value is �upcase�

Lowercase characters in the internal print name are always printed in low�

ercase� and are preceded by a single escape character or enclosed by multiple

escape characters� Uppercase characters in the internal print name are printed
in uppercase� in lowercase� or in mixed case so as to capitalize words� according

to the value of
printcase
� The convention for what constitutes a �word�

is the same as for the function stringcapitalize�

X�J�� voted in June ���� h���i to clarify the interaction of
printcase

with
printescape
� When
printescape
 is nil�
printcase
 determines
the case in which to print all uppercase characters in the print name of the

symbol� When
printescape
 is not nil� the implementation has some free�

dom as to which characters will be printed so as to appear in an �escape

context�
after an escape character� typically �� or between multiple escape
characters� typically ���
printcase
 determines the case in which to print all

uppercase characters that will not appear in an escape context� For example�

when the value of
printcase
 is �upcase� an implementation might choose

to print the symbol whose print name is ��S�HE� as ��S��HE or as ��S�HE��

among other possibilities� When the value of
printcase
 is �downcase� the
corresponding output should be ��s��he or ��S�HE�� respectively�

Consider the following test code�
For the sake of this example assume that

readtablecase is �upcase in the current readtable� this is discussed further

below��

�let ��tabwidth

��

�dolist �sym ��x� �FoObAr� �fOo���

�let ��tabstop
��

�format t � ���

�dolist �escape �t nil��

INPUT
OUTPUT
��

�dolist �case ��upcase �downcase �capitalize��

�format t � VT� �
 �incf tabstop� tabwidth��

�write sym �escape escape �case case�����

�format t � "���

An implementation that leans heavily on multiple�escape characters
vertical

bars� might produce the following output�

�x� �x� �x� x x x

�FoObAr� �FoObAr� �FoObAr� FoObAr foobar Foobar

�fOo� �fOo� �fOo� fOo foo foo

An implementation that leans heavily on single�escape characters
back�
slashes� might produce the following output�

�x �x �x x x x

F�oO�bA�r f�oo�ba�r F�oo�ba�r FoObAr foobar Foobar

�fO�o �fo�o �fo�o fOo foo foo

These examples are not exhaustive� output using both kinds of escape char�

acters
for example� �FoO��bA�r� is permissible
though ugly��

X�J�� voted in June ���� h���i to add a new readtablecase slot to readta�

bles to control automatic case conversion during the reading of symbols� The

value of readtablecase in the current readtable also a	ects the printing of
unescaped letters
letters appearing in an escape context are always printed

in their own case��

� If readtablecase is �upcase� unescaped uppercase letters are printed in the

case speci�ed by
printcase
 and unescaped lowercase letters are printed

in their own case�
If
printescape
 is non�nil� all lowercase letters will
necessarily be escaped��

� If readtablecase is �downcase� unescaped lowercase letters are printed

in the case speci�ed by
printcase
 and unescaped uppercase letters are

printed in their own case�
If
printescape
 is non�nil� all uppercase

letters will necessarily be escaped��

� If readtablecase is �preserve� all unescaped letters are printed in their
own case� regardless of the value of
printcase
� There is no need to

escape any letters� even if
printescape
 is non�nil� though the X�J��

vote did not prohibit escaping letters in this situation�

� If readtablecase is �invert� and if all unescaped letters are of the same

case� then the case of all the unescaped letters is inverted� but if the un�

�� COMMON LISP

escaped letters are not all of the same case then each is printed in its own

case�
Thus �invert does not always invert the case� the inversion is con�

ditional�� There is no need to escape any letters� even if
printescape

is non�nil� though the X�J�� vote did not prohibit escaping letters in this

situation�

Consider the following code�

��� Generate a table illustrating READTABLECASE and
PRINTCASE
�

�let ��
readtable
 �copyreadtable nil��

�
printcase

printcase
��

�format t �READTABLECASE
PRINTCASE
 Symbolname Output

"

"��

�dolist �readtablecase ��upcase �downcase �preserve �invert��

�setf �readtablecase
readtable
� readtablecase�

�dolist �printcase ��upcase �downcase �capitalize��

�dolist �sym ��ZEBRA� �Zebra� �zebra���

�setq
printcase
 printcase�

�format t �� A
�T� A ��T A ��T A "�

�stringupcase readtablecase�

�stringupcase printcase�

�symbolname sym�

�prin
tostring sym�������

Note that the call to prin
tostring
the last argument in the call to

format that is within the nested loops� e	ectively uses a non�nil value for

printescape
�

Assuming an implementation that uses vertical bars around a symbol name

if any characters need escaping� the output from this test code should be

READTABLECASE
PRINTCASE
 Symbolname Output

�UPCASE �UPCASE ZEBRA ZEBRA

�UPCASE �UPCASE Zebra �Zebra�

�UPCASE �UPCASE zebra �zebra�

�UPCASE �DOWNCASE ZEBRA zebra

�UPCASE �DOWNCASE Zebra �Zebra�

�UPCASE �DOWNCASE zebra �zebra�

INPUT
OUTPUT
�	

�UPCASE �CAPITALIZE ZEBRA Zebra

�UPCASE �CAPITALIZE Zebra �Zebra�

�UPCASE �CAPITALIZE zebra �zebra�

�DOWNCASE �UPCASE ZEBRA �ZEBRA�

�DOWNCASE �UPCASE Zebra �Zebra�

�DOWNCASE �UPCASE zebra ZEBRA

�DOWNCASE �DOWNCASE ZEBRA �ZEBRA�

�DOWNCASE �DOWNCASE Zebra �Zebra�

�DOWNCASE �DOWNCASE zebra zebra

�DOWNCASE �CAPITALIZE ZEBRA �ZEBRA�

�DOWNCASE �CAPITALIZE Zebra �Zebra�

�DOWNCASE �CAPITALIZE zebra Zebra

�PRESERVE �UPCASE ZEBRA ZEBRA

�PRESERVE �UPCASE Zebra Zebra

�PRESERVE �UPCASE zebra zebra

�PRESERVE �DOWNCASE ZEBRA ZEBRA

�PRESERVE �DOWNCASE Zebra Zebra

�PRESERVE �DOWNCASE zebra zebra

�PRESERVE �CAPITALIZE ZEBRA ZEBRA

�PRESERVE �CAPITALIZE Zebra Zebra

�PRESERVE �CAPITALIZE zebra zebra

�INVERT �UPCASE ZEBRA zebra

�INVERT �UPCASE Zebra Zebra

�INVERT �UPCASE zebra ZEBRA

�INVERT �DOWNCASE ZEBRA zebra

�INVERT �DOWNCASE Zebra Zebra

�INVERT �DOWNCASE zebra ZEBRA

�INVERT �CAPITALIZE ZEBRA zebra

�INVERT �CAPITALIZE Zebra Zebra

�INVERT �CAPITALIZE zebra ZEBRA

This illustrates all combinations for readtablecase and
printcase
�

�
 COMMON LISP

Table ����� Examples of Print Level and Print Length Abbreviation

v n Output

 	 ���
	 	 �if ����

	 � �if ��� ����

	 � �if ��� ��� ����

	 � �if ��� ��� ����

� 	 �if ����

� � �if �member x ���� ����

� � �if �member x y� �� ��� �� ����

� � �if �member x ���� ����

� � �if �member x y� �� �car x� �� ����

� � �if �member x y� �� �car x� �� �foo � ����a b c d ������

� � �if �member x y� �� �car x� �� �foo � ����a b c d �Baz����

�Variable�
printgensym

The
printgensym
 variable controls whether the pre�x ���� is printed before
symbols that have no home package� The pre�x is printed if the variable is

not nil� The initial value of
printgensym
 is t�

�Variable�
printlevel

�Variable�
printlength

The
printlevel
 variable controls how many levels deep a nested data ob�

ject will print� If
printlevel
 is nil
the initial value�� then no control is

exercised� Otherwise� the value should be an integer� indicating the maximum

level to be printed� An object to be printed is at level �� its components
as
of a list or vector� are at level
� and so on� If an object to be recursively

printed has components and is at a level equal to or greater than the value of

printlevel
� then the object is printed as simply ����

The
printlength
 variable controls how many elements at a given level

are printed� A value of nil
the initial value� indicates that there be no limit
to the number of components printed� Otherwise� the value of
printlength

should be an integer� Should the number of elements of a data object exceed

the value
printlength
� the printer will print three dots� ���� in place of

those elements beyond the number speci�ed by
printlength
�
In the case

of a dotted list� if the list contains exactly as many elements as the value of

INPUT
OUTPUT
��

printlength
� and in addition has the non�null atom terminating it� that

terminating atom is printed rather than the three dots��

printlevel
 and
printlength
 a	ect the printing not only of lists but

also of vectors� arrays� and any other object printed with a list�like syntax�

They do not a	ect the printing of symbols� strings� and bit�vectors�
The Lisp reader will normally signal an error when reading an expression

that has been abbreviated because of level or length limits� This signal is given

because the ��� dispatch character normally signals an error when followed by

whitespace or �� and because ��� is de�ned to be an illegal token� as are all

tokens consisting entirely of periods
other than the single dot used in dot
notation��

As an example� table ���� shows the ways the object

�if �member x y� �� �car x� �� �foo � ����a b c d �Baz����

would be printed for various values of
printlevel

in the column labeled

v� and
printlength

in the column labeled n��

�Variable�
printarray

If
printarray
 is nil� then the contents of arrays other than strings are

never printed� Instead� arrays are printed in a concise form
using ����� that
gives enough information for the user to be able to identify the array but does

not include the entire array contents� If
printarray
 is not nil� non�string

arrays are printed using ����� ���
� or ���nA syntax�

Notice of correction� In the �rst edition� the preceding paragraphmentioned
the nonexistent variable printarray instead of
printarray
�

The initial value of
printarray
 is implementation�dependent�

�Macro�withstandardiosyntax fdeclarationg� f formg�

X�J�� voted in June ���� h��i to add the macro withstandardiosyntax�

Within the dynamic extent of the body� all reader�printer control variables�

including any implementation�de�ned ones not speci�ed by Common Lisp�

are bound to values that produce standard read�print behavior� Table ����

shows the values to which standard Common Lisp variables are bound�
The values returned by withstandardiosyntax are the values of the last

body form� or nil if there are no body forms�

The intent is that a pair of executions� as shown in the following exam�

ple� should provide reasonable reliable communication of data from one Lisp

process to another�

�� COMMON LISP

Table ����� Standard Bindings for I�O Control Variables

Variable Value

�package� the commonlispuser package
�printarray� t

�printbase� 	

�printcase� �upcase

�printcircle� nil

�printescape� t

�printgensym� t

�printlength� nil

�printlevel� nil

�printlines� nil !
�printmiserwidth� nil !
�printpprintdispatch� nil !
�printpretty� nil

�printradix� nil

�printreadably� t

�printrightmargin� nil !
�readbase� 	

�readdefaultfloatformat� singlefloat

�readeval� t

�readsuppress� nil

�readtable� the standard readtable

! X�J�� voted in June ���� h���i to introduce the printer control variables �print
rightmargin�� �printmiserwidth�� �printlines�� and �printpprintdispatch�

�see section ����� but did not specify the values to which withstandardiosyntax

should bind them� I recommend that all four should be bound to nil�

��� Write DATA to a file�

�withopenfile �file pathname �direction �output�

�withstandardiosyntax

�print data file���

��� ��� Later� in another Lisp�

�withopenfile �file pathname �direction �input�

�withstandardiosyntax

�setq data �read file����

Using withstandardiosyntax to bind all the variables� instead of using

let and explicit bindings� ensures that nothing is overlooked and avoids

INPUT
OUTPUT
��

problems with implementation�de�ned reader�printer control variables� If

the user wishes to use a non�standard value for some variable� such as

package
 or
readeval
� it can be bound by let inside the body of

withstandardiosyntax� For example�

��� Write DATA to a file� Forbid use of ���� syntax�

�withopenfile �file pathname �direction �output�

�let ��
readeval
 nil��

�withstandardiosyntax

�print data file����

��� Read DATA from a file� Forbid use of ���� syntax�

�withopenfile �file pathname �direction �input�

�let ��
readeval
 nil��

�withstandardiosyntax

�setq data �read file�����

Similarly� a user who dislikes the arbitrary choice of values for
printcircle

and
printpretty
 can bind these variables to other values inside the body�

The X�J�� vote left it unclear whether withstandardiosyntax permits
declarations to appear before the body of the macro call� I believe that was

the intent� and this is re
ected in the syntax shown above� but this is only

my interpretation�

����� Input Functions

The input functions are divided into two groups� those that operate on streams

of characters and those that operate on streams of binary data�

������� Input from Character Streams

Many character input functions take optional arguments called input�stream�

eof�error�p� and eof�value� The input�stream argument is the stream from

which to obtain input� if unsupplied or nil it defaults to the value of the spe�

cial variable
standardinput
� One may also specify t as a stream� meaning
the value of the special variable
terminalio
�

The eof�error�p argument controls what happens if input is from a �le
or

any other input source that has a de�nite end� and the end of the �le is

reached� If eof�error�p is true
the default�� an error will be signaled at end

�� COMMON LISP

of �le� If it is false� then no error is signaled� and instead the function returns

eof�value�

X�J�� voted in January ���� h�i to clarify that an eof�value argument may

be any Lisp datum whatsoever�

Functions such as read that read the representation of an object rather
than a single character will always signal an error� regardless of eof�error�p�

if the �le ends in the middle of an object representation� For example� if a

�le does not contain enough right parentheses to balance the left parentheses

in it� read will complain� If a �le ends in a symbol or a number immediately
followed by end�of��le� read will read the symbol or number successfully and

when called again will see the end�of��le and only then act according to eof�

error�p� Similarly� the function readline will successfully read the last line

of a �le even if that line is terminated by end�of��le rather than the newline

character� If a �le contains ignorable text at the end� such as blank lines and
comments� read will not consider it to end in the middle of an object� Thus

an eof�error�p argument controls what happens when the �le ends between

objects�

Many input functions also take an argument called recursive�p� If speci�ed
and not nil� this argument speci�es that this call is not a �top�level� call to

read but an imbedded call� typically from the function for a macro character�

It is important to distinguish such recursive calls for three reasons�

First� a top�level call establishes the context within which the ���n and ���n���
syntax is scoped� Consider� for example� the expression

�cons �����p q r� �x y � ���������

If the single�quote macro character were de�ned in this way�

�setmacrocharacter ����

��� �lambda �stream char�

�declare �ignore char��

�list quote �read stream����

then the expression could not be read properly� because there would be no
way to know when read is called recursively by the �rst occurrence of that

the label ���� would be referred to later in the containing expression� There

would be no way to know because read could not determine that it was called

by a macro�character function rather than from �top level�� The correct way

to de�ne the single quote macro character uses the recursive�p argument�

�setmacrocharacter ����

��� �lambda �stream char�

INPUT
OUTPUT
��

�declare �ignore char��

�list quote �read stream t nil t����

Second� a recursive call does not alter whether the reading process is to

preserve whitespace or not
as determined by whether the top�level call was

to read or readpreservingwhitespace�� Suppose again that the single quote

had the �rst� incorrect� macro�character de�nition shown above� Then a call
to readpreservingwhitespace that read the expression foo would fail to

preserve the space character following the symbol foo because the single�

quote macro�character function calls read� not readpreservingwhitespace�

to read the following expression
in this case foo�� The correct de�nition�
which passes the value t for the recursive�p argument to read� allows the

top�level call to determine whether whitespace is preserved�

Third� when end�of��le is encountered and the eof�error�p argument is not

nil� the kind of error that is signaled may depend on the value of recursive�p�

If recursive�p is not nil� then the end�of��le is deemed to have occurred within
the middle of a printed representation� if recursive�p is nil� then the end�of�

�le may be deemed to have occurred between objects rather than within the

middle of one�

�Function�read �optional inputstream eoferrorp eofvalue recursivep

read reads in the printed representation of a Lisp object from input�stream�

builds a corresponding Lisp object� and returns the object�

Note that when the variable
readsuppress
 is not nil� then read reads in

a printed representation as best it can� but most of the work of interpreting the
representation is avoided
the intent being that the result is to be discarded

anyway�� For example� all extended tokens produce the result nil regardless

of their syntax�

�Variable�
readdefaultfloatformat

The value of this variable must be a type speci�er symbol for a speci�c
oating�

point format� these include shortfloat� singlefloat� doublefloat� and

longfloat and may include implementation�speci�c types as well� The de�

fault value is singlefloat�

readdefaultfloatformat
 indicates the
oating�point format to be used

for reading
oating�point numbers that have no exponent marker or have e or

E for an exponent marker�
Other exponent markers explicitly prescribe the

oating�point format to be used�� The printer also uses this variable to guide

the choice of exponent markers when printing
oating�point numbers�

�� COMMON LISP

�Function�readpreservingwhitespace �optional instream eoferrorp

eofvalue recursivep

Certain printed representations given to read� notably those of symbols and

numbers� require a delimiting character after them�
Lists do not� because the
close parenthesis marks the end of the list�� Normally read will throw away

the delimiting character if it is a whitespace character� but read will preserve

the character
using unreadchar� if it is syntactically meaningful� because it

may be the start of the next expression�

X�J�� voted in January ���� h���i to clarify the interaction of unreadchar

with echo streams� These changes indirectly a	ect the echoing behavior of

readpreservingwhitespace�

The function readpreservingwhitespace is provided for some specialized

situations where it is desirable to determine precisely what character termi�
nated the extended token�

As an example� consider this macro�character de�nition�

�defun slashreader �stream char�

�declare �ignore char��

�do ��path �list �readpreservingwhitespace stream��

�cons �progn �readchar stream nil nil t�

�readpreservingwhitespace

stream��

path���

��not �char �peekchar nil stream nil nil t� ���� ��

�cons path �nreverse path�����

�setmacrocharacter ���� ��� slashreader�

This is actually a rather dangerous de�nition to make because expressions

such as � x �� will no longer be read properly� The ability to reprogram

the reader syntax is very powerful and must be used with caution� This
rede�nition of is shown here purely for the sake of example��

Consider now calling read on this expression�

�zyedh usr games zork usr games boggle�

The macro reads objects separated by more characters� thus

 usr games zork is intended to be read as �path usr games zork�� The

entire example expression should therefore be read as

�zyedh �path usr games zork� �path usr games boggle��

INPUT
OUTPUT
��

However� if read had been used instead of readpreservingwhitespace� then

after the reading of the symbol zork� the following space would be discarded�

the next call to peekchar would see the following � and the loop would

continue� producing this interpretation�

�zyedh �path usr games zork usr games boggle��

On the other hand� there are times when whitespace should be discarded� If a
command interpreter takes single�character commands� but occasionally reads

a Lisp object� then if the whitespace after a symbol is not discarded it might

be interpreted as a command some time later after the symbol had been read�

Note that readpreservingwhitespace behaves exactly like read when the

recursive�p argument is not nil� The distinction is established only by calls

with recursive�p equal to nil or omitted�

�Function�readdelimitedlist char �optional inputstream recursivep

This reads objects from stream until the next character after an object�s repre�

sentation
ignoring whitespace characters and comments� is char�
The char
should not have whitespace syntax in the current readtable�� A list of the

objects read is returned�

To be more precise� readdelimitedlist looks ahead at each step for the

next non�whitespace character and peeks at it as if with peekchar� If it is

char� then the character is consumed and the list of objects is returned� If

it is a constituent or escape character� then read is used to read an object�
which is added to the end of the list� If it is a macro character� the associated

macro function is called� if the function returns a value� that value is added

to the list� The peek�ahead process is then repeated�

X�J�� voted in January ���� h���i to clarify the interaction of peekchar

with echo streams� These changes indirectly a	ect the echoing behavior of

the function readdelimitedlist�

This function is particularly useful for de�ning new macro characters�

Usually it is desirable for the terminating character char to be a termi�

nating macro character so that it may be used to delimit tokens� however�
readdelimitedlist makes no attempt to alter the syntax speci�ed for char

by the current readtable� The user must make any necessary changes to the

readtable syntax explicitly� The following example illustrates this�

Suppose you wanted ����a b c ��� z� to be read as a list of all pairs of the

elements a� b� c� ���� z� for example�

����p q z a� reads as ��p q� �p z� �p a� �q z� �q a� �z a��

�� COMMON LISP

This can be done by specifying a macro�character de�nition for ���� that does

two things� read in all the items up to the �� and construct the pairs�

readdelimitedlist performs the �rst task�

Note that mapcon allows the mapped function to examine the items of the
list after the current one� and that mapcon uses nconc� which is all right

because mapcar will produce fresh lists�

INPUT
OUTPUT
�	

�defun �����reader� �stream char arg�

�declare �ignore char arg��

�mapcon ��� �lambda �x�

�mapcar ��� �lambda �y� �list �car x� y�� �cdr x���

�readdelimitedlist ����� stream t���

�setdispatchmacrocharacter ������� ����� ��� �����reader��

�setmacrocharacter ����� �getmacrocharacter ����� nil��

Note that t is speci�ed for the recursive�p argument��
It is necessary here to give a de�nition to the character � as well to prevent

it from being a constituent� If the line

�setmacrocharacter ����� �getmacrocharacter ����� nil��

shown above were not included� then the � in

����p q z a�

would be considered a constituent character� part of the symbol named a��

One could correct for this by putting a space before the �� but it is better

simply to use the call to setmacrocharacter�

Giving � the same de�nition as the standard de�nition of the charac�
ter � has the twin bene�t of making it terminate tokens for use with

readdelimitedlist and also making it illegal for use in any other context

that is� attempting to read a stray � will signal an error��

Note that readdelimitedlist does not take an eof�error�p
or eof�value�

argument� The reason is that it is always an error to hit end�of��le during the
operation of readdelimitedlist�

�Function�readline �optional inputstream eoferrorp eofvalue
recursivep

readline reads in a line of text terminated by a newline� It returns the line

as a character string
without the newline character�� This function is usually

used to get a line of input from the user� A second returned value is a
ag that
is false if the line was terminated normally� or true if end�of��le terminated the

non�empty� line� If end�of��le is encountered immediately
that is� appears

to terminate an empty line�� then end�of��le processing is controlled in the

usual way by the eof�error�p� eof�value� and recursive�p arguments�

The corresponding output function is writeline�

�
 COMMON LISP

�Function�readchar �optional inputstream eoferrorp eofvalue

recursivep

readchar inputs one character from input�stream and returns it as a character

object�
The corresponding output function is writechar�

X�J�� voted in January ���� h���i to clarify the interaction of readchar

with echo streams
as created by makeechostream�� A character is echoed

from the input stream to the associated output stream the �rst time it is

seen� If a character is read again because of an intervening unreadchar op�
eration� the character is not echoed again when read for the second time or

any subsequent time�

�Function�unreadchar character �optional inputstream

unreadchar puts the character onto the front of input�stream� The character

must be the same character that was most recently read from the input�stream�

The input�stream �backs up� over this character� when a character is next read

from input�stream� it will be the speci�ed character followed by the previous

contents of input�stream� unreadchar returns nil�
One may apply unreadchar only to the character most recently read from

input�stream� Moreover� one may not invoke unreadchar twice consecutively

without an intervening readchar operation� The result is that one may back

up only by one character� and one may not insert any characters into the

input stream that were not already there�
X�J�� voted in January ���� h���i to clarify that one also may not invoke

unreadchar after invoking peekchar without an intervening readchar oper�

ation� This is consistent with the notion that peekchar behaves much like

readchar followed by unreadchar�

Rationale� This is not intended to be a general mechanism� but rather an e�cient
mechanism for allowing the Lisp reader and other parsers to perform one
character
lookahead in the input stream� This protocol admits a wide variety of e�cient
implementations� such as simply decrementing a bu�er pointer� To have to specify
the character in the call to unreadchar is admittedly redundant� since at any given
time there is only one character that may be legally speci�ed� The redundancy is
intentional� again to give the implementation latitude�

X�J�� voted in January ���� h���i to clarify the interaction of unreadchar

with echo streams
as created by makeechostream�� When a character is

�unread� from an echo stream� no attempt is made to �unecho� the character�

INPUT
OUTPUT
��

However� a character placed back into an echo stream by unreadchar will not

be re�echoed when it is subsequently re�read by readchar�

�� COMMON LISP

�Function�peekchar �optional peektype inputstream eoferrorp eofvalue

recursivep

What peekchar does depends on the peek�type� which defaults to nil� With a
peek�type of nil� peekchar returns the next character to be read from input�

stream� without actually removing it from the input stream� The next time

input is done from input�stream� the character will still be there� It is as if

one had called readchar and then unreadchar in succession�

If peek�type is t� then peekchar skips over whitespace characters
but not

comments� and then performs the peeking operation on the next character�

This is useful for �nding the
possible� beginning of the next printed repre�

sentation of a Lisp object� The last character examined
the one that starts

an object� is not removed from the input stream�

If peek�type is a character object� then peekchar skips over input characters

until a character that is char to that object is found� that character is left in

the input stream�

X�J�� voted in January ���� h���i to clarify the interaction of peekchar

with echo streams
as created by makeechostream�� When a character from

an echo stream is only peeked at� it is not echoed at that time� The character

remains in the input stream and may be echoed when read by readchar at

a later time� Note� however� that if the peek�type is not nil� then characters
skipped over
and therefore consumed� by peekchar are treated as if they had

been read by readchar� and will be echoed if readchar would have echoed

them�

�Function�listen �optional inputstream

The predicate listen is true if there is a character immediately available from
input�stream� and is false if not� This is particularly useful when the stream

obtains characters from an interactive device such as a keyboard� A call

to readchar would simply wait until a character was available� but listen

can sense whether or not input is available and allow the program to decide
whether or not to attempt input� On a non�interactive stream� the general

rule is that listen is true except when at end�of��le�

�Function�readcharnohang �optional inputstream eoferrorp eofvalue
recursivep

This function is exactly like readchar� except that if it would be necessary

to wait in order to get a character
as from a keyboard�� nil is immediately

INPUT
OUTPUT
��

returned without waiting� This allows one to e�ciently check for input avail�

ability and get the input if it is available� This is di	erent from the listen

operation in two ways� First� readcharnohang potentially reads a character�

whereas listen never inputs a character� Second� listen does not distinguish

between end�of��le and no input being available� whereas readcharnohang

does make that distinction� returning eof�value at end�of��le
or signaling an

error if no eof�error�p is true� but always returning nil if no input is available�

�Function�clearinput �optional inputstream

This clears any bu	ered input associated with input�stream� It is primarily

useful for clearing type�ahead from keyboards when some kind of asynchronous

error has occurred� If this operation doesn�t make sense for the stream in�

volved� then clearinput does nothing� clearinput returns nil�

�Function�readfromstring string �optional eoferrorp eofvalue �key

�start �end �preservewhitespace

The characters of string are given successively to the Lisp reader� and the

Lisp object built by the reader is returned� Macro characters and so on will

all take e	ect�

The arguments �start and �end delimit a substring of string beginning at

the character indexed by �start and up to but not including the character

indexed by �end� By default �start is �
the beginning of the string� and

�end is �length string�� This is the same as for other string functions�

The
ag �preservewhitespace� if provided and not nil� indicates that the

operation should preserve whitespace as for readpreservingwhitespace� It

defaults to nil�

As with other reading functions� the arguments eof�error�p and eof�value

control the action if the end of the
sub�string is reached before the operation
is completed� reaching the end of the string is treated as any other end�of��le

event�

readfromstring returns two values� the �rst is the object read� and the
second is the index of the �rst character in the string not read� If the entire

string was read� the second result will be either the length of the string or one

greater than the length of the string� The parameter �preservewhitespace

may a	ect this second value�

�readfromstring ��a b c��� � �a b c� and 	

�� COMMON LISP

�Function�parseinteger string �key �start �end �radix

�junkallowed

This function examines the substring of string delimited by �start and �end

which default to the beginning and end of the string�� It skips over whitespace
characters and then attempts to parse an integer� The �radix parameter

defaults to
� and must be an integer between � and ���

If �junkallowed is not nil� then the �rst value returned is the value of

the number parsed as an integer or nil if no syntactically correct integer was
seen�

If �junkallowed is nil
the default�� then the entire substring is scanned�

The returned value is the value of the number parsed as an integer� An error

is signaled if the substring does not consist entirely of the representation of

an integer� possibly surrounded on either side by whitespace characters�
In either case� the second value is the index into the string of the delimiter

that terminated the parse� or it is the index beyond the substring if the

parse terminated at the end of the substring
as will always be the case if

�junkallowed is false��
Note that parseinteger does not recognize the syntactic radix�speci�er

pre�xes ���O� ���B� ���X� and ���nR� nor does it recognize a trailing decimal point�

It permits only an optional sign
� or � followed by a non�empty sequence of

digits in the speci�ed radix�

������� Input from Binary Streams

Common Lisp currently speci�es only a very simple facility for binary input�
the reading of a single byte as an integer�

�Function�readbyte binaryinputstream �optional eoferrorp eofvalue

readbyte reads one byte from the binary�input�stream and returns it in the

form of an integer�

����� Output Functions

The output functions are divided into two groups� those that operate on

streams of characters and those that operate on streams of binary data� The

function format operates on streams of characters but is described in a sec�

tion separate from the other character�output functions because of its great

complexity�

INPUT
OUTPUT
��

������� Output to Character Streams

These functions all take an optional argument called output�stream� which is
where to send the output� If unsupplied or nil� output�stream defaults to the

value of the variable
standardoutput
� If it is t� the value of the variable

terminalio
 is used�

�Function�write object �key �stream �escape �radix �base �circle
���

�pretty �level �length �case �gensym �array

The printed representation of object is written to the output stream speci�ed

by �stream� which defaults to the value of
standardoutput
�

The other keyword arguments specify values used to control the genera�

tion of the printed representation� Each defaults to the value of the corre�

sponding global variable� see
printescape
�
printradix
�
printbase
�

printcircle
�
printpretty
�
printlevel
�
printlength
�
print

case
�
printarray
� and
printgensym
�
This is the means by which

these variables a	ect printing operations� supplying default values for the

write function�� Note that the printing of symbols is also a	ected by the
value of the variable
package
� write returns object�

X�J�� voted in June ���� h��i to add the keyword argument �readably

to the function write� and voted in June ���� h���i to add the keyword ar�

guments �rightmargin� �miserwidth� �lines� and �pprintdispatch� The
revised description is as follows�

�Function�write object �key �stream �escape �radix �base �circle

�pretty �level �length �case �gensym �array �readably

�rightmargin �miserwidth �lines �pprintdispatch

The printed representation of object is written to the output stream speci�ed
by �stream� which defaults to the value of
standardoutput
�

The other keyword arguments specify values used to control the genera�

tion of the printed representation� Each defaults to the value of the corre�

sponding global variable� see
printescape
�
printradix
�
printbase
�

printcircle
�
printpretty
�
printlevel
�
printlength
� and

printcase
� in addition to
printarray
�
printgensym
�
print

readably
�
printrightmargin
�
printmiserwidth
�
printlines
� and

printpprintdispatch
�
This is the means by which these variables af�

fect printing operations� supplying default values for the write function��

�� COMMON LISP

Note that the printing of symbols is also a	ected by the value of the variable

package
� write returns object�

�Function�prin
 object �optional outputstream

�Function�print object �optional outputstream

�Function�pprint object �optional outputstream

�Function�princ object �optional outputstream

prin
 outputs the printed representation of object to output�stream� Escape

characters are used as appropriate� Roughly speaking� the output from prin

is suitable for input to the function read� prin
 returns the object as its
value�

�prin
 object output�stream�

� �write object �stream output�stream �escape t�

print is just like prin
 except that the printed representation of object is

preceded by a newline
see terpri� and followed by a space� print returns

object�

pprint is just like print except that the trailing space is omitted and the

object is printed with the
printpretty

ag non�nil to produce �pretty�

output� pprint returns no values
that is� what the expression �values�

returns� zero values��

X�J�� voted in January ���� h���i to adopt a facility for user�controlled

pretty printing
see chapter ����

princ is just like prin
 except that the output has no escape characters�

A symbol is printed as simply the characters of its print name� a string is
printed without surrounding double quotes� and there may be di	erences for

other data types as well� The general rule is that output from princ is

intended to look good to people� while output from prin
 is intended to be

acceptable to the function read�

X�J�� voted in June ���� h���i to clarify that princ prints a character in

exactly the same manner as writechar� the character is simply sent to the

output stream� This was implied by the speci�cation in section ������ in the

�rst edition� but is worth pointing out explicitly here�

princ returns the object as its value�

�princ object output�stream�

� �write object �stream output�stream �escape nil�

INPUT
OUTPUT
��

Compatibility note� In MacLisp� the functions prin	� print� and princ return
t� not the argument object�

�Function�writetostring object �key �escape �radix �base �circle
���

�pretty �level �length �case �gensym �array

�Function�prin
tostring object
�Function�princtostring object

The object is e	ectively printed as if by write� prin
� or princ� respectively�

and the characters that would be output are made into a string� which is

returned�

Compatibility note� The Interlisp function mkstring corresponds to the Common
Lisp function princtostring�

�Function�writetostring object �key �escape �radix �base �circle

�pretty �level �length �case �gensym �array

�readably �rightmargin �miserwidth �lines

�pprintdispatch

X�J�� voted in June ����
h��i and h���i� to add keyword arguments to

write� presumably they should also be added to writetostring�

�Function�writechar character �optional outputstream

writechar outputs the character to output�stream� and returns character�

�Function�writestring string �optional outputstream �key �start

�end

�Function�writeline string �optional outputstream �key �start �end

writestring writes the characters of the speci�ed substring of string to the

output�stream� The �start and �end parameters delimit a substring of string
in the usual manner
see chapter ���� writeline does the same thing but

then outputs a newline afterwards�
See readline�� In either case� the string

is returned
not the substring delimited by �start and �end�� In some im�

plementations these may be much more e�cient than an explicit loop using

writechar�

�� COMMON LISP

�Function�terpri �optional outputstream

�Function�freshline �optional outputstream

The function terpri outputs a newline to output�stream� It is identical in

e	ect to �writechar ����Newline outputstream�� however� terpri always re�
turns nil�

freshline is similar to terpri but outputs a newline only if the stream is

not already at the start of a line�
If for some reason this cannot be deter�

mined� then a newline is output anyway�� This guarantees that the stream
will be on a �fresh line� while consuming as little vertical distance as possible�

freshline is a predicate that is true if it output a newline� and otherwise

false�

�Function�finishoutput �optional outputstream

�Function�forceoutput �optional outputstream

�Function�clearoutput �optional outputstream

Some streams may be implemented in an asynchronous or bu	ered manner�

The function finishoutput attempts to ensure that all output sent to output�

stream has reached its destination� and only then returns nil� forceoutput

initiates the emptying of any internal bu	ers but returns nil without waiting
for completion or acknowledgment�

The function clearoutput� on the other hand� attempts to abort any

outstanding output operation in progress in order to allow as little output

as possible to continue to the destination� This is useful� for example� to
abort a lengthy output to the terminal when an asynchronous error occurs�

clearoutput returns nil�

The precise actions of all three of these operations are implementation�

dependent�

�Macro�printunreadableobject �object stream

�� �type type j �identity id �� �
fdeclarationg� f formg�

X�J�� voted in June ���� h��i to add printunreadableobject� which will

output a printed representation of object on stream� beginning with ���� and
ending with �� Everything output to the stream during execution of the body

forms is enclosed in the angle brackets� If type is true� the body output is

preceded by a brief description of the object�s type and a space character� If id

is true� the body output is followed by a space character and a representation

of the object�s identity� typically a storage address�

INPUT
OUTPUT
�	

If
printreadably
 is true� printunreadableobject signals an error of

type printnotreadable without printing anything�

The object� stream� type� and id arguments are all evaluated normally� The

type and id default to false� It is valid to provide no body forms� If type and id

are both true and there are no body forms� only one space character separates
the printed type and the printed identity�

The value returned by printunreadableobject is nil�

�defmethod printobject ��obj airplane� stream�

�printunreadableobject �obj stream �type t �identity t�

�princ �tailnumber obj� stream���

�print myairplane� prints

����Airplane NW�		� 			���
��
��� �In implementation A

or perhaps

����FAA�AIRPLANE NW�		�
	� �In implementation B

The big advantage of printunreadableobject is that it allows a user to write

printobject methods that adhere to implementation�speci�c style without
requiring the user to write implementation�dependent code�

The X�J�� vote left it unclear whether printunreadableobject permits

declarations to appear before the body of the macro call� I believe that was

the intent� and this is re
ected in the syntax shown above� but this is only

my interpretation�

������� Output to Binary Streams

Common Lisp currently speci�es only a very simple facility for binary output�

the writing of a single byte as an integer�

�Function�writebyte integer binaryoutputstream

writebyte writes one byte� the value of integer� It is an error if integer is not

of the type speci�ed as the �elementtype argument to open when the stream
was created� The value integer is returned�

������� Formatted Output to Character Streams

The function format is very useful for producing nicely formatted text� pro�

ducing good�looking messages� and so on� format can generate a string or

output to a stream�

�
 COMMON LISP

Formatted output is performed not only by the format function itself but

by certain other functions that accept a control string �the way format does��

For example� error�signaling functions such as cerror accept format control

strings�

�Function�format destination controlstring �rest arguments

format is used to produce formatted output� format outputs the characters

of control�string� except that a tilde
 � introduces a directive� The character

after the tilde� possibly preceded by pre�x parameters and modi�ers� speci�es
what kind of formatting is desired� Most directives use one or more elements

of arguments to create their output� the typical directive puts the next element

of arguments into the output� formatted in some special way� It is an error if

no argument remains for a directive requiring an argument� but it is not an
error if one or more arguments remain unprocessed by a directive�

The output is sent to destination� If destination is nil� a string is created

that contains the output� this string is returned as the value of the call to
format�

X�J�� voted in January ���� h���i to specify that when the �rst argument
to format is nil� format creates a stream of type stringstream in much the

same manner as withoutputtostring�
This stream may be visible to the

user if� for example� the S directive is used to print a defstruct structure

that has a user�supplied print function��

In all other cases format returns nil� performing output to destination as

a side e	ect� If destination is a stream� the output is sent to it� If destina�

tion is t� the output is sent to the stream that is the value of the variable

standardoutput
� If destination is a string with a �ll pointer� then in ef�

fect the output characters are added to the end of the string
as if by use of

vectorpushextend��

The format function includes some extremely complicated and specialized

features� It is not necessary to understand all or even most of its features to

use format e	ectively� The beginner should skip over anything in the following

documentation that is not immediately useful or clear� The more sophisticated
features
such as conditionals and iteration� are there for the convenience of

programs with especially complicated formatting requirements�

A format directive consists of a tilde
 �� optional pre�x parameters sep�

arated by commas� optional colon
�� and at�sign
#� modi�ers� and a single

character indicating what kind of directive this is� The alphabetic case of the

directive character is ignored� The pre�x parameters are generally integers�

notated as optionally signed decimal numbers�

INPUT
OUTPUT
��

X�J�� voted in June ���� h��i to specify that if both colon and at�sign

modi�ers are present� they may appear in either order� thus �#R and #�R

mean the same thing� However� it is traditional to put the colon �rst� and all

the examples in this book put colons before at�signs�

Examples of control strings�

� S� �An S directive with no parameters or modi�ers
� ����#s� �An S directive with two parameters� � and ���

� and both the colon and at�sign
ags

� ���S� �First pre�x parameter is omitted and takes

� on its default value� the second parameter is �

Sometimes a pre�x parameter is used to specify a character� for instance the

padding character in a right� or left�justifying operation� In this case a single

quote
 � followed by the desired character may be used as a pre�x parameter�

to mean the character object that is the character following the single quote�
For example� you can use �� �d to print an integer in decimal radix in �ve

columns with leading zeros� or ��
d to get leading asterisks�

In place of a pre�x parameter to a directive� you can put the letter V

or v�� which takes an argument from arguments for use as a parameter to
the directive� Normally this should be an integer or character object� as

appropriate� This feature allows variable�width �elds and the like� If the

argument used by a V parameter is nil� the e	ect is as if the parameter had

been omitted� You may also use the character ��� in place of a parameter� it
represents the number of arguments remaining to be processed�

It is an error to give a format directive more parameters than it is described

here as accepting� It is also an error to give colon or at�sign modi�ers to a
directive in a combination not speci�cally described here as being meaningful�

�� COMMON LISP

X�J�� voted in January ���� h��i to clarify the interaction between format

and the various printer control variables
those named
printxxx
�� This is

important because many format operations are de�ned� directly or indirectly�

in terms of prin
 or princ� which are a	ected by the printer control variables�

The general rule is that format does not bind any of the standard printer
control variables except as speci�ed in the individual descriptions of directives�

An implementation may not bind any standard printer control variable not

speci�ed in the description of a format directive� nor may an implementation

fail to bind any standard printer control variables that is speci�ed to be bound
by such a description�
See these descriptions for speci�c changes voted by

X�J����

One consequence of this change is that the user is guaranteed to be able

to use the format A and S directives to do pretty printing� under control

of the
printpretty
 variable� Implementations have di	ered on this point
in their interpretations of the �rst edition� The new W directive may be

more appropriate than either A and S for some purposes� whether for pretty

printing or ordinary printing� See section ���� for a discussion of W and other

new format directives related to pretty printing�
Here are some relatively simple examples to give you the general
avor of

how format is used�

�format nil �foo�� � �foo�

�setq x ��

�format nil �The answer is D�� x� � �The answer is ���

�format nil �The answer is �D�� x� � �The answer is ���

�format nil �The answer is �� �D�� x� � �The answer is �����

�format nil �The answer is �D�� �expt �	 x��

� �The answer is ����������	��

�setq y �elephant��

�format nil �Look at the A�� y� � �Look at the elephant��

�format nil �Type �C to A��

�setcharbit ����D �control t�

�delete all your files��

INPUT
OUTPUT
��

� �Type ControlD to delete all your files��

�� COMMON LISP

�setq n ��

�format nil � D item �P found�� n� � �� items found��

�format nil � R dog ��s are � is � here�� n � n
��

� �three dogs are here��

�format nil � R dog �
 �s are � is ��s are � here�� n�

� �three dogs are here��

�format nil �Here �are �is ��are � �
 R pupp �#P�� n�

� �Here are three puppies��

In the descriptions of the directives that follow� the term arg in general
refers to the next item of the set of arguments to be processed� The word or

phrase at the beginning of each description is a mnemonic
not necessarily an

accurate one� for the directive�

A

Ascii� An arg� any Lisp object� is printed without escape characters
as by

princ�� In particular� if arg is a string� its characters will be output verbatim�

If arg is nil� it will be printed as nil� the colon modi�er
 �A� will cause an
arg of nil to be printed as ��� but if arg is a composite structure� such as a

list or vector� any contained occurrences of nil will still be printed as nil�

mincolA inserts spaces on the right� if necessary� to make the width at least

mincol columns� The # modi�er causes the spaces to be inserted on the left
rather than the right�

mincol�colinc�minpad�padcharA is the full form of A� which allows elab�

orate control of the padding� The string is padded on the right
or on the

left if the # modi�er is used� with at least minpad copies of padchar� padding

characters are then inserted colinc characters at a time until the total width
is at least mincol� The defaults are � for mincol and minpad�
 for colinc� and

the space character for padchar�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil during the processing of the A directive�

S

S�expression� This is just like A� but arg is printed with escape characters

as by prin
 rather than princ�� The output is therefore suitable for input

to read� S accepts all the arguments and modi�ers that A does�
X�J�� voted in January ���� h��i to specify that format binds

printescape
 to t during the processing of the S directive�

INPUT
OUTPUT
��

D

Decimal� An arg� which should be an integer� is printed in decimal radix� D

will never put a decimal point after the number�

mincolD uses a column width of mincol� spaces are inserted on the left if

the number requires fewer than mincol columns for its digits and sign� If the

number doesn�t �t in mincol columns� additional columns are used as needed�
mincol�padcharD uses padchar as the pad character instead of space�

If arg is not an integer� it is printed in A format and decimal base�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil�
printradix
 to nil� and
printbase
 to
� during

processing of D�
The # modi�er causes the number�s sign to be printed always� the default

is to print it only if the number is negative� The � modi�er causes commas

to be printed between groups of three digits� the third pre�x parameter may

be used to change the character used as the comma� Thus the most general
form of D is mincol�padchar�commacharD�

X�J�� voted in March ���� h��i to add a fourth parameter� the commain�

terval� This must be an integer� if it is not provided� it defaults to �� This

parameter controls the number of digits in each group separated by the com�

machar�
By extension� each of the B� O� and X directives accepts a commainterval

as a fourth parameter� and the R directive accepts a commainterval as its

�fth parameter� Examples�

�format nil � �� ��B� ���xFACE� � �

�
�

��

��

�format nil � �� ��B� ���x
CE� � �

��

��

�format nil �
��� ��B� ���xFACE� � �

�
�

��

��

�format nil �
��� ��B� ���x
CE� � ����� ���

��

��

This is one of those little improvements that probably don�t matter much but
aren�t hard to implement either� It was pretty silly having the number � wired

into the de�nition of comma separation when it is just as easy to make it a

parameter�

B

Binary� This is just like D but prints in binary radix
radix �� instead of

decimal� The full form is therefore mincol�padchar�commacharB�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil�
printradix
 to nil� and
printbase
 to � dur�
ing processing of B�

�� COMMON LISP

O

Octal� This is just like D but prints in octal radix
radix �� instead of decimal�

The full form is therefore mincol�padchar�commacharO�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil�
printradix
 to nil� and
printbase
 to � dur�

ing processing of O�

X

Hexadecimal� This is just like D but prints in hexadecimal radix
radix ���
instead of decimal� The full form is therefore mincol�padchar�commacharX�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil�
printradix
 to nil� and
printbase
 to
� during

processing of X�

Compatibility note� In MacLisp and Lisp Machine Lisp the X directive outputs
a space� and nX outputs n spaces� in a manner analogous to Fortran X format� In
Common Lisp the directive �T is used for that purpose�

R

Radix� nR prints arg in radix n� The modi�er
ags and any remaining

parameters are used as for the D directive� Indeed� D is the same as
�R�
The full form here is therefore radix�mincol�padchar�commacharR�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil�
printradix
 to nil� and
printbase
 to the value

of the �rst parameter during the processing of the R directive with a param�

eter�

If no parameters are given to R� then an entirely di	erent interpretation is

given�

Notice of correction� In the �rst edition� this sentence referred to �argu�

ments� given to R� The correct term is �parameters��

The argument should be an integer� suppose it is �� Then R prints arg as a
cardinal English number� four� �R prints arg as an ordinal English number�

fourth� #R prints arg as a Roman numeral� IV� and �#R prints arg as an

old Roman numeral� IIII�

X�J�� voted in January ���� h��i to specify that format binds

printbase
 to
� during the processing of the R directive with no pa�

rameter�

The �rst edition did not specify how R and its variants should handle

arguments that are very large or not positive� Actual practice varies� and

INPUT
OUTPUT
��

X�J�� has not yet addressed the topic� Here is a sampling of current practice�

For #R and �#R� nearly all implementations produce Roman numerals
only for integers in the range � to ����� inclusive� Some implementations

will produce old�style Roman numerals for integers in the range � to �����

inclusive� All other integers are printed in decimal notation� as if D had been

used�

For zero� most implementations print zero for R and zeroth for �R�

For R with a negative argument� most implementations simply print the

word minus followed by its absolute value as a cardinal in English�

For �R with a negative argument� some implementations also print the

word minus followed by its absolute value as an ordinal in English� other im�

plementations print the absolute value followed by the word previous� Thus
the argument � might produce minus fourth or fourth previous� Each

has its charm� but one is not always a suitable substitute for the other� users

should be careful�

There is standard English nomenclature for fairly large integers
up

to ����� at least�� based on appending the su�x �illion to Latin

names of integers� Thus we have the names trillion� quadrillion�

sextillion� septillion� and so on� For extremely large integers� one
may express powers of ten in English� One implementation gives

����������������	���
��������

��������������	��	�������
�	�

which is ����� the result of �ash
 ����� in this manner�

one times ten to the sixtieth power six hundred six times ten to the

fiftyseventh power nine hundred thirtyeight septdecillion fortyfour

sexdecillion two hundred fiftyeight quindecillion nine hundred ninety

quattuordecillion two hundred seventyfive tredecillion five hundred

fortyone duodecillion nine hundred sixtytwo undecillion ninetytwo

decillion three hundred fortyone nonillion one hundred sixtytwo

octillion six hundred two septillion five hundred twentytwo sextillion

two hundred two quintillion nine hundred ninetythree quadrillion seven

hundred eightytwo trillion seven hundred ninetytwo billion eight

hundred thirtyfive million three hundred one thousand three hundred

seventysix

Another implementation prints it this way
note the use of plus��

one times ten to the sixtieth power plus six hundred six times ten to

the fiftyseventh power plus ��� plus two hundred seventyfive times ten

to the fortysecond power plus five hundred fortyone duodecillion nine

hundred sixtytwo undecillion ��� three hundred seventysix

�� COMMON LISP

I have elided some of the text here to save space��

Unfortunately� the meaning of this nomenclature di	ers between American

English
in which k�illion means ���	k��
� so one trillion is ����� and British

English
in which k�illion means ���k� so one trillion is ������ To avoid both

confusion and prolixity� I recommend using decimal notation for all numbers
above ������������ this is similar to the escape hatch used for Roman numer�

als�

P

Plural� If arg is not eql to the integer
� a lowercase s is printed� if arg is

eql to
� nothing is printed�
Notice that if arg is a
oating�point
��� the

s is printed�� �P does the same thing� after doing a �
 to back up one

argument� that is� it prints a lowercase s if the last argument was not
� This
is useful after printing a number using D� #P prints y if the argument is
�

or ies if it is not� �#P does the same thing� but backs up �rst�

�format nil � D tr �#P D win �P� 	
� � �	 tries
 win�

�format nil � D tr �#P D win �P�
 �� � �
 try � wins�

�format nil � D tr �#P D win �P�
 �� � �
 try � wins�

C

Character� The next arg should be a character� it is printed according to the
modi�er
ags�

C prints the character in an implementation�dependent abbreviated for�
��

mat� This format should be culturally compatible with the host environment�

X�J�� voted in June ���� h��i to specify that C performs exactly the
same action as writechar if the character to be printed has zero for its bits

attributes� X�J�� voted in March ���� h��i to eliminate the bits and font at�

tributes� replacing them with the notion of implementation�de�ned attributes�

The net e	ect is that characters whose implementation�de�ned attributes all

have the �standard� values should be printed by C in the same way that
writechar would print them�

�C spells out the names of the control bits and represents non�printing

characters by their names� ControlMetaF� ControlReturn� Space� This is a

�pretty� format for printing characters�
�#C prints what �C would� and then if the character requires unusual shift

keys on the keyboard to type it� this fact is mentioned� Control� �TopF��

This is the format for telling the user about a key he or she is expected to

type� in prompts� for instance� The precise output may depend not only on

the implementation but on the particular I�O devices in use�

INPUT
OUTPUT
�	

#C prints the character so that the Lisp reader can read it� using ���� syntax�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to t during the processing of the #C directive� Other variants

of the C directive do not bind any printer control variables�

Rationale� In some implementations the S directive would do what C does� but
C is compatible with Lisp dialects such as MacLisp that do not have a character
data type�

F

Fixed�format 	oating�point� The next arg is printed as a
oating�point num�
ber�

The full form is w�d�k�over	owchar�padcharF� The parameter w is the

width of the �eld to be printed� d is the number of digits to print after the

decimal point� k is a scale factor that defaults to zero�

Exactly w characters will be output� First� leading copies of the character

padchar
which defaults to a space� are printed� if necessary� to pad the �eld

on the left� If the arg is negative� then a minus sign is printed� if the arg
is not negative� then a plus sign is printed if and only if the # modi�er was

speci�ed� Then a sequence of digits� containing a single embedded decimal

point� is printed� this represents the magnitude of the value of arg times ��k�

rounded to d fractional digits�
When rounding up and rounding down would
produce printed values equidistant from the scaled value of arg� then the

implementation is free to use either one� For example� printing the argument

���	� using the format ���F may correctly produce either ���	 or ������

Leading zeros are not permitted� except that a single zero digit is output

before the decimal point if the printed value is less than �� and this single
zero digit is not output after all if w " d # ��

If it is impossible to print the value in the required format in a �eld of

width w� then one of two actions is taken� If the parameter over	owchar is

speci�ed� then w copies of that parameter are printed instead of the scaled

value of arg� If the over	owchar parameter is omitted� then the scaled value
is printed using more than w characters� as many more as may be needed�

If the w parameter is omitted� then the �eld is of variable width� In e	ect� a

value is chosen for w in such a way that no leading pad characters need to be

printed and exactly d characters will follow the decimal point� For example�

the directive ��F will print exactly two digits after the decimal point and as

many as necessary before the decimal point�

If the parameter d is omitted� then there is no constraint on the number of

�
 COMMON LISP

digits to appear after the decimal point� A value is chosen for d in such a way

that as many digits as possible may be printed subject to the width constraint

imposed by the parameter w and the constraint that no trailing zero digits

may appear in the fraction� except that if the fraction to be printed is zero�

then a single zero digit should appear after the decimal point if permitted by
the width constraint�

If both w and d are omitted� then the e	ect is to print the value using

ordinary free�format output� prin
 uses this format for any number whose

magnitude is either zero or between ����
inclusive� and ���
exclusive��
If w is omitted� then if the magnitude of arg is so large
or� if d is also

omitted� so small� that more than ��� digits would have to be printed� then an

implementation is free� at its discretion� to print the number using exponential

notation instead� as if by the directive E
with all parameters to E defaulted�

not taking their values from the F directive��
If arg is a rational number� then it is coerced to be a singlefloat and

then printed�
Alternatively� an implementation is permitted to process a

rational number by any other method that has essentially the same behavior

but avoids such hazards as loss of precision or over
ow because of the coercion�
However� note that if w and d are unspeci�ed and the number has no exact

decimal representation� for example
 �� some precision cuto	 must be chosen

by the implementation� only a �nite number of digits may be printed��

If arg is a complex number or some non�numeric object� then it is printed

using the format directive wD� thereby printing it in decimal radix and a
minimum �eld width of w�
If it is desired to print each of the real part and

imaginary part of a complex number using a F directive� then this must be

done explicitly with two F directives and code to extract the two parts of the

complex number��
X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil during the processing of the F directive�

�defun foo �x�

�format nil � ���F� ����
�
F� ����� �F� �F� ��F� F�

x x x x x x��

�foo ��
�
��� � � ��
�� �
���� ��
����
�
����
����
�
���

�foo ��
�
��� � � ��
���
���� ��
����
�����
����
�
���

�foo
����� � �
������

�
������
�����
������
�����

�foo
������ � �
�������

��������
������
�������
������

�foo ������ � � ���
� ����� ���
� ���������
�������

Compatibility note� The F directive is similar to the Fw�d edit descriptor in

INPUT
OUTPUT
��

Fortran�
The presence or absence of the � modi�er corresponds to the e�ect of the Fortran

SS or SP edit descriptor� nothing in Common Lisp corresponds to the Fortran S edit
descriptor�
The scale factor speci�ed by the parameter k corresponds to the scale factor k

speci�ed by the Fortran kP edit descriptor�
In Fortran� the leading zero that precedes the decimal point when the printed

value is less than � is optional� in Common Lisp� the implementation is required to
print that zero digit�
In Common Lisp� the w and d parameters are optional� in Fortran� they are

required�
In Common Lisp� the pad character and over�ow character are user
speci�able�

in Fortran� they are always space and asterisk� respectively�
A Fortran implementation is prohibited from printing a representation of negative

zero� Common Lisp permits the printing of such a representation when appropriate�
In MacLisp and Lisp Machine Lisp� the F format directive takes a single param

eter� the number of digits to use in the printed representation� This incompatibility
between Common Lisp and MacLisp was introduced for the sake of cultural com

patibility with Fortran�

E

Exponential 	oating�point� The next arg is printed in exponential notation�

The full form is w�d�e�k�over	owchar�padchar�exponentcharE� The pa�

rameter w is the width of the �eld to be printed� d is the number of digits to
print after the decimal point� e is the number of digits to use when printing

the exponent� k is a scale factor that defaults to �
not zero��

Exactly w characters will be output� First� leading copies of the character

padchar
which defaults to a space� are printed� if necessary� to pad the �eld
on the left� If the arg is negative� then a minus sign is printed� if the arg is not

negative� then a plus sign is printed if and only if the # modi�er was speci�ed�

Then a sequence of digits� containing a single embedded decimal point� is

printed� The form of this sequence of digits depends on the scale factor k� If k

is zero� then d digits are printed after the decimal point� and a single zero digit
appears before the decimal point if the total �eld width will permit it� If k is

positive� then it must be strictly less than d#�� k signi�cant digits are printed

before the decimal point� and d � k # � digits are printed after the decimal

point� If k is negative� then it must be strictly greater than �d � a single zero
digit appears before the decimal point if the total �eld width will permit it�

and after the decimal point are printed �rst �k zeros and then d#k signi�cant

digits� The printed fraction must be properly rounded�
When rounding up

and rounding down would produce printed values equidistant from the scaled

value of arg� then the implementation is free to use either one� For example�

�� COMMON LISP

printing ��	�� using the format ���Emay correctly produce either ���	E���

or ����E�����

Following the digit sequence� the exponent is printed� First the char�
acter parameter exponentchar is printed� if this parameter is omitted�

then the exponent marker that prin
 would use is printed� as deter�

mined from the type of the
oating�point number and the current value of

readdefaultfloatformat
� Next� either a plus sign or a minus sign is
printed� followed by e digits representing the power of �� by which the printed

fraction must be multiplied to properly represent the rounded value of arg�

If it is impossible to print the value in the required format in a �eld of
width w� possibly because k is too large or too small or because the exponent

cannot be printed in e character positions� then one of two actions is taken�

If the parameter over	owchar is speci�ed� then w copies of that parameter

are printed instead of the scaled value of arg� If the over	owchar parameter

is omitted� then the scaled value is printed using more than w characters� as
many more as may be needed� if the problem is that d is too small for the

speci�ed k or that e is too small� then a larger value is used for d or e as may

be needed�

If the w parameter is omitted� then the �eld is of variable width� In e	ect

a value is chosen for w in such a way that no leading pad characters need to

be printed�

If the parameter d is omitted� then there is no constraint on the number of

digits to appear� A value is chosen for d in such a way that as many digits

as possible may be printed subject to the width constraint imposed by the
parameter w� the constraint of the scale factor k� and the constraint that no

trailing zero digits may appear in the fraction� except that if the fraction to

be printed is zero� then a single zero digit should appear after the decimal

point if the width constraint allows it�

If the parameter e is omitted� then the exponent is printed using the smallest

number of digits necessary to represent its value�

If all of w� d� and e are omitted� then the e	ect is to print the value using

ordinary free�format exponential�notation output� prin
 uses this format for

any non�zero number whose magnitude is less than ���� or greater than or

equal to ����

X�J�� voted in January ���� h��i to amend the previous paragraph as

follows�

If all of w� d� and e are omitted� then the e	ect is to print the value using

ordinary free�format exponential�notation output� prin
 uses a similar format

for any non�zero number whose magnitude is less than ���� or greater than

or equal to ���� The only di	erence is that the E directive always prints a

INPUT
OUTPUT
��

plus or minus sign before the exponent� while prin
 omits the plus sign if the

exponent is non�negative�

The amendment reconciles this paragraph with the speci�cation several

paragraphs above that E always prints a plus or minus sign before the expo�

nent��

If arg is a rational number� then it is coerced to be a singlefloat and

then printed�
Alternatively� an implementation is permitted to process a

rational number by any other method that has essentially the same behavior

but avoids such hazards as loss of precision or over
ow because of the coercion�
However� note that if w and d are unspeci�ed and the number has no exact

decimal representation� for example
 �� some precision cuto	 must be chosen

by the implementation� only a �nite number of digits may be printed��

If arg is a complex number or some non�numeric object� then it is printed

using the format directive wD� thereby printing it in decimal radix and a
minimum �eld width of w�
If it is desired to print each of the real part and

imaginary part of a complex number using a E directive� then this must be

done explicitly with two E directives and code to extract the two parts of the

complex number��

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil during the processing of the E directive�

�defun foo �x�

�format nil

� ����
��
E�
�������� ��� !E� �������� "#E� ���E�

x x x x��

�foo ��
�
��� � � ��
�E��� �
���!�
������E���� ��
�E���

�foo ��
�
��� � � ��
�E����
���!�
�����E���� ��
�E���

�foo

����� � �
�
�E���

���!��������
E����
�
�E���

�foo

����L�� � �
�
�L���

���!��������
L����
�
�L���

�foo
�
E
�� � �

�

���!�
������
E�
��
�
�E�
��

�foo
�
L
��� � �

������������"""""""""�
�
�L�
���

�foo
�
L
���� � �

������������"""""""""�
�
�L�
����

Here is an example of the e	ects of varying the scale factor�

�dotimes �k
��

�format t � "Scale factor �D� �
������VE��

� k �� ��
�
���� �Prints �� lines

Scale factor �� � ��������E����

Scale factor �� � �������
E����

�� COMMON LISP

Scale factor �� � ������
�E����

Scale factor �� � �����
��E����

Scale factor
� � ����
�
�E����

Scale factor �� � ���
�
��E��
�

Scale factor
� � ��
�
���E����

Scale factor �� � �
��
���E�
�

Scale factor �� � �
��
���E���

Scale factor �� � �
�
����E���

Scale factor �� � �
�
����E���

Scale factor �� � �
�
����E���

Scale factor 	� � �
�
����E���

Compatibility note� The E directive is similar to the Ew�d and Ew�dEe edit
descriptors in Fortran�
The presence or absence of the � modi�er corresponds to the e�ect of the Fortran

SS or SP edit descriptor� nothing in Common Lisp corresponds to the Fortran S edit
descriptor�
The scale factor speci�ed by the parameter k corresponds to the scale factor k

speci�ed by the Fortran kP edit descriptor� note� however� that the default value
for k is � in Common Lisp� as opposed to the default value of zero in Fortran� �On
the other hand� note that a scale factor of � is used for Fortran list
directed output�
which is roughly equivalent to using E with the w� d� e� and over�owchar parameters
omitted��
In Common Lisp� the w and d parameters are optional� in Fortran� they are

required�
In Fortran� omitting e causes the exponent to be printed using either two or three

digits� if three digits are required� then the exponent marker is omitted� In Common
Lisp� omitting e causes the exponent to be printed using as few digits as possible�
the exponent marker is never omitted�
In Common Lisp� the pad character and over�ow character are user
speci�able�

in Fortran they are always space and asterisk� respectively�
A Fortran implementation is prohibited from printing a representation of negative

zero� Common Lisp permits the printing of such a representation when appropriate�
In MacLisp and Lisp Machine Lisp� the E format directive takes a single param

eter� the number of digits to use in the printed representation� This incompatibility
between Common Lisp and MacLisp was introduced for the sake of cultural com

patibility with Fortran�

INPUT
OUTPUT
��

G

General 	oating�point� The next arg is printed as a
oating�point number in
either �xed�format or exponential notation as appropriate�

The full form is w�d�e�k�over	owchar�padchar�exponentcharG� The for�

mat in which to print arg depends on the magnitude
absolute value� of the

arg� Let n be an integer such that ��n�� � arg � ��n�
If arg is zero� let n be
��� Let ee equal e # �� or � if e is omitted� Let ww equal w � ee� or nil if w

is omitted� If d is omitted� �rst let q be the number of digits needed to print

arg with no loss of information and without leading or trailing zeros� then let

d equal �max q �min n 	��� Let dd equal d � n�

If � � dd � d � then arg is printed as if by the format directives

ww�dd��over	owchar�padcharF ee#T

Note that the scale factor k is not passed to the F directive� For all other

values of dd� arg is printed as if by the format directive

w�d�e�k�over	owchar�padchar�exponentcharE

In either case� an # modi�er is speci�ed to the F or E directive if and only

if one was speci�ed to the G directive�

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil during the processing of the G directive�

Examples�
���

�defun foo �x�

�format nil

� ����
��
G� �������� ��� !G� �������� "G� ���G�

x x x��

�foo ����
�
��� � � ��
�E���
���!������
�E�
� ��
�E��

�foo ���
�
��� � � ���
 ����
� ����
� � ���
 �

�foo ��
�
��� � � ��
 � ��
� � ��
� � ��
 �

�foo �
��
��� � � �
� � �
�� � �
�� � �
� �

�foo �
��
��� � � ��
�E��� �
�� � �
�� � ��
�E���

�foo �
�
���� � � ��
�E����
���!��
����
�E���� ��
�E���

�foo �
�
���L�� � � ��
�L����
���!��
����
�L���� ��
�L���

�foo ��
�E
�� � �

��
���!�
�����
�E�
�� ��
�E�
��

�foo ��
�L
��� � �

�����������"""""""""���
�L�
���

�foo ��
�L
���� � �

�����������"""""""""���
�L�
����

�� COMMON LISP

Notice of correction� In the �rst edition� the example for the value ��
�E
�

contained two typographical errors�

�foo ��
�E
�� � �

��
���!�
�����
�E�
�� ��
�L�
��

� �
should be � should be E

These have been corrected above�

Compatibility note� The G directive is similar to the Gw�d edit descriptor in
Fortran�

The Common Lisp rules for deciding between the use of F and E are compatible
with the rules used by Fortran but have been extended to cover the cases where w
or d is omitted or where e is speci�ed�

In MacLisp and Lisp Machine Lisp� the G format directive is equivalent to
the Common Lisp �� directive� This incompatibility between Common Lisp and
MacLisp was introduced for the sake of cultural compatibility with Fortran�

!

Dollars 	oating�point� The next arg is printed as a
oating�point number in

�xed�format notation� This format is particularly convenient for printing a

value as dollars and cents�

The full form is d�n�w�padchar!� The parameter d is the number of digits

to print after the decimal point
default value ��� n is the minimum number

of digits to print before the decimal point
default value ��� w is the minimum

total width of the �eld to be printed
default value ���

First padding and the sign are output� If the arg is negative� then a minus

sign is printed� if the arg is not negative� then a plus sign is printed if and

only if the # modi�er was speci�ed� If the � modi�er is used� the sign appears

before any padding� and otherwise after the padding� If w is speci�ed and the
number of other characters to be output is less than w� then copies of padchar

which defaults to a space� are output to make the total �eld width equal

w� Then n digits are printed for the integer part of arg� with leading zeros if

necessary� then a decimal point� then d digits of fraction� properly rounded�

If the magnitude of arg is so large that more than m digits would have to be

printed� where m is the larger of w and ���� then an implementation is free� at

its discretion� to print the number using exponential notation instead� as if by

the directive w�q����padcharE� where w and padchar are present or omitted

according to whether they were present or omitted in the ! directive� and

INPUT
OUTPUT
��

where q " d #n � �� where d and n are the
possibly default� values given to

the ! directive�

If arg is a rational number� then it is coerced to be a singlefloat and then

printed�
Alternatively� an implementation is permitted to process a rational
number by any other method that has essentially the same behavior but avoids

such hazards as loss of precision or over
ow because of the coercion��

If arg is a complex number or some non�numeric object� then it is printed

using the format directive wD� thereby printing it in decimal radix and a
minimum �eld width of w�
If it is desired to print each of the real part and

imaginary part of a complex number using a ! directive� then this must be

done explicitly with two ! directives and code to extract the two parts of the

complex number��

X�J�� voted in January ���� h��i to specify that format binds

printescape
 to nil during the processing of the ! directive�

"

This outputs a ����Newline character� thereby terminating the current output

line and beginning a new one
see terpri��

n" outputs n newlines�

No arg is used� Simply putting a newline in the control string would work�

but " is often used because it makes the control string look nicer in the
middle of a Lisp program�

�

Unless it can be determined that the output stream is already at the beginning

of a line� this outputs a newline
see freshline��

n� calls freshline and then outputs n � � newlines� �� does nothing�

�

This outputs a page separator character� if possible� n� does this n times� �
is vertical bar� not capital I�

Tilde� This outputs a tilde� n outputs n tildes�

hnewlinei
Tilde immediately followed by a newline ignores the newline and any following

non�newline whitespace characters� With a �� the newline is ignored� but any

following whitespace is left in place� With an #� the newline is left in place�

�� COMMON LISP

but any following whitespace is ignored� This directive is typically used when

a format control string is too long to �t nicely into one line of the program�

�defun typeclasherror �fn nargs argnum righttype wrongtype�

�format
erroroutput

� �Function S requires its �� �R �
 �

argument to be of type S� "but it was called

with an argument of type S� "�

fn �eql nargs
� argnum righttype wrongtype��

�typeclasherror aref nil � integer vector� prints�

Function AREF requires its second argument to be of type INTEGER�

but it was called with an argument of type VECTOR�

�typeclasherror car

 list shortfloat� prints�

Function CAR requires its argument to be of type LIST�

but it was called with an argument of type SHORTFLOAT�

Note that in this example newlines appear in the output only as speci�ed by

the � and " directives� the actual newline characters in the control string

are suppressed because each is preceded by a tilde�

T

Tabulate� This spaces over to a given column� colnum�colincT will output
su�cient spaces to move the cursor to column colnum� If the cursor is already

at or beyond column colnum� it will output spaces to move it to column

colnum#k&colinc for the smallest positive integer k possible� unless colinc is

zero� in which case no spaces are output if the cursor is already at or beyond

column colnum� colnum and colinc default to
�

Ideally� the current column position is determined by examination of the

destination� whether a stream or string�
Although no user�level operation for
determining the column position of a stream is de�ned by Common Lisp� such

a facility may exist at the implementation level�� If for some reason the current

absolute column position cannot be determined by direct inquiry� format

may be able to deduce the current column position by noting that certain
directives
such as "� or �� or A with the argument being a string containing

a newline� cause the column position to be reset to zero� and counting the

number of characters emitted since that point� If that fails� format may

attempt a similar deduction on the riskier assumption that the destination

was at column zero when format was invoked� If even this heuristic fails or is

INPUT
OUTPUT
�	

implementationally inconvenient� at worst the T operation will simply output

two spaces�
All this implies that code that uses format is more likely to be

portable if all format control strings that use the T directive either begin

with " or � to force a newline or are designed to be used only when the

destination is known from other considerations to be at column zero��
#T performs relative tabulation� colrel�colinc#T outputs colrel spaces and

then outputs the smallest non�negative number of additional spaces necessary

to move the cursor to a column that is a multiple of colinc� For example�

the directive ���#T outputs three spaces and then moves the cursor to a
�standard multiple�of�eight tab stop� if not at one already� If the current

output column cannot be determined� however� then colinc is ignored� and

exactly colrel spaces are output�

X�J�� voted in June ���� h���i to de�ne �T and �#T to perform tabula�

tion relative to a point de�ned by the pretty printing process
see section ������

The next arg is ignored� n
 ignores the next n arguments�

�
 �ignores backwards�� that is� it backs up in the list of arguments so

that the argument last processed will be processed again� n�
 backs up n

arguments�

When within a � construct
see below�� the ignoring
in either direction�
is relative to the list of arguments being processed by the iteration�

n#
 is an �absolute goto� rather than a �relative goto�� it goes to the nth

arg� where � means the �rst one� n defaults to �� so #
 goes back to the �rst

arg� Directives after a n#
 will take arguments in sequence beginning with
the one gone to� When within a � construct� the �goto� is relative to the list

of arguments being processed by the iteration�

�

Indirection� The next arg must be a string� and the one after it a list� both
are consumed by the � directive� The string is processed as a format control

string� with the elements of the list as the arguments� Once the recursive pro�

cessing of the control string has been �nished� then processing of the control

string containing the � directive is resumed� Example�

�format nil � � D� �� A D�� ��Foo� �� 	� � ��Foo �� 	�

�format nil � � D� �� A D�� ��Foo� �
�� 	� � ��Foo �� 	�

Note that in the second example three arguments are supplied to the con�

trol string �� A D��� but only two are processed and the third is therefore

�
 COMMON LISP

ignored�

With the # modi�er� only one arg is directly consumed� The arg must be

a string� it is processed as part of the control string as if it had appeared

in place of the #� construct� and any directives in the recursively processed

control string may consume arguments of the control string containing the
#� directive� Example�

�format nil � #� D� �� A D�� �Foo� � 	� � ��Foo �� 	�

�format nil � #� D� �� A D�� �Foo� �
� 	� � ��Foo ��
��

Here is a rather sophisticated example� The format function itself� as
implemented at one time in Lisp Machine Lisp� used a routine internal to the

format package called formaterror to signal error messages� formaterror

in turn used error� which used format recursively� Now formaterror took a

string and arguments� just like format� but also printed the control string to

format
which at this point was available in the global variable
ctlstring
�
and a little arrow showing where in the processing of the control string the

error occurred� The variable
ctlindex
 pointed one character after the place

of the error�

�defun formaterror �string �rest args� �Example

�error nil � � " V#T� " �#T�� A�� "�

string args ��
ctlindex
 ��
ctlstring
��

The character set used in the Lisp Machine Lisp implementation contains a

down�arrow character �� which is not a standard Common Lisp character��

This �rst processed the given string and arguments using �� then output a
newline� tabbed a variable amount for printing the down�arrow� and printed

the control string between double quotes
note the use of �� to include double

quotes within the control string�� The e	ect was something like this�

�format t �The item is a �Foo �Bar �Loser ��� quux�

��ERROR� The argument to the FORMAT � �� command

must be a number�

�
�The item is a �Foo �Bar �Loser ���

Implementation note� Implementors may wish to report errors occurring within
format control strings in the manner outlined here� It looks pretty �ashy when done
properly�

INPUT
OUTPUT
��

X�J�� voted in June ���� h���i to introduce certain format directives to

support the user interface to the pretty printer described in detail in chap�

ter ���

$

Conditional newline� Without any modi�ers� the directive $ is equivalent

to �pprintnewline �linear�� The directive #$ is equivalent to �pprint

newline �miser�� The directive �$ is equivalent to �pprintnewline

�fill�� The directive �#$ is equivalent to �pprintnewline �mandatory��

W

Write� An arg� any Lisp object� is printed obeying every printer control

variable
as by write�� See section ���� for details�

I

Indent� The directive nI is equivalent to �pprintindent �block n�� The

directive �nI is equivalent to �pprintindent �current n�� In both cases�

n defaults to zero� if it is omitted�

The format directives after this point are much more complicated than the

foregoing� they constitute control structures that can perform case conversion�

conditional selection� iteration� justi�cation� and non�local exits� Used with

restraint� they can perform powerful tasks� Used with abandon� they can

produce completely unreadable and unmaintainable code�

The case�conversion� conditional� iteration� and justi�cation constructs can

contain other formatting constructs by bracketing them� These constructs

must nest properly with respect to each other� For example� it is not legitimate
to put the start of a case�conversion construct in each arm of a conditional

and the end of the case�conversion construct outside the conditional�

�format nil � ��abc �#�def �ghi �#�jkl �mno �� x� �Illegal�

One might expect this to produce either �abcDEFMNO� or �ghiJKLMNO�� de�

pending on whether x is false or true� but in fact the construction is illegal

because the ���� ���� � and ���� � constructs are not properly nested�

The processing indirection caused by the � directive is also a kind of nesting

for the purposes of this rule of proper nesting� It is not permitted to start a

bracketing construct within a string processed under control of a � directive

and end the construct at some point after the � construct in the string

containing that construct� or vice versa� For example� this situation is illegal�

�� COMMON LISP

�format nil � �ghi �� �abc #�def�� �Illegal�

One might expect it to produce �abcDEFGHI�� but in fact the construction is
illegal because the � and ���� � constructs are not properly nested�

�str �

Case conversion� The contained control string str is processed� and what it

produces is subject to case conversion� � converts every uppercase character
to the corresponding lowercase character� �� capitalizes all words� as if by

stringcapitalize� #� capitalizes just the �rst word and forces the rest

to lowercase� �#� converts every lowercase character to the corresponding

uppercase character� In this example� #� is used to cause the �rst word
produced by #R to be capitalized�

�format nil � #R � #R ��
�
�� � �XIV xiv�

�defun f �n� �format nil � #� R � error �P detected�� n��

�f �� � �Zero errors detected��

�f
� � �One error detected��

�f ��� � �Twentythree errors detected��

�str� �str� ���� �strn �

Conditional expression� This is a set of control strings� called clauses� one of

which is chosen and used� The clauses are separated by � and the construct

is terminated by �� For example�

� �Siamese �Manx �Persian � Cat�

The argth clause is selected� where the �rst clause is number �� If a pre�x
parameter is given
as n��� then the parameter is used instead of an argu�

ment�
This is useful only if the parameter is speci�ed by ���� to dispatch on the

number of arguments remaining to be processed�� If arg is out of range� then

no clause is selected
and no error is signaled�� After the selected alternative

has been processed� the control string continues after the ��
�str� �str� ���� �strn ��default � has a default case� If the last � used

to separate clauses is �� instead� then the last clause is an �else� clause that

is performed if no other clause is selected� For example�

� �Siamese �Manx �Persian ��Alley � Cat�

��false �true � selects the false control string if arg is nil� and selects the

true control string otherwise�

INPUT
OUTPUT
��

#�true � tests the argument� If it is not nil� then the argument is not

used up by the #� command but remains as the next one to be processed�

and the one clause true is processed� If the arg is nil� then the argument is

used up� and the clause is not processed� The clause therefore should normally

use exactly one argument� and may expect it to be non�nil� For example�

�setq
printlevel
 nil
printlength
 ��

�format nil � #� print level D � #� print length D ��

printlevel

printlength
�

� � print length ��

The combination of � and ��� is useful� for example� for dealing with English
conventions for printing lists�

�setq foo �Items� ���� none � S � S and S

�� #� ���� � and � S � � ����

�format nil foo�

� �Items� none��

�format nil foo foo�

� �Items� FOO��

�format nil foo foo bar�

� �Items� FOO and BAR��

�format nil foo foo bar baz�

� �Items� FOO� BAR� and BAZ��

�format nil foo foo bar baz quux�

� �Items� FOO� BAR� BAZ� and QUUX��

�

This separates clauses in � and � constructions� It is an error elsewhere�

�

This terminates a �� It is an error elsewhere�

�str �

Iteration� This is an iteration construct� The argument should be a list� which
is used as a set of arguments as if for a recursive call to format� The string str

is used repeatedly as the control string� Each iteration can absorb as many

elements of the list as it likes as arguments� if str uses up two arguments by

itself� then two elements of the list will get used up each time around the loop�

If before any iteration step the list is empty� then the iteration is terminated�

	� COMMON LISP

Also� if a pre�x parameter n is given� then there will be at most n repetitions

of processing of str� Finally� the directive can be used to terminate the

iteration prematurely�

Here are some simple examples�

�format nil

�The winners are� � S ���

�fred harry jill��

� �The winners are� FRED HARRY JILL��

�format nil �Pairs� � � S� S� ��� �a
 b � c ���

� �Pairs� �A�
� �B��� �C�����

��str � is similar� but the argument should be a list of sublists� At each
repetition step� one sublist is used as the set of arguments for processing str�

on the next repetition� a new sublist is used� whether or not all of the last

sublist had been processed� Example�

�format nil �Pairs� �� � S� S� ���

��a
� �b �� �c ����

� �Pairs� �A�
� �B��� �C�����

#�str � is similar to �str �� but instead of using one argument that is

a list� all the remaining arguments are used as the list of arguments for the

iteration� Example�

�format nil �Pairs� #� � S� S� ���

a
 b � c ��

� �Pairs� �A�
� �B��� �C�����

If the iteration is terminated before all the remaining arguments are consumed�

then any arguments not processed by the iteration remain to be processed by
any directives following the iteration construct�

�#�str � combines the features of ��str � and #�str �� All the remain�

ing arguments are used� and each one must be a list� On each iteration� the
next argument is used as a list of arguments to str� Example�

�format nil �Pairs� �#� � S� S� ���

�a
� �b �� �c ���

� �Pairs� �A�
� �B��� �C�����

INPUT
OUTPUT
	�

Terminating the repetition construct with �� instead of � forces str to be

processed at least once� even if the initial list of arguments is null
however�

it will not override an explicit pre�x parameter of zero��

If str is empty� then an argument is used as str� It must be a string and pre�

cede any arguments processed by the iteration� As an example� the following
are equivalent�

�apply ��� format stream string arguments�

�format stream �
� ��� string arguments�

This will use string as a formatting string� The
� says it will be processed

at most once� and the �� says it will be processed at least once� Therefore it

is processed exactly once� using arguments as the arguments� This case may
be handled more clearly by the � directive� but this general feature of � is

more powerful than ��

�

This terminates a �� It is an error elsewhere�

mincol�colinc�minpad�padchar�str �

Justi
cation� This justi�es the text produced by processing str within a �eld

at least mincol columns wide� str may be divided up into segments with ��

in which case the spacing is evenly divided between the text segments�

With no modi�ers� the leftmost text segment is left�justi�ed in the �eld� and
the rightmost text segment right�justi�ed� if there is only one text element�

as a special case� it is right�justi�ed� The � modi�er causes spacing to be

introduced before the �rst text segment� the # modi�er causes spacing to be

added after the last� The minpad parameter
default �� is the minimum num�
ber of padding characters to be output between each segment� The padding

character is speci�ed by padchar� which defaults to the space character� If the

total width needed to satisfy these constraints is greater than mincol� then the

width used is mincol#k&colinc for the smallest possible non�negative integer
value k� colinc defaults to
� and mincol defaults to ��

�format nil �
��foo �bar ��� � �foo bar�

�format nil �
���foo �bar ��� � � foo bar�

�format nil �
��#�foo �bar ��� � � foo bar �

�format nil �
��foobar ��� � � foobar�

�format nil �
���foobar ��� � � foobar�

	� COMMON LISP

�format nil �
�#�foobar ��� � �foobar �

�format nil �
��#�foobar ��� � � foobar �

Note that str may include format directives� All the clauses in str are

processed in order� it is the resulting pieces of text that are justi�ed�

The directive may be used to terminate processing of the clauses pre�

maturely� in which case only the completely processed clauses are justi�ed�
If the �rst clause of a � is terminated with �� instead of �� then it is used

in a special way� All of the clauses are processed
subject to � of course��

but the �rst one is not used in performing the spacing and padding� When

the padded result has been determined� then if it will �t on the current line of
output� it is output� and the text for the �rst clause is discarded� If� however�

the padded text will not �t on the current line� then the text segment for the

�rst clause is output before the padded text� The �rst clause ought to contain

a newline
such as a " directive�� The �rst clause is always processed� and

so any arguments it refers to will be used� the decision is whether to use the
resulting segment of text� not whether to process the �rst clause� If the ��

has a pre�x parameter n� then the padded text must �t on the current line

with n character positions to spare to avoid outputting the �rst clause�s text�

For example� the control string

� "�� � � "��
�� S � � �� "�

can be used to print a list of items separated by commas without breaking
items over line boundaries� beginning each line with �� � The pre�x parameter

 in
�� accounts for the width of the comma that will follow the justi�ed

item if it is not the last element in the list� or the period if it is� If ��

has a second pre�x parameter� then it is used as the width of the line� thus

overriding the natural line width of the output stream� To make the preceding
example use a line width of ��� one would write

� "�� � � "��
����� S � � �� "�

If the second argument is not speci�ed� then format uses the line width of

the output stream� If this cannot be determined
for example� when producing

a string result�� then format uses 	� as the line length�

�

Terminates a �� It is an error elsewhere�

X�J�� voted in June ���� h���i to introduce certain format directives to

support the user interface to the pretty printer� If �� is used to terminate a

INPUT
OUTPUT
	�

���� directive� the directive is equivalent to a call on pprintlogicalblock�

See section ���� for details�

Up and out� This is an escape construct� If there are no more arguments

remaining to be processed� then the immediately enclosing � or � construct

is terminated� If there is no such enclosing construct� then the entire format�
ting operation is terminated� In the � case� the formatting is performed� but

no more segments are processed before doing the justi�cation� The should

appear only at the beginning of a � clause� because it aborts the entire clause

it appears in
as well as all following clauses�� may appear anywhere in a
� construct�

�setq donestr �Done� D warning �P� D error �P���

�format nil donestr� � �Done��

�format nil donestr �� � �Done� � warnings��

�format nil donestr
 �� � �Done�
 warning� � errors��

If a pre�x parameter is given� then termination occurs if the parameter is

zero�
Hence is equivalent to ��� �� If two parameters are given� termination

occurs if they are equal� If three parameters are given� termination occurs if

the �rst is less than or equal to the second and the second is less than or
equal to the third� Of course� this is useless if all the pre�x parameters are

constants� at least one of them should be a ��� or a V parameter�

If is used within a �� construct� then it merely terminates the current
iteration step
because in the standard case it tests for remaining arguments

of the current step only�� the next iteration step commences immediately� To

terminate the entire iteration process� use � �

X�J�� voted in March ���� h��i to clarify the behavior of � as follows�

It may be used only if the command it would terminate is �� or �#�� The

entire iteration process is terminated if and only if the sublist that is supplying

the arguments for the current iteration step is the last sublist
in the case of
terminating a �� command� or the last argument to that call to format
in

the case of terminating a �#� command�� Note furthermore that while is

equivalent to ��� in all circumstances� � is not equivalent to ���� because

the latter terminates the entire iteration if and only if no arguments remain

for the current iteration step
as opposed to no arguments remaining for the
entire iteration process��

Here are some examples of the di	erences in the behaviors of � � � and

���� �

	� COMMON LISP

�format nil

� �� S ��� ��

��hot dog� �hamburger� �ice cream� �french fries���

� � HOT ��� HAMBURGER ICE ��� FRENCH ����

For each sublist� � ���� appears after the �rst word unless there are no ad�

ditional words�

�format nil

� �� S � ��� ��

��hot dog� �hamburger� �ice cream� �french fries���

� � HOT ��� HAMBURGER ��� ICE ��� FRENCH�

For each sublist� � ���� always appears after the �rst word� unless it is the

last sublist� in which case the entire iteration is terminated�

�format nil

� �� S ���� ��� ��

��hot dog� �hamburger� �ice cream� �french fries���

� � HOT ��� HAMBURGER�

For each sublist� � ���� appears after the �rst word� but if the sublist has

only one word then the entire iteration is terminated�
If appears within a control string being processed under the control of

a � directive� but not within any � or � construct within that string� then

the string being processed will be terminated� thereby ending processing of

the � directive� Processing then continues within the string containing the

� directive at the point following that directive�
If appears within a � or � construct� then all the commands up to

the are properly selected or case�converted� the � or � processing is

terminated� and the outward search continues for a � or � construct to be

terminated� For example�

�setq tellstr � #� #� R � A� ���

�format nil tellstr ��� � �Twentythree��

�format nil tellstr nil �losers�� � �Losers��

�format nil tellstr �� �losers�� � �Twentythree losers��

Here are some examples of the use of within a � construct�

�format nil �
�� S � S � S �� foo�

INPUT
OUTPUT
		

� � FOO�

�format nil �
�� S � S � S �� foo bar�

� �FOO BAR�

�format nil �
�� S � S � S �� foo bar baz�

� �FOO BAR BAZ�

Compatibility note� The Q directive and user
de�ned directives of Zetalisp have
���

been omitted here� as well as control lists �as opposed to strings�� which are rumored
to be changing in meaning�

X�J�� voted in June ���� h���i to introduce user�de�ned directives in the

form of the ��� directive� See section ���� for details�

The hairiest format control string I have ever seen in shown in table �����

It started innocently enough as part of the simulator for Connection Ma�

chine Lisp ���� ���� the xapping data type� de�ned by defstruct� needed a
�printfunction option so that xappings would print properly� As this data

type became more complicated� step by step� so did the format control string�

See the description of setmacrocharacter for a discussion of xappings and

the defstruct de�nition� Assume that the predicate xectorp is true of a

xapping if it is a xector� and that the predicate finitepartisxetp is true if

every value in the range is the same as its corresponding index�

Here is a blow�by�blow description of the parts of this format string�

	
 COMMON LISP

Table ���	� Print Function for the Xapping Data Type

�defun printxapping �xapping stream depth�

�declare �ignore depth��

�format stream

�� Are you ready for this one�

� ��! �� � �! S ��� S � � � � # �� � �

! S� # �� � � � � �� S �� � � ��# �� ��

�� Is that clear�

�xectorp xapping�

�do ��vp �xectorp xapping��

�sp �finitepartisxetp xapping��

�d �xappingdomain xapping� �cdr d��

�r �xappingrange xapping� �cdr r��

�z �� �cons �list �if vp �car r� �car d��

�or vp sp�

�car r��

z���

��null d� �reverse z���

�and �xappingdomain xapping�

�or �xappingexceptions xapping�

�xappinginfinite xapping���

�xappingexceptions xapping�

�and �xappingexceptions xapping�

�xappinginfinite xapping��

�ecase �xappinginfinite xapping�

��nil�
�

��constant 	�

��universal ���

�xappingdefault xapping�

�xectorp xapping���

See section ������ for the defstruct de�nition of the xapping data type� whose
accessor functions are used in this code�

��� �� � Print ��� for a xector� and ��� otherwise�

�� S ��� S �
 � � � Given a list of lists� print the pairs� Each sublist

has three elements� the index
or the value if
we�re printing a xector�� a
ag that is true for

either a xector or xet
in which case no arrow

is printed�� and the value� Note the use of ��

to iterate� and the use of � to avoid printing
a separating space after the �nal pair
or at all�

if there are no pairs��

�� � � If there were pairs and there are exceptions or

an in�nite part� print a separating space�

hnewlinei Do nothing� This merely allows the format con�
trol string to be broken across two lines�

� S� � Given a list of exception indices� print them�

Note the use of � to iterate� and the use of

to avoid printing a separating space after
the �nal exception
or at all� if there are no

exceptions��

�� � � If there were exceptions and there is an in�nite

part� print a separating space�

�
 �� S ��
 � Use � to choose one of three cases for printing

INPUT
OUTPUT
	�

����� Querying the User

The following functions provide a convenient and consistent interface for ask�

ing questions of the user� Questions are printed and the answers are read using

the stream
queryio
� which normally is synonymous with
terminalio
 but
can be rebound to another stream for special applications�

�Function�yornp �optional formatstring �rest arguments

This predicate is for asking the user a question whose answer is either �yes�
or �no�� It types out a message
if supplied�� reads an answer in some

implementation�dependent manner
intended to be short and simple� like

reading a single character such as Y or N�� and is true if the answer was

�yes� or false if the answer was �no��

If the format�string argument is supplied and not nil� then a freshline

operation is performed� then a message is printed as if the format�string and

arguments were given to format� Otherwise it is assumed that any message

has already been printed by other means� If you want a question mark at
the end of the message� you must put it there yourself� yornp will not add

it� However� the message should not contain an explanatory note such as

�Y or N�� because the nature of the interface provided for yornp by a given

implementation might not involve typing a character on a keyboard� yornp

will provide such a note if appropriate�

All input and output are performed using the stream in the global variable

queryio
�

Here are some examples of the use of yornp�

	� COMMON LISP

�yornp �Produce listing file���

�yornp �Cannot connect to network host S� Retry�� host�

yornp should only be used for questions that the user knows are coming or

in situations where the user is known to be waiting for a response of some kind�

If the user is unlikely to anticipate the question� or if the consequences of the

answer might be grave and irreparable� then yornp should not be used because

the user might type ahead and thereby accidentally answer the question� For
such questions as �Shall I delete all of your �les$� it is better to use yesornop�

�Function�yesornop �optional formatstring �rest arguments

This predicate� like yornp� is for asking the user a question whose answer is

either �yes� or �no�� It types out a message
if supplied�� attracts the user�s

attention
for example� by ringing the terminal�s bell�� and reads a reply in
some implementation�dependent manner� It is intended that the reply require

the user to take more action than just a single keystroke� such as typing the

full word yes or no followed by a newline�

If the format�string argument is supplied and not nil� then a freshline

operation is performed� then a message is printed as if the format�string and
arguments were given to format� Otherwise it is assumed that any message

has already been printed by other means� If you want a question mark at the

end of the message� you must put it there yourself� yesornop will not add it�

However� the message should not contain an explanatory note such as �Yes
or No� because the nature of the interface provided for yesornop by a given

implementation might not involve typing the reply on a keyboard� yesornop

will provide such a note if appropriate�

All input and output are performed using the stream in the global variable

queryio
�
To allow the user to answer a yes�or�no question with a single character� use

yornp� yesornop should be used for unanticipated or momentous questions�

this is why it attracts attention and why it requires a multiple�action sequence

to answer it�

��

File System Interface

A frequent use of streams is to communicate with a
le system to which groups

of data
�les� can be written and from which �les can be retrieved�

Common Lisp de�nes a standard interface for dealing with such a �le sys�
tem� This interface is designed to be simple and general enough to accommo�

date the facilities provided by �typical� operating system environments within

which Common Lisp is likely to be implemented� The goal is to make Com�

mon Lisp programs that perform only simple operations on �les reasonably

portable�

To this end� Common Lisp assumes that �les are named� that given a name

one can construct a stream connected to a �le of that name� and that the

names can be �t into a certain canonical� implementation�independent form
called a pathname�

Facilities are provided for manipulating pathnames� for creating streams

connected to �les� and for manipulating the �le system through pathnames
and streams�

����� File Names

Common Lisp programs need to use names to designate �les� The main

di�culty in dealing with names of �les is that di	erent �le systems have

di	erent naming formats for �les� For example� here is a table of several

�le systems
actually� operating systems that provide �le systems� and what

equivalent �le names might look like for each one�

	�

� COMMON LISP

System File Name

TOPS��� �LISPIO�FORMAT�FASL�
�

TOPS��� FORMAT�FAS�
���

ITS LISPIO�FORMAT FASL

MULTICS �udd�LispIO�format�fasl

TENEX �LISPIO�FORMAT�FASL�
�

VAX�VMS �LISPIO�FORMAT�FAS�
�

UNIX usr lispio format�fasl

It would be impossible for each program that deals with �le names to know

about each di	erent �le name format that exists� a new Common Lisp imple�

mentation might use a format di	erent from any of its predecessors� Therefore�
Common Lisp provides two ways to represent �le names� namestrings� which

are strings in the implementation�dependent form customary for the �le sys�

tem� and pathnames� which are special abstract data objects that represent

�le names in an implementation�independent way� Functions are provided to
convert between these two representations� and all manipulations of �les can

be expressed in machine�independent terms by using pathnames�

In order to allow Common Lisp programs to operate in a network environ�

ment that may have more than one kind of �le system� the pathname facility

allows a �le name to specify which �le system is to be used� In this con�
text� each �le system is called a host� in keeping with the usual networking

terminology�

Di	erent hosts may use di	erent notations for �le names� Common Lisp

allows customary notation to be used for each host� but also supports a system
of logical pathnames that provides a standard framework for naming �les in

a portable manner
see section ��������

������� Pathnames

All �le systems dealt with by Common Lisp are forced into a common frame�

work� in which �les are named by a Lisp data object of type pathname�

A pathname always has six components� described below� These compo�

nents are the common interface that allows programs to work the same way
with di	erent �le systems� the mapping of the pathname components into the

concepts peculiar to each �le system is taken care of by the Common Lisp

implementation�

host

The name of the �le system on which the �le resides�

FILE SYSTEM INTERFACE

�

device

Corresponds to the �device� or ��le structure� concept in many host �le
systems� the name of a
logical or physical� device containing �les�

directory

Corresponds to the �directory� concept in many host �le systems� the name of

a group of related �les
typically those belonging to a single user or project��

name

The name of a group of �les that can be thought of as the �same� �le�

type

Corresponds to the ��letype� or �extension� concept in many host �le sys�

tems� identi�es the type of �le� Files with the same names but di	erent types

are usually related in some speci�c way� for instance� one being a source �le�

another the compiled form of that source� and a third the listing of error

messages from the compiler�

version

Corresponds to the �version number� concept in many host �le systems� Typ�
ically this is a number that is incremented every time the �le is modi�ed�

Note that a pathname is not necessarily the name of a speci�c �le� Rather�

it is a speci�cation
possibly only a partial speci�cation� of how to access a �le�

A pathname need not correspond to any �le that actually exists� and more

than one pathname can refer to the same �le� For example� the pathname
with a version of �newest� may refer to the same �le as a pathname with the

same components except a certain number as the version� Indeed� a pathname

with version �newest� may refer to di	erent �les as time passes� because the

meaning of such a pathname depends on the state of the �le system� In �le

systems with such facilities as �links�� multiple �le names� logical devices�
and so on� two pathnames that look quite di	erent may turn out to address

the same �le� To access a �le given a pathname� one must do a �le system

operation such as open�

Two important operations involving pathnames are parsing and merging�

Parsing is the conversion of a namestring
which might be something sup�

plied interactively by the user when asked to supply the name of a �le� into a

pathname object� This operation is implementation�dependent� because the

format of namestrings is implementation�dependent� Merging takes a path�

� COMMON LISP

name with missing components and supplies values for those components from

a source of defaults�

Not all of the components of a pathname need to be speci�ed� If a com�
ponent of a pathname is missing� its value is nil� Before the �le system

interface can do anything interesting with a �le� such as opening the �le� all

the missing components of a pathname must be �lled in
typically from a set

of defaults�� Pathnames with missing components may be used internally for
various purposes� in particular� parsing a namestring that does not specify

certain components will result in a pathname with missing components�

X�J�� voted in January ���� h���i to permit any component of a pathname
to have the value �unspecific� meaning that the component simply does not

exist� for �le systems in which such a value makes sense�
For example� a

UNIX �le system usually does not support version numbers� so the version

component of a pathname for a UNIX host might be �unspecific� Similarly�

the �le type is usually regarded in a UNIX �le system as the part of a name
after a period� but some �le names contain no periods and therefore have no

�le types��

When a pathname is converted to a namestring� the values nil and

�unspecific have the same e	ect� they are treated as if the component

were empty
that is� they each cause the component not to appear in the

namestring�� When merging� however� only a nil value for a component will

be replaced with the default for that component� the value �unspecific will
be left alone as if the �eld were �lled�

The results are unde�ned if �unspecific is supplied to a �le system in a
component for which �unspecific does not make sense for that �le system�

Programming hint� portable programs should be prepared to handle the

value �unspecific in the device� directory� type� or version �eld in some im�
plementations� Portable programs should not explicitly place �unspecific in

any �eld because it might not be permitted in some situations� but portable

programs may sometimes do so implicitly
by copying such a value from an�

other pathname� for example��

A component of a pathname can also be the keyword �wild� This is only
���

useful when the pathname is being used with a directory�manipulating op�

eration� where it means that the pathname component matches anything�
The printed representation of a pathname typically designates �wild by an

asterisk� however� this is host�dependent�

See section ������ for a discussion of new wildcard pathname facilities�

What values are allowed for components of a pathname depends� in general�

on the pathname�s host� However� in order for pathnames to be usable in a

system�independent way� certain global conventions are adhered to� These

FILE SYSTEM INTERFACE

�

conventions are stronger for the type and version than for the other compo�

nents� since the type and version are explicitly manipulated by many pro�

grams� while the other components are usually treated as something supplied

by the user that just needs to be remembered and copied from place to place�

The type is always a string or nil or �wild� It is expected that most
programs that deal with �les will supply a default type for each �le�

The version is either a positive integer or a special symbol� The meanings

of nil and �wild have been explained above� The keyword �newest refers to

the largest version number that already exists in the �le system when read�
ing a �le� or to a version number greater than any already existing in the

�le system when writing a new �le� Some Common Lisp implementors may

choose to de�ne other special version symbols� Some semi�standard names�

suggested but not required to be supported by every Common Lisp imple�
mentation� are �oldest� to refer to the smallest version number that exists

in the �le system� �previous� to refer to the version previous to the newest

version� and �installed� to refer to a version that is o�cially installed for

users
as opposed to a working or development version�� Some Common Lisp

implementors may also choose to attach a meaning to non�positive version
numbers
a typical convention is that � is synonymous with �newest and

with �previous�� but such interpretations are implementation�dependent�

The host may be a string� indicating a �le system� or a list of strings� of

which the �rst names the �le system and the rest may be used for such a
purpose as inter�network routing�

The device� directory� and name can each be a string
with host�dependent
���

rules on allowed characters and length� or possibly some other Common Lisp

data structure
in which case such a component is said to be structured and

has an implementation�dependent format�� Structured components may be
used to handle such �le system features as hierarchical directories� Common

Lisp programs do not need to know about structured components unless they

do host�dependent operations� Specifying a string as a pathname component

for a host that requires a structured component will cause conversion of the
string to the appropriate form�

X�J�� voted in June ���� h���i to de�ne a speci�c format for structured

directories
see section ��������

X�J�� voted in June ���� h���i to approve the following clari�cations and
speci�cations of precisely what are valid values for the various components of

a pathname�

Pathname component value strings never contain the punctuation charac�

ters that are used to separate �elds in a namestring
for example� slashes and

periods as used in UNIX �le systems�� Punctuation characters appear only in

� COMMON LISP

namestrings� Characters used as punctuation can appear in pathname com�

ponent values with a non�punctuation meaning if the �le system allows it
for

example� UNIX �le systems allow a �le name to begin with a period��

When examining pathname components� conforming programs must be pre�

pared to encounter any of the following siutations�

� Any component can be nil� which means the component has not been

speci�ed�

� Any component can be �unspecific� which means the component has no

meaning in this particular pathname�

� The device� directory� name� and type can be strings�

� The host can be any object� at the discretion of the implementation�

� The directory can be a list of strings and symbols as described in sec�
tion �������

� The version can be any symbol or any integer� The symbol �newest refers

to the largest version number that already exists in the �le system when

reading� overwriting� appending� superseding� or directory�listing an exist�
ing �le� it refers to the smallest version number greater than any existing

version number when creating a new �le� Other symbols and integers have

implementation�de�ned meaning� It is suggested� but not required� that

implementations use positive integers starting at � as version numbers�
recognize the symbol �oldest to designate the smallest existing version

number� and use keyword symbols for other special versions�

When examining wildcard components of a wildcard pathname� conforming

programs must be prepared to encounter any of the following additional values

in any component or any element of a list that is the directory component�

� The symbol �wild� which matches anything�

� A string containing implementation�dependent special wildcard characters�

� Any object� representing an implementation�dependent wildcard pattern�

When constructing a pathname from components� conforming programs

must follow these rules�

� Any component may be nil� Specifying nil for the host may� in some

implementations� result in using a default host rather than an actual nil

value�

FILE SYSTEM INTERFACE

	

� The host� device� directory� name� and type may be strings� There are

implementation�dependent limits on the number and type of characters in

these strings� A plausible assumption is that letters
of a single case� and

digits are acceptable to most �le systems�

� The directory may be a list of strings and symbols as described in sec�

tion ������� There are implementation�dependent limits on the length and

contents of the list�

� The version may be �newest�

� Any component may be taken from the corresponding component of an�

other pathname� When the two pathnames are for di	erent �le systems
in

implementations that support multiple �le systems�� an appropriate trans�

lation occurs� If no meaningful translation is possible� an error is signaled�
The de�nitions of �appropriate� and �meaningful� are implementation�

dependent�

� When constructing a wildcard pathname� the name� type� or version may
be �wild� which matches anything�

� An implementation might support other values for some components� but a

portable program should not use those values� A conforming program can

use implementation�dependent values but this can make it non�portable�
for example� it might work only with UNIX �le systems�

 COMMON LISP

The best way to compare two pathnames for equality is with equal� not

eql�
On pathnames� eql is simply the same as eq�� Two pathname objects

are equal if and only if all the corresponding components
host� device� and

so on� are equivalent�
Whether or not uppercase and lowercase letters are

considered equivalent in strings appearing in components depends on the �le
name conventions of the �le system�� Pathnames that are equal should be

functionally equivalent�

Some host �le systems have features that do not �t into this pathname
���

model� For instance� directories might be accessible as �les� there might be
complicated structure in the directories or names� or there might be a way to

specify a directory relative to a �current� directory� such as the � syntax in

MULTICS or the special ���� �le name of UNIX� Such features are not allowed

for by the standard Common Lisp �le system interface� An implementation is

free to accommodate such features in its pathname representation and provide
a parser that can process such speci�cations in namestrings� such features

are then likely to work within that single implementation� However� note

that once a program depends explicitly on any such features� it will not be

portable�
X�J�� voted in June ���� h���i to de�ne a speci�c format for structured

directories
see section �������� so some of the speci�c examples in the previous

paragraph no longer apply� but the principle is still correct�

������� Case Conventions

Issues of alphabetic case in pathnames are a major source of problems� In

some �le systems� the customary case is lowercase� in some uppercase� in some
mixed� Some �le systems are case�sensitive
that is� they treat FOO and foo

as di	erent �le names� and others are not�

There are two kinds of pathname case portability problems� moving pro�

grams from one Common Lisp to another� and moving pathname component

values from one �le system to another� The solution to the �rst problem is the
requirement that all Common Lisp implementations that support a particu�

lar �le system must use compatible representations for pathname component

values� The solution to the second problem is the use of a common represen�

tation for the least�common�denominator pathname component values that
exist on all interesting �le systems�

Requiring a common representation directly con
icts with the desire among

programmers that use only one �le system to work with the local conventions

and to ignore issues of porting to other �le systems� The common represen�

tation cannot be the same as local
varying� conventions�

FILE SYSTEM INTERFACE

�

X�J�� voted in June ���� h���i to add a keyword argument �case

to each of the functions makepathname� pathnamehost� pathnamedevice�

pathnamedirectory� pathnamename� and pathnametype� The possible val�

ues for the argument are �common and �local� The default is �local�

The value �local means that strings given to makepathname or returned

by any of the pathname component accessors follow the local �le system�s
conventions for alphabetic case� Strings given to makepathname will be used

exactly as written if the �le system supports both cases� If the �le system

supports only one case� the strings will be translated to that case�

The value �common means that strings given to makepathname or returned

by any of the pathname component accessors follow this common convention�

� All uppercase means that a �le system�s customary case will be used�

� All lowercase means that the opposite of the customary case will be used�

� Mixed case represents itself�

Uppercase is used as the common case for no better reason than consistency

with Lisp symbols� The second and third points allow translation from local

representation to common and back to be information�preserving�
Note that

translation from common to local representation and back may or may not be
information�preserving� depending on the nature of the local representation��

Namestrings always use �local �le system case conventions�

Finally� mergepathnames and translatepathname map customary case in

the input pathnames into customary case in the output pathname�

Examples of possible use of this convention�

� TOPS��� is case�sensitive and prefers uppercase� translating lowercase to
uppercase unless escaped with V� for a TOPS����based �le system� a Com�

mon Lisp implementation should use identical representations for common

and local�

� UNIX is case�sensitive and prefers lowercase� for a UNIX�based �le system� a

Common Lisp implementation should translate between common and local
representations by inverting the case of non�mixed�case strings�

� VAX�VMS is uppercase�only
that is� the �le system translates all �le name

arguments to uppercase�� for a VAX�VMS�based �le system� a Common

Lisp implementation should translate common representation to local by

converting to uppercase and should translate local representation to com�

mon with no change�

� COMMON LISP

� The Macintosh operating system is case�insensitive and prefers lowercase�

but remembers the cases of letters actually used to name a �le� for a

Macintosh�based �le system� a Common Lisp implementation should trans�

late between common and local representations by inverting the case of

non�mixed�case strings and should ignore case when determining whether
two pathnames are equal�

FILE SYSTEM INTERFACE

�

Here are some examples of this behavior� Assume that the host T runs

TOPS���� U runs UNIX� V runs VAX�VMS� and M runs the Macintosh oper�

ating system�

��� Returns two values� the PATHNAMENAME from a namestring

��� in �COMMON and �LOCAL representations �in that order��

�defun pathnameexample �name�

�let ��path �parsenamestring name����

�values �pathnamename path �case �common�

�pathnamename path �case �local����

�Common Local
�pathnameexample �T��ME�FOO�LISP�� � �FOO� and �FOO�

�pathnameexample �T��ME�foo�LISP�� � �FOO� and �FOO�

�pathnameexample �T��ME� Vf Vo Vo�LISP�� � �foo� and �foo�

�pathnameexample �T��ME�TeX�LISP�� � �TEX� and �TEX�

�pathnameexample �T��ME�T VeX�LISP�� � �TeX� and �TeX�

�pathnameexample �U� me FOO�lisp�� � �foo� and �FOO�

�pathnameexample �U� me foo�lisp�� � �FOO� and �foo�

�pathnameexample �U� me TeX�lisp�� � �TeX� and �TeX�

�pathnameexample �V��me�FOO�LISP�� � �FOO� and �FOO�

�pathnameexample �V��me�foo�LISP�� � �FOO� and �FOO�

�pathnameexample �V��me�TeX�LISP�� � �TEX� and �TEX�

�pathnameexample �M�FOO�LISP�� � �foo� and �FOO�

�pathnameexample �M�foo�LISP�� � �FOO� and �foo�

�pathnameexample �M�TeX�LISP�� � �TeX� and �TeX�

The following example illustrates the creation of new pathnames� The name

is converted from common representation to local because namestrings always
use local conventions�

�defun makepathnameexample �h n�

�namestring �makepathname �host h �name n �case �common��

�makepathnameexample �T� �FOO�� � �T�FOO�

�makepathnameexample �T� �foo�� � �T� Vf Vo Vo�

�makepathnameexample �T� �TeX�� � �T�T VeX�

�makepathnameexample �U� �FOO�� � �U�foo�

�makepathnameexample �U� �foo�� � �U�FOO�

�makepathnameexample �U� �TeX�� � �U�TeX�

�makepathnameexample �V� �FOO�� � �V�FOO�

�� COMMON LISP

�makepathnameexample �V� �foo�� � �V�FOO�

�makepathnameexample �V� �TeX�� � �V�TeX�

�makepathnameexample �M� �FOO�� � �M�foo�

�makepathnameexample �M� �foo�� � �M�FOO�

�makepathnameexample �M� �TeX�� � �M�TeX�

A big advantage of this set of conventions is that one can� for example� call

makepathname with �type �LISP� and �case �common� and the result will
appear in a namestring as �LISP or �lisp� whichever is appropriate�

������� Structured Directories

X�J�� voted in June ���� h���i to de�ne a speci�c pathname component

format for structured directories�

The value of a pathname�s directory component may be a list� The car of

the list should be a keyword� either �absolute or �relative� Each remaining
element of the list should be a string or a symbol
see below�� Each string

names a single level of directory structure and should consist of only the

directory name without any punctuation characters�

A list whose car is the symbol �absolute represents a directory path start�

ing from the root directory� For example� the list ��absolute� represents the
root directory itself� the list ��absolute �foo� �bar� �baz�� represents the

directory that in a UNIX �le system would be called foo bar baz�

A list whose car is the symbol �relative represents a directory path start�

ing from a default directory� The list ��relative� has the same meaning
as nil and hence normally is not used� The list ��relative �foo� �bar��

represents the directory named bar in the directory named foo in the default

directory�

In place of a string� at any point in the list� a symbol may occur to indicate

a special �le notation� The following symbols have standard meanings�

�wild Wildcard match of one level of directory structure

�wild�inferiors Wildcard match of any number of directory levels

�up Go upward in directory structure
semantic�

�back Go upward in directory structure
syntactic�

See section ������ for a discussion of wildcard pathnames��

Implementations are permitted to add additional objects of any non�string

type if necessary to represent features of their �le systems that cannot be rep�

resented with the standard strings and symbols� Supplying any non�string�

FILE SYSTEM INTERFACE
��

including any of the symbols listed below� to a �le system for which it does

not make sense signals an error of type fileerror� For example� most im�

plementations of the UNIX �le system do not support �wildinferiors� Any

directory list in which �absolute or �wildinferiors is immediately followed

by �up or �back is illegal and when processed causes an error to be signaled�

The keyword �back has a �syntactic� meaning that depends only on the

pathname and not on the contents of the �le system� The keyword �up has
a �semantic� meaning that depends on the contents of the �le system� to

resolve a pathname containing �up to a pathname whose directory component

contains only �absolute and strings requires a search of the �le system� Note

that use of �up instead of �back can result in designating a di	erent actual
directory only in �le systems that support multiple names for directories�

perhaps via symbolic links� For example� suppose that there is a directory

link such that

��absolute �X� �Y�� is linked to ��absolute �A� �B��

and there also exist directories

��absolute �A� �Q�� and ��absolute �X� �Q��

Then

��absolute �X� �Y� �up �Q�� designates ��absolute �A� �Q��

but

��absolute �X� �Y� �back �Q�� designates ��absolute �X� �Q��

If a string is used as the value of the �directory argument to

makepathname� it should be the name of a top�level directory and should

not contain any punctuation characters� Specifying a string s is equivalent to

specifying the list ��absolute s�� Specifying the symbol �wild is equivalent
to specifying the list ��absolute �wildinferiors�
or ��absolute �wild�

in a �le system that does not support �wildinferiors��

The function pathnamedirectory always returns nil� �unspecific� or a

list!never a string� never �wild� If a list is returned� it is not guaranteed to

be freshly consed� the consequences of modifying this list are unde�ned�

In non�hierarchical �le systems� the only valid list values for the direc�

tory component of a pathname are ��absolute s�
where s is a string� and

��absolute �wild�� The keywords �relative� �wildinferiors� �up� and

�back are not used in non�hierarchical �le systems�

�� COMMON LISP

Pathname merging treats a relative directory specially� Let path�

name and defaults be the �rst two arguments to mergepathnames� If

�pathnamedirectory pathname� is a list whose car is �relative� and

�pathnamedirectory defaults� is a list� then the merged directory is the

value of

�append �pathnamedirectory defaults�

�cdr �Remove �relative from the front

�pathnamedirectory pathname���

except that if the resulting list contains a string or �wild immediately followed

by �back� both of them are removed� This removal of redundant occurrences

of �back is repeated as many times as possible� If �pathnamedirectory

defaults� is not a list or �pathnamedirectory pathname� is not a list whose

car is �relative� the merged directory is the value of

�or �pathnamedirectory pathname�

�pathnamedirectory defaults��

A relative directory in the pathname argument to a function such as open is

merged with the value of
defaultpathnamedefaults
 before the �le system
is accessed�

Here are some examples of the use of structured directories� Suppose that
host L supports a Symbolics Lisp Machine �le system� host U supports a UNIX

�le system� and host V supports a VAX�VMS �le system�

�pathnamedirectory �parsenamestring �V��FOO�BAR�BAZ�LSP���

� ��ABSOLUTE �FOO� �BAR��

�pathnamedirectory �parsenamestring �U� foo bar baz�lisp���

� ��ABSOLUTE �foo� �bar��

�pathnamedirectory �parsenamestring �U��� baz�lisp���

� ��RELATIVE �UP�

�pathnamedirectory �parsenamestring �U� foo bar �� mum baz���

� ��ABSOLUTE �foo� �bar� �UP �mum��

�pathnamedirectory �parsenamestring �U�bar �� �� ztesch zip���

� ��RELATIVE �bar� �UP �UP �ztesch��

�pathnamedirectory �parsenamestring �L��foo�

�bar�baz�lisp���

� ��ABSOLUTE �FOO� �WILDINFERIORS �BAR��

FILE SYSTEM INTERFACE
��

�pathnamedirectory �parsenamestring �L��foo�
�bar�baz�lisp���

� ��ABSOLUTE �FOO� �WILD �BAR��

������� Extended Wildcards

Some �le systems provide more complex conventions for wildcards than sim�

ple component�wise wildcards representable by �wild� For example� the

namestring �F
O� might mean a normal three�character name� a three�
character name with the middle character wild� a name with at least two char�

acters� beginning with F and ending with O� or perhaps a wild match spanning

multiple directories� Similarly� the namestring ��foo�

�bar�� might imply

that the middle directory is named �

�� the middle directory is �wild� there

are zero or more middle directories that are �wild� or perhaps that the middle
directory name matches any two�letter name� Some �le systems support even

more complex wildcards� such as regular expressions�

X�J�� voted in June ���� h���i to provide some facilities for dealing with

more general wildcard pathnames in a fairly portable manner�

�Function�wildpathnamep pathname �optional
eldkey

Tests a pathname for the presence of wildcard components� If the �rst argu�
ment is not a pathname� string� or �le stream� an error of type typeerror is

signaled�

If no
eld�key is provided� or the
eld�key is nil� the result is true if and

only if pathname has any wildcard components�

If a non�null
eld�key is provided� it must be one of �host� �device�
�directory� �name� �type� or �version� In this case� the result is true if

and only if the indicated component of pathname is a wildcard�

Note that X�J�� voted in June ���� h���i to specify that an implementation

need not support wildcards in all �elds� the only requirement is that the

name� type� or version may be �wild� However� portable programs should be

prepared to encounter either �wild or implementation�dependent wildcards in

any pathname component� The function wildpathnamep provides a portable
way for testing the presence of wildcards�

�Function�pathnamematchp pathname wildname

This predicate is true if and only if the pathname matches the wildname� The

matching rules are implementation�de�ned but should be consistent with the

�� COMMON LISP

behavior of the directory function� Missing components of wildname default

to �wild�

If either argument is not a pathname� string� or �le stream� an error of

type typeerror is signaled� It is valid for pathname to be a wild pathname�

a wildcard �eld in pathname will match only a wildcard �eld in wildname�

that is� pathnamematchp is not commutative� It is valid for wildname to be a

non�wild pathname� I believe that in this case pathnamematchp will have the
same behavior as equal� though the X�J�� speci�cation did not say so�

�Function�translatepathname source fromwildname towildname �key

Translates the pathname source� which must match from�wildname� into a

corresponding pathname
call it result�� which is constructed so as to match

to�wildname� and returns result�

The pathname result is a copy of to�wildname with each missing or wild�

card �eld replaced by a portion of source� for this purpose a wildcard �eld is a

pathname component with a value of �wild� a �wild element of a list�valued
directory component� or an implementation�de�ned portion of a component�

such as the
 in the complex wildcard string �foo
bar� that some implemen�

tations support� An implementation that adds other wildcard features� such

as regular expressions� must de�ne how translatepathname extends to those
features� A missing �eld is a pathname component that is nil�

The portion of source that is copied into result is implementation�de�ned�
Typically it is determined by the user interface conventions of the �le sys�

tems involved� Usually it is the portion of source that matches a wildcard

�eld of from�wildname that is in the same position as the missing or wild�

card �eld of to�wildname� If there is no wildcard �eld in from�wildname at

that position� then usually it is the entire corresponding pathname compo�
nent of source or� in the case of a list�valued directory component� the entire

corresponding list element� For example� if the name components of source�

from�wildname� and to�wildname are �gazonk�� �gaz
�� and �h
� respec�

tively� then in most �le systems the wildcard �elds of the name component of
from�wildname and to�wildname are each �
�� the matching portion of source

is �onk�� and the name component of result is �honk�� however� the exact be�

havior of translatepathname is not dictated by the Common Lisp language

and may vary according to the user interface conventions of the �le systems

involved�

During the copying of a portion of source into result� additional

implementation�de�ned translations of alphabetic case or �le naming con�

FILE SYSTEM INTERFACE
�	

ventions may occur� especially when from�wildname and to�wildname are for

di	erent hosts�

If any of the �rst three arguments is not a pathname� string� or �le stream�

an error of type typeerror is signaled� It is valid for source to be a wild

pathname� in general this will produce a wild result pathname� It is valid
for from�wildname or to�wildname or both to be non�wild� An error is sig�

naled if the source pathname does not match the from�wildname� that is� if

�pathnamematchp source fromwildname� would not be true�

There are no speci�ed keyword arguments for translatepathname� but im�
plementations are permitted to extend it by adding keyword arguments� There

is one speci�ed return value from translatepathname� implementations are

permitted to extend it by returning additional values�

Here is an implementation suggestion� One �le system performs this op�

eration by examining corresponding pieces of the three pathnames in turn�
where a piece is a pathname component or a list element of a structured com�

ponent such as a hierarchical directory� Hierarchical directory elements in

from�wildname and to�wildname are matched by whether they are wildcards�

not by depth in the directory hierarchy� If the piece in to�wildname is present
and not wild� it is copied into the result� If the piece in to�wildname is �wild

or nil� the corresponding piece in source is copied into the result� Otherwise�

the piece in to�wildname might be a complex wildcard such as �foo
bar��

the portion of the piece in source that matches the wildcard portion of the

corresponding piece in from�wildname
or the entire source piece� if the from�
wildname piece is not wild and therefore equals the source piece� replaces the

wildcard portion of the piece in to�wildname and the value produced is used

in the result�

X�J�� voted in June ���� h���i to require translatepathname to map
customary case in argument pathnames to the customary case in returned

pathnames
see section ��������

Here are some examples of the use of the new wildcard pathname facilities�

These examples are not portable� They are written to run with particular �le

systems and particular wildcard conventions and are intended to be illustra�
tive� not prescriptive� Other implementations may behave di	erently�

�wildpathnamep �makepathname �name �wild�� � t

�wildpathnamep �makepathname �name �wild� �name� � t

�wildpathnamep �makepathname �name �wild� �type� � nil

�wildpathnamep �pathname �S��foo�

���� � t �Maybe
�wildpathnamep �makepathname �name �F
O��� � t �Probably

One cannot rely on renamefile to handle wild pathnames in a predictable

�
 COMMON LISP

manner� However� one can use translatepathname explicitly to control the

process�

�defun renamefiles �from to�

�Rename all files that match the first argument by

translating their names to the form of the second

argument� Both arguments may be wild pathnames��

�dolist �file �directory from��

�� DIRECTORY produces only pathnames that match fromwildname�

�renamefile file �translatepathname file from to����

Assuming one particular set of popular wildcard conventions� this function

might exhibit the following behavior� Not all �le systems will run this example

exactly as written�

�renamefiles � usr me
�lisp� � dev her
�l��

renames usr me init�lisp

to dev her init�l

�renamefiles � usr me pcl

� � sys pcl
 ��

renames usr me pcl�may low�lisp

to sys pcl pcl�may low�lisp

in some �le systems the result might be sys pcl �may low�lisp�

�renamefiles � usr me pcl

� � sys library
 ��

renames usr me pcl�may low�lisp

to sys library pcl�may low�lisp

in some �le systems the result might be sys library �may low�lisp�

�renamefiles � usr me foo�bar� � usr me� ��

renames usr me foo�bar

to usr me� foo�bar

�renamefiles � usr joe
recipes�text�

� usr jim personal cookbook joe s
rec�text��

renames usr joe lambrecipes�text

to usr jim personal cookbook joe slambrec�text

renames usr joe vegrecipes�text

to usr jim personal cookbook joe svegrec�text

renames usr joe cajunrecipes�text

to usr jim personal cookbook joe scajunrec�text

FILE SYSTEM INTERFACE
��

renames usr joe szechuanrecipes�text

to usr jim personal cookbook joe sszechuanrec�text

The following examples use UNIX syntax and the wildcard conventions of

one particular version of UNIX�

�namestring

�translatepathname � usr dmr hacks frob�l�

� usr d
 hacks
�l�

� usr d
 backup hacks backup
�
���

� � usr dmr backup hacks backupfrob�l�

�namestring

�translatepathname � usr dmr hacks frob�l�

� usr d
 hacks fr
�l�

� usr d
 backup hacks backup
�
���

� � usr dmr backup hacks backupob�l�

The following examples are similar to the preceding examples but use two

di	erent hosts� host U supports a UNIX �le system and host V supports a

VAX�VMS �le system� Note the translation of �le type
from l to LSP� and

the change of alphabetic case conventions�

�namestring

�translatepathname �U� usr dmr hacks frob�l�

�U� usr d
 hacks
�l�

�V�SYS!DISK��D
�BACKUP�HACKS�BACKUP
�
���

� �V�SYS!DISK��DMR�BACKUP�HACKS�BACKUPFROB�LSP�

�namestring

�translatepathname �U� usr dmr hacks frob�l�

�U� usr d
 hacks fr
�l�

�V�SYS!DISK��D
�BACKUP�HACKS�BACKUP
�
���

� �V�SYS!DISK��DMR�BACKUP�HACKS�BACKUPOB�LSP�

The next example is a version of the function translatelogicalpathname

simpli�ed a bit� for a logical host named FOO� The points of interest are
the use of pathnamematchp as a �test argument for assoc and the use of

translatepathname as a substrate for translatelogicalpathname�

�definecondition logicaltranslationerror �fileerror��

�� COMMON LISP

�defun mytranslatelogicalpathname �pathname �key rules�

�let ��rule �assoc pathname rules �test ��� pathnamematchp���

�unless rule

�error logicaltranslationerror �pathname pathname��

�translatepathname pathname �first rule� �second rule����

�mytranslatelogicalpathname

�FOO�CODE�BASIC�LISP�

�rules ���FOO�DOCUMENTATION�� �U� doc foo ��

��FOO�CODE�� �U� lib foo ��

��FOO�PATCHES�
�� �U� lib foo patch
 ����

� ���P�U� lib foo basic�l�

FILE SYSTEM INTERFACE
��

������� Logical Pathnames

Pathname values are not portable� but sometimes they must be mentioned in
a program
for example� the names of �les containing the program and the

data used by the program��

X�J�� voted in June ���� h���i to provide some facilities for portable path�

name values� The idea is to provide a portable framework for pathname values�
these logical pathnames are then mapped to physical
that is� actual� path�

names by a set of implementation�dependent or site�dependent rules� The

logical pathname facility therefore separates the concerns of program writing

and user software architecture from the details of how a software system is
embedded in a particular �le system or operating environment�

Pathname values are not portable because not all Common Lisp implemen�

tations use the same operating system and �le name syntax varies widely

among operating systems� In addition� corresponding �les at two di	erent
sites may have di	erent names even when the operating system is the same�

for example� they may be on di	erent directories or di	erent devices� The

Common Lisp logical pathname system de�nes a particular pathname struc�

ture and namestring syntax that must be supported by all implementations�

�Class �logicalpathname

This is a subclass of pathname�

��������� Syntax of Logical Pathname Namestrings

The syntax of a logical pathname namestring is as follows�

logical�namestring ��" �host �� ��� fdirectory �g� �name� �� type �� version� �

Note that a logical namestring has no device portion�

host ��" word

directory ��" word j wildcard�word j wildcard�inferiors
name ��" word j wildcard�word
type ��" word j wildcard�word
version ��" word j wildcard�word
word ��" fletter j digit j �g�
wildcard�word ��" �word �
 fword
g� �word �

wildcard�inferiors ��"

�� COMMON LISP

A word consists of one or more uppercase letters� digits� and hyphens�

A wildcard word consists of one or more asterisks� uppercase letters� digits�

and hyphens� including at least one asterisk� with no two asterisks adjacent�

Each asterisk matches a sequence of zero or more characters� The wildcard

word
 parses as �wild� all others parse as strings�

Lowercase letters may also appear in a word or wildcard word occurring in
a namestring� Such letters are converted to uppercase when the namestring

is converted to a pathname� The consequences of using other characters are

unspeci�ed�

The host is a word that has been de�ned as a logical pathname host by

using setf with the function logicalpathnametranslations�

There is no device� so the device component of a logical pathname is

always �unspecific� No other component of a logical pathname can be

�unspecific�

Each directory is a word� a wildcard word� or

which is parsed as

�wildinferiors�� If a semicolon precedes the directories� the directory com�
ponent is relative� otherwise it is absolute�

The name is a word or a wildcard word�

The type is a word or a wildcard word�

The version is a positive decimal integer or the word NEWEST
which is

parsed as �newest� or

which is parsed as �wild�� The letters in NEWEST

can be in either alphabetic case�

The consequences of using any value not speci�ed here as a logical pathname

component are unspeci�ed� The null string �� is not a valid value for any

component of a logical pathname� since the null string is not a word or a

wildcard word�

��������� Parsing of Logical Pathname Namestrings

Logical pathname namestrings are recognized

by the functions logicalpathname and translatelogicalpathname� The

host portion of the logical pathname namestring and its following colon must

appear in the namestring arguments to these functions�

The function parsenamestring recognizes a logical pathname namestring
when the host argument is logical or the defaults argument is a logical path�

name� In this case the host portion of the logical pathname namestring and

its following colon are optional� If the host portion of the namestring and the

host argument are both present and do not match� an error is signaled� The

host argument is logical if it is supplied and came from pathnamehost of a

FILE SYSTEM INTERFACE
��

logical pathname� Whether a host argument is logical if it is a string equal

to a logical pathname host name is implementation�de�ned�

The function mergepathnames recognizes a logical pathname namestring

when the defaults argument is a logical pathname� In this case the host portion

of the logical pathname namestring and its following colon are optional�
Whether the other functions that coerce strings to pathnames recognize

logical pathname namestrings is implementation�de�ned� These functions in�

clude parsenamestring in circumstances other than those described above�

mergepathnames in circumstances other than those described above� the
�defaults argument to makepathname� and the following functions�

compilefile filewritedate pathnamename

compilefilepathname hostnamestring pathnametype

deletefile load pathnameversion

directory namestring probefile

directorynamestring open renamefile

dribble pathname translatepathname

ed pathnamedevice truename

enoughnamestring pathnamedirectory wildpathnamep

fileauthor pathnamehost withopenfile

filenamestring pathnamematchp

Note that many of these functions must accept logical pathnames even though

they do not accept logical pathname namestrings�

��������� Using Logical Pathnames

Some real �le systems do not have versions� Logical pathname translation to

such a �le system ignores the version� This implies that a portable program

cannot rely on being able to store in a �le system more than one version of a

�le named by a logical pathname�
The type of a logical pathname for a Common Lisp source �le is LISP� This

should be translated into whatever implementation�de�ned type is appropriate

in a physical pathname�

The logical pathname host name SYS is reserved for the implementation�
The existence and meaning of logical pathnames for logical host SYS is

implementation�de�ned�

File manipulation functions must operate with logical pathnames according

to the following requirements�

� The following accept logical pathnames and translate them into physical

pathnames as if by calling the function translatelogicalpathname�

�� COMMON LISP

compilefile ed probefile

compilefilepathname fileauthor renamefile

deletefile filewritedate truename

directory load withopenfile

dribble open

� Applying the function pathname to a stream created by the function open

or the macro withopenfile using a logical pathname produces a logical
pathname�

� The functions truename� probefile� and directory never return logical
pathnames�

� Calling renamefilewith a logical pathname as the second argument returns
a logical pathname as the �rst value�

� makepathname returns a logical pathname if and only if the host is logical�
If the �host argument to makepathname is supplied� the host is logical if

it came from the pathnamehost of a logical pathname� Whether a �host

argument is logical if it is a string equal to a logical pathname host name

is implementation�de�ned�

�Function�logicalpathname pathname

Converts the argument to a logical pathname and returns it� The argument

can be a logical pathname� a logical pathname namestring containing a host

component� or a stream for which the pathname function returns a logical

pathname� For any other argument� logicalpathname signals an error of
type typeerror�

�Function�translatelogicalpathname pathname �key

Translates a logical pathname to the corresponding physical pathname� The

pathname argument is �rst coerced to a pathname� If it is not a pathname�

string� or �le stream� an error of type typeerror is signaled�
If the coerced argument is a physical pathname� it is returned�

If the coerced argument is a logical pathname� the �rst matching translation

according to pathnamematchp� of the logical pathname host is applied� as if

by calling translatepathname� If the result is a logical pathname� this process

is repeated� When the result is �nally a physical pathname� it is returned�

If no translation matches a logical pathname� an error of type fileerror

is signaled�

FILE SYSTEM INTERFACE
��

translatelogicalpathname may perform additional translations� typi�

cally to provide translation of �le types to local naming conventions� to ac�

commodate physical �le systems with names of limited length� or to deal

with special character requirements such as translating hyphens to under�

scores or uppercase letters to lowercase� Any such additional translations are
implementation�de�ned� Some implementations do no additional translations�

There are no speci�ed keyword arguments for translatelogicalpathname
but implementations are permitted to extend it by adding keyword argu�

ments� There is one speci�ed return value from translatelogicalpathname�

implementations are permitted to extend it by returning additional values�

�Function�logicalpathnametranslations host

If the speci�ed host is not the host component of a logical pathname and
is not a string that has been de�ned as a logical pathname host name by

setf of logicalpathnametranslations� this function signals an error of

type typeerror� otherwise� it returns the list of translations for the speci�

�ed host� Each translation is a list of at least two elements� from�wildname

and to�wildname� Any additional elements are implementation�de�ned� A
from�wildname is a logical pathname whose host is the speci�ed host� A to�

wildname is any pathname� Translations are searched in the order listed� so

more speci�c from�wildnames must precede more general ones�

�setf �logicalpathnametranslations host� translations� sets the list

of translations for the logical pathname host to translations� If host is a

string that has not previously been used as logical pathname host� a new

logical pathname host is de�ned� otherwise an existing host�s translations are
replaced� Logical pathname host names are compared with stringequal�

When setting the translations list� each from�wildname can be a logical
pathname whose host is host or a logical pathname namestring s parseable

by �parsenamestring s hostobject�� where host�object is an appropriate ob�

ject for representing the speci�ed host to parsenamestring�
This circuitous

speci�cation dodges the fact that parsenamestring does not necessarily

accept as its second argument any old string that names a logical host��
Each to�wildname can be anything coercible to a pathname by application

of the function pathname� If to�wildname coerces to a logical pathname�

translatelogicalpathname will retranslate the result� repeatedly if neces�

sary�

Implementations may de�ne additional functions that operate on logical

pathname hosts
for example� to specify additional translation rules or op�

tions��

�� COMMON LISP

�Function�loadlogicalpathnametranslations host

If a logical pathname host named host
a string� is already de�ned� this func�

tion returns nil� Otherwise� it searches for a logical pathname host de�nition

in an implementation�de�ned manner� If none is found� it signals an error� If
a de�nition is found� it installs the de�nition and returns t�

The search used by loadlogicalpathnametranslations should be doc�

umented� as logical pathname de�nitions will be created by users as well

as by Lisp implementors� A typical search technique is to look in an
implementation�de�ned directory for a �le whose name is derived from the

host name in an implementation�de�ned fashion�

�Function�compilefilepathname pathname �key �outputfile

Returns the pathname that compilefile would write into� if given the

same arguments� If the pathname argument is a logical pathname and the
�outputfile argument is unspeci�ed� the result is a logical pathname� If

an implementation supports additional keyword arguments to compilefile�

compilefilepathname must accept the same arguments�

��������� Examples of the Use of Logical Pathnames

Here is a very simple example of setting up a logical pathname host named

FOO� Suppose that no translations are necessary to get around �le system

restrictions� so all that is necessary is to specify the root of the physical

directory tree that contains the logical �le system� The namestring syntax in
the to�wildname is implementation�speci�c�

�setf �logicalpathnametranslations �foo��

���

�
�
�
� �MYLISPM��library�foo�

�����

The following is a sample use of that logical pathname� All return values are
of course implementation�speci�c� all of the examples in this section are of

course meant to be illustrative and not prescriptive�

�translatelogicalpathname �foo�bar�baz�mum�quux����

� ���P�MYLISPM��library�foo�bar�baz�mum�quux���

Next we have a more complex example� dividing the �les among two �le

servers
U� supporting a UNIX �le system� and V� supporting a VAX�VMS

�le system� and several di	erent directories� This UNIX �le system doesn�t

support �wildinferiors in the directory� so each directory level must be

FILE SYSTEM INTERFACE
�	

translated individually� No �le name or type translations are required ex�

cept for �MAIL to �MBX� The namestring syntax used for the to�wildnames is

implementation�speci�c�

�setf �logicalpathnametranslations �prog��

���RELEASED�
�
�
� �U� sys bin myprog ��

��RELEASED�
�
�
�
� �U� sys bin myprog
 ��

��EXPERIMENTAL�
�
�
�

�U� usr Joe development prog ��

��EXPERIMENTAL�DOCUMENTATION�
�
�
�

�V�SYS!DISK��JOE�DOC���

��EXPERIMENTAL�
�
�
�
�

�U� usr Joe development prog
 ��

��MAIL�

�
�MAIL� �V�SYS!DISK��JOE�MAIL�PROG����
�MBX��

��

Here are sample uses of logical host PROG� All return values are of course

implementation�speci�c�

�translatelogicalpathname �prog�mail�save�ideas�mail����

� ���P�V�SYS!DISK��JOE�MAIL�PROG�SAVE�IDEAS�MBX���

�translatelogicalpathname �prog�experimental�spreadsheet�c��

� ���P�U� usr Joe development prog spreadsheet�c�

Suppose now that we have a program that uses three �les logically named

MAIN�LISP� AUXILIARY�LISP� and DOCUMENTATION�LISP� The following trans�

lations might be provided by a software supplier as examples�

For a UNIX �le system with long �le names�

�setf �logicalpathnametranslations �prog��

���CODE�
�
�
� � lib prog ����

�translatelogicalpathname �prog�code�documentation�lisp��

� ���P� lib prog documentation�lisp�

For a UNIX �le system with ���character �le names� using �lisp as the type�

�setf �logicalpathnametranslations �prog��

���CODE�DOCUMENTATION�
�
� � lib prog docum�
��

��CODE�
�
�
� � lib prog ����

�
 COMMON LISP

�translatelogicalpathname �prog�code�documentation�lisp��

� ���P� lib prog docum�lisp�

For a UNIX �le system with ���character �le names� using �l as the type
the

second translation shortens the compiled �le type to �b��

�setf �logicalpathnametranslations �prog��

���

�
�LISP�
� ��logicalpathname �PROG�

�
�L�
���

���compilefilepathname

�logicalpathname �PROG�

�
�LISP�
���

��logicalpathname �PROG�

�
�B�
���

��CODE�DOCUMENTATION�
�
� � lib prog documentatio�
��

��CODE�
�
�
� � lib prog ����

�translatelogicalpathname �prog�code�documentation�lisp��

� ���P� lib prog documentatio�l�

��������� Discussion of Logical Pathnames

Large programs can be moved between sites without changing any pathnames�

provided all pathnames used are logical� A portable system construction tool

can be created that operates on programs de�ned as sets of �les named by

logical pathnames�
Logical pathname syntax was chosen to be easily translated into the for�

mats of most popular �le systems� while still being powerful enough for storing

large programs� Although they have hierarchical directories� extended wild�

card matching� versions� and no limit on the length of names� logical path�
names can be mapped onto a less capable real �le system by translating each

directory that is used into a
at directory name� processing wildcards in the

Lisp implementation rather than in the �le system� treating all versions as

�newest� and using translations to shorten long names�

Logical pathname words are restricted to non�case�sensitive letters� dig�
its� and hyphens to avoid creating problems with real �le systems that sup�

port limited character sets for �le naming�
If logical pathnames were case�

sensitive� it would be very di�cult to map them into a �le system that is not

sensitive to case in its �le names��
It is not a goal of logical pathnames to be able to represent all possible �le

names� Their goal is rather to represent just enough �le names to be useful

for storing software� Real pathnames� in contrast� need to provide a uniform

interface to all possible �le names� including names and naming conventions

that are not under the control of Common Lisp�

FILE SYSTEM INTERFACE
��

The choice of logical pathname syntax� using colon� semicolon� and period�

was guided by the goals of being visually distinct from real �le systems and

minimizing the use of special characters�

The logicalpathname function is separate from the pathname function so

that the syntax of logical pathname namestrings does not constrain the syn�
tax of physical pathname namestrings in any way� Logical pathname syntax

must be de�ned by Common Lisp so that logical pathnames can be conve�

niently exchanged between implementations� but physical pathname syntax

is dictated by the operating environments�

The compilefilepathname function and the speci�cation of LISP as the

type of a logical pathname for a Common Lisp source �le together provide

enough information about compilation to make possible a portable system

construction tool� Suppose that it is desirable to call compilefile only if
the source �le is newer than the compiled �le� For this to succeed� it must

be possible to know the name of the compiled �le without actually calling

compilefile� In some implementations the compiler produces one of several

�le types� depending on a variety of implementation�dependent circumstances�
so it is not su�cient simply to prescribe a standard logical �le type for com�

piled �les� compilefilepathname provides access to the defaulting that is

performed by compilefile �in a manner appropriate to the implementation�s

�le system conventions��

The use of the logical pathname host name SYS for the implementation is

current practice� Standardizing on this name helps users choose logical path�

name host names that avoid con
icting with implementation�de�ned names�

Loading of logical pathname translations from a site�dependent �le allows

software to be distributed using logical pathnames� The assumed model of

software distribution is a division of labor between the supplier of the software

and the user installing it� The supplier chooses logical pathnames to name
all the �les used or created by the software� and supplies examples of logical

pathname translations for a few popular �le systems� Each example uses an

assumed directory and�or device name� assumes local �le naming conventions�

and provides translations that will translate all the logical pathnames used
or generated by the particular software into valid physical pathnames� For

a powerful �le system these translations can be quite simple� For a more

restricted �le system� it may be necessary to list an explicit translation for

every logical pathname used
for example� when dealing with restrictions on

the maximum length of a �le name��

The user installing the software decides on which device and directory to

store the �les and edits the example logical pathname translations accord�

ingly� If necessary� the user also adjusts the translations for local �le naming

�� COMMON LISP

conventions and any other special aspects of the user�s local �le system pol�

icy and local Common Lisp implementation� For example� the �les might

be divided among several �le server hosts to share the load� The process of

de�ning site�customized logical pathname translations is quite easy for a user

of a popular �le system for which the software supplier has provided an ex�
ample� A user of a more unusual �le system might have to take more time�

the supplier can help by providing a list of all the logical pathnames used or

generated by the software�

Once the user has created and executed a suitable setf form for set�

ting the logicalpathnametranslations of the relevant logical host� the
software can be loaded and run� It may be necessary to use the trans�

lations again� or on another workstation at the same site� so it is best

to save the setf form in the standard place where it can be found later

by loadlogicalpathnametranslations� Often a software supplier will

include a program for restoring software from the distribution medium
to the �le system and a program for loading the software from the

�le system into a Common Lisp� these programs will start by calling

loadlogicalpathnametranslations to make sure that the logical pathname

host is de�ned�

Note that the setf of logicalpathnametranslations form isn�t part of
the program� it is separate and is written by the user� not by the software

supplier� That separation and a uniform convention for doing the separation

are the key aspects of logical pathnames� For small programs involving only

a handful of �les� it doesn�t matter much� The real bene�ts come with large

programs with hundreds or thousands of �les and more complicated situations
such as program�generated �le names or porting a program developed on a

system with long �le names onto a system with a very restrictive limit on the

length of �le names�

������� Pathname Functions

These functions are what programs use to parse and default �le names that
have been typed in or otherwise supplied by the user�

Any argument called pathname in this book may actually be a pathname�
��

a string or symbol� or a stream� Any argument called defaults may likewise

be a pathname� a string or symbol� or a stream�

X�J�� voted in March ���� h���i to change the language so that a symbol

is never allowed as a pathname argument� More speci�cally� the following

functions are changed to disallow a symbol as a pathname argument�

FILE SYSTEM INTERFACE
��

pathname pathnamedevice namestring

truename pathnamedirectory filenamestring

parsenamestring pathnamename directorynamestring

mergepathnames pathnametype hostnamestring

pathnamehost pathnameversion enoughnamestring

The function require was also changed by this vote but was deleted from

the language by a vote in January ���� h���i�� Furthermore� the vote reaf�

�rmed that the following functions do not accept symbols as
le�
lename� or

pathname arguments�

open renamefile filewritedate

withopenfile deletefile fileauthor

load probefile directory

compilefile

In older implementations of Lisp that did not have strings� for example

MacLisp� symbols were the only means for specifying pathnames� This was
convenient only because the �le systems of the time allowed only uppercase

letters in �le names� Typing �load foo� caused the function load to re�

ceive the symbol FOO
with uppercase letters because of the way symbols are

parsed� and therefore to load the �le named FOO� Now that many �le systems�

most notably UNIX� support case�sensitive �le names� the use of symbols is
less convenient and more error�prone�

X�J�� voted in March ���� h���i to specify that a stream may be used as a

pathname� file� or filename argument only if it was created by use of open

or withopenfile� or if it is a synonym stream whose symbol is bound to a
stream that may be used as a pathname�

If such a stream is used as a pathname� it is as if the pathname function

were applied to the stream and the resulting pathname used in place of the
stream� This represents the name used to open the �le� This may be� but is

not required to be� the actual name of the �le�

It is an error to attempt to obtain a pathname from a stream created by

any of the following�

maketwowaystream makestringinputstream

makeechostream makestringoutputstream

makebroadcaststream withinputfromstring

makeconcatenatedstream withoutputtostring

In the examples� it is assumed that the host named CMUC runs the TOPS���

operating system� and therefore uses TOPS��� �le system syntax� further�

�� COMMON LISP

more� an explicit host name is indicated by following the host name with a

double colon� Remember� however� that namestring syntax is implementation�

dependent� and this syntax is used here purely for the sake of examples�

�Function�pathname pathname

The pathname function converts its argument to be a pathname� The argu�

ment may be a pathname� a string or symbol� or a stream� the result is always

a pathname�

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i�
X�J�� voted in January ���� h��i to specify that pathname is una	ected

by whether its argument� if a stream� is open or closed� X�J�� further com�

mented that because some implementations cannot provide the �true name�

of a �le until the �le is closed� in such an implementation pathname might� in
principle� return a di	erent
perhaps more speci�c� �le name after the stream

is closed� However� such behavior is prohibited� pathname must return the

same pathname after a stream is closed as it would have while the stream was

open� See truename�

�Function�truename pathname

The truename function endeavors to discover the �true name� of the �le as�

sociated with the pathname within the �le system� If the pathname is an open
stream already associated with a �le in the �le system� that �le is used� The

�true name� is returned as a pathname� An error is signaled if an appropriate

�le cannot be located within the �le system for the given pathname�

The truename function may be used to account for any �le name transla�

tions performed by the �le system� for example�
For example� suppose that DOC� is a TOPS��� logical device name that is

translated by the TOPS��� �le system to be PS��DOCUMENTATION��

�setq file �open �CMUC��DOC�DUMPER�HLP���

�namestring �pathname file�� � �CMUC��DOC�DUMPER�HLP�

�namestring �truename file��

� �CMUC��PS��DOCUMENTATION�DUMPER�HLP�
��

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i�
X�J�� voted in January ���� h��i to specify that truenamemay be applied

to a stream whether the stream is open or closed� X�J�� further commented

FILE SYSTEM INTERFACE
��

that because some implementations cannot provide the �true name� of a �le

until the �le is closed� in principle it would be possible in such an implemen�

tation for truename to return a di	erent �le name after the stream is closed�

Such behavior is permitted� in this respect truename di	ers from pathname�

X�J�� voted in June ���� h���i to clarify that truename accepts only non�

wild pathnames� an error is signaled if wildpathnamep would be true of the
pathname argument�

X�J�� voted in June ���� h���i to require truename to accept logical path�

names
see section �������� However� truename never returns a logical path�

name�

�Function�parsenamestring thing �optional host defaults �key

�start �end �junkallowed

This turns thing into a pathname� The thing is usually a string
that is� a
���

namestring�� but it may be a symbol
in which case the print name is used�

or a pathname or stream
in which case no parsing is needed� but an error

check may be made for matching hosts��

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i� The thing
argument may not be a symbol�

X�J�� voted in June ���� h���i to require parsenamestring to accept

logical pathname namestrings
see section ��������

This function does not� in general� do defaulting of pathname components�

even though it has an argument named defaults� it only does parsing� The

host and defaults arguments are present because in some implementations it
may be that a namestring can only be parsed with reference to a particular

�le name syntax of several available in the implementation� If host is non�

nil� it must be a host name that could appear in the host component of a

pathname� or nil� if host is nil then the host name is extracted from the

default pathname in defaults and used to determine the syntax convention�
The defaults argument defaults to the value of
defaultpathnamedefaults
�

For a string
or symbol� argument� parsenamestring parses a �le name

within it in the range delimited by the �start and �end arguments
which

are integer indices into string� defaulting to the beginning and end of the

string��

See chapter �� for a discussion of �start and �end arguments�

If �junkallowed is not nil� then the �rst value returned is the pathname

parsed� or nil if no syntactically correct pathname was seen�

�� COMMON LISP

If �junkallowed is nil
the default�� then the entire substring is scanned�

The returned value is the pathname parsed� An error is signaled if the sub�

string does not consist entirely of the representation of a pathname� possibly

surrounded on either side by whitespace characters if that is appropriate to

the cultural conventions of the implementation�
In either case� the second value is the index into the string of the delimiter

that terminated the parse� or the index beyond the substring if the parse ter�

minated at the end of the substring
as will always be the case if �junkallowed

is false��
If thing is not a string or symbol� then start
which defaults to zero in any

case� is always returned as the second value�

Parsing an empty string always succeeds� producing a pathname with all

components
except the host� equal to nil�

Note that if host is speci�ed and not nil� and thing contains a manifest
host name� an error is signaled if the hosts do not match�

If thing contains an explicit host name and no explicit device name� then

it might be appropriate� depending on the implementation environment� for

parsenamestring to supply the standard default device for that host as the
device component of the resulting pathname�

FILE SYSTEM INTERFACE
��

�Function�mergepathnames pathname �optional defaults defaultversion

This is the function that most programs should call to process a �le name
��

supplied by the user� It �lls in unspeci�ed components of pathname from the

defaults� and returns a new pathname� The pathname and defaults arguments

may each be a pathname� stream� string� or symbol� The result is always a
pathname�

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i�
X�J�� voted in June ���� h���i to require mergenamestrings to recognize

a logical pathname namestring as its �rst argument if its second argument is
a logical pathname
see section ��������

X�J�� voted in January ���� h��i to specify that mergepathname is unaf�
fected by whether the �rst argument� if a stream� is open or closed� If the �rst

argument is a stream� mergepathname behaves as if the function pathname

were applied to the stream and the resulting pathname used instead�

X�J�� voted in June ���� h���i to require mergepathnames to map custom�

ary case in argument pathnames to the customary case in returned pathnames

see section ��������

defaults defaults to the value of
defaultpathnamedefaults
�

default�version defaults to �newest�

Here is an example of the use of mergepathnames�

�mergepathnames �CMUC��FORMAT�

�CMUC��PS��LISPIO��FASL��

� a pathname object that re�expressed as a namestring would be

�CMUC��PS��LISPIO�FORMAT�FASL���

Defaulting of pathname components is done by �lling in components taken
from another pathname� This is especially useful for cases such as a program

that has an input �le and an output �le� and asks the user for the name of

both� letting the unsupplied components of one name default from the other�

Unspeci�ed components of the output pathname will come from the input

pathname� except that the type should default not to the type of the input
but to the appropriate default type for output from this program�

The pathname merging operation takes as input a given pathname� a de�
faults pathname� and a default version� and returns a new pathname� Basi�

cally� the missing components in the given pathname are �lled in from the

defaults pathname� except that if no version is speci�ed the default version

is used� The default version is usually �newest� if no version is speci�ed the

newest version in existence should be used� The default version can be nil�

�� COMMON LISP

to preserve the information that it was missing in the input pathname�

If the given pathname explicitly speci�es a host and does not supply a

device� then if the host component of the defaults matches the host component

of the given pathname� then the device is taken from the defaults� otherwise

the device will be the default �le device for that host� Next� if the given
pathname does not specify a host� device� directory� name� or type� each such

component is copied from the defaults� The merging rules for the version are

more complicated and depend on whether the pathname speci�es a name�

If the pathname doesn�t specify a name� then the version� if not provided�
will come from the defaults� just like the other components� However� if the

pathname does specify a name� then the version is not a	ected by the defaults�

The reason is that the version �belongs to� some other �le name and is unlikely

to have anything to do with the new one� Finally� if this process leaves the

version missing� the default version is used�
The net e	ect is that if the user supplies just a name� then the host� device�

directory� and type will come from the defaults� but the version will come from

the default version argument to the merging operation� If the user supplies

nothing� or just a directory� the name� type� and version will come over from
the defaults together� If the host�s �le name syntax provides a way to input

a version without a name or type� the user can let the name and type default

but supply a version di	erent from the one in the defaults�

X�J�� voted in June ���� h���i to agree to disagree� mergepathnamemight

or might not perform plausibility checking on its arguments to ensure that the
resulting pathname can be converted a valid namestring� User beware� this

could cause portability problems�

For example� suppose that host LOSER constrains �le types to be three

characters or fewer but host CMUC does not� Then �LOSER��FORMAT� is a valid
namestring and �CMUC��PS��LISPIO��FASL� is a valid namestring� but

�mergepathnames �LOSER��FORMAT� �CMUC��PS��LISPIO��FASL��

might signal an error in some implementations because the hypothetical result

would be a pathname equivalent to the namestring �LOSER��FORMAT�FASL�

which is illegal because the �le type FASL has more than three characters�

In other implementations mergepathname might return a pathname but that

pathname might cause namestring to signal an error�

�Variable�
defaultpathnamedefaults

This is the default pathname�defaults pathname� if any pathname primitive

that needs a set of defaults is not given one� it uses this one� As a general

FILE SYSTEM INTERFACE
�	

rule� however� each program should have its own pathname defaults rather

than using this one�

�Function�makepathname �key �host �device �directory �name �type
���

�version �defaults

Given some components� makepathname constructs and returns a pathname�

After the components speci�ed explicitly by the �host� �device� �directory�

�name� �type� and �version arguments are �lled in� the merging rules used by

mergepathnames are used to �ll in any missing components from the defaults

speci�ed by the �defaults argument� The default value of the �defaults

argument is a pathname whose host component is the same as the host com�

ponent of the value of
defaultpathnamedefaults
� and whose other com�

ponents are all nil�

Whenever a pathname is constructed� whether by makepathname or some
other function� the components may be canonicalized if appropriate� For

example� if a �le system is insensitive to case� then alphabetic characters may

be forced to be all uppercase or all lowercase by the implementation�

The following example assumes the use of UNIX syntax and conventions�

�makepathname �host �technodrome�

�directory ��absolute �usr� �krang��

�name �shredder��

� ���P�technodrome� usr krang shredder�

X�J�� voted in June ���� h���i to add a new keyword argument �case to

makepathname� The new argument description is therefore as follows�

�Function�makepathname �key �host �device �directory �name �type

�version �defaults �case

See section ������ for a description of the �case argument�

X�J�� voted in June ���� h���i to agree to disagree� makepathname might

or might not check on its arguments to ensure that the resulting pathname

can be converted to a valid namestring� If makepathname does not check its

arguments and signal an error in problematical cases� namestring yet might
or might not signal an error when given the resulting pathname� User beware�

this could cause portability problems�

�Function�pathnamep object

This predicate is true if object is a pathname� and otherwise is false�

�
 COMMON LISP

�pathnamep x� � �typep x pathname�

�Function�pathnamehost pathname
��

�Function�pathnamedevice pathname
�Function�pathnamedirectory pathname

�Function�pathnamename pathname

�Function�pathnametype pathname

�Function�pathnameversion pathname

These return the components of the argument pathname� which may be a

pathname� string or symbol� or stream� The returned values can be strings�

special symbols� or some other object in the case of structured components�

The type will always be a string or a symbol� The version will always be a

number or a symbol�

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i�
X�J�� voted in January ���� h��i to specify that these operations are un�

a	ected by whether the �rst argument� if a stream� is open or closed� If the

�rst argument is a stream� each operation behaves as if the function pathname

were applied to the stream and the resulting pathname used instead�

X�J�� voted in June ���� h���i to add a keyword argument �case to

all of the pathname accessor functions except pathnameversion� The new
argument descriptions are therefore as follows�

�Function�pathnamehost pathname �key �case

�Function�pathnamedevice pathname �key �case

�Function�pathnamedirectory pathname �key �case

�Function�pathnamename pathname �key �case

�Function�pathnametype pathname �key �case

�Function�pathnameversion pathname

See section ������ for a description of the �case argument�

X�J�� voted in June ���� h���i to specify that pathnamedirectory al�

ways returns nil� �unspecific� or a list!never a string� never �wild
see

section �������� If a list is returned� it is not guaranteed to be freshly consed�

the consequences of modifying this list are unde�ned�

FILE SYSTEM INTERFACE
��

�Function�namestring pathname

�Function�filenamestring pathname

�Function�directorynamestring pathname

�Function�hostnamestring pathname

�Function�enoughnamestring pathname �optional defaults

The pathname argument may be a pathname� a string or symbol� or a stream

that is or was open to a �le� The name represented by pathname is returned

as a namelist in canonical form�
If pathname is a stream� the name returned represents the name used to

open the �le� which may not be the actual name of the �le
see truename��

X�J�� voted in March ���� not to permit symbols as pathnames h���i and
to specify exactly which streams may be used as pathnames h���i�
X�J�� voted in January ���� h��i to specify that these operations are un�

a	ected by whether the �rst argument� if a stream� is open or closed� If the

�rst argument is a stream� each operation behaves as if the function pathname

were applied to the stream and the resulting pathname used instead�

namestring returns the full form of the pathname as a string�
filenamestring returns a string representing just the name� type� and version

components of the pathname� the result of directorynamestring represents

just the directory�name portion� and hostnamestring returns a string for just

the host�name portion� Note that a valid namestring cannot necessarily be

constructed simply by concatenating some of the three shorter strings in some
order�

enoughnamestring takes another argument� defaults� It returns an abbre�

viated namestring that is just su�cient to identify the �le named by path�

name when considered relative to the defaults
which defaults to the value of

defaultpathnamedefaults
�� That is� it is required that

�mergepathnames �enoughnamestring pathname defaults� defaults� �
�mergepathnames �parsenamestring pathname nil defaults� defaults�

in all cases� and the result of enoughnamestring is� roughly speaking� the

shortest reasonable string that will still satisfy this criterion�

X�J�� voted in June ���� h���i to agree to disagree� makepathname and

mergepathnamesmight or might not be able to produce pathnames that can�
not be converted to valid namestrings� User beware� this could cause porta�

bility problems�

�Function�userhomedirpathname �optional host

Returns a pathname for the user�s �home directory� on host� The host argu�

�� COMMON LISP

ment defaults in some appropriate implementation�dependent manner� The

concept of �home directory� is itself somewhat implementation�dependent�

but from the point of view of Common Lisp it is the directory where the user

keeps personal �les such as initialization �les and mail� If it is impossible

to determine this information� then nil is returned instead of a pathname�
however� userhomedirpathname never returns nil if the host argument is

not speci�ed� This function returns a pathname without any name� type� or

version component
those components are all nil��

����� Opening and Closing Files

When a �le is opened� a stream object is constructed to serve as the �le

system�s ambassador to the Lisp environment� operations on the stream are

re
ected by operations on the �le in the �le system� The act of closing the
�le
actually� the stream� ends the association� the transaction with the �le

system is terminated� and input�output may no longer be performed on the

stream� The stream function close may be used to close a �le� the functions

described below may be used to open them� The basic operation is open� but
withopenfile is usually more convenient for most applications�

�Function�open
lename �key �direction �elementtype �ifexists

�ifdoesnotexist �externalformat

X�J�� voted in June ���� h���i to add to the function open a new keyword

argument �externalformat� This argument did not appear in the preceding

argument description in the �rst edition�

This returns a stream that is connected to the �le speci�ed by
lename�

The
lename is the name of the �le to be opened� it may be a string� a

pathname� or a stream�
If the
lename is a stream� then it is not closed �rst
or otherwise a	ected� it is used merely to provide a �le name for the opening

of a new stream��

X�J�� voted in January ���� h���i to specify that the result of open� if it
is a stream� is always a stream of type filestream�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

X�J�� voted in January ���� h��i to specify that open is una	ected by

whether the �rst argument� if a stream� is open or closed� If the �rst argument

is a stream� open behaves as if the function pathname were applied to the

stream and the resulting pathname used instead�

FILE SYSTEM INTERFACE
��

X�J�� voted in June ���� h���i to clarify that open accepts only non�wild

pathnames� an error is signaled if wildpathnamep would be true of
lename�

X�J�� voted in June ���� h���i to require open to accept logical pathnames

see section ��������

The keyword arguments specify what kind of stream to produce and how
to handle errors�

�direction

This argument speci�es whether the stream should handle input� output� or

both�

�input

The result will be an input stream� This is the default�

�output

The result will be an output stream�

�io

The result will be a bidirectional stream�

�probe

The result will be a no�directional stream
in e	ect� the stream is created

and then closed�� This is useful for determining whether a �le exists without

actually setting up a complete stream�

�element�type

This argument speci�es the type of the unit of transaction for the stream�

Anything that can be recognized as being a �nite subtype of character or

integer is acceptable� In particular� the following types are recognized�

string�char��

The unit of transaction is a string�character� The functions readchar

and�or writechar may be used on the stream� This is the default�

character

The unit of transaction is any character� not just a string�character� The

functions readchar and�or writechar may be used on the stream�

X�J�� voted in June ���� h���i to eliminate the type stringchar� add the

type basecharacter� and rede�ne open to use the type character as the

default �elementtype�

��� COMMON LISP

The preceding two possibilities should therefore be replaced by the follow�

ing�

character

The unit of transaction is any character� not just a string�character�

The functions readchar and writechar
depending on the value of the
�direction argument� may be used on the stream� This is the default�

base�character

The unit of transaction is a base character� The functions readchar and
writechar
depending on the value of the �direction argument� may be

used on the stream�

�unsigned�byte n�

The unit of transaction is an unsigned byte
a non�negative integer� of size

n� The functions readbyte and�or writebyte may be used on the stream�

unsigned�byte

The unit of transaction is an unsigned byte
a non�negative integer�� the

size of the byte is determined by the �le system� The functions readbyte
and�or writebyte may be used on the stream�

�signed�byte n�

The unit of transaction is a signed byte of size n� The functions readbyte

and�or writebyte may be used on the stream�

signed�byte

The unit of transaction is a signed byte� the size of the byte is determined

by the �le system� The functions readbyte and�or writebytemay be used

on the stream�

bit

The unit of transaction is a bit
values � and
�� The functions readbyte
and�or writebyte may be used on the stream�

�mod n�

The unit of transaction is a non�negative integer less than n� The functions

readbyte and�or writebyte may be used on the stream�

FILE SYSTEM INTERFACE ���

�default

The unit of transaction is to be determined by the �le system� based
on the �le it �nds� The type can be determined by using the function

streamelementtype�

�if�exists

This argument speci�es the action to be taken if the �direction is �output

or �io and a �le of the speci�ed name already exists� If the direction is �input

or �probe� this argument is ignored�

�error

Signals an error� This is the default when the version component of the

lename is not �newest�

�new�version

Creates a new �le with the same �le name but with a larger version number�

This is the default when the version component of the
lename is �newest�

�rename

Renames the existing �le to some other name and then creates a new �le

with the speci�ed name�

�rename�and�delete

Renames the existing �le to some other name and then deletes it
but does

not expunge it� on those systems that distinguish deletion from expunging��

Then create a new �le with the speci�ed name�

�overwrite

Uses the existing �le� Output operations on the stream will destructively

modify the �le� If the �direction is �io� the �le is opened in a bidirectional

mode that allows both reading and writing� The �le pointer is initially
positioned at the beginning of the �le� however� the �le is not truncated

back to length zero when it is opened� This mode is most useful when the

fileposition function can be used on the stream�

�append

Uses the existing �le� Output operations on the stream will destructively

modify the �le� The �le pointer is initially positioned at the end of the �le�

If the �direction is �io� the �le is opened in a bidirectional mode that

allows both reading and writing�

��� COMMON LISP

�supersede

Supersedes the existing �le� If possible� the implementation should arrange
not to destroy the old �le until the new stream is closed� against the pos�

sibility that the stream will be closed in �abort� mode
see close�� This

di	ers from �newversion in that �supersede creates a new �le with the

same name as the old one� rather than a �le name with a higher version
number�

nil

Does not create a �le or even a stream� but instead simply returns nil to

indicate failure�

If the �direction is �output or �io and the value of �ifexists is

�newversion� then the version of the
newly created� �le that is opened will
be a version greater than that of any other �le in the �le system whose other

pathname components are the same as those of
lename�

If the �direction is �input or �probe or the value of �ifexists is not

�newversion� and the version component of the
lename is �newest� then the
�le opened is that �le already existing in the �le system that has a version

greater than that of any other �le in the �le system whose other pathname

components are the same as those of
lename�

Some �le systems permit yet other actions to be taken when a �le al�
ready exists� therefore� some implementations provide implementation�speci�c

�ifexist options�

Implementation note� The various �le systems in existence today have widely
di�ering capabilities� A given implementation may not be able to support all of these
options in exactly the manner stated� An implementation is required to recognize
all of these option keywords and to try to do something �reasonable� in the context
of the host operating system� Implementors are encouraged to approximate the
semantics speci�ed here as closely as possible�
As an example� suppose that a �le system does not support distinct �le ver

sions and does not distinguish the notions of deletion and expunging �in some
�le systems �le deletion is reversible until an expunge operation is performed��
Then �newversion might be treated the same as �rename or �supersede� and
�renameanddelete might be treated the same as �supersede�
If it is utterly impossible for an implementation to handle some option in a manner

close to what is speci�ed here� it may simply signal an error� The opening of �les is
an area where complete portability is too much to hope for� the intent here is simply
to make things as portable as possible by providing speci�c names for a range of
commonly supportable options�

FILE SYSTEM INTERFACE ���

�if�does�not�exist

This argument speci�es the action to be taken if a �le of the speci�ed name
does not already exist�

�error

Signals an error� This is the default if the �direction is �input� or if the
�ifexists argument is �overwrite or �append�

�create

Creates an empty �le with the speci�ed name and then proceeds as if it

had already existed
but do not perform any processing directed by the
�ifexists argument�� This is the default if the �direction is �output or

�io� and the �ifexists argument is anything but �overwrite or �append�

nil

Does not create a �le or even a stream� but instead simply returns nil to

indicate failure� This is the default if the �direction is �probe�

��� COMMON LISP

X�J�� voted in June ���� h���i to add to the function open a new keyword

argument �externalformat�

�external�format

This argument speci�es an implementation�recognized scheme for representing

characters in �les� The default value is �default and is implementation�
de�ned but must support the base characters� An error is signaled if the

implementation does recognize the speci�ed format�

This argument may be speci�ed if the �direction argument is �input�

�output� or �io� It is an error to write a character to the resulting stream that

cannot be represented by the speci�ed �le format�
However� the ����Newline
character cannot produce such an error� implementations must provide ap�

propriate line division behavior for all character streams��

See streamexternalformat�

When the caller is �nished with the stream� it should close the �le by using

the close function� The withopenfile form does this automatically� and so

is preferred for most purposes� open should be used only when the control

structure of the program necessitates opening and closing of a �le in some

way more complex than provided by withopenfile� It is suggested that any
program that uses open directly should use the special form unwindprotect

to close the �le if an abnormal exit occurs�

�Macro�withopenfile �stream
lename foptionsg� �
fdeclarationg� f formg�

withopenfile evaluates the forms of the body
an implicit progn� with the

variable stream bound to a stream that reads or writes the �le named by
the value of
lename� The options are evaluated and are used as keyword

arguments to the function open�

When control leaves the body� either normally or abnormally
such as by use

of throw�� the �le is automatically closed� If a new output �le is being written�

and control leaves abnormally� the �le is aborted and the �le system is left� so
far as possible� as if the �le had never been opened� Because withopenfile

always closes the �le� even when an error exit is taken� it is preferred over

open for most applications�

lename is the name of the �le to be opened� it may be a string� a pathname�

or a stream�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

FILE SYSTEM INTERFACE ��	

X�J�� voted in June ���� h���i to clarify that withopenfile accepts only

non�wild pathnames� an error is signaled if wildpathnamep would be true of

the
lename argument�

X�J�� voted in June ���� h���i to require withopenfile to accept logical

pathnames
see section ��������

For example�

�withopenfile �ifile name

�direction �input�

�withopenfile �ofile �mergepathnamedefaults ifile

nil

�out��

�direction �output

�ifexists �supersede�

�transducefile ifile ofile���

X�J�� voted in June ���� h���i to specify that the variable stream is not

always bound to a stream� rather it is bound to whatever would be returned

by a call to open� For example� if the options include �ifdoesnotexist nil�

stream will be bound to nil if the �le does not exist� In this case the value
of stream should be tested within the body of the withopenfile form before

it is used as a stream� For example�

�withopenfile �ifile name

�direction �input

�ifdoesnotexist nil�

�� Process the file only if it actually exists�

�when �streamp name�

�compilecobolprogram ifile���

Implementation note� While withopenfile tries to automatically close the
stream on exit from the construct� for robustness it is helpful if the garbage col

lector can detect discarded streams and automatically close them�

����� Renaming� Deleting� and Other File Operations

These functions provide a standard interface to operations provided in some

form by most �le systems� It may be that some implementations of Common

Lisp cannot support them all completely�

��
 COMMON LISP

�Function�renamefile
le newname

The speci�ed
le is renamed to new�name
which must be a �le name�� The

lemay be a string� a pathname� or a stream� If it is an open stream associated

with a �le� then the stream itself and the �le associated with it are a	ected

if the �le system permits��

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

renamefile returns three values if successful� The �rst value is the new�
name with any missing components �lled in by performing a mergepathnames

operation using
le as the defaults� The second value is the truename of the

�le before it was renamed� The third value is the truename of the �le after it

was renamed�

If the renaming operation is not successful� an error is signaled�
It is an error to specify a �le name containing a �wild component� for

���

le to contain a nil component where the �le system does not permit a nil

component� or for the result of defaulting missing components of new�name

from
le to contain a nil component where the �le system does not permit a
nil component�

X�J�� voted in June ���� h���i to specify that supplying a wild pathname

as the
le argument to renamefile has implementation�dependent conse�

quences� renamefile might signal an error� for example� or might rename all

�les that match the wild pathname�
X�J�� voted in June ���� h���i to require renamefile to accept logical

pathnames
see section ��������

Compatibility note� This corresponds to the function called renamef in MacLisp
and Lisp Machine Lisp� The name renamef is not used in Common Lisp because
the convention that a trailing f means ��le� con�icts with the use of a trailing f for
forms related to setf�

�Function�deletefile
le

The speci�ed
le is deleted� The
le may be a string� a pathname� or a stream�

If it is an open stream associated with a �le� then the stream itself and the

�le associated with it are a	ected
if the �le system permits�� in which case
the stream may or may not be closed immediately� and the deletion may be

immediate or delayed until the stream is explicitly closed� depending on the

requirements of the �le system�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

FILE SYSTEM INTERFACE ���

deletefile returns a non�nil value if successful� It is left to the discretion

of the implementation whether an attempt to delete a non�existent �le is

considered to be successful� If the deleting operation is not successful� an

error is signaled�

It is an error to specify a �le name that contains a �wild component or one
���

that contains a nil component where the �le system does not permit a nil

component�

X�J�� voted in June ���� h���i to clarify that supplying a wild pathname as
the
le argument to deletefile has implementation�dependent consequences�

deletefile might signal an error� for example� or might delete all �les that

match the wild pathname�

X�J�� voted in June ���� h���i to require deletefile to accept logical

pathnames
see section ��������

Compatibility note� This corresponds to the function called deletef in MacLisp
and Lisp Machine Lisp�

�Function�probefile
le

This predicate is false if there is no �le named
le� and otherwise returns a

pathname that is the true name of the �le
which may be di	erent from
le
because of �le links� version numbers� or other artifacts of the �le system��

Note that if the
le is an open stream associated with a �le� then probefile

cannot return nil but will produce the true name of the associated �le� See

truename and the �probe value for the �direction argument to open�

Compatibility note� This corresponds to the function called probef in MacLisp
and Lisp Machine Lisp�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

X�J�� voted in June ���� h���i to clarify that probefile accepts only

non�wild pathnames� an error is signaled if wildpathnamep would be true of

the
le argument�

X�J�� voted in June ���� h���i to require probefile to accept logical

pathnames
see section �������� However� probefile never returns a logical

pathname�

X�J�� voted in January ���� h��i to specify that probefile is una	ected by

whether the �rst argument� if a stream� is open or closed� If the �rst argument

��� COMMON LISP

is a stream� probefile behaves as if the function pathname were applied to

the stream and the resulting pathname used instead� However� X�J�� further

commented that the treatment of open streams may di	er considerably from

one implementation to another� for example� in some operating systems open

�les are written under a temporary or invisible name and later renamed when
closed� In general� programmers writing code intended to be portable should

be very careful when using probefile�

�Function�filewritedate
le

le can be a �le name or a stream that is open to a �le� This returns the time
at which the �le was created or last written as an integer in universal time

format
see section �������� or nil if this cannot be determined�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������
X�J�� voted in June ���� h���i to clarify that filewritedate accepts only

non�wild pathnames� an error is signaled if wildpathnamep would be true of

the
le argument�

X�J�� voted in June ���� h���i to require filewritedate to accept logical

pathnames
see section ��������

�Function�fileauthor
le

le can be a �le name or a stream that is open to a �le� This returns the

name of the author of the �le as a string� or nil if this cannot be determined�

X�J�� voted in March ���� h���i to specify exactly which streams may be
used as pathnames� See section �������

X�J�� voted in June ���� h���i to clarify that fileauthor accepts only

non�wild pathnames� an error is signaled if wildpathnamep would be true of

the
le argument�
X�J�� voted in June ���� h���i to require fileauthor to accept logical

pathnames
see section ��������

�Function�fileposition
lestream �optional position

fileposition returns or sets the current position within a random�access �le�
�fileposition
lestream� returns a non�negative integer indicating the

current position within the
le�stream� or nil if this cannot be determined�

The �le position at the start of a �le will be zero� The value returned by

fileposition increases monotonically as input or output operations are per�

formed� For a character �le� performing a single readchar or writechar

FILE SYSTEM INTERFACE ���

operation may cause the �le position to be increased by more than � be�

cause of character�set translations
such as translating between the Common

Lisp ����Newline character and an external ASCII carriage�return�line�feed

sequence� and other aspects of the implementation� For a binary �le� every

readbyte or writebyte operation increases the �le position by ��
�fileposition
lestream position� sets the position within
le�stream to

be position� The position may be an integer� or �start for the beginning of

the stream� or �end for the end of the stream� If the integer is too large or

otherwise inappropriate� an error is signaled
the filelength function returns
the length beyond which filepositionmay not access�� An integer returned

by fileposition of one argument should� in general� be acceptable as a sec�

ond argument for use with the same �le� With two arguments� fileposition

returns t if the repositioning was performed successfully� or nil if it was not

for example� because the �le was not random�access��

Implementation note� Implementations that have character �les represented as
a sequence of records of bounded size might choose to encode the �le position as�
for example� record�number!��	�character�within�record� This is a valid encoding
because it increases monotonically as each character is read or written� though not
necessarily by � at each step� An integer might then be considered �inappropriate�
as a second argument to fileposition if� when decoded into record number and
character number� it turned out that the speci�ed record was too short for the
speci�ed character number�

Compatibility note� This corresponds to the function called filepos in MacLisp
and Lisp Machine Lisp�

�Function�filelength
lestream

le�stream must be a stream that is open to a �le� The length of the �le

is returned as a non�negative integer� or nil if the length cannot be deter�

mined� For a binary �le� the length is speci�cally measured in units of the

�elementtype speci�ed when the �le was opened
see open��

Compatibility note� This corresponds to the function called lengthf in MacLisp
and Lisp Machine Lisp�

�Function�filestringlength
lestream object

X�J�� voted in June ���� h���i to add the function filestringlength� The

object must be a string or a character� The function filestringlength

��� COMMON LISP

returns a non�negative integer that is the di	erence between what the

fileposition of the
le�stream would be after and before writing the ob�

ject to the
le�stream� or nil if this di	erence cannot be determined� The

value returned may depend on the current state of the
le�stream� that is�

calling filestringlength on the same arguments twice may in certain cir�
cumstances produce two di	erent integers�

����� Loading Files

To load a �le is to read through the �le� evaluating each form in it� Pro�

grams are typically stored in �les containing calls to constructs such as defun�

defmacro� and defvar� which de�ne the functions and variables of the pro�

gram�

Loading a compiled
�fasload�� �le is similar� except that the �le does not

contain text but rather pre�digested expressions created by the compiler that

can be loaded more quickly�

�Function�load
lename �key �verbose �print �ifdoesnotexist

This function loads the �le named by
lename into the Lisp environment�

It is assumed that a text
character �le� can be automatically distinguished
from an object
binary� �le by some appropriate implementation�dependent

means� possibly by the �le type� The defaults for
lename are taken from the

variable
defaultpathnamedefaults
� If the
lename
after the merging in

of the defaults� does not explicitly specify a type� and both text and object

types of the �le are available in the �le system� load should try to select the
more appropriate �le by some implementation�dependent means�

If the �rst argument is a stream rather than a pathname� then load deter�

mines what kind of stream it is and loads directly from the stream�

The �verbose argument
which defaults to the value of
loadverbose
��

if true� permits load to print a message in the form of a comment
that is�

with a leading semicolon� to
standardoutput
 indicating what �le is being
loaded and other useful information�

The �print argument
default nil�� if true� causes the value of each ex�
��

pression loaded to be printed to
standardoutput
� If a binary �le is being
loaded� then what is printed may not re
ect precisely the contents of the

source �le� but nevertheless some information will be printed�

X�J�� voted in March ���� h��i to add the variable
loadprint
� its value

is used as the default for the �print argument to load�

FILE SYSTEM INTERFACE ���

The function load rebinds
package
 to its current value� If some form

in the �le changes the value of
package
 during loading� the old value will

be restored when the loading is completed�
This was speci�ed in the �rst

edition under the description of
package
� for convenience I now mention it

here as well��
X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

X�J�� voted in June ���� h���i to clarify that supplying a wild pathname as

the
lename argument to load has implementation�dependent consequences�
load might signal an error� for example� or might load all �les that match the

pathname�

X�J�� voted in June ���� h���i to require load to accept logical pathnames

see section ��������

If a �le is successfully loaded� load always returns a non�nil value� If
�ifdoesnotexist is speci�ed and is nil� load just returns nil rather than

signaling an error if the �le does not exist�

X�J�� voted in March ���� h���i to require that load bind
readtable

to its current value at the time load is called� the dynamic extent of the bind�
ing should encompass all of the �le�loading activity� This allows a portable

program to include forms such as

�inpackage �FOO��

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�setq
readtable
 foo�myreadtable��

without performing a net global side e	ect on the loading environment� Such

statements allow the remainder of such a �le to be read either as interpreted

code or by compilefile in a syntax determined by an alternative readtable�

X�J�� voted in June ���� h���i to require that load bind two new variables

loadpathname
 and
loadtruename
� the dynamic extent of the bindings

should encompass all of the �le�loading activity�

�Variable�
loadverbose

This variable provides the default for the �verbose argument to load� Its

initial value is implementation�dependent�

�Variable�
loadprint

X�J�� voted in March ���� h��i to add
loadprint
� This variable provides

the default for the �print argument to load� Its initial value is nil�

��� COMMON LISP

�Variable�
loadpathname

X�J�� voted in June ���� h���i to introduce
loadpathname
� it is initially

nil but load binds it to a pathname that represents the �le name given as

the �rst argument to load merged with the defaults
see mergepathname��

�Variable�
loadtruename

X�J�� voted in June ���� h���i to introduce
loadtruename
� it is initially

nil but load binds it to the �true name� of the �le being loaded� See

truename�

X�J�� voted in March ���� h���i to introduce a facility based on the Object

System whereby a user can specify how compilefile and load must cooper�

ate to reconstruct compile�time constant objects at load time� The protocol is

simply this� compilefile calls the generic function makeloadform on any ob�
ject that is referenced as a constant or as a self�evaluating form� if the object�s

metaclass is standardclass� structureclass� any user�de�ned metaclass

not a subclass of builtinclass�� or any of a possibly empty implementation�

de�ned list of other metaclasses� compilefile will call makeloadform only
once for any given object
as determined by eq� within a single �le� The

user�programmability stems from the possibility of user�de�ned methods for

makeloadform� The helper function makeloadformsavingslots makes it

easy to write commonly used versions of such methods�

�Generic function�makeloadform object

The argument is an object that is referenced as a constant or as a self�

evaluating form in a �le being compiled by compilefile� The objective is to
enable load to construct an equivalent object�

The �rst value� called the creation form� is a form that� when evaluated at

load time� should return an object that is equivalent to the argument� The

exact meaning of �equivalent� depends on the type of object and is up to the

programmer who de�nes a method for makeloadform� This allows the user

to program the notion of �similar as a constant�
see section ������

The second value� called the initialization form� is a form that� when eval�
uated at load time� should perform further initialization of the object� The

value returned by the initialization form is ignored� If the makeloadform

method returns only one value� the initialization form is nil� which has no

e	ect� If the object used as the argument to makeloadform appears as a

constant in the initialization form� at load time it will be replaced by the

FILE SYSTEM INTERFACE ���

equivalent object constructed by the creation form� this is how the further

initialization gains access to the object�

Two values are returned so that circular structures may be handled� The

order of evaluation rules discussed below for creation and initialization forms

eliminates the possibility of partially initialized objects in the absence of cir�
cular structures and reduces the possibility to a minimum in the presence of

circular structures� This allows nodes in non�circular structures to be built

out of fully initialized subparts�

Both the creation form and the initialization form can contain references

to objects of user�de�ned types
de�ned precisely below�� However� there

must not be any circular dependencies in creation forms� An example of a
circular dependency� the creation form for the object X contains a reference

to the object Y � and the creation form for the object Y contains a reference

to the object X � A simpler example� the creation form for the object X

contains a reference to X itself� Initialization forms are not subject to any
restriction against circular dependencies� which is the entire reason for having

initialization forms� See the example of circular data structures below�

The creation form for an object is always evaluated before the initializa�

tion form for that object� When either the creation form or the initialization

form refers to other objects of user�de�ned types that have not been refer�
enced earlier in the compilefile� the compiler collects all of the creation and

initialization forms� Each initialization form is evaluated as soon as possible

after its creation form� as determined by data
ow� If the initialization form

for an object does not refer to any other objects of user�de�ned types that

have not been referenced earlier in the compilefile� the initialization form is
evaluated immediately after the creation form� If a creation or initialization

form F references other objects of user�de�ned types that have not been ref�

erenced earlier in the compilefile� the creation forms for those other objects

are evaluated before F and the initialization forms for those other objects are
also evaluated before F whenever they do not depend on the object created

or initialized by F� Where the above rules do not uniquely determine an order

of evaluation� it is unspeci�ed which of the possible orders of evaluation is

chosen�

While these creation and initialization forms are being evaluated� the ob�
jects are possibly in an uninitialized state� analogous to the state of an object

between the time it has been created by allocateinstance and it has been

processed fully by initializeinstance� Programmers writing methods for

makeloadformmust take care in manipulating objects not to depend on slots

that have not yet been initialized�

It is unspeci�ed whether load calls eval on the forms or does some other

��� COMMON LISP

operation that has an equivalent e	ect� For example� the forms might be

translated into di	erent but equivalent forms and then evaluated� they might

be compiled and the resulting functions called by load
after they themselves

have been loaded�� or they might be interpreted by a special�purpose inter�

preter di	erent from eval� All that is required is that the e	ect be equivalent
to evaluating the forms�

It is valid for user programs to call makeloadform in circumstances other
than compilation� providing the argument�s metaclass is not builtinclass

or a subclass of builtinclass�

Applying makeloadform to an object whose metaclass is standardclass

or structureclass for which no user�de�ned method is applicable signals an

error� It is valid to implement this either by de�ning default methods for

the classes standardobject and structureobject that signal an error or by

having no applicable method for those classes�

See loadtimeeval�

In the following example� an equivalent instance of myclass is reconstructed

by using the values of two of its slots� The value of the third slot is derived

from those two values�

�defclass myclass �� ��a �initarg �a �reader mya�

�b �initarg �b �reader myb�

�c �accessor myc���

�defmethod sharedinitialize ��self myclass� slots �rest inits�

�declare �ignore slots inits��

�unless �slotboundp self c�

�setf �myc self�

�somecomputation �mya self� �myb self�����

�defmethod makeloadform ��self myclass��

�makeinstance ��classname �classof self��

�a ��mya self� �b ��myb self���

This code will fail if either of the �rst two slots of some instance of myclass

contains the instance itself� Another way to write the last form in the preced�
ing example is

�defmethod makeloadform ��self myclass��

�makeloadformsavingslots self �a b���

This has the advantages of conciseness and handling circularities correctly�

FILE SYSTEM INTERFACE ��	

In the next example� instances of class myfrob are �interned� in some way�

An equivalent instance is reconstructed by using the value of the name slot

as a key for searching for existing objects� In this case the programmer has

chosen to create a new object if no existing object is found� an alternative

possibility would be to signal an error in that case�

�defclass myfrob ��

��name �initarg �name �reader myname���

�defmethod makeloadform ��self myfrob��

�findmyfrob ��myname self� �ifdoesnotexist �create��

In the following example� the data structure to be dumped is circular� be�

cause each node of a tree has a list of its children and each child has a reference

back to its parent�

�defclass treewithparent �� ��parent �accessor treeparent�

�children �initarg �children���

�defmethod makeloadform ��x treewithparent��

�values

�makeinstance ��classof x�

�children ��slotvalue x children��

�setf �treeparent �x� ��slotvalue x parent����

Suppose makeloadform is called on one object in such a structure� The cre�

ation form creates an equivalent object and �lls in the children slot� which

forces creation of equivalent objects for all of its children� grandchildren� etc�

At this point none of the parent slots have been �lled in� The initialization

form �lls in the parent slot� which forces creation of an equivalent object for
the parent if it was not already created� Thus the entire tree is recreated at

load time� At compile time� makeloadform is called once for each object in

the tree� All the creation forms are evaluated� in unspeci�ed order� and then

all the initialization forms are evaluated� also in unspeci�ed order�
In this �nal example� the data structure to be dumped has no special proper�

ties and an equivalent structure can be reconstructed simply by reconstructing

the slots� contents�

�defstruct mystruct a b c�

�defmethod makeloadform ��s mystruct��

�makeloadformsavingslots s��

This is easy to code using makeloadformsavingslots�

��
 COMMON LISP

�Function�makeloadformsavingslots object �optional slots

This returns two values suitable for return from a makeloadform method�

The �rst argument is the object� The optional second argument is a list of

the names of slots to preserve� it defaults to all of the local slots�

makeloadformsavingslots returns forms that construct an equivalent ob�

ject using makeinstance and setf of slotvalue for slots with values� or
slotmakunbound for slots without values� or other functions of equivalent

e	ect�

Because makeloadformsavingslots returns two values� it can deal with

circular structures� it works for any object of metaclass standardclass or

structureclass� Whether the result is useful depends on whether the ob�

ject�s type and slot contents fully capture an application�s idea of the object�s
state�

����� Accessing Directories

The following function is a very simple portable primitive for examining a

directory� Most �le systems can support much more powerful directory�
searching primitives� but no two are alike� It is expected that most implemen�

tations of Common Lisp will extend the directory function or provide more

powerful primitives�

�Function�directory pathname �key

A list of pathnames is returned� one for each �le in the �le system that matches

the given pathname�
The pathname argument may be a pathname� a string�

or a stream associated with a �le�� For a �le that matches� the truename

appears in the result list� If no �le matches the pathname� it is not an error�

directory simply returns nil� the list of no results� Keywords such as �wild

and �newest may be used in pathname to indicate the search space�

X�J�� voted in March ���� h���i to specify exactly which streams may be

used as pathnames� See section �������

X�J�� voted in January ���� h��i to specify that directory is una	ected

by whether the �rst argument� if a stream� is open or closed� If the �rst
argument is a stream� directory behaves as if the function pathname were

applied to the stream and the resulting pathname used instead� However�

X�J�� commented that the treatment of open streams may di	er considerably

from one implementation to another� for example� in some operating systems

open �les are written under a temporary or invisible name and later renamed

FILE SYSTEM INTERFACE ���

when closed� In general� programmers writing code intended to be portable

should be careful when using directory�

X�J�� voted in June ���� h���i to require directory to accept logical

pathnames
see section �������� However� the result returned by directory

never contains a logical pathname�

Implementation note� It is anticipated that an implementation may need to
provide additional parameters to control the directory search� Therefore directory
is speci�ed to take additional keyword arguments so that implementations may
experiment with extensions� even though no particular keywords are speci�ed here�
As a simple example of such an extension� for a �le system that supports the

notion of cross
directory �le links� a keyword argument �links might� if non
nil�
specify that such links be included in the result list�

��

Errors

Errors may be signaled for a variety of reasons� Many built�in Common

Lisp functions may signal an error when given incorrect arguments� Other

functions� described in this chapter� may be called by user programs for the
purpose of signaling an error�

When an error is signaled� it is handled in an implementation�dependent

way� It is expected that each implementation of Common Lisp will provide

an interactive debugger that prints the error message along with suitable

contextual information such as which function detected the error� The user
may interact with the debugger to examine or modify the state of the program

in various ways� including abandoning the current computation
�aborting to

top level�� and continuing from the error� What �continuing� means depends

on how the error is signaled� the details of this are speci�ed below for each
error�signaling function�

An implementation may also choose to provide means
such as the errset
��

special form in MacLisp� for a program to trap all errors and prevent the

debugger from stepping in for certain errors�

Rationale� Error handling of adequate �exibility and power for all systems written
in Common Lisp appears to require a complex error classi�cation system� Experience
with several error
handling systems in such dialects as MacLisp and Lisp Machine
Lisp indicates that further experimentation is needed in this area� it is too early
to de�ne a standard error
handling mechanism� Therefore Common Lisp provides
standard ways to signal errors� but no standard ways to handle errors� Of course a
complete Lisp system requires error
handling mechanisms� but many useful portable
programs do not require them� It is expected that a future revision of Common Lisp
will address the problem of portable error
handling mechanisms�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This was the result of the research and experimentation

���

ERRORS ���

alluded to in the preceding paragraph� Conditions subsume and generalize

the notion of errors� The condition system also provides means for handling

conditions
of which errors are a special case� and for restarting a computation

after a condition has been signaled� See chapter ���

Compatibility note� What is here called �continuing�� Lisp Machine Lisp calls
�proceeding� from an error�
In the new terminology introduced in chapter ��� what Lisp Machine Lisp called

�proceeding� would be called �restarting�� and �continuing� refers to the particular
restart named continue�

����� General Error	Signaling Functions

The functions in this section provide various mechanisms for signaling warn�
ings� breaks� continuable errors� and fatal errors�

In each case� the caller speci�es an error message
a string� that may be

processed
and perhaps displayed to the user� by the error�handling mecha�

nism� All messages are constructed by applying the function format to the
quantities nil� format�string� and all the args to produce a string�

An error message string should not contain a newline character at either

the beginning or end� and should not contain any sort of herald indicating

that it is an error� The system will take care of these according to whatever

its preferred style may be�
Conventionally� error messages are complete English sentences ending with

a period� Newlines in the middle of long messages are acceptable� There

should be no indentation after a newline in the middle of an error message�

The error message need not mention the name of the function that signals the
error� it is assumed that the debugger will make this information available�

Implementation note� If the debugger in a particular implementation displays
error messages indented from the prevailing left margin �for example� indented by
seven spaces because they are pre�xed by the seven
character herald �Error� ���
then the debugger should take care of inserting the appropriate indentation into a
multi
line error message� Similarly� a debugger that pre�xes error messages with
semicolons so that they appear to be comments should take care of inserting a
semicolon at the beginning of each line in a multi
line error message� These rules
are suggested because� even within a single implementation� there may be more than
one program that presents error messages to the user� and they may use di�erent
styles of presentation� The caller of error cannot anticipate all such possible styles�
and so it is incumbent upon the presenter of the message to make any necessary
adjustments�

��� COMMON LISP

Common Lisp does not specify the manner in which error messages and

other messages are displayed� For the purposes of exposition� a fairly simple

style of textual presentation will be used in the examples in this chapter� The

character � is used to represent the command prompt symbol for a debugger�

�Function�error formatstring �rest args

This function signals a fatal error� It is impossible to continue from this kind
��

of error� thus error will never return to its caller�

The debugger printout in the following example is typical of what an imple�
mentation might print when error is called� Suppose that the
misspelled�

symbol emergnecyshutdown has no property named command
all too likely�

as it is probably a typographical error for emergencyshutdown��

�defun commanddispatch �cmd�

�let ��fn �get cmd command���

�if �not �null fn��

�funcall fn��

�error �The command S is unrecognized�� cmd����

�commanddispatch emergnecyshutdown�

Error� The command EMERGNECYSHUTDOWN is unrecognized�

Error signaled by function COMMANDDISPATCH�

�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of error to specify

its interaction with the condition system� See section �������

Compatibility note� Lisp Machine Lisp calls this function ferror� MacLisp has
a function named error that takes di�erent arguments and can signal either a fatal
or a continuable error�

�Function�cerror continueformatstring errorformatstring �rest args

cerror is used to signal continuable errors� Like error� it signals an error and
��

enters the debugger� However� cerror allows the program to be continued
from the debugger after resolving the error�

If the program is continued after encountering the error� cerror returns

nil� The code that follows the call to cerror will then be executed� This

��

ERRORS ���

code should correct the problem� perhaps by accepting a new value from the

user if a variable was invalid�

If the code that corrects the problem interacts with the program�s use and

might possibly be misled� it should make sure the error has really been cor�
rected before continuing� One way to do this is to put the call to cerror and

the correction code in a loop� checking each time to see if the error has been

corrected before terminating the loop�

The continue�format�string argument� like the error�format�string argu�
ment� is given as a control string to format along with the args to construct a

message string� The error message string is used in the same way that error

uses it� The continue message string should describe the e	ect of continuing�

The intent is that this message can be displayed as an aid to the user in de�

ciding whether and how to continue� For example� it might be used by an
interactive debugger as part of the documentation of its �continue� command�

The content of the continue message should adhere to the rules of style for

error messages� It should not include any statement of how the �continue�

command is given� since this may be di	erent for each debugger�
It is up to
the debugger to supply this information according to its own particular style

of presentation and user interaction��

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of cerror to specify
its interaction with the condition system� See section �������

Here is an example where the caller of cerror� if continued� �xes the prob�

lem without any further user interaction�

�let ��nvals �listlength vals���

�unless � nvals ��

�cond ��� nvals ��

�cerror �Assume missing values are zero��

�Too few values in S� "

three are required�

but R ��were �was � supplied��

nvals � nvals
��

�setq vals �append vals �subseq �� � �� nvals����

�t �cerror �Ignore all values after the first three��

�Too many values in S� "

three are required�

but R were supplied��

nvals�

�setq vals �subseq vals � �������

��� COMMON LISP

If vals were the list ��	�� the interaction might look like this�

Error� Too few values in ��	��

three are required� but one was supplied�

Error signaled by function EXAMPLE�

If continued� Assume missing values are zero�

�

In this example� a loop is used to ensure that a test is satis�ed�
This example

could be written more succinctly using assert or checktype� which indeed

supply such loops��

�do ��

��knownwordp word� word�

�cerror �You will be prompted for a replacement word��

� S is an unknown word �possibly misspelled���

word�

�format
queryio
 � �New word� ��

�setq word �read
queryio
���

In complex cases where the error�format�string uses some of the args and

the continue�format�string uses others� it may be necessary to use the format

directives
 and #
 to skip over unwanted arguments in one or both of the
format control strings�

Compatibility note� The Lisp Machine Lisp function fsignal is similar to this�
but returns �noaction rather than nil� and fails to distinguish between the error
message and the continue message�

�Function�warn formatstring �rest args

warn prints an error message but normally doesn�t go into the debugger�
���

However� this may be controlled by the variable
breakonwarnings
��

X�J�� voted in March ���� h��i to remove
breakonwarnings
 from the

language� See
breakonsignals
�

warn returns nil�
��

This function would be just the same as format with the output di�

rected to the stream in erroroutput� except that warn may perform various

implementation�dependent formatting and other actions� For example� an im�

plementation of warn should take care of advancing to a fresh line before and

ERRORS ���

after the error message and perhaps supplying the name of the function that

called warn�

Compatibility note� The Lisp Machine Lisp function compiler�warn is an ap

proximate equivalent to this�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of warn to specify its

interaction with the condition system� See section �������

�Variable�
breakonwarnings

���

If
breakonwarnings
 is not nil� then the function warn behaves like break�

It prints its message and then goes to the debugger or break loop� Continuing

causes warn to return nil� This
ag is intended primarily for use when the
user is debugging programs that issue warnings� in �production� use� the value

of
breakonwarnings
 should be nil�

X�J�� voted in March ���� h��i to remove
breakonwarnings
 from the

language� See
breakonsignals
�

�Function�break �optional formatstring �rest args

break prints the message and goes directly into the debugger� without allowing
��

any possibility of interception by programmed error�handling facilities�
Right
now� there aren�t any error�handling facilities de�ned in Common Lisp� but

there might be in particular implementations� and there will be some de�ned

by Common Lisp in the future�� When continued� break returns nil� It is

permissible to call break with no arguments� a suitable default message will
be provided�

break is presumed to be used as a way of inserting temporary debugging
�breakpoints� in a program� not as a way of signaling errors� it is expected that

continuing from a break will not trigger any unusual recovery action� For this

reason� break does not take the additional format control string argument

that cerror takes� This and the lack of any possibility of interception by
programmed error handling are the only program�visible di	erences between

break and cerror� The interactive debugger may choose to display them

di	erently� for instance� a cerror message might be pre�xed with the herald

�Error� � and a break message with �Break� �� This depends on the user�

interface style of the particular implementation� A particular implementation

��

��� COMMON LISP

may choose� according to its own style and needs� when break is called to go

into a debugger di	erent from the one used for handling errors� For example�

it might go into an ordinary read�eval�print loop identical to the top�level one

except for the provision of a �continue� command that causes break to return

nil�

Compatibility note� In MacLisp� break is a special form �FEXPR� that takes
two optional arguments� The �rst is a symbol �it would be a string if MacLisp
had strings�� which is not evaluated� The second is evaluated to produce a truth
value specifying whether break should break �true� or return immediately �false�� In
Common Lisp one makes a call to break conditional by putting it inside a conditional
form such as when or unless�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of break to specify

its interaction with the condition system� See section ��������

����� Specialized Error	Signaling Forms and Macros

These facilities are designed to make it convenient for the user to insert error

checks into code�

�Macro�checktype place typespec �string�

checktype signals an error if the contents of place are not of the desired
��

type� Upon continuing from this error� the user will be asked for a new value�
checktype will store the new value in place and start over� checking the type

of the new value and signaling another error if it is still not of the desired type�

Subforms of place may be evaluated multiple times because of the implicit loop

generated� checktype returns nil�
The place must be a generalized variable reference acceptable to setf� The

typespec must be a type speci�er� it is not evaluated� The string should be

an English description of the type� starting with an inde�nite article
�a� or

�an��� it is evaluated� If string is not supplied� it is computed automatically

from typespec�
The optional string argument is allowed because some ap�
plications of checktype may require a more speci�c description of what is

wanted than can be generated automatically from the type speci�er��

The error message will mention place� its contents� and the desired type�

The precise format and content of the error message is implementation�

dependent� The example shown below is representative of current practice�

ERRORS ��	

Implementation note� An implementation may choose to generate a somewhat
di�erently worded error message if it recognizes that place is of a particular form�
such as one of the arguments to the function that called checktype�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of checktype to

specify its interaction with the condition system� See section �������

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����
Examples�

�setq aardvarks �sam harry fred��

�checktype aardvarks �vector integer��

Error� The value of AARDVARKS� �SAM HARRY FRED��

is not a vector of integers�

�setq naards foo�

�checktype naards �integer �
� �a positive integer��

Error� The value of NAARDS� FOO� is not a positive integer�

Compatibility note� In Lisp Machine Lisp the equivalent facility is called
checkargtype�

�Macro�assert test�form �� fplaceg� � �string fargg� � �
assert signals an error if the value of test�form is nil� Continuing from this

��

error will allow the user to alter the values of some variables� and assert will

then start over� evaluating test�form again� assert returns nil�

test�form is any form� Each place
there may be any number of them� or

none� must be a generalized�variable reference acceptable to setf� These
should be variables on which test�form depends� whose values may sensibly

be changed by the user in attempting to correct the error� Subforms of each

place are only evaluated if an error is signaled� and may be re�evaluated if the

error is re�signaled
after continuing without actually �xing the problem��
The string is an error message string� and the args are additional arguments�

they are evaluated only if an error is signaled� and re�evaluated if the error is

signaled again� The function format is applied in the usual way to string and

args to produce the actual error message� If string is omitted
and therefore

also the args�� a default error message is used�

��
 COMMON LISP

Implementation note� The debugger need not include the test�form in the error
message� and the places should not be included in the message� but they should be
made available for the user�s perusal� If the user gives the �continue� command�
he should be presented with the opportunity to alter the values of any or all of the
references� The details of this depend on the implementation�s style of user interface�
of course�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of assert to specify

its interaction with the condition system� See section �������

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����

X�J�� voted in June ���� h���i to extend the speci�cation of assert

to allow a place whose setf method has more than one store variable
see

definesetfmethod��

Examples�

�assert �valveclosedp v
��

�assert �valveclosedp v
� ��

�Live steam is escaping���

�assert �valveclosedp v
�

��valvemanualcontrol v
��

�Live steam is escaping���

�� Note here that the user is invited to change BASE�

�� but not the bounds MINBASE and MAXBASE�

�assert �� minbase base maxbase�

�base�

�Base D is not in the range D� D�

base minbase maxbase�

�� Note here that it is probably not desirable to include the

�� entire contents of the two matrices in the error message�

�� It is reasonable to assume that the debugger will give

�� the user access to the values of the places A and B�

ERRORS ���

�assert � �arraydimension a
�

�arraydimension b ���

�a b�

�Cannot multiply a Dby D matrix

and a Dby D matrix��

�arraydimension a ��

�arraydimension a
�

�arraydimension b ��

�arraydimension b
��

����� Special Forms for Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase� except

that no otherwise clause is permitted� Similarly� the syntax for ecase and

ccase is the same as for case except for the otherwise clause�

etypecase and ecase are similar to typecase and case� respectively� but
signal a non�continuable error rather than returning nil if no clause is se�

lected�

ctypecase and ccase are also similar to typecase and case� but signal a
continuable error if no clause is selected�

�Macro�etypecase keyform f�type f formg� �g�

This control construct is similar to typecase� but no explicit otherwise or t
��

clause is permitted� If no clause is satis�ed� etypecase signals an error with

a message constructed from the clauses� It is not permissible to continue from

this error� To supply an application�speci�c error message� the user should use
typecase with an otherwise clause containing a call to error� The name of

this function stands for �exhaustive type case� or �error�checking type case��

For example�

�setq x
 ��

�etypecase x

�integer x�

�symbol �symbolvalue x���

Error� The value of X�
 �� is neither

an integer nor a symbol�

�

��� COMMON LISP

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of etypecase to
specify its interaction with the condition system� See section �������

�Macro�ctypecase keyplace f�type f formg� �g�

This control construct is similar to typecase� but no explicit otherwise or
��

t clause is permitted� The keyplace must be a generalized variable reference
acceptable to setf� If no clause is satis�ed� ctypecase signals an error with

a message constructed from the clauses� Continuing from this error causes

ctypecase to accept a new value from the user� store it into keyplace� and

start over� making the type tests again� Subforms of keyplacemay be evaluated

multiple times� The name of this function stands for �continuable exhaustive
type case��

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of ctypecase to

specify its interaction with the condition system� See section �������
X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�

tion �����

�Macro�ecase keyform f� f� fkeyg� � j keyg f formg� �g�

This control construct is similar to case� but no explicit otherwise or t
���

clause is permitted� If no clause is satis�ed� ecase signals an error with
a message constructed from the clauses� It is not permissible to continue

from this error� To supply an error message� the user should use case with

an otherwise clause containing a call to error� The name of this function

stands for �exhaustive case� or �error�checking case�� For example�

�setq x
 ��

�ecase x

�alpha �foo��

�omega �bar��

��zeta phi� �baz���

Error� The value of X�
 �� is not

ALPHA� OMEGA� ZETA� or PHI�

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of ecase to specify

its interaction with the condition system� See section �������

��

ERRORS ���

�Macro�ccase keyplace f� f� fkeyg� � j keyg f formg� �g�

This control construct is similar to case� but no explicit otherwise or t
��

clause is permitted� The keyplace must be a generalized variable reference

acceptable to setf� If no clause is satis�ed� ccase signals an error with
a message constructed from the clauses� Continuing from this error causes

ccase to accept a new value from the user� store it into keyplace� and start

over� making the clause tests again� Subforms of keyplace may be evaluated

multiple times� The name of this function stands for �continuable exhaustive
case��

X�J�� voted in June ���� h��i to adopt a proposal for a Common Lisp

Condition System� This proposal modi�es the de�nition of ccase to specify

its interaction with the condition system� See section �������

X�J�� voted in March ���� h���i to clarify order of evaluation
see sec�
tion �����

Rationale� The special forms etypecase� ctypecase� ecase� and ccase are in

cluded in Common Lisp� even though a user could write them himself using the
other standard facilities provided� because it is likely that many users will want
these� Common Lisp therefore provides a standard consistent set rather than allow

ing a variety of incompatible dialects to develop�
In addition� experience has shown that some Lisp programmers are too lazy to

put an appropriate otherwise clause into every case statement to check for cases
they didn�t anticipate� even if they would agree that it will probably hurt them
later� If an otherwise clause can be included very easily by adding one character
to the name of the construct� it is perhaps more likely that programmers will take
the trouble to do it�
The e versions do nothing more than supply automatically generated otherwise

clauses� but correct implementation of the c versions requires some care� It is
therefore especially important that the c versions be provided by the system so
users don�t have to puzzle them out on their own� Individual implementations
may be able to do a better job of supporting these special forms� using their own
idiosyncratic facilities� than can be done using the error
signaling facilities de�ned
by Common Lisp�

��

Miscellaneous Features

In this chapter are described various things that don�t seem to �t neatly any�
where else in this book� the compiler� the documentation function� debugging

aids� environment inquiries
including facilities for calculating and measuring

time�� and the identity function�

����� The Compiler

The compiler is a program that may make code run faster by translating
���

programs into an implementation�dependent form that can be executed more
e�ciently by the computer� Most of the time you can write programs with�

out worrying about the compiler� compiling a �le of code should produce an

equivalent but more e�cient program� When doing more esoteric things� you

may need to think carefully about what happens at �compile time� and what

happens at �load time�� Then the di	erence between the syntaxes ���� and ����

becomes important� and the evalwhen construct becomes particularly useful�

X�J�� voted in January ���� h���i to remove ���� from the language�

Most declarations are not used by the Common Lisp interpreter� they may

be used to give advice to the compiler� The compiler may attempt to check
your advice and warn you if it is inconsistent�

Unlike most other Lisp dialects� Common Lisp recognizes special decla�

rations in interpreted code as well as compiled code� This potential source of

incompatibility between interpreted and compiled code is thereby eliminated
in Common Lisp�

The internal workings of a compiler will of course be highly implementation�

dependent� The following functions provide a standard interface to the com�

piler� however�

���

��

MISCELLANEOUS FEATURES ���

�Function�compile name �optional de
nition

If de
nition is supplied� it should be a lambda�expression� the interpreted
��

function to be compiled� If it is not supplied� then name should be a sym�
bol with a de�nition that is a lambda�expression� that de�nition is compiled

and the resulting compiled code is put back into the symbol as its function

de�nition�

X�J�� voted in October ���� h��i to restate the preceding paragraph more
precisely and to extend the capabilities of compile� If the optional de
nition

argument is supplied� it may be either a lambda�expression
which is coerced

to a function� or a function to be compiled� if no de
nition is supplied� the

symbolfunction of the symbol is extracted and compiled� It is permissible

for the symbol to have a macro de�nition rather than a function de�nition�
both macros and functions may be compiled�

It is an error if the function to be compiled was de�ned interpretively in a

non�null lexical environment�
An implementation is free to extend the be�

havior of compile to compile such functions properly� but portable programs
may not depend on this capability�� The consequences of calling compile on

a function that is already compiled are unspeci�ed�

The de�nition is compiled and a compiled�function object produced� If
��

name is a non�nil symbol� then the compiled�function object is installed as
the global function de�nition of the symbol and the symbol is returned� If

name is nil� then the compiled�function object itself is returned� For example�

�defun foo ���� � foo �A function de�nition
�compile foo� � foo �Compile it

�Now foo runs faster
maybe�

�compile nil

�lambda �a b c� � �
 b b� �
 � a c����

� a compiled function of three arguments that computes b� � �ac

X�J�� voted in June ���� h��i to specify that compile returns two ad�

ditional values indicating whether the compiler issued any diagnostics
see

section ��������

X�J�� voted in March ���� h��i to extend compile to accept as a name any

function�name
a symbol or a list whose car is setf!see section ����� One

may write �compile �setf cadr�� to compile the setf expansion function

for cadr�

��

��� COMMON LISP

�Function�compilefile inputpathname �key �outputfile
��

The input�pathname must be a valid �le speci�er� such as a path�

name� The defaults for input�
lename are taken from the variable

defaultpathnamedefaults
� The �le should be a Lisp source �le� its con�
tents are compiled and written as a binary object �le�

X�J�� voted in March ���� h��i to add two new keyword arguments
�verbose and �print to compilefile by analogy with load� The new func�

tion de�nition is as follows�

�Function�compilefile inputpathname �key �outputfile �verbose

�print

The �verbose argument
which defaults to the value of
compileverbose
��

if true� permits compilefile to print a message in the form of a comment
to
standardoutput
 indicating what �le is being compiled and other useful

information�

The �print argument
which defaults to the value of
compileprint
�� if

true� causes information about top�level forms in the �le being compiled to
be printed to
standardoutput
� Exactly what is printed is implementation�

dependent� nevertheless something will be printed�

X�J�� voted in March ���� h���i to specify exactly which streams may be
used as pathnames
see section ��������

X�J�� voted in June ���� h���i to clarify that supplying a wild pathname as

the input�pathname argument to compilefile has implementation�dependent

consequences� compilefilemight signal an error� for example� or might com�
pile all �les that match the wild pathname�

X�J�� voted in June ���� h���i to require compilefile to accept logical

pathnames
see section ��������

The �outputfile argument may be used to specify an output pathname�

it defaults in a manner appropriate to the implementation�s �le system con�
ventions�

X�J�� voted in June ���� h��i to specify that compilefile returns three

values� the truename of the output �le
or nil if the �le could not be created�

and two values indicating whether the compiler issued any diagnostics
see
section ��������

X�J�� voted in October ���� h��i to specify that compilefile� like load�

rebinds
package
 to its current value� If some form in the �le changes

the value of
package
� the old value will be restored when compilation is

completed�

MISCELLANEOUS FEATURES ���

X�J�� voted in June ���� h��i to specify restrictions on conforming pro�

grams to ensure consistent handling of symbols and packages�

In order to guarantee that compiled �les can be loaded correctly� the user
must ensure that the packages referenced in the �le are de�ned consistently

at compile and load time� Conforming Common Lisp programs must satisfy

the following requirements�

� The value of
package
 when a top�level form in the �le is processed by

compilefile must be the same as the value of
package
 when the code

corresponding to that top�level form in the compiled �le is executed by the
loader� In particular� any top�level form in a �le that alters the value of

package
 must change it to a package of the same name at both compile

and load time� moreover� if the �rst non�atomic top�level form in the �le is

not a call to inpackage� then the value of
package
 at the time load is
called must be a package with the same name as the package that was the

value of
package
 at the time compilefile was called�

� For every symbol appearing lexically within a top�level form that was acces�

sible in the package that was the value of
package
 during processing of

that top�level form at compile time� but whose home package was another

package� at load time there must be a symbol with the same name that

is accessible in both the load�time
package
 and in the package with the
same name as the compile�time home package�

� For every symbol in the compiled �le that was an external symbol in its
home package at compile time� there must be a symbol with the same name

that is an external symbol in the package with the same name at load time�

If any of these conditions do not hold� the package in which load looks for

the a	ected symbols is unspeci�ed� Implementations are permitted to signal

an error or otherwise de�ne this behavior�

These requirements are merely an explicit statement of the status quo�

namely that users cannot depend on any particular behavior if the package

environment at load time is inconsistent with what existed at compile time�

X�J�� voted in March ���� h���i to specify that compilefile must bind

readtable
 to its current value at the time compilefile is called� the dy�

namic extent of the binding should encompass all of the �le�loading activity�

This allows a portable program to include forms such as

��� COMMON LISP

�inpackage �FOO��

�evalwhen ��execute �loadtoplevel �compiletoplevel�

�setq
readtable
 foo�myreadtable��

without performing a net global side e	ect on the loading environment� Such

statements allow the remainder of such a �le to be read either as interpreted

code or by compilefile in a syntax determined by an alternative readtable�

X�J�� voted in June ���� h���i to require that compilefile bind two

new variables
compilefilepathname
 and
compilefiletruename
� the
dynamic extent of the bindings should encompass all of the �le�compiling

activity�

�Variable�
compileverbose

X�J�� voted in March ���� h��i to add
compileverbose
� This variable

provides the default for the �verbose argument to compilefile� Its initial

value is implementation�dependent�
A proposal was submitted to X�J�� in October ���� to rename this

compilefileverbose
 for consistency�

�Variable�
compileprint

X�J�� voted in March ���� h��i to add
compileprint
� This variable pro�

vides the default for the �print argument to compilefile� Its initial value
is implementation�dependent�

A proposal was submitted to X�J�� in October ���� to rename this

compilefileprint
 for consistency�

�Variable�
compilefilepathname

X�J�� voted in June ���� h���i to introduce
compilefilepathname
� it is

initially nil but compilefile binds it to a pathname that represents the �le
name given as the �rst argument to compilefile merged with the defaults

see mergepathname��

�Variable�
compilefiletruename

X�J�� voted in June ���� h���i to introduce
compilefiletruename
� it is

initially nil but compilefile binds it to the �true name� of the pathname

of the �le being compiled� See truename�

MISCELLANEOUS FEATURES ��	

�Special form�loadtimevalue form �read�only�p�

X�J�� voted in March ���� h���i to add a mechanism for delaying evaluation
of a form until it can be done in the run�time environment�

If a loadtimevalue expression is seen by compilefile� the compiler per�

forms its normal semantic processing
such as macro expansion and translation

into machine code� on the form� but arranges for the execution of the form to
occur at load time in a null lexical environment� with the result of this eval�

uation then being treated as an immediate quantity
that is� as if originally

quoted� at run time� It is guaranteed that the evaluation of the form will

take place only once when the �le is loaded� but the order of evaluation with
respect to the execution of top�level forms in the �le is unspeci�ed�

If a loadtimevalue expression appears within a function compiled with

compile� the form is evaluated at compile time in a null lexical environment�
The result of this compile�time evaluation is treated as an immediate quantity

in the compiled code�

In interpreted code� form is evaluated
by eval� in a null lexical environ�
ment and one value is returned� Implementations that implicitly compile
or

partially compile� expressions passed to eval may evaluate the form only

once� at the time this compilation is performed� This is intentionally simi�

lar to the freedom that implementations are given for the time of expanding

macros in interpreted code�

If the same
as determined by eq� list �loadtimevalue form� is evaluated

or compiled more than once� it is unspeci�ed whether the form is evaluated

only once or is evaluated more than once� This can happen both when an
expression being evaluated or compiled shares substructure and when the

same expression is passed to eval or to compile multiple times� Since a

loadtimevalue expression may be referenced in more than one place and

may be evaluated multiple times by the interpreter� it is unspeci�ed whether
each execution returns a �fresh� object or returns the same object as some

other execution� Users must use caution when destructively modifying the

resulting object�

If two lists �loadtimevalue form� are equal but not eq� their values al�

ways come from distinct evaluations of form� Coalescing of these forms is not

permitted�

The optional read�only�p argument designates whether the result may be

considered a read�only constant� If nil
the default�� the result must be con�

sidered ordinary� modi�able data� If t� the result is a read�only quantity that

may� as appropriate� be copied into read�only space and may� as appropriate�

be shared with other programs� The read�only�p argument is not evaluated

��
 COMMON LISP

and only the literal symbols t and nil are permitted�

This new feature addresses the same set of needs as the now�defunct ����

reader syntax but in a cleaner and more general manner� Note that ���� syntax

was reliably useful only inside quoted structure
though this was not explicitly

mentioned in the �rst edition�� whereas a loadtimevalue form must appear
outside quoted structure in a for�evaluation position�

See makeloadform�

�Function�disassemble nameorcompiledfunction

The argument should be a function object� a lambda�expression� or a symbol

with a function de�nition� If the relevant function is not a compiled function�

it is �rst compiled� In any case� the compiled code is then �reverse�assembled�

and printed out in a symbolic format� This is primarily useful for debugging

the compiler� but also often of use to the novice who wishes to understand
the workings of compiled code�

Implementation note� Implementors are encouraged to make the output readable�
preferably with helpful comments�

X�J�� voted in March ���� h��i to clarify that when disassemble com�
piles a function� it never installs the resulting compiled�function object in the

symbolfunction of a symbol�

X�J�� voted in March ���� h��i to extend disassemble to accept as a name

any function�name
a symbol or a list whose car is setf!see section �����
Thus one may write �disassemble �setf cadr�� to disassemble the setf

expansion function for cadr�

�Function�functionlambdaexpression fn

X�J�� voted in January ���� h��i to add a new function to allow the source
code for a de�ned function to be recovered�
The committee noted that the

�rst edition provided no portable way to recover a lambda�expression once it

had been compiled or evaluated to produce a function��

This function takes one argument� which must be a function� and returns
three values�

The �rst value is the de�ning lambda�expression for the function� or nil

if that information is not available� The lambda�expression may have been

preprocessed in some ways but should nevertheless be of a form suitable as an

argument to the function compile or for use in the function special form�

MISCELLANEOUS FEATURES ���

The second value is nil if the function was de�nitely produced by closing

a lambda�expression in the null lexical environment� it is some non�nil value

if the function might have been closed in some non�null lexical environment�

The third value is the �name� of the function� this is nil if the name is not

available or if the function had no name� The name is intended for debugging
purposes only and may be any Lisp object
not necessarily one that would be

valid for use as a name in a defun or function special form� for example��

Implementation note� An implementation is always free to return the values
nil� t� nil from this function but is encouraged to make more useful information
available as appropriate� For example� it may not be desirable for �les of compiled
code to retain the source lambda
expressions for use after the �le is loaded� but it
is probably desirable for functions produced by �in
core� calls to eval� compile�
or defun to retain the de�ning lambda
expression for debugging purposes� The
function functionlambdaexpression makes this information� if retained� accessible
in a standard and portable manner�

�Macro�withcompilationunit � foption�name option�valueg� � f formg�

X�J�� voted in March ���� h���i to add withcompilationunit� which exe�

cutes the body forms as an implicit progn� Within the dynamic context of

this form� warnings deferred by the compiler until �the end of compilation�

will be deferred until the end of the outermost call to withcompilationunit�

The results are the same as those of the last of the forms
or nil if there is
no form��

Each option�name is an unevaluated keyword� each option�value is evalu�

ated� The set of keywords permitted may be extended by the implementation�

but the only standard option keyword is �override� the default value for this

option is nil� If withcompilationunit forms are nested dynamically� only
the outermost such call has any e	ect unless the �override value of an inner

call is true�

The function compilefile should provide the e	ect of

�withcompilationunit ��override nil� ����

around its code�

Any implementation�dependent extensions to this behavior may be pro�

vided only as the result of an explicit programmer request by use of an

implementation�dependent keyword� It is forbidden for an implementation

to attach additional meaning to a conforming use of this macro�

��� COMMON LISP

Note that not all compiler warnings are deferred� In some implementations�

it may be that none are deferred� This macro only creates an interface to the

capability where it exists� it does not require the creation of the capability�

An implementation that does not defer any compiler warnings may correctly

implement this macro as an expansion into a simple progn�

������� Compiler Diagnostics

X�J�� voted in June ���� h��i to specify that compile and compilefilemay

output warning messages� any such messages should go to the stream that is

the value of
erroroutput
�

X�J�� voted in June ���� h��i to specify the use of conditions to signal

various erroneous situations during compilation� First� note that error and
warning conditions may be signaled either by the compiler itself or by code be�

ing processed by the compiler
for example� arbitrary errors may occur during

compile�time macro expansion or processing of evalwhen forms�� Considering

only those conditions signaled by the compiler
as opposed to during compi�

lation��

� Conditions of type error may be signaled by the compiler in situations

where the compilation cannot proceed without intervention� Examples of

such situations may include errors when opening a �le or syntax errors�

� Conditions of type warning may be signaled by the compiler in situations

where the standard explicitly states that a warning must� should� or may be
signaled� They may also be signaled when the compiler can determine that

a situation would result at runtime that would have unde�ned consequences

or would cause an error to be signaled� Examples of such situations may

include violations of type declarations� altering or rebinding a constant
de�ned with defconstant� calls to built�in Lisp functions with too few or

too many arguments or with malformed keyword argument lists� referring

to a variable declared ignore� or unrecognized declaration speci�ers�

� The compiler is permitted to signal diagnostics about matters of program�

ming style as conditions of type stylewarning� a subtype of warning� Al�

though a stylewarning condition may be signaled in these situations� no
implementation is required to do so� However� if an implementation does

choose to signal a condition� that condition will be of type stylewarning

and will be signaled by a call to the function warn� Examples of such situa�

tions may include rede�nition of a function with an incompatible argument

list� calls to functions
other than built�in functions� with too few or too

MISCELLANEOUS FEATURES ���

many arguments or with malformed keyword argument lists� unreferenced

local variables not declared ignore� or standard declaration speci�ers that

are ignored by the particular compiler in question�

Both compile and compilefile are permitted
but not required� to estab�

lish a handler for conditions of type error� Such a handler might� for example�

issue a warning and restart compilation from some implementation�dependent
point in order to let the compilation proceed without manual intervention�

The functions compile and compilefile each return three values� See the

de�nitions of these functions for descriptions of the �rst value� The second

value is nil if no compiler diagnostics were issued� and true otherwise� The
third value is nil if no compiler diagnostics other than style warnings were

issued� a non�nil value indicates that there were �serious� compiler diag�

nostics issued or that other conditions of type error or warning
but not

stylewarning� were signaled during compilation�

������� Compiled Functions

X�J�� voted in June ���� h��i to impose certain requirements on the functions

produced by the compilation process�

If a function is of type compiledfunction� then all macro calls appear�

ing lexically within the function have already been expanded and will not be

expanded again when the function is called� The process of compilation e	ec�
tively turns every macrolet or symbolmacrolet construct into a progn
or a

locally� with all instances of the local macros in the body fully expanded�

If a function is of type compiledfunction� then all loadtimevalue forms

appearing lexically within the function have already been pre�evaluated and
will not be evaluated again when the function is called�

Implementations are free to classify every function as a compiledfunction

provided that all functions satisfy the preceding requirements� Conversely� it

is permissible for a function that is not a compiledfunction to satisfy the

preceding requirements�
If one or more functions are de�ned in a �le that is compiled with

compilefile and the compiled �le is subsequently loaded by the func�

tion load� the resulting loaded function de�nitions must be of type

compiledfunction�
The function compile must produce an object of type compiledfunction

as the value that is either returned or stored into the symbolfunction of a

symbol argument�

Note that none of these restrictions addresses questions of the compilation

technology or target instruction set� For example� a compiled function does

��� COMMON LISP

not necessarily consist of native machine instructions� These requirements

merely specify the behavior of the type system with respect to certain actions

taken by compile� compilefile� and load�

������� Compilation Environment

X�J�� voted in June ���� h��i to specify what information must be available
at compile time for correct compilation and what need not be available until

run time�

The following information must be present in the compile�time environment

for a program to be compiled correctly� This information need not also be
present in the run�time environment�

� In conforming code� macros referenced in the code being compiled must have

been previously de�ned in the compile�time environment� The compiler

must treat as a function call any form that is a list whose car is a symbol

that does not name a macro or special form�
This implies that setf

methods must also be available at compile time��

� In conforming code� proclamations for special variables must be made in

the compile�time environment before any bindings of those variables are

processed by the compiler� The compiler must treat any binding of an

undeclared variable as a lexical binding�

The compiler may incorporate the following kinds of information into the

code it produces� if the information is present in the compile�time environment
and is referenced within the code being compiled� however� the compiler is

not required to do so� When compile�time and run�time de�nitions di	er�

it is unspeci�ed which will prevail within the compiled code
unless some

other behavior is explicitly speci�ed below�� It is also permissible for an
implementation to signal an error at run time on detecting such a discrepancy�

In all cases� the absence of the information at compile time is not an error�

but its presence may enable the compiler to generate more e�cient code�

� The compiler may assume that functions that are de�ned and declared

inline in the compile�time environment will retain the same de�nitions at

run time�

� The compiler may assume that� within a named function� a recursive call

to a function of the same name refers to the same function� unless that

function has been declared notinline�
This permits tail�recursive calls of

a function to itself to be compiled as jumps� for example� thereby turning

certain recursive schemas into e�cient loops��

MISCELLANEOUS FEATURES ���

� In the absence of notinline declarations to the contrary� compilefile

may assume that a call within the �le being compiled to a named function

that is de�ned in that �le refers to that function�
This rule permits block

compilation of �les�� The behavior of the program is unspeci�ed if functions

are rede�ned individually at run time�

� The compiler may assume that the signature
or �interface contract�� of all
built�in Common Lisp functions will not change� In addition� the compiler

may treat all built�in Common Lisp functions as if they had been proclaimed

inline�

� The compiler may assume that the signature
or �interface contract�� of

functions with ftype information available will not change�

� The compiler may �wire in�
that is� open�code or inline� the values of sym�

bolic constants that have been de�ned with defconstant in the compile�
time environment�

� The compiler may assume that any type de�nition made with defstruct

or deftype in the compile�time environment will retain the same de�nition

in the run�time environment� It may also assume that a class de�ned by

defclass in the compile�time environment will be de�ned in the run�time

environment in such a way as to have the same superclasses and metaclass�
This implies that subtype�supertype relationships of type speci�ers will not

change between compile time and run time�
Note that it is not an error

for an unknown type to appear in a declaration at compile time� although

it is reasonable for the compiler to emit a warning in such a case��

� The compiler may assume that if type declarations are present in the

compile�time environment� the corresponding variables and functions
present in the run�time environment will actually be of those types� If this

assumption is violated� the run�time behavior of the program is unde�ned�

The compiler must not make any additional assumptions about consistency

between the compile�time and run�time environments� In particular� the com�
piler may not assume that functions that are de�ned in the compile�time en�

vironment will retain either the same de�nition or the same signature at run

time� except as described above� Similarly� the compiler may not signal an

error if it sees a call to a function that is not de�ned at compile time� since
that function may be provided at run time�

X�J�� voted in January ���� h��i to specify the compile�time side e	ects

of processing various macro forms�

��� COMMON LISP

Calls to de�ning macros such as defmacro or defvar appearing within a �le

being processed by compilefile normally have compile�time side e	ects that

a	ect how subsequent forms in the same �le are compiled� A convenient model

for explaining how these side e	ects happen is that each de�ning macro ex�

pands into one or more evalwhen forms and that compile�time side e	ects are
caused by calls occurring in the body of an �evalwhen ��compiletoplevel�

���� form�

The a	ected de�ning macros and their speci�c side e	ects are as follows�

In each case� it is identi�ed what a user must do to ensure that a program

is conforming� and what a compiler must do in order to correctly process a

conforming program�

deftype

The user must ensure that the body of a deftype form is evaluable at compile

time if the type is referenced in subsequent type declarations� The compiler
must ensure that a type speci�er de�ned by deftype is recognized in subse�

quent type declarations� If the expansion of a type speci�er is not de�ned fully

at compile time
perhaps because it expands into an unknown type speci�er

or a satisfies of a named function that isn�t de�ned in the compile�time
environment�� an implementation may ignore any references to this type in

declarations and may signal a warning�

defmacro and define�modify�macro

The compiler must store macro de�nitions at compile time� so that occur�

rences of the macro later on in the �le can be expanded correctly� The user

must ensure that the body of the macro is evaluable at compile time if it is
referenced within the �le being compiled�

defun

No required compile�time side e	ects are associated with defun forms� In

particular� defun does not make the function de�nition available at compile

time� An implementation may choose to store information about the function
for the purposes of compile�time error checking
such as checking the number

of arguments on calls� or to permit later inline expansion of the function�

defvar and defparameter

The compiler must recognize that the variables named by these forms have

been proclaimed special� However� it must not evaluate the initial�value

form or set the variable at compile time�

MISCELLANEOUS FEATURES ���

defconstant

The compiler must recognize that the symbol names a constant� An imple�
mentation may choose to evaluate the value�form at compile time� load time�

or both� Therefore the user must ensure that the value�form is evaluable at

compile time
regardless of whether or not references to the constant appear

in the �le� and that it always evaluates to the same value�
There has been
considerable variance among implementations on this point� The e	ect of this

speci�cation is to legitimize all of the implementation variants by requiring

care of the user��

defsetf and define�setf�method

The compiler must make setf methods available so that they may be used

to expand calls to setf later on in the �le� Users must ensure that the body
of a call to definesetfmethod or the complex form of defsetf is evaluable

at compile time if the corresponding place is referred to in a subsequent setf

in the same �le� The compiler must make these setf methods available to

compile�time calls to getsetfmethod when its environment argument is a

value received as the �environment parameter of a macro�

defstruct

The compiler must make the structure type name recognized as a valid type

name in subsequent declarations
as described above for deftype� and make

the structure slot accessors known to setf� In addition� the compiler must

save enough information so that further defstruct de�nitions can include

with the �include option� a structure type de�ned earlier in the �le being
compiled� The functions that defstruct generates are not de�ned in the

compile�time environment� although the compiler may save enough informa�

tion about the functions to allow inline expansion of subsequent calls to

these functions� The ���S reader syntax may or may not be available for that
structure type at compile time�

define�condition

The rules are essentially the same as those for defstruct� The compiler must

make the condition type recognizable as a valid type name� and it must be

possible to reference the condition type as the parent�type of another condition

type in a subsequent definecondition form in the �le being compiled�

defpackage

All of the actions normally performed by the defpackage macro at load time

��� COMMON LISP

must also be performed at compile time�

Compile�time side e	ects may cause information about a de�nition to be

stored in a di	erent manner from information about de�nitions processed ei�
ther interpretively or by loading a compiled �le� In particular� the information

stored by a de�ning macro at compile time may or may not be available to

the interpreter
either during or after compilation� or during subsequent calls

to compile or compilefile� For example� the following code is not portable

because it assumes that the compiler stores the macro de�nition of foo where
it is available to the interpreter�

�defmacro foo �x� �car �x��

�evalwhen ��execute �compiletoplevel �loadtoplevel�

�print �foo �a b c���� �Wrong

The goal may be accomplished portably by including the macro de�nition
within the evalwhen form�

�evalwhen �eval compile load�

�defmacro foo �x� �car �x��

�print �foo �a b c���� �Right

declaim

X�J�� voted in June ���� h���i to add a new macro declaim for making

proclamations recognizable at compile time� The declaration speci�ers in

the declaim form are e	ectively proclaimed at compile time so as to a	ect
compilation of subsequent forms�
Note that compiler processing of a call

to proclaim does not have any compile�time side e	ects� for proclaim is a

function��

in�package

X�J�� voted in March ���� h���i to specify that all of the actions normally

performed by the inpackage macro at load time must also be performed at

compile time�

X�J�� voted in June ���� h��i to specify the compile�time side e	ects of pro�

cessing various CLOS�related macro forms� Top�level calls to the CLOS de�n�

ing macros have the following compile�time side e	ects� any other compile�

time behavior is explicitly left unspeci�ed�

MISCELLANEOUS FEATURES ��	

defclass

The class name may appear in subsequent type declarations and can be used as
a specializer in subsequent defmethod forms� Thus the compile�time behavior

of defclass is similar to that of deftype or defstruct�

defgeneric

The generic function can be referenced in subsequent defmethod forms� but

the compiler does not arrange for the generic function to be callable at compile

time�

defmethod

The compiler does not arrange for the method to be callable at compile time�
If there is a generic function with the same name de�ned at compile time�

compiling a defmethod form does not add the method to that generic function�

the method is added to the generic function only when the defmethod form

is actually executed�

The error�signaling behavior described in the speci�cation of defmethod in
chapter ��
if the function isn�t a generic function or if the lambda�list is not

congruent� occurs only when the de�ning form is executed� not at compile

time�

The forms in eql parameter specializers are evaluated when the defmethod

form is executed� The compiler is permitted to build in knowledge about what

the form in an eql specializer will evaluate to in cases where the ultimate
result can be syntactically inferred without actually evaluating it�

define�method�combination

The method combination can be used in subsequent defgeneric forms�

The body of a definemethodcombination form is evaluated no earlier than

when the de�ning macro is executed and possibly as late as generic function

invocation time� The compiler may attempt to evaluate these forms at compile

time but must not depend on being able to do so�

������� Similarity of Constants

X�J�� voted in March ���� h��i to specify what objects can be in compiled

constants and what relationship there must be between a constant passed to

the compiler and the one that is established by compiling it and then loading

its �le�

��
 COMMON LISP

The key is a de�nition of an equivalence relationship called �similarity as

constants� between Lisp objects� Code passed through the �le compiler and

then loaded must behave as though quoted constants in it are similar in this

sense to quoted constants in the corresponding source code� An object may

be used as a quoted constant processed by compilefile if and only if the
compiler can guarantee that the resulting constant established by loading the

compiled �le is �similar as a constant� to the original� Speci�c requirements

are spelled out below�

Some types of objects� such as streams� are not supported in constants

processed by the �le compiler� Such objects may not portably appear as
constants in code processed with compilefile� Conforming implementations

are required to handle such objects either by having the compiler or loader

reconstruct an equivalent copy of the object in some implementation�speci�c

manner or by having the compiler signal an error�

Of the types supported in constants� some are treated as aggregate objects�
For these types� being similar as constants is de�ned recursively� We say that

an object of such a type has certain �basic attributes�� to be similar as a

constant to another object� the values of the corresponding attributes of the

two objects must also be similar as constants�

A de�nition of this recursive form has problems with any circular or in�

�nitely recursive object such as a list that is an element of itself� We use

the idea of depth�limited comparison and say that two objects are similar as

constants if they are similar at all �nite levels� This idea is implicit in the

de�nitions below� and it applies in all the places where attributes of two ob�
jects are required to be similar as constants� The question of handling circular

constants is the subject of a separate vote by X�J��
see below��

The following terms are used throughout this section� The term constant

refers to a quoted or self�evaluating constant� not a named constant de�ned by

defconstant� The term source code is used to refer to the objects constructed
when compilefile calls read
or the equivalent� and to additional objects

constructed by macro expansion during �le compilation� The term compiled

code is used to refer to objects constructed by load�

Two objects are similar as a constant if and only if they are both of one of

the types listed below and satisfy the additional requirements listed for that
type�

number

Two numbers are similar as constants if they are of the same type and repre�

sent the same mathematical value�

MISCELLANEOUS FEATURES ���

character

Two characters are similar as constants if they both represent the same char�
acter�
The intent is that this be compatible with how eql is de�ned on

characters��

symbol

X�J�� voted in June ���� h��i to de�ne similarity as a constant for interned

symbols� A symbol S appearing in the source code is similar as a constant to

a symbol S � in the compiled code if their print names are similar as constants

and either of the following conditions holds�

� S is accessible in
package
 at compile time and S � is accessible in

package
 at load time�

� S � is accessible in the package that is similar as a constant to the home

package of symbol S�

The �similar as constants� relationship for interned symbols has nothing to

do with
readtable
 or how the function read would parse the characters in

the print name of the symbol�

An uninterned symbol in the source code is similar as a constant to an

uninterned symbol in the compiled code if their print names are similar as

constants�

package

A package in the source code is similar as a constant to a package in the

compiled code if their names are similar as constants� Note that the loader
�nds the corresponding package object as if by calling findpackage with the

package name as an argument� An error is signaled if no package of that name

exists at load time�

random�state

We say that two randomstate objects are functionally equivalent if applying

random to them repeatedly always produces the same pseudo�random numbers

in the same order�

Two random�states are similar as constants if and only if copies of them

made via makerandomstate are functionally equivalent�
Note that a constant

randomstate object cannot be used as the state argument to the function

random because random performs a side e	ect on that argument��

��� COMMON LISP

cons

Two conses are similar as constants if the values of their respective car and
cdr attributes are similar as constants�

array

Two arrays are similar as constants if the corresponding values of each of

the following attributes are similar as constants� for vectors
one�dimensional

arrays�� the length and elementtype and the result of elt for all valid indices�
for all other arrays� the arrayrank� the result of arraydimension for all valid

axis numbers� the arrayelementtype� and the result of aref for all valid

indices�
The point of distinguishing vectors is to take any �ll pointers into

account��

If the array in the source code is a simplearray� then the corresponding

array in the compiled code must also be a simplearray� but if the array in the
source code is displaced� has a �ll pointer� or is adjustable� the corresponding

array in the compiled code is permitted to lack any or all of these qualities�

hash�table

Two hash tables are similar as constants if they meet three requirements�

First� they must have the same test
for example� both are eql hash tables
or both are equal hash tables�� Second� there must be a unique bijective cor�

respondence between the keys of the two tables� such that the corresponding

keys are similar as constants� Third� for all keys� the values associated with

two corresponding keys must be similar as constants�

If there is more than one possible one�to�one correspondence between the

keys of the two tables� it is unspeci�ed whether the two tables are similar as
constants� A conforming program cannot use such a table as a constant�

pathname

Two pathnames are similar as constants if all corresponding pathname com�

ponents are similar as constants�

stream� readtable� and method

Objects of these types are not supported in compiled constants�

function

X�J�� voted in June ���� h��i to specify that objects of type function are

not supported in compiled constants�

MISCELLANEOUS FEATURES ���

structure and standard�object

X�J�� voted in March ���� h���i to introduce a facility based on the Common

Lisp Object System whereby a user can specify how compilefile and load

must cooperate to reconstruct compile�time constant objects at load time
see

makeloadform��

X�J�� voted in March ���� h��i to specify the circumstances under which
constants may be coalesced in compiled code�

Suppose A and B are two objects used as quoted constants in the source

code� and that A� and B � are the corresponding objects in the compiled code�

If A� and B � are eql but A and B were not eql� then we say that A and B

have been coalesced by the compiler�

An implementation is permitted to coalesce constants appearing in code to
be compiled if and only if they are similar as constants� except that objects of

type symbol� package� structure� or standardobject obey their own rules

and may not be coalesced by a separate mechanism�

Rationale� Objects of type symbol and package cannot be coalesced because the
fact that they are named� interned objects means they are already as coalesced as
it is useful for them to be� Uninterned symbols could perhaps be coalesced� but
that was thought to be more dangerous than useful� Structures and objects could
be coalesced if a �similar as a constant� predicate were de�ned for them� it would
be a generic function� However� at present there is no such predicate� Currently
makeloadform provides a protocol by which compilefile and load work together
to construct an object in the compiled code that is equivalent to the object in the
source code� a di�erent mechanism would have to be added to permit coalescing�

Note that coalescing is possible only because it is forbidden to destructively

modify constants h��i
see quote��
X�J�� voted in March ���� h��i to specify that objects containing circular

or in�nitely recursive references may legitimately appear as constants to be

compiled� The compiler is required to preserve eql�ness of substructures

within a �le compiled by compilefile�

����� Documentation
���

A simple facility is provided for attaching strings to symbols for the purpose

of on�line documentation� Rather than using the property list of the symbol�

a separate function documentation is provided so that implementations can

optimize the storage of documentation strings�

��

�	� COMMON LISP

�Function�documentation symbol doctype

This function returns the documentation string of type doc�type for the symbol�

or nil if none exists� Both arguments must be symbols� Some kinds of docu�

mentation are provided automatically by certain Common Lisp constructs if

the user writes an optional documentation string within them�

Construct Documentation Type

defvar variable

defparameter variable

defconstant variable

defun function

defmacro function

defstruct structure

deftype type

defsetf setf
��

In addition� names of special forms may also have function documentation�

Macros and special forms are not really functions� of course� but it is conve�
nient to group them with functions for documentation purposes��

setf may be used with documentation to update documentation informa�
tion�

X�J�� voted in June ���� h��i to make documentation a CLOS generic
function
see chapter ����

X�J�� voted in March ���� h��i to extend documentation to accept
any function�name
a symbol or a list whose car is setf!see section �����

Thus one may write �documentation �setf cadr� function� to deter�

mine whether there is any documentation for a setf expansion function for

cadr�

����� Debugging Tools

The utilities described in this section are su�ciently complex and su�ciently

dependent on the host environment that their complete de�nition is beyond

the scope of this book� However� they are also su�ciently useful to warrant

mention here� It is expected that every implementation will provide some

version of these utilities� however clever or however simple�

��

MISCELLANEOUS FEATURES �	�

�Macro�trace f function�nameg�
�Macro�untrace f function�nameg�

Invoking trace with one or more function�names
symbols� causes the func�
��

tions named to be traced� Henceforth� whenever such a function is invoked�

information about the call� the arguments passed� and the eventually returned

values� if any� will be printed to the stream that is the value of
traceoutput
�
For example�

�trace fft gcd stringupcase�

If a function call is open�coded
possibly as a result of an inline declaration��

then such a call may not produce trace output�

Invoking untrace with one or more function names will cause those func�

tions not to be traced any more�

Tracing an already traced function� or untracing a function not currently

being traced� should produce no harmful e	ects but may produce a warning

message�

Calling trace with no argument forms will return a list of functions cur�

rently being traced�

Calling untrace with no argument forms will cause all currently traced
functions to be no longer traced�

X�J�� voted in March ���� h��i to extend trace and untrace to accept any

function�name
a symbol or a list whose car is setf!see section ����� Thus
one may write �trace �setf cadr�� to trace the setf expansion function

for cadr�

X�J�� voted in January ���� h���i to specify that the values returned
by trace and untrace when given argument forms are implementation�

dependent�

trace and untrace may also accept additional implementation�dependent
argument formats� The format of the trace output is implementation�

dependent�

�Macro�step form

This evaluates form and returns what form returns� However� the user is
allowed to interactively �single�step� through the evaluation of form� at least

through those evaluation steps that are performed interpretively� The nature

of the interaction is implementation�dependent� However� implementations

are encouraged to respond to the typing of the character � by providing help�

including a list of commands�

�	� COMMON LISP

X�J�� voted in January ���� h���i to clarify that step evaluates its argu�

ment form in the current lexical environment
not simply a null environment��

and that calls to stepmay be compiled� in which case an implementation may

step through only those parts of the evaluation that are interpreted�
In other

words� the form itself is unlikely to be stepped� but if executing it happens to
invoke interpreted code� then that code may be stepped��

�Macro�time form

This evaluates form and returns what form returns� However� as a side e	ect�

various timing data and other information are printed to the stream that is the
value of
traceoutput
� The nature and format of the printed information

is implementation�dependent� However� implementations are encouraged to

provide such information as elapsed real time� machine run time� storage

management statistics� and so on�

Compatibility note� This facility is inspired by the Interlisp facility of the same
name� Note that the MacLisp�Lisp Machine Lisp function time does something else
entirely� namely return a quantity indicating relative elapsed real time�

X�J�� voted in January ���� h���i to clarify that time evaluates its argu�

ment form in the current lexical environment
not simply a null environment��

and that calls to time may be compiled�

�Function�describe object
���

describe prints� to the stream in the variable
standardoutput
� informa�

tion about the object� Sometimes it will describe something that it �nds inside

something else� such recursive descriptions are indented appropriately� For in�

stance� describe of a symbol will exhibit the symbol�s value� its de�nition�

and each of its properties� describe of a
oating�point number will exhibit
its internal representation in a way that is useful for tracking down round�o	

errors and the like� The nature and format of the output is implementation�

dependent�

describe returns no values
that is� it returns what the expression
�values� returns� zero values��

X�J�� voted in March ���� h��i to let describe take an optional second

argument�

MISCELLANEOUS FEATURES �	�

�Function�describe object �optional stream

The output is sent to the speci�ed stream� which defaults to the

value of
standardoutput
� the stream may also be nil
meaning

standardoutput
� or t
meaning
terminalio
��
The behavior of describe depends on the generic function describeobject

see below��

X�J�� voted in January ���� h��i to specify that describe is forbidden

to prompt for or require user input when given exactly one argument� it

also voted to permit implementations to extend describe to accept keyword

arguments that may cause it to prompt for or to require user input�

�Generic function�describeobject object stream
�Primary method �describeobject �object standardobject� stream

X�J�� voted in March ���� h��i to add the generic function describeobject�

which writes a description of an object to a stream� The function

describeobject is called by the describe function� it should not be called
by the user�

Each implementation must provide a method on the class standardobject

and methods on enough other classes to ensure that there is always an ap�

plicable method� Implementations are free to add methods for other classes�

Users can write methods for describeobject for their own classes if they do
not wish to inherit an implementation�supplied method�

The �rst argument may be any Lisp object� The second argument is a

stream� it cannot be t or nil� The values returned by describeobject are

unspeci�ed�
Methods on describeobject may recursively call describe� Indentation�

depth limits� and circularity detection are all taken care of automatically�

provided that each method handles exactly one level of structure and calls

describe recursively if there are more structural levels� If this rule is not

obeyed� the results are unde�ned�
In some implementations the stream argument passed to a describeobject

method is not the original stream but is an intermediate stream that im�

plements parts of describe� Methods should therefore not depend on the

identity of this stream�

Rationale� This proposal was closely modeled on the CLOS description of
printobject� which was well thought out and provides a great deal of function

ality and implementation freedom� Implementation techniques for printobject are
applicable to describeobject�

�	� COMMON LISP

The reason for making the return values for describeobject unspeci�ed is to
avoid forcing users to write �values� explicitly in all their methods� describe should
take care of that�

�Function�inspect object

inspect is an interactive version of describe� The nature of the interaction

is implementation�dependent� but the purpose of inspect is to make it easy

to wander through a data structure� examining and modifying parts of it�

Implementations are encouraged to respond to the typing of the character �

by providing help� including a list of commands�
X�J�� voted in January ���� h���i to specify that the values returned by

inspect are implementation�dependent�

�Function�room �optional x

room prints� to the stream in the variable
standardoutput
� information

about the state of internal storage and its management� This might include

descriptions of the amount of memory in use and the degree of memory com�

paction� possibly broken down by internal data type if that is appropriate� The
nature and format of the printed information is implementation�dependent�

The intent is to provide information that may help a user to tune a program

to a particular implementation�

�room nil� prints out a minimal amount of information� �room t� prints

out a maximal amount of information� Simply �room� prints out an interme�
diate amount of information that is likely to be useful�

X�J�� voted in January ���� h���i to specify that the argument x may also

be the keyword �default� which has the same e	ect as passing no argument

at all�

�Function�ed �optional x

If the implementation provides a resident editor� this function should invoke

it�
�ed� or �ed nil� simply enters the editor� leaving you in the same state

as the last time you were in the editor�

�ed pathname� edits the contents of the �le speci�ed by pathname� The

pathname may be an actual pathname or a string�

X�J�� voted in June ���� h���i to require ed to accept logical pathnames

see section ��������

MISCELLANEOUS FEATURES �		

�ed symbol� tries to let you edit the text for the function named sym�

bol� The means by which the function text is obtained is implementation�

dependent� it might involve searching the �le system� or pretty printing resi�

dent interpreted code� for example�

X�J�� voted in March ���� h��i to extend compile to accept as a name

any function�name
a symbol or a list whose car is setf!see section �����

Thus one may write �ed �setf cadr�� to edit the setf expansion function
for cadr�

�Function�dribble �optional pathname

�dribble pathname� may rebind
standardinput
 and
standardoutput
�

and may take other appropriate action� so as to send a record of the in�

put�output interaction to a �le named by pathname� The primary purpose of

this is to create a readable record of an interactive session�

�dribble� terminates the recording of input and output and closes the

dribble �le�

X�J�� voted in June ���� h���i to require dribble to accept logical path�

names
see section ��������

X�J�� voted in March ���� h��i to clarify that dribble is intended pri�

marily for interactive debugging and that its e	ect cannot be relied upon for

use in portable programs�

Di	erent implementations of Common Lisp have used radically di	erent

techniques for implementing dribble� All are reasonable interpretations of
the original speci�cation� and all behave in approximately the same way if

dribble is called only from the interactive top level� However� they may have

quite di	erent behaviors if dribble is called from within compound forms�

Consider two models of the operation of dribble� In the �redirecting�

model� a call to dribble with a pathname argument alters certain global

variables such as
standardoutput
� perhaps by constructing a broadcast

stream directed to both the original value of
standardoutput
 and to the
dribble �le� other streams may be a	ected as well� A call to dribble with no

arguments undoes these side e	ects�

In the �recursive� model� by contrast� a call to dribble with a pathname

argument creates a new interactive command loop and calls it recursively�

This new command loop is just like an ordinary read�eval�print loop except

that it also echoes the interaction to the dribble �le� A call to dribble with
no arguments does a throw that exits the recursive command loop and returns

to the original caller of dribble with an argument�

The two models may be distinguished by this test case�

�	
 COMMON LISP

�progn �dribble �basketball��

�print �Larry��

�dribble�

�princ �Bird���

If this form is input to the Lisp top level� in either model a newline
provided

by the function print� and the words Larry Bird will be printed to the

standard output� The redirecting dribble model will additionally print all but
the word Bird to a �le named basketball�

By contrast� the recursive dribble model will enter a recursive command

loop and not print anything until �dribble� is executed from within the new

interactive command loop� At that time the �le named basketball will be

closed� and then execution of the progn form will be resumed� A newline and
�Larry �
note the trailing space� will be printed to the standard output�

and then the call �dribble�may complain that there is no active dribble �le�

Once this error is resolved� the word Bird may be printed to the standard

output�
Here is a slightly di	erent test case�

�dribble �babyfood��

�progn �print �Mashed banana��

�dribble�

�princ �and cream of rice���

If this form is input to the Lisp top level� in the redirecting model a newline

and the words Mashed banana and cream of rice will be printed to the
standard output and all but the words and cream of rice will be sent to a

�le named babyfood�

The recursive model will direct exactly the same output to the �le named

babyfood but will never print the words and cream of rice to the standard
output because the call �dribble� does not return normally� it throws�

The redirecting model may be intuitively more appealing to some� The

recursive model� however� may be more robust� it carefully limits the extent

of the dribble operation and disables dribbling if a throw of any kind occurs�

The vote by X�J�� was an explicit decision not to decide which model to use�
Users are advised to call dribble only interactively� at top level�

�Function�apropos string �optional package

�Function�aproposlist string �optional package

�apropos string� tries to �nd all available symbols whose print names contain

MISCELLANEOUS FEATURES �	�

string as a substring�
A symbol may be supplied for the string� in which case

the print name of the symbol is used�� Whenever apropos �nds a symbol�

it prints out the symbol�s name� in addition� information about the function

de�nition and dynamic value of the symbol� if any� is printed� If package is

speci�ed and not nil� then only symbols available in that package are exam�
ined� otherwise �all� packages are searched� as if by doallsymbols� Because a

symbol may be available by way of more than one inheritance path� apropos

may print information about the same symbol more than once� The informa�

tion is printed to the stream that is the value of
standardoutput
� apropos
returns no values
that is� it returns what the expression �values� returns�

zero values��

aproposlist performs the same search that apropos does but prints noth�
ing� It returns a list of the symbols whose print names contain string as a

substring�

����� Environment Inquiries

Environment inquiry functions provide information about the environment in
which a Common Lisp program is being executed� They are described here

in two categories� �rst� those dealing with determination and measurement of

time� and second� all the others� most of which deal with identi�cation of the

computer hardware and software�

������� Time Functions

Time is represented in three di	erent ways in Common Lisp� Decoded Time�

Universal Time� and Internal Time� The �rst two representations are used

primarily to represent calendar time and are precise only to one second� In�

ternal Time is used primarily to represent measurements of computer time

such as run time� and is precise to some implementation�dependent fraction

of a second� as speci�ed by internaltimeunitspersecond� Decoded Time

format is used only for absolute time indications� Universal Time and Internal

Time formats are used for both absolute and relative times�

Decoded Time format represents calendar time as a number of components�

� Second� an integer between � and ��� inclusive�

� Minute� an integer between � and ��� inclusive�

� Hour� an integer between � and ��� inclusive�

�	� COMMON LISP

� Date� an integer between � and ��� inclusive
the upper limit actually

depends on the month and year� of course��

� Month� an integer between � and ��� inclusive� � means January� �� means

December�

� Year� an integer indicating the year A�D� However� if this integer is between

� and ��� the �obvious� year is used� more precisely� that year is assumed

that is equal to the integer modulo ��� and within �fty years of the current

year
inclusive backwards and exclusive forwards�� Thus� in the year �����

year �� is ���� but year �� is �����
Functions that return time in this
format always return a full year number��

Compatibility note� This is incompatible with the Lisp Machine Lisp de�nition
in two ways� First� in Lisp Machine Lisp a year between
 and �� always has ��

added to it� Second� in Lisp Machine Lisp time functions return the abbreviated year
number between
 and �� rather than the full year number� The incompatibility
is prompted by the imminent arrival of the twenty
�rst century� Note that �mod
year 	

� always reliably converts a year number to the abbreviated form� while
the inverse conversion can be very di�cult�

� Day�of�week� an integer between � and �� inclusive� � means Monday� �

means Tuesday� and so on� � means Sunday�

� Daylight�saving�time�p� a
ag that� if not nil� indicates that daylight saving

time is in e	ect�

� Time�zone� an integer speci�ed as the number of hours west of GMT

Greenwich Mean Time�� For example� in Massachusetts the time zone

is �� and in California it is �� Any adjustment for daylight saving time is

separate from this�

X�J�� voted in March ���� h���i to specify that the time zone part of

Decoded Time need not be an integer� but may be any rational number
either

an integer or a ratio� in the range ��� to ��
inclusive on both ends� that is
an integral multiple of
 �����

Rationale� For all possible time designations to be accommodated� it is necessary
to allow the time zone to be non
integral� for some places in the world have time
standards o�set from Greenwich Mean Time by a non
integral number of hours�
There appears to be no user demand for �oating
point time zones� Since such

zones would introduce inexact arithmetic� X�J�� did not consider adding them at
this time�

MISCELLANEOUS FEATURES �	�

This speci�cation does require time zones to be represented as integral multiples
of � second �rather than � hour�� This prevents problems that could otherwise occur
in converting Decoded Time to Universal Time�

Universal Time represents time as a single non�negative integer� For relative

time purposes� this is a number of seconds� For absolute time� this is the

number of seconds since midnight� January �� ���� GMT� Thus the time

� is ��������
that is� �������� A�M�� on January �� ���� GMT� Similarly�
the time ���������� corresponds to time �������� on January �� ���� GMT�

Recall that the year ���� was not a leap year� for the purposes of Common

Lisp� a year is a leap year if and only if its number is divisible by �� except that

years divisible by ��� are not leap years� except that years divisible by ��� are

leap years� Therefore the year ���� will be a leap year�
Note that the �leap
seconds� that are sporadically inserted by the world�s o�cial timekeepers as

an additional correction are ignored� Common Lisp assumes that every day

is exactly ����� seconds long�� Universal Time format is used as a standard

time representation within the ARPANET� see reference ����� Because the
Common Lisp Universal Time representation uses only non�negative integers�

times before the base time of midnight� January �� ���� GMT cannot be

processed by Common Lisp�

Internal Time also represents time as a single integer� but in terms of an

implementation�dependent unit� Relative time is measured as a number of

these units� Absolute time is relative to an arbitrary time base� typically the

time at which the system began running�

�Function�getdecodedtime

The current time is returned in Decoded Time format� Nine values are re�

turned� second� minute� hour� date� month� year� day�of�week� daylight�saving�
time�p� and time�zone�

Compatibility note� In Lisp Machine Lisp time�zone is not currently returned�
Consider� however� the use of Common Lisp in some mobile vehicle� It is entirely
plausible that the time zone might change from time to time�

�Function�getuniversaltime

The current time of day is returned as a single integer in Universal Time

format�

�
� COMMON LISP

�Function�decodeuniversaltime universaltime �optional timezone

The time speci�ed by universal�time in Universal Time format is converted to

Decoded Time format� Nine values are returned� second� minute� hour� date�

month� year� day�of�week� daylight�saving�time�p� and time�zone�

Compatibility note� In Lisp Machine Lisp time�zone is not currently returned�
Consider� however� the use of Common Lisp in some mobile vehicle� It is entirely
plausible that the time zone might change from time to time�

The time�zone argument defaults to the current time zone�
X�J�� voted in January ���� h��i to specify that decodeuniversaltime�

like encodeuniversaltime� ignores daylight saving time information if a time�

zone is explicitly speci�ed� in this case the returned daylight�saving�time�p

value will necessarily be nil even if daylight saving time happens to be in
e	ect in that time zone at the speci�ed time�

�Function�encodeuniversaltime second minute hour date month year

�optional timezone

The time speci�ed by the given components of Decoded Time format is en�

coded into Universal Time format and returned� If you do not specify time�

zone� it defaults to the current time zone adjusted for daylight saving time�
If you provide time�zone explicitly� no adjustment for daylight saving time is

performed�

�Constant �internaltimeunitspersecond

This value is an integer� the implementation�dependent number of internal

time units in a second�
The internal time unit must be chosen so that one

second is an integral multiple of it��

Rationale� The reason for allowing the internal time units to be implementation

dependent is so that getinternalruntime and getinternalrealtime can execute
with minimum overhead� The idea is that it should be very likely that a �xnum will
su�ce as the returned value from these functions� This probability can be tuned to
the implementation by trading o� the speed of the machine against the word size�
Any particular unit will be inappropriate for some implementations� a microsecond
is too long for a very fast machine� while a much smaller unit would force many
implementations to return bignums for most calls to getinternaltime� rendering
that function less useful for accurate timing measurements�

MISCELLANEOUS FEATURES �
�

�Function�getinternalruntime

The current run time is returned as a single integer in Internal Time format�

The precise meaning of this quantity is implementation�dependent� it may

measure real time� run time� CPU cycles� or some other quantity� The intent
is that the di	erence between the values of two calls to this function be the

amount of time between the two calls during which computational e	ort was

expended on behalf of the executing program�

�Function�getinternalrealtime

The current time is returned as a single integer in Internal Time format� This
time is relative to an arbitrary time base� but the di	erence between the values

of two calls to this function will be the amount of elapsed real time between the

two calls� measured in the units de�ned by internaltimeunitspersecond�

�Function�sleep seconds

�sleep n� causes execution to cease and become dormant for approximately
n seconds of real time� whereupon execution is resumed� The argument may

be any non�negative non�complex number� sleep returns nil�

������� Other Environment Inquiries

For any of the following functions� if no appropriate and relevant result can

be produced� nil is returned instead of a string�

Rationale� These inquiry facilities are functions rather than variables against the
possibility that a Common Lisp process might migrate from machine to machine�
This need not happen in a distributed environment� consider� for example� dumping
a core image �le containing a compiler and then shipping it to another site�

�Function�lispimplementationtype

A string is returned that identi�es the generic name of the particular Common

Lisp implementation� Examples� �Spice LISP�� �Zetalisp��

�
� COMMON LISP

�Function�lispimplementationversion

A string is returned that identi�es the version of the particular Common Lisp

implementation� this information should be of use to maintainers of the imple�

mentation� Examples� �

���� ����	 with complex numbers�� �
	����A�

NEWIO ��� ETHER �����

�Function�machinetype

A string is returned that identi�es the generic name of the computer hardware

on which Common Lisp is running� Examples� �IMLAC�� �DEC PDP
��� �DEC

VAX

 	����

�Function�machineversion

A string is returned that identi�es the version of the computer hardware on

which Common Lisp is running� Example� �KL
�� microcode ���

�Function�machineinstance

A string is returned that identi�es the particular instance of the computer
hardware on which Common Lisp is running� this might be a local nickname�

for example� or a serial number� Examples� �MITMC�� �CMU GPVAX��

�Function�softwaretype

A string is returned that identi�es the generic name of any relevant supporting
software� Examples� �Spice�� �TOPS���� �ITS��

�Function�softwareversion

A string is returned that identi�es the version of any relevant supporting soft�

ware� this information should be of use to maintainers of the implementation�

�Function�shortsitename

�Function�longsitename

A string is returned that identi�es the physical location of the computer hard�

ware� Examples of short names� �MIT AI Lab�� �CMUCSD�� Examples of long

names�

MISCELLANEOUS FEATURES �
�

�MIT Artificial Intelligence Laboratory�

�Massachusetts Institute of Technology

Artificial Intelligence Laboratory�

�CarnegieMellon University Computer Science Department�

See also userhomedirpathname�

�Variable�
features

The value of the variable
features
 should be a list of symbols that

name �features� provided by the implementation� Most such names will be

implementation�speci�c� typically a name for the implementation will be in�
cluded�

One standard feature name is ieeefloatingpoint� which should be present
���

if and only if full IEEE proposed
oating�point arithmetic ���� is supported�

The value of this variable is used by the ���� and ��� reader syntax�

X�J�� voted in March ���� h���i to specify that feature names used with

���� and ��� are read in the keyword package unless an explicit pre�x designating
some other package appears� The standard feature name ieeefloatingpoint

is therefore actually the keyword �ieeefloatingpoint� though one need not

write the colon when using it with ���� or ���� thus ����ieeefloatingpoint and

�����ieeefloatingpoint mean the same thing�

����� Identity Function

This function is occasionally useful as an argument to other functions that

require functions as arguments�
Got that$�

�Function�identity object

The object is returned as the value of identity�

The identity function is the default value for the �key argument to many

sequence functions
see chapter ����

Table ���� illustrates the behavior in the complex plane of the identity

function regarded as a function of a complex numerical argument�
Many other constructs in Common Lisp have the behavior of identity

when given a single argument� For example� one might well use values in

place of identity� However� writing values of a single argument convention�

ally indicates that the argument form might deliver multiple values and that

the intent is to pass on only the �rst of those values�

�
� COMMON LISP

Compatibility note� In Maclisp� progn was a function of any number of arguments
that returned its last argument� so progn could be used as an identity function� In
Common Lisp� progn is a special form and therefore cannot be used for that purpose�

��

Loop

BY JON L WHITE

preface� X�J�� voted in January ���� h���i to adopt an extended def�
inition of the loop macro as a part of the forthcoming draft Common Lisp

standard�

This chapter presents the bulk of the Common Lisp Loop Facility proposal�

written by Jon L White� I have edited it only very lightly to conform to

the overall style of this book and have inserted a small number of bracketed
remarks� identi�ed by the initials GLS�
See the Acknowledgments to this

second edition for acknowledgments to others who contributed to the Loop

Facility proposal��

!Guy L� Steele Jr�

����� Introduction

A loop is a series of expressions that are executed one or more times� a process

known as iteration� The Loop Facility de�nes a variety of useful methods�

indicated by loop keywords� to iterate and to accumulate values in a loop�

Loop keywords are not true Common Lisp keywords� they are symbols

that are recognized by the Loop Facility and that provide such capabilities
as controlling the direction of iteration� accumulating values inside the body

of a loop� and evaluating expressions that precede or follow the loop body� If

you do not use any loop keywords� the Loop Facility simply executes the loop

body repeatedly�

����� How the Loop Facility Works

The driving element of the Loop Facility is the loop macro� When Lisp

encounters a loop macro call form� it invokes the Loop Facility and passes to

it the loop clauses as a list of unevaluated forms� as with any macro� The loop

�
	

�

 COMMON LISP

clauses contain Common Lisp forms and loop keywords� The loop keywords

are recognized by their symbol name� regardless of the packages that contain

them� The loop macro translates the given form into Common Lisp code and

returns the expanded form�

The expanded loop form is one or more lambda�expressions for the local

binding of loop variables and a block and a tagbody that express a looping

control structure� The variables established in the loop construct are bound

as if by using let or lambda� Implementations can interleave the setting of
initial values with the bindings� However� the assignment of the initial values

is always calculated in the order speci�ed by the user� A variable is thus

sometimes bound to a harmless value of the correct data type� and then later

in the prologue it is set to the true initial value by using setq�

The expanded form consists of three basic parts in the tagbody�

� The loop prologue contains forms that are executed before iteration begins�

such as initial settings of loop variables and possibly an initial termination

test�

� The loop body contains those forms that are executed during iteration�

including application�speci�c calculations� termination tests� and variable

stepping� Stepping is the process of assigning a variable the next item in a
series of items�

� The loop epilogue contains forms that are executed after iteration termi�
nates� such as code to return values from the loop�

Expansion of the loop macro produces an implicit block
named nil��

Thus� the Common Lisp macro return and the special form returnfrom

can be used to return values from a loop or to exit a loop�

Within the executable parts of loop clauses and around the entire loop form�

you can still bind variables by using the Common Lisp special form let�

����� Parsing Loop Clauses

The syntactic parts of a loop construct are called clauses� the scope of each

clause is determined by the top�level parsing of that clause�s keyword� The

following example shows a loop construct with six clauses�

LOOP �
�

�loop for i from
 to �computetopvalue� �First clause

while �not �unacceptable i�� �Second clause

collect �square i� �Third clause

do �format t �Working on D now� i� �Fourth clause

when �evenp i� �Fifth clause
do �format t � D is a nonodd number� i�

finally �format t �About to exit���� �Sixth clause

Each loop keyword introduces either a compound loop clause or a simple

loop clause that can consist of a loop keyword followed by a single Lisp form�

The number of forms in a clause is determined by the loop keyword that
begins the clause and by the auxiliary keywords in the clause� The keywords

do� initially� and finally are the only loop keywords that can take any

number of Lisp forms and group them as if in a single progn form�

Loop clauses can contain auxiliary keywords� which are sometimes called

prepositions� For example� the �rst clause in the preceding code includes the

prepositions from and to� which mark the value from which stepping begins

and the value at which stepping ends�

������� Order of Execution

With the exceptions listed below� clauses are executed in the loop body in
the order in which they appear in the source� Execution is repeated until

a clause terminates the loop or until a Common Lisp return� go� or throw

form is encountered� The following actions are exceptions to the linear order

of execution�

� All variables are initialized �rst� regardless of where the establishing clauses

appear in the source� The order of initialization follows the order of these

clauses�

� The code for any initially clauses is collected into one progn in the order

in which the clauses appear in the source� The collected code is executed

once in the loop prologue after any implicit variable initializations�

� The code for any finally clauses is collected into one progn in the order

in which the clauses appear in the source� The collected code is executed

once in the loop epilogue before any implicit values from the accumulation

clauses are returned� Explicit returns anywhere in the source� however� will

exit the loop without executing the epilogue code�

�
� COMMON LISP

� A with clause introduces a variable binding and an optional initial value�

The initial values are calculated in the order in which the with clauses

occur�

� Iteration control clauses implicitly perform the following actions�

� initializing variables

� stepping variables� generally between each execution of the loop body

� performing termination tests� generally just before the execution of the
loop body

������� Kinds of Loop Clauses

Loop clauses fall into one of the following categories�

� variable initialization and stepping

� The for and as constructs provide iteration control clauses that establish

a variable to be initialized� You can combine for and as clauses with the
loop keyword and to get parallel initialization and stepping�

� The with construct is similar to a single let clause� You can combine

with clauses using and to get parallel initialization�

� The repeat construct causes iteration to terminate after a speci�ed num�

ber of times� It uses an internal variable to keep track of the number of
iterations�

You can specify data types for loop variables
see section ��������� It is

an error to bind the same variable twice in any variable�binding clause of
a single loop expression� Such variables include local variables� iteration

control variables� and variables found by destructuring�

� value accumulation

� The collect construct takes one form in its clause and adds the value

of that form to the end of a list of values� By default� the list of values is

returned when the loop �nishes�

� The append construct takes one form in its clause and appends the value

of that form to the end of a list of values� By default� the list of values is

returned when the loop �nishes�

LOOP �
�

� The nconc construct is similar to append� but its list values are concate�

nated as if by the Common Lisp function nconc� By default� the list of

values is returned when the loop �nishes�

� The sum construct takes one form in its clause that must evaluate to
a number and adds that number into a running total� By default� the

cumulative sum is returned when the loop �nishes�

� The count construct takes one form in its clause and counts the number
of times that the form evaluates to a non�nil value� By default� the

count is returned when the loop �nishes�

� The minimize construct takes one form in its clause and determines

the minimum value obtained by evaluating that form� By default� the
minimum value is returned when the loop �nishes�

� The maximize construct takes one form in its clause and determines

the maximum value obtained by evaluating that form� By default� the

maximum value is returned when the loop �nishes�

� termination conditions

� The loopfinish Lisp macro terminates iteration and returns any accu�
mulated result� If speci�ed� any finally clauses are evaluated�

� The for and as constructs provide a termination test that is determined

by the iteration control clause�

� The repeat construct causes termination after a speci�ed number of

iterations�

� The while construct takes one form� a condition� and terminates the

iteration if the condition evaluates to nil� A while clause is equivalent
to the expression �if �not condition� �loopfinish���

� The until construct is the inverse of while� it terminates the iteration

if the condition evaluates to any non�nil value� An until clause is
equivalent to the expression �if condition �loopfinish���

� The always construct takes one form and terminates the loop if the form

ever evaluates to nil� in this case� it returns nil� Otherwise� it provides

a default return value of t�

��� COMMON LISP

� The never construct takes one form and terminates the loop if the form

ever evaluates to non�nil� in this case� it returns nil� Otherwise� it

provides a default return value of t�

� The thereis construct takes one form and terminates the loop if the

form ever evaluates to non�nil� in this case� it returns that value�

� unconditional execution

� The do construct simply evaluates all forms in its clause�

� The return construct takes one form and returns its value� It is equiva�

lent to the clause do �return value��

� conditional execution

� The if construct takes one form as a predicate and a clause that is

executed when the predicate is true� The clause can be a value accumu�

lation� unconditional� or another conditional clause� it can also be any
combination of such clauses connected by the loop keyword and�

� The when construct is a synonym for if�

� The unless construct is similar to when except that it complements the

predicate� it executes the following clause if the predicate is false�

� The else construct provides an optional component of if� when� and

unless clauses that is executed when the predicate is false� The compo�

nent is one of the clauses described under if�

� The end construct provides an optional component to mark the end of a

conditional clause�

� miscellaneous operations

� The named construct assigns a name to a loop construct�

� The initially construct causes its forms to be evaluated in the loop

prologue� which precedes all loop code except for initial settings speci�ed
by the constructs with� for� or as�

� The finally construct causes its forms to be evaluated in the loop epi�
logue after normal iteration terminates� An unconditional clause can also

follow the loop keyword finally�

LOOP ���

������� Loop Syntax

The following syntax description provides an overview of the syntax for loop

clauses� Detailed syntax descriptions of individual clauses appear in sec�
tions ���� through ������ A loop consists of the following types of clauses�

initial�
nal ��" initially j
nally
variables ��" with j initial�
nal j for�as j repeat
main ��" unconditional j accumulation j conditional j termination j initial�
nal
loop ��" �loop �named name� fvariablesg� fmaing� �
Note that a loop must have at least one clause� however� for backward

compatibility� the following format is also supported�

�loop ftag j exprg� �
where expr is any Common Lisp expression that can be evaluated� and tag

is any symbol not identi�able as a loop keyword� Such a format is roughly

equivalent to the following one�

�loop do ftag j exprg� �
A loop prologue consists of any automatic variable initializations prescribed

by the variable clauses� along with any initially clauses in the order they

appear in the source�

A loop epilogue consists of
nally clauses� if any� along with any implicit

return value from an accumulation clause or an end�test clause�

����� User Extensibility

There is currently no speci�ed portable method for users to add extensions
to the Loop Facility� The names defloop and defineloopmethod have been

suggested as candidates for such a method�

����� Loop Constructs

The remaining sections of this chapter describe the constructs that the Loop

Facility provides� The descriptions are organized according to the function�

ality of the constructs� Each section begins with a general discussion of a

particular operation� it then presents the constructs that perform the opera�

tion�

��� COMMON LISP

� Section ����� �Iteration Control�� describes iteration control clauses that

allow directed loop iteration�

� Section ����� �End�Test Control�� describes clauses that stop iteration by

providing a conditional expression that can be tested after each execution

of the loop body�

� Section ����� �Value Accumulation�� describes constructs that accumulate

values during iteration and return them from a loop� This section also

discusses ways in which accumulation clauses can be combined within the

Loop Facility�

� Section ����� �Variable Initializations�� describes the with construct� which

provides local variables for use within the loop body� and other constructs

that provide local variables�

� Section ������ �Conditional Execution�� describes how to execute loop
clauses conditionally�

� Section ������ �Unconditional Execution�� describes the do and return

constructs� It also describes constructs that are used in the loop prologue

and loop epilogue�

� Section ������ �Miscellaneous Features�� discusses loop data types and de�

structuring� It also presents constructs for naming a loop and for specifying

initial and �nal actions�

����� Iteration Control

Iteration control clauses allow you to direct loop iteration� The loop keywords

as� for� and repeat designate iteration control clauses�

Iteration control clauses di	er with respect to the speci�cation of termina�

tion conditions and the initialization and stepping of loop variables� Iteration

clauses by themselves do not cause the Loop Facility to return values� but

they can be used in conjunction with value�accumulation clauses to return

values
see section ������

All variables are initialized in the loop prologue� The scope of the vari�

able binding is lexical unless it is proclaimed special� thus� the variable can

be accessed only by expressions that lie textually within the loop� Stepping

assignments are made in the loop body before any other expressions are eval�

uated in the body�

LOOP ���

The variable argument in iteration control clauses can be a destructuring

list� A destructuring list is a tree whose non�null atoms are symbols that can

be assigned a value
see section ���������

The iteration control clauses for� as� and repeat must precede any other

loop clauses except initially� with� and named� since they establish variable

bindings� When iteration control clauses are used in a loop� termination tests
in the loop body are evaluated before any other loop body code is executed�

If you use multiple iteration clauses to control iteration� variable initializa�
tion and stepping occur sequentially by default� You can use the and construct

to connect two or more iteration clauses when sequential binding and stepping

are not necessary� The iteration behavior of clauses joined by and is analogous

to the behavior of the Common Lisp macro do relative to do
�

�X�J�� voted in March ���� h���i to correct a minor inconsistency in the

original syntactic speci�cation for loop� Only for and as clauses
not repeat
clauses� may be joined by the and construct� The precise syntax is as follows�

for�as ��" ffor j asg for�as�subclause fand for�as�subclauseg�
for�as�subclause ��" for�as�arithmetic j for�as�in�list

j for�as�on�list j for�as�equals�then
j for�as�across j for�as�hash j for�as�package

for�as�arithmetic ��" var �type�spec� � ffrom j downfrom j upfromg expr� �

� fto j downto j upto j below j aboveg expr� �

�by expr� �
for�as�in�list ��" var �type�spec� in expr� �by step�fun�

for�as�on�list ��" var �type�spec� on expr� �by step�fun�

for�as�equals�then ��" var �type�spec� expr� �then step�fun�

for�as�across ��" var �type�spec� across vector

for�as�hash ��" var �type�spec� being feach j theg
fhash�key j hash�keys j hash�value j hash�valuesg
fin j ofg hash�table

�using � fhash�value j hash�keyg other�var��

for�as�package ��" var �type�spec� being feach j theg
for�as�package�keyword

fin j ofg package

for�as�package�keyword ��" symbol j presentsymbol j externalsymbol
j symbols j presentsymbols j externalsymbols

This correction made for and as clauses syntactically similar to with clauses�

I have changed all examples in this chapter to re
ect the corrected syntax�!

GLS�

��� COMMON LISP

In the following example� the variable x is stepped before y is stepped� thus�

the value of y re
ects the updated value of x�

�loop for x from
 to �

for y nil then x

collect �list x y��

� ��
 NIL� �� �� �� �� �� �� �� �� �� �� �	 	� �� �� �� ���

In the following example� x and y are stepped in parallel�

�loop for x from
 to �

and y nil then x

collect �list x y��

� ��
 NIL� ��
� �� �� �� �� �� �� �� �� �	 �� �� 	� �� ���

The for and as clauses iterate by using one or more local loop variables that

are initialized to some value and that can be modi�ed or stepped after each

iteration� For these clauses� iteration terminates when a local variable reaches
some speci�ed value or when some other loop clause terminates iteration� At

each iteration� variables can be stepped by an increment or a decrement or

can be assigned a new value by the evaluation of an expression� Destructuring

can be used to assign initial values to variables during iteration�

The for and as keywords are synonyms and may be used interchange�

ably� There are seven syntactic representations for these constructs� In each

syntactic description� the data type of var can be speci�ed by the optional

type�spec argument� If var is a destructuring list� the data type speci�ed by

the type�spec argument must appropriately match the elements of the list
see
sections ������� and ���������

�Loop clause�for var �type�spec� � ffrom j downfrom j upfromg expr��
� fto j downto j upto j below j aboveg expr��
�by expr��

�Loop clause�as var �type�spec� � ffrom j downfrom j upfromg expr��
� fto j downto j upto j below j aboveg expr��
�by expr��

�This is the �rst of seven for�as syntaxes�!GLS�

The for or as construct iterates from the value speci�ed by expr� to the

value speci�ed by expr� in increments or decrements denoted by expr�� Each

expression is evaluated only once and must evaluate to a number�

LOOP ��	

The variable var is bound to the value of expr� in the �rst iteration and is

stepped by the value of expr� in each succeeding iteration� or by � if expr� is

not provided�

The following loop keywords serve as valid prepositions within this syntax�

from

The loop keyword from marks the value from which stepping begins� as spec�

i�ed by expr�� Stepping is incremental by default� For decremental stepping�

use above or downto with expr�� For incremental stepping� the default from

value is ��

downfrom� upfrom

The loop keyword downfrom indicates that the variable var is decreased in

decrements speci�ed by expr�� the loop keyword upfrom indicates that var is

increased in increments speci�ed by expr��

to

The loop keyword to marks the end value for stepping speci�ed in expr��

Stepping is incremental by default� For decremental stepping� use downto�

downfrom� or above with expr��

downto� upto

The loop keyword downto allows iteration to proceed from a larger number

to a smaller number by the decrement expr�� The loop keyword upto allows

iteration to proceed from a smaller number to a larger number by the incre�

ment expr�� Since there is no default for expr� in decremental stepping� you
must supply a value with downto�

below� above

The loop keywords below and above are analogous to upto and downto� re�

spectively� These keywords stop iteration just before the value of the variable
var reaches the value speci�ed by expr� � the end value of expr� is not in�

cluded� Since there is no default for expr� in decremental stepping� you must

supply a value with above�

by

The loop keyword by marks the increment or decrement speci�ed by expr��

The value of expr� can be any positive number� The default value is
�

At least one of these prepositions must be used with this syntax�

��
 COMMON LISP

In an iteration control clause� the for or as construct causes termination

when the speci�ed limit is reached� That is� iteration continues until the value

var is stepped to the exclusive or inclusive limit speci�ed by expr� � The range

is exclusive if expr� increases or decreases var to the value of expr� without

reaching that value� the loop keywords below and above provide exclusive
limits� An inclusive limit allows var to attain the value of expr�� to� downto�

and upto provide inclusive limits�

A common convention is to use for to introduce new iterations and as to
introduce iterations that depend on a previous iteration speci�cation� �How�

ever� loop does not enforce this convention� and some of the examples below

violate it� De gustibus non disputandum est�!GLS�

Examples�

��� Print some numbers�

�loop as i from
 to �

do �print i�� �Prints � lines

�

�

�

�

� NIL

��� Print every third number�

�loop for i from
� downto
 by �

do �print i�� �Prints � lines

�

	

�

� NIL

��� Step incrementally from the default starting value�

�loop as i below �

do �print i�� �Prints � lines

LOOP ���

�

�

�

�

� NIL

�Loop clause�for var �type�spec� in expr� �by step�fun�

�Loop clause�as var �type�spec� in expr� �by step�fun�

�This is the second of seven for�as syntaxes�!GLS�

This construct iterates over the contents of a list� It checks for the end of

the list as if using the Common Lisp function endp� The variable var is bound

to the successive elements of the list expr� before each iteration� At the end
of each iteration� the function step�fun is called on the list and is expected to

produce a successor list� the default value for step�fun is the cdr function�

The for or as construct causes termination when the end of the list is
reached� The loop keywords in and by serve as valid prepositions in this

syntax�

Examples�

��� Print every item in a list�

�loop for item in �
 � � � �� do �print item�� �Prints � lines

�

�

�

�

� NIL

��� Print every other item in a list�

�loop for item in �
 � � � �� by ��� cddr

do �print item�� �Prints � lines

�

�

� NIL

��� COMMON LISP

��� Destructure items of a list� and sum the x values

��� using fixnum arithmetic�

�loop for �item � x� �t � fixnum�

in ��A �
� �B � �� �C � ���

unless �eq item B� sum x�

� �

�Loop clause�for var �type�spec� on expr� �by step�fun�

�Loop clause�as var �type�spec� on expr� �by step�fun�

�This is the third of seven for�as syntaxes�!GLS�

This construct iterates over the contents of a list� It checks for the end

of the list as if using the Common Lisp function endp� The variable var is

bound to the successive tails of the list expr�� At the end of each iteration� the

function step�fun is called on the list and is expected to produce a successor

list� the default value for step�fun is the cdr function�

The loop keywords on and by serve as valid prepositions in this syntax� The

for or as construct causes termination when the end of the list is reached�

Examples�

��� Collect successive tails of a list�

�loop for sublist on �a b c d�

collect sublist�

� ��A B C D� �B C D� �C D� �D��

��� Print a list by using destructuring with the loop keyword ON�

�loop for �item� on �
 � ��

do �print item�� �Prints � lines

�

�

� NIL

��� Print items in a list without using destructuring�

�loop for item in �
 � ��

do �print item�� �Prints � lines

�

�

� NIL

LOOP ���

�Loop clause�for var �type�spec� expr� �then expr��

�Loop clause�as var �type�spec� expr� �then expr��

�This is the fourth of seven for�as syntaxes�!GLS�

This construct initializes the variable var by setting it to the result of eval�

uating expr� on the �rst iteration� then setting it to the result of evaluating
expr� on the second and subsequent iterations� If expr� is omitted� the con�

struct uses expr� on the second and subsequent iterations� When expr� is

omitted� the expanded code shows the following optimization�

��� Sample original code�

�loop for x expr� then expr� do �print x��

��� The usual expansion�

�tagbody

�setq x expr��

tag �print x�

�setq x expr��

�go tag��

��� The optimized expansion�

�tagbody

tag �setq x expr��

�print x�

�go tag��

The loop keywords and then serve as valid prepositions in this syntax�

This construct does not provide any termination conditions�

Example�

��� Collect some numbers�

�loop for item
 then �� item
��

repeat �

collect item�

� �

 �
 �
 �
�

�Loop clause�for var �type�spec� across vector

�Loop clause�as var �type�spec� across vector

�This is the �fth of seven for�as syntaxes�!GLS�

This construct binds the variable var to the value of each element in the

array vector�

��� COMMON LISP

The loop keyword across marks the array vector� across is used as a

preposition in this syntax� Iteration stops when there are no more elements

in the speci�ed array that can be referenced�

Some implementations might use a �user�supplied!GLS� the special form

in the vector form to produce more e�cient code�
Example�

�loop for char across �the simplestring �findmessage port��

do �writechar char stream��

�Loop clause�for var �type�spec� being feach j theg
fhash�key j hash�keys j hash�value j hash�valuesg
fin j ofg hash�table �using � fhash�value j hash�keyg other�var��

�Loop clause�as var �type�spec� being feach j theg
fhash�key j hash�keys j hash�value j hash�valuesg
fin j ofg hash�table �using � fhash�value j hash�keyg other�var��

�This is the sixth of seven for�as syntaxes�!GLS�

This construct iterates over the elements� keys� and values of a hash table�

The variable var takes on the value of each hash key or hash value in the
speci�ed hash table�

The following loop keywords serve as valid prepositions within this syntax�

being

The keyword being marks the loop method to be used� either hashkey or

hashvalue�

each� the

For purposes of readability� the loop keyword each should follow the loop

keyword being when hashkey or hashvalue is used� The loop keyword the

is used with hashkeys and hashvalues�

hash�key� hash�keys

These loop keywords access each key entry of the hash table� If the name
hashvalue is speci�ed in a using construct with one of these loop methods�

the iteration can optionally access the keyed value� The order in which the

keys are accessed is unde�ned� empty slots in the hash table are ignored�

hash�value� hash�values

These loop keywords access each value entry of a hash table� If the name

LOOP ���

hashkey is speci�ed in a using construct with one of these loop methods� the

iteration can optionally access the key that corresponds to the value� The

order in which the keys are accessed is unde�ned� empty slots in the hash

table are ignored�

using

The loop keyword using marks the optional key or the keyed value to be

accessed� It allows you to access the hash key if iterating over the hash

values� and the hash value if iterating over the hash keys�

in� of

These loop prepositions mark the hash table hash�table�

Iteration stops when there are no more hash keys or hash values to be
referenced in the speci�ed hash table�

�Loop clause�for var �type�spec� being feach j theg
fsymbol j present�symbol j external�symbol j
symbols j present�symbols j external�symbolsg
fin j ofg package

�Loop clause�as var �type�spec� being feach j theg
fsymbol j present�symbol j external�symbol j
symbols j present�symbols j external�symbolsg
fin j ofg package

�This is the last of seven for�as syntaxes�!GLS�

This construct iterates over the symbols in a package� The variable var
takes on the value of each symbol in the speci�ed package�

The following loop keywords serve as valid prepositions within this syntax�

being

The keyword being marks the loop method to be used� symbol� present

symbol� or externalsymbol�

each� the

For purposes of readability� the loop keyword each should follow the

loop keyword being when symbol� presentsymbol� or externalsymbol is

used� The loop keyword the is used with symbols� presentsymbols� and

externalsymbols�

��� COMMON LISP

present�symbol� present�symbols

These loop methods iterate over the symbols that are present but not external
in a package� The package to be iterated over is speci�ed in the same way that

package arguments to the Common Lisp function findpackage are speci�ed�

If you do not specify the package for the iteration� the current package is used�

If you specify a package that does not exist� an error is signaled�

symbol� symbols

These loop methods iterate over symbols that are accessible from a given

package� The package to be iterated over is speci�ed in the same way that

package arguments to the Common Lisp function findpackage are speci�ed�

If you do not specify the package for the iteration� the current package is used�
If you specify a package that does not exist� an error is signaled�

external�symbol� external�symbols

These loop methods iterate over the external symbols of a package� The pack�

age to be iterated over is speci�ed in the same way that package arguments to
the Common Lisp function findpackage are speci�ed� If you do not specify

the package for the iteration� the current package is used� If you specify a

package that does not exist� an error is signaled�

in� of

These loop prepositions mark the package package�

Iteration stops when there are no more symbols to be referenced in the
speci�ed package�

Example�

�loop for x being each presentsymbol of �COMMONLISPUSER�

do �print x�� �Prints � lines in this example

COMMONLISPUSER��IN

COMMONLISPUSER��X

COMMONLISPUSER��ALWAYS

COMMONLISPUSER��FOO

COMMONLISPUSER��Y

COMMONLISPUSER��FOR

COMMONLISPUSER��LUCID

� NIL

LOOP ���

�Loop clause�repeat expr

The repeat construct causes iteration to terminate after a speci�ed number
of times� The loop body is executed n times� where n is the value of the

expression expr� The expr argument is evaluated one time in the loop prologue�

If the expression evaluates to zero or to a negative number� the loop body is

not evaluated�

The clause repeat n is roughly equivalent to a clause such as

for internal�variable downfrom � n
� to �

but� in some implementations� the repeat construct might be more e�cient�

Examples�

�loop repeat � �Prints � lines

do �format t �What I say three times is true "���

What I say three times is true

What I say three times is true

What I say three times is true

� NIL

�loop repeat
� �Prints nothing

do �format t �What you see is what you expect "���

� NIL

����� End	Test Control

The loop keywords always� never� thereis� until� and while designate

constructs that use a single test condition to determine when loop iteration

should terminate�

The constructs always� never� and thereis provide speci�c values to be

returned when a loop terminates� Using always� never� or thereis with

value�returning accumulation clauses can produce unpredictable results� In
all other respects these constructs behave like the while and until constructs�

The macro loopfinish can be used at any time to cause normal termina�

tion� In normal termination� finally clauses are executed and default return
values are returned�

End�test control constructs can be used anywhere within the loop body�

The termination conditions are tested in the order in which they appear�

��� COMMON LISP

�Loop clause�while expr

�Loop clause�until expr

The while construct allows iteration to continue until the speci�ed expression
expr evaluates to nil� The expression is re�evaluated at the location of the

while clause�

The until construct is equivalent to while
not expr�� If the value of the

speci�ed expression is non�nil� iteration terminates�

You can use while and until at any point in a loop� If a while or until

clause causes termination� any clauses that precede it in the source are still

evaluated�

Examples�

��� A classic �whileloop��

�loop while �hungryp� do �eat��

��� UNTIL NOT is equivalent to WHILE�

�loop until �not �hungryp�� do �eat��

��� Collect the length and the items of STACK�

�let ��stack �a b c d e f���

�loop while stack

for item �length stack� then �pop stack�

collect item��

� �� A B C D E F�

��� Use WHILE to terminate a loop that otherwise wouldn t

��� terminate� Note that WHILE occurs after the WHEN�

�loop for i fixnum from �

when �oddp i� collect i

while �� i ���

� �� ��

�Loop clause�always expr

�Loop clause�never expr

�Loop clause�thereis expr

The always construct takes one form and terminates the loop if the form ever

evaluates to nil� in this case� it returns nil� Otherwise� it provides a default

return value of t�

LOOP ��	

The never construct takes one form and terminates the loop if the form

ever evaluates to non�nil� in this case� it returns nil� Otherwise� it provides

a default return value of t�

The thereis construct takes one form and terminates the loop if the form

ever evaluates to non�nil� in this case� it returns that value�

If the while or until construct causes termination� control is passed to
the loop epilogue� where any finally clauses will be executed� Since always�

never� and thereis use the Common Lisp macro return to terminate itera�

tion� any finally clause that is speci�ed is not evaluated�

Examples�

��� Make sure I is always less than

 �two ways��

��� The FOR construct terminates these loops�

�loop for i from � to
�

always �� i

��

� T

�loop for i from � to
�

never �� i

��

� T

��� If I exceeds
�� return I� otherwise� return NIL�

��� The THEREIS construct terminates this loop�

�loop for i from �

thereis �when �� i
�� i� �

�

��� The FINALLY clause is not evaluated in these examples�

�loop for i from � to
�

always �� i ��

finally �print �you won t see this���

� NIL

�loop never t

finally �print �you won t see this���

� NIL

�loop thereis �Here is my value�

finally �print �you won t see this���

� �Here is my value�

��
 COMMON LISP

��� The FOR construct terminates this loop�

��� so the FINALLY clause is evaluated�

�loop for i from
 to
�

thereis �� i

�

finally �print i�� �Prints � line

� NIL

�defstruct mountain height difficulty �why �because it is there���

�setq everest �makemountain �height �����e
� parsecs���

�setq chocorua �makemountain �height �
���
����
 microns���

�defstruct desert area �humidity ���

�setq sahara �makedesert �area ��
������� square furlongs���

�First there is a mountain� then there is no mountain� then there is � � �

�loop for x in �list everest sahara chocorua� � !GLS

thereis �and �mountainp x� �mountainheight x���

� �����E
� PARSECS�

��� If you could use this code to find a counterexample to

��� Fermat s last theorem� it would still not return the value

��� of the counterexample because all of the THEREIS clauses

��� in this example return only T� Of course� this code has

��� never been observed to terminate�

�loop for z upfrom �

thereis

�loop for n upfrom � below �log z ��

thereis

�loop for x below z

thereis

�loop for y below z

thereis � �� �expt x n�

�expt y n��

�expt z n������

�Macro�loopfinish

The macro loopfinish terminates iteration normally and returns any accu�

mulated result� If speci�ed� a finally clause is evaluated�

LOOP ���

In most cases it is not necessary to use loopfinish because other loop

control clauses terminate the loop� Use loopfinish to provide a normal exit

from a nested condition inside a loop�

You can use loopfinish inside nested Lisp code to provide a normal exit

from a loop� Since loopfinish transfers control to the loop epilogue� using
loopfinish within a finally expression can cause in�nite looping�

Implementations are allowed to provide this construct as a local macro by

using macrolet�

Examples�

��� Print a date in February� but exclude leap day�

��� LOOPFINISH exits from the nested condition�

�loop for date in datelist

do �case date

��� �when �eq month february�

�loopfinish��

�format t � �#� A � A� month date����

��� Terminate the loop� but return the accumulated count�

�loop for i in �
 � � stophere � � ��

when �symbolp i� do �loopfinish�

count i�

� �

��� This loop works just as well as the previous example�

�loop for i in �
 � � stophere � � ��

until �symbolp i�

count i�

� �

���
� Value Accumulation

Accumulating values during iteration and returning them from a loop is often

useful� Some of these accumulations occur so frequently that special loop

clauses have been developed to handle them�
The loop keywords append� appending� collect� collecting� nconc� and

nconcing designate clauses that accumulate values in lists and return them�

The loop keywords count� counting� maximize� maximizing� minimize�

minimizing� sum� and summing designate clauses that accumulate and return

numerical values� �There is no semantic di	erence between the �ing� keywords

��� COMMON LISP

and their non��ing� counterparts� They are provided purely for the sake of

stylistic diversity among users� I happen to prefer the non��ing� forms!when

I use loop at all�!GLS�

The loop preposition into can be used to name the variable used to hold

partial accumulations� The variable is bound as if by the loop construct with

see section ������ If into is used� the construct does not provide a default

return value� however� the variable is available for use in any finally clause�

You can combine value�returning accumulation clauses in a loop if all the

clauses accumulate the same type of data object� By default� the Loop Facility

returns only one value� thus� the data objects collected by multiple accumula�

tion clauses as return values must have compatible types� For example� since
both the collect and append constructs accumulate objects into a list that

is returned from a loop� you can combine them safely�

��� Collect every name and the kids in one list by using

��� COLLECT and APPEND�

�loop for name in �fred sue alice joe june�

for kids in ��bob ken� �� �� �kris sunshine� ���

collect name

append kids�

� �FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE�

�In the preceding example� note that the items accumulated by the collect

and append clauses are interleaved in the result list� according to the order in

which the clauses were executed�!GLS�

Multiple clauses that do not accumulate the same type of data object can

coexist in a loop only if each clause accumulates its values into a di	erent

user�speci�ed variable� Any number of values can be returned from a loop if

you use the Common Lisp function values� as the next example shows�

��� Count and collect names and ages�

�loop for name in �fred sue alice joe june�

as age in ��� ��
� ��
��

append �list name age� into nameandagelist

count name into namecount

sum age into totalage

finally

�return �values �round totalage namecount�

nameandagelist���

�
� and �FRED �� SUE �� ALICE
� JOE �� JUNE
��

LOOP ���

�Loop clause�collect expr �into var�

�Loop clause�collecting expr �into var�

During each iteration� these constructs collect the value of the speci�ed ex�

pression into a list� When iteration terminates� the list is returned�

The argument var is set to the list of collected values� if var is speci�ed�

the loop does not return the �nal list automatically� If var is not speci�ed�
it is equivalent to specifying an internal name for var and returning its value

in a finally clause� The var argument is bound as if by the construct with�

You cannot specify a data type for var � it must be of type list�

Examples�

��� Collect all the symbols in a list�

�loop for i in �bird � � turtle �
 � �� horse cat�

when �symbolp i� collect i�

� �BIRD TURTLE HORSE CAT�

��� Collect and return odd numbers�

�loop for i from
 to
�

if �oddp i� collect i�

� �
 � � 	 ��

��� Collect items into local variable� but don t return them�

�loop for i in �a b c d� by ��� cddr

collect i into mylist

finally �print mylist�� �Prints � line

�A C�

� NIL

�Loop clause�append expr �into var�

�Loop clause�appending expr �into var�

�Loop clause�nconc expr �into var�

�Loop clause�nconcing expr �into var�

These constructs are similar to collect except that the values of the speci�ed

expression must be lists�

The append keyword causes its list values to be concatenated into a single

list� as if they were arguments to the Common Lisp function append�

The nconc keyword causes its list values to be concatenated into a single

list� as if they were arguments to the Common Lisp function nconc� Note

that the nconc keyword destructively modi�es its argument lists�

��� COMMON LISP

The argument var is set to the list of concatenated values� if you specify

var� the loop does not return the �nal list automatically� The var argument

is bound as if by the construct with� You cannot specify a data type for var �

it must be of type list�

Examples�

��� Use APPEND to concatenate some sublists�

�loop for x in ��a� �b� ��c���

append x�

� �A B �C��

��� NCONC some sublists together� Note that only lists

��� made by the call to LIST are modified�

�loop for i upfrom �

as x in �a b �c��

nconc �if �evenp i� �list x� ����

� �A �C��

�Loop clause�count expr �into var� �type�spec�

�Loop clause�counting expr �into var� �type�spec�

The count construct counts the number of times that the speci�ed expression

has a non�nil value�
The argument var accumulates the number of occurrences� if var is speci�

�ed� the loop does not return the �nal count automatically� The var argument

is bound as if by the construct with�

If into var is used� the optional type�spec argument speci�es a data type
for var � If there is no into variable� the optional type�spec argument applies

to the internal variable that is keeping the count� In either case it is an error

to specify a non�numeric data type� The default type is implementation�

dependent� but it must be a subtype of �or integer float��

Example�

�loop for i in �a b nil c nil d e�

count i�

� �

�Loop clause�sum expr �into var� �type�spec�

�Loop clause�summing expr �into var� �type�spec�

The sum construct forms a cumulative sum of the values of the speci�ed ex�

pression at each iteration�

LOOP ���

The argument var is used to accumulate the sum� if var is speci�ed� the

loop does not return the �nal sum automatically� The var argument is bound

as if by the construct with�

If into var is used� the optional type�spec argument speci�es a data type for

var � If there is no into variable� the optional type�spec argument applies to the
internal variable that is keeping the sum� In either case it is an error to specify

a non�numeric data type� The default type is implementation�dependent� but

it must be a subtype of number�

Examples�

��� Sum the elements of a list�

�loop for i fixnum in �
 � � � ��

sum i�

�
�

��� Sum a function of elements of a list�

�setq series

�
�� ��� ��	��

� �
�� ��� ��	�

�loop for v in series

sum �
 ��� v��

� ����

�Loop clause�maximize expr �into var� �type�spec�

�Loop clause�maximizing expr �into var� �type�spec�

�Loop clause�minimize expr �into var� �type�spec�

�Loop clause�minimizing expr �into var� �type�spec�

The maximize construct compares the value of the speci�ed expression ob�

tained during the �rst iteration with values obtained in successive iterations�

The maximum value encountered is determined and returned� If the loop

never executes the body� the returned value is not meaningful�

The minimize construct is similar to maximize� it determines and returns

the minimum value�

The argument var accumulates the maximum or minimum value� if var is

speci�ed� the loop does not return the maximum or minimum automatically�

The var argument is bound as if by the construct with�

��� COMMON LISP

If into var is used� the optional type�spec argument speci�es a data type

for var � If there is no into variable� the optional type�spec argument applies

to the internal variable that is keeping the intermediate result� In either

case it is an error to specify a non�numeric data type� The default type is

implementation�dependent� but it must be a subtype of �or integer float��

Examples�

�loop for i in ��
 � � ��

maximize i�

� �

LOOP ���

�loop for i in ��
 � � ��

minimize i�

�

��� In this example� FIXNUM applies to the internal

��� variable that holds the maximum value�

�setq series �
�� ��� ��	��

� �
�� ��� ��	�

�loop for v in series

maximize �round v� fixnum�

� �

��� In this example� FIXNUM applies to the variable RESULT�

�loop for v float in series

minimize �round v� into result fixnum

finally �return result��

�

����� Variable Initializations

A local loop variable is one that exists only when the Loop Facility is invoked�

At that time� the variables are declared and are initialized to some value�

These local variables exist until loop iteration terminates� at which point they
cease to exist� Implicitly variables are also established by iteration control

clauses and the into preposition of accumulation clauses�

The loop keyword with designates a loop clause that allows you to declare

and initialize variables that are local to a loop� The variables are initialized

one time only� they can be initialized sequentially or in parallel�
By default� the with construct initializes variables sequentially� that is� one

variable is assigned a value before the next expression is evaluated� However�

by using the loop keyword and to join several with clauses� you can force

initializations to occur in parallel� that is� all of the speci�ed expressions are
evaluated� and the results are bound to the respective variables simultane�

ously�

Use sequential binding for making the initialization of some variables de�

pend on the values of previously bound variables� For example� suppose you

want to bind the variables a� b� and c in sequence�

��� COMMON LISP

�loop with a

with b �� a ��

with c �� b ��

with d �� c ��

return �list a b c d��

� �
 � �
��

The execution of the preceding loop is equivalent to the execution of the

following code�

�let
 ��a
�

�b �� a ���

�c �� b ���

�d �� c ����

�block nil

�tagbody

nextloop �return �list a b c d��

�go nextloop�

endloop���

If you are not depending on the value of previously bound variables for the

initialization of other local variables� you can use parallel bindings as follows�

�loop with a

and b �

and c �

and d �

return �list a b c d��

� �
 � � ��

The execution of the preceding loop is equivalent to the execution of the

following code�

�let ��a
�

�b ��

�c ��

�d ���

�block nil

�tagbody

nextloop �return �list a b c��

�go nextloop�

endloop���

LOOP ��	

�Loop clause�with var �type�spec� � expr� fand var �type�spec� � expr� g�

The with construct initializes variables that are local to a loop� The variables
are initialized one time only�

If the optional type�spec argument is speci�ed for any variable var � but

there is no related expression expr to be evaluated� var is initialized to an
appropriate default value for its data type� For example� for the data types

t� number� and float� the default values are nil� �� and ���� respectively� It

is an error to specify a type�spec argument for var if the related expression

returns a value that is not of the speci�ed type� The optional and clause forces

parallel rather than sequential initializations�

Examples�

��� These bindings occur in sequence�

�loop with a

with b �� a ��

with c �� b ��

with d �� c ��

return �list a b c d��

� �
 � �
��

��� These bindings occur in parallel�

�setq a � b
� c
	���

�loop with a

and b �� a ��

and c �� b ��

and d �� c ��

return �list a b c d��

� �
 	
�
	���

��� This example shows a shorthand way to declare

��� local variables that are of different types�

�loop with �a b c� �float integer float�

return �format nil � A A A� a b c��

� ���� � ����

��� This example shows a shorthand way to declare

��� local variables that are of the same type�

�loop with �a b c� float

return �format nil � A A A� a b c��

� ���� ��� ����

��
 COMMON LISP

������ Conditional Execution

The loop keywords if� when� and unless designate constructs that are useful

when you want some loop clauses to operate under a speci�ed condition�

If the speci�ed condition is true� the succeeding loop clause is executed�

If the speci�ed condition is not true� the succeeding clause is skipped� and
program control moves to the clause that follows the loop keyword else� If

the speci�ed condition is not true and no else clause is speci�ed� the entire

conditional construct is skipped� Several clauses can be connected into one

compound clause with the loop keyword and� The end of the conditional

clause can be marked with the keyword end�

�Loop clause�if expr clause fand clauseg�
�else clause fand clauseg� � �end�

�Loop clause�when expr clause fand clauseg�
�else clause fand clauseg� � �end�

�Loop clause�unless expr clause fand clauseg�
�else clause fand clauseg� � �end�

The constructs when and if allow conditional execution of loop clauses� These

constructs are synonyms and can be used interchangeably� �Compare this to

the macro when� which does not allow an �else� part�!GLS�

If the value of the test expression expr is non�nil� the expression clause�
is evaluated� If the test expression evaluates to nil and an else construct

is speci�ed� the statements that follow the else are evaluated� otherwise�

control passes to the next clause�

The unless construct is equivalent to when
not expr� and if
not expr�� If
the value of the test expression expr is nil� the expression clause� is evaluated�

If the test expression evaluates to non�nil and an else construct is speci�ed�

the statements that follow the else are evaluated� otherwise� control passes

to the next clause� �Compare this to the macro unless� which does not allow

an �else� part!or do I mean a �then� part$� Ugh� To prevent confusion� I
strongly recommend as a matter of style that else not be used with unless

loop clauses�!GLS�

The clause arguments must be either accumulation� unconditional� or con�

ditional clauses
see section �������� Clauses that follow the test expression
can be grouped by using the loop keyword and to produce a compound clause�

The loop keyword it can be used to refer to the result of the test expression

in a clause� If multiple clauses are connected with and� the it construct must

be used in the �rst clause in the block� Since it is a loop keyword� it may

not be used as a local variable within a loop�

LOOP ���

If when or if clauses are nested� each else is paired with the closest pre�

ceding when or if construct that has no associated else�

The optional loop keyword end marks the end of the clause� If this keyword

is not speci�ed� the next loop keyword marks the end� You can use end to

distinguish the scoping of compound clauses�

��� Group conditional clauses into a block�

�loop for i in numberslist

when �oddp i�

do �print i�

and collect i into oddnumbers

and do �terpri�

else �I is even

collect i into evennumbers

finally

�return �values oddnumbers evennumbers���

��� Collect numbers larger than ��

�loop for i in �
 � � � � ��

when �and �� i �� i�

collect it� �it refers to �and �� i �� i�

� �� � ��

��� Find a number in a list�

�loop for i in �
 � � � � ��

when �and �� i �� i�

return it�

� �

��� The preceding example is similar to the following one�

�loop for i in �
 � � � � ��

thereis �and �� i �� i��

� �

��� An example of using UNLESS with ELSE �yuk�� !GLS

�loop for turtle in teenagemutantninjaturtles do

�loop for x in �joker brainiac shredder krazykat�

unless �evil x�

do �eat �makepizza �anchovies t��

else unless �and �eq x shredder� �attackingp x��

do �cut turtle slack��When the evil Shredder attacks�

else �fight turtle x����those turtle boys don�t cut no slack

��� COMMON LISP

��� Nest conditional clauses�

�loop for i in list

when �numberp i�

when �bignump i�

collect i into bignumbers

else �Not �bignump i�

collect i into othernumbers

else �Not �numberp i�

when �symbolp i�

collect i into symbollist

else �Not �symbolp i�

�error �found a funny value in list S� value S "�

�list i��

��� Without the END marker� the last AND would apply to the

��� inner IF rather than the outer one�

�loop for x from � to �

do �print x�

if �zerop �mod x ���

do �princ � a��

and if �zerop �floor x ���

do �princ � b��

end

and do �princ � c���

������ Unconditional Execution

The loop construct do
or doing� takes one or more expressions and simply
evaluates them in order�

The loop construct return takes one expression and returns its value� It is

equivalent to the clause do �return value��

�Loop clause�do fexprg�
�Loop clause�doing fexprg�

The do construct simply evaluates the speci�ed expressions wherever they

occur in the expanded form of loop�

The expr argument can be any non�atomic Common Lisp form� Each expr

is evaluated in every iteration�

LOOP ���

The constructs do� initially� and finally are the only loop keywords

that take an arbitrary number of forms and group them as if using an implicit

progn� Because every loop clause must begin with a loop keyword� you would

use the keyword do when no control action other than execution is required�

Examples�

��� Print some numbers�

�loop for i from
 to �

do �print i�� �Prints � lines

�

�

�

�

� NIL

��� Print numbers and their squares�

��� The DO construct applies to multiple forms�

�loop for i from
 to �

do �print i�

�print �
 i i��� �Prints � lines

�

�

�

�

�

�

� NIL

�Loop clause�return expr

The return construct terminates a loop and returns the value of the speci�ed

expression as the value of the loop� This construct is similar to the Common
Lisp special form returnfrom and the Common Lisp macro return�

The Loop Facility supports the return construct for backward compatibil�

ity with older loop implementations� The return construct returns immedi�

ately and does not execute any finally clause that is given�

Examples�

��� COMMON LISP

��� Signal an exceptional condition�

�loop for item in �
 � � a � ��

when �not �numberp item��

return �cerror �enter new value�

�nonnumeric value� s�

item�� �Signals an error

��Error� nonnumeric value� A

��� The previous example is equivalent to the following one�

�loop for item in �
 � � a � ��

when �not �numberp item��

do �return

�cerror �enter new value�

�nonnumeric value� s�

item��� �Signals an error

��Error� nonnumeric value� A

������ Miscellaneous Features

The Loop Facility provides the named construct to name a loop so that the

Common Lisp special form returnfrom can be used�

The loop keywords initially and finally designate loop constructs that

cause expressions to be evaluated before and after the loop body� respectively�

The code for any initially clauses is collected into one progn in the order
in which the clauses appeared in the loop� The collected code is executed once

in the loop prologue after any implicit variable initializations�

The code for any finally clauses is collected into one progn in the order

in which the clauses appeared in the loop� The collected code is executed

once in the loop epilogue before any implicit values are returned from the
accumulation clauses� Explicit returns in the loop body� however� will exit

the loop without executing the epilogue code�

�������� Data Types

Many loop constructs take a type�spec argument that allows you to specify

certain data types for loop variables� While it is not necessary to specify a

data type for any variable� by doing so you ensure that the variable has a

correctly typed initial value� The type declaration is made available to the

compiler for more e�cient loop expansion� In some implementations� �xnum

LOOP ���

and
oat declarations are especially useful� the compiler notices them and

emits more e�cient code�

The type�spec argument has the following syntax�

type�spec ��" oftype d�type�spec
d�type�spec ��" type�speci
er j �dtypespec � dtypespec�

A type�speci
er in this syntax can be any Common Lisp type speci�er� The d�

type�spec argument is used for destructuring� as described in section �������� If
the d�type�spec argument consists solely of the types fixnum� float� t� or nil�

the oftype keyword is optional� The oftype construct is optional in these

cases to provide backward compatibility� thus the following two expressions

are the same�

��� This expression uses the old syntax for type specifiers�

�loop for i fixnum upfrom � ����

��� This expression uses the new syntax for type specifiers�

�loop for i oftype fixnum upfrom � ����

�������� Destructuring

Destructuring allows you to bind a set of variables to a corresponding set

of values anywhere that you can normally bind a value to a single variable�

During loop expansion� each variable in the variable list is matched with the

values in the values list� If there are more variables in the variable list than

there are values in the values list� the remaining variables are given a value
of nil� If there are more values than variables listed� the extra values are

discarded�

Suppose you want to assign values from a list to the variables a� b� and c�

You could use one for clause to bind the variable numlist to the car of the

speci�ed expression� and then you could use another for clause to bind the
variables a� b� and c sequentially�

��� Collect values by using FOR constructs�

�loop for numlist in ��
 � ���� �� � ���� �� �
�����

for a integer �first numlist�

and for b integer �second numlist�

and for c float �third numlist�

collect �list c b a��

� ����� �
� ���� � �� �
��� � ���

��� COMMON LISP

Destructuring makes this process easier by allowing the variables to be bound

in parallel in each loop iteration� You can declare data types by using a list

of type�spec arguments� If all the types are the same� you can use a shorthand

destructuring syntax� as the second example following illustrates�

��� Destructuring simplifies the process�

�loop for �a b c� �integer integer float� in

��
 � ���� �� � ���� �� �
�����

collect �list c b a���

� ����� �
� ���� � �� �
��� � ���

��� If all the types are the same� this way is even simpler�

�loop for �a b c� float in

��
�� ��� ���� ���� ��� ���� ���� ���
�����

collect �list c b a��

� ����� ���
��� ���� ��� ���� �
��� ��� �����

If you use destructuring to declare or initialize a number of groups of vari�
ables into types� you can use the loop keyword and to simplify the process

further�

��� Initialize and declare variables in parallel

��� by using the AND construct�

�loop with �a b� float �
�� ����

and �c d� integer �� ��

and �e f�

return �list a b c d e f��

� �
�� ��� � � NIL NIL�

A data type speci�er for a destructuring pattern is a tree of type speci�ers

with the same shape as the tree of variables� with the following exceptions�

� When aligning the trees� an atom in the type speci�er tree that matches a

cons in the variable tree declares the same type for each variable�

� A cons in the type speci�er tree that matches an atom in the variable tree

is a non�atomic type specifer�

��� Declare X and Y to be of type VECTOR and FIXNUM� respectively�

�loop for �x y� oftype �vector fixnum� in mylist do ����

If nil is used in a destructuring list� no variable is provided for its place�

LOOP ���

�loop for �a nil b� �
 � ��

do �return �list a b���

� �
 ��

Note that nonstandard lists can specify destructuring�

�loop for �x � y� �
 � ��

do �return y��

� �

�loop for ��a � b� �c � d��

oftype ��float � float� �integer � integer��

in ���
�� � ���� �� � ��� ����� � ���� �� � ����

collect �list a b c d��

� ��
�� ��� � �� ���� ��� � ���

�It is worth noting that the destructuring facility of loop predates� and
di	ers in some details from� that of destructuringbind� an extension that

has been provided by many implementors of Common Lisp�!GLS�

�Loop clause�initially fexprg�
�Loop clause�finally �do j doing� fexprg�
�Loop clause�finally return expr

The initially construct causes the speci�ed expression to be evaluated in

the loop prologue� which precedes all loop code except for initial settings

speci�ed by constructs with� for� or as� The finally construct causes the

speci�ed expression to be evaluated in the loop epilogue after normal iteration
terminates�

The expr argument can be any non�atomic Common Lisp form�

Clauses such as return� always� never� and thereis can bypass the

finally clause�

The Common Lisp macro return
or the return loop construct� can be

used after finally to return values from a loop� The evaluation of the return
form inside the finally clause takes precedence over returning the accumu�

lation from clauses speci�ed by such keywords as collect� nconc� append�

sum� count� maximize� and minimize� the accumulation values for these pre�

empted clauses are not returned by the loop if return is used�

The constructs do� initially� and finally are the only loop keywords

that take an arbitrary number of
non�atomic� forms and group them as if by

using an implicit progn�

��� COMMON LISP

Examples�

��� This example parses a simple printed string representation

��� from BUFFER �which is itself a string� and returns the

��� index of the closing doublequote character�

�loop initially �unless �char �char buffer �� ������

�loopfinish��

for i fixnum from
 below �stringlength buffer�

when �char �char buffer i� ������

return i�

��� The FINALLY clause prints the last value of I�

��� The collected value is returned�

�loop for i from
 to
�

when �� i ��

collect i

finally �print i�� �Prints � line

� �� 	 � �
��

��� Return both the count of collected numbers

��� as well as the numbers themselves�

�loop for i from
 to
�

when �� i ��

collect i into numberlist

and count i into numbercount

finally �return �values numbercount numberlist���

� � and �� 	 � �
��

�Loop clause�named name

The named construct allows you to assign a name to a loop construct so that

you can use the Common Lisp special form returnfrom to exit the named
loop�

Only one name may be assigned per loop� the speci�ed name becomes the

name of the implicit block for the loop�

If used� the named construct must be the �rst clause in the loop expression�

coming right after the word loop�

LOOP ��	

Example�

��� Just name and return�

�loop named max

for i from
 to
�

do �print i�

do �returnfrom max done�� �Prints � line

� DONE

��

Pretty Printing

BY RICHARD C� WATERS

preface� X�J�� voted in January ���� h���i to adopt a facility for user�

controlled pretty printing as a part of the forthcoming draft Common Lisp

standard� This facility is the culmination of thirteen years of design� testing�
revision� and use of this approach�

This chapter presents the bulk of the Common Lisp pretty printing speci�

�cation� written by Richard C� Waters� I have edited it only very lightly to
conform to the overall style of this book�

!Guy L� Steele Jr�

����� Introduction

Pretty printing has traditionally been a black box process� displaying program

code using a set of �xed layout rules� Its utility can be greatly enhanced by

opening it up to user control� The facilities described in this chapter provide

general and powerful means for specifying pretty�printing behavior�

By providing direct access to the mechanisms within the pretty printer

that make dynamic decisions about layout� the macros and functions pprint

logicalblock� pprintnewline� and pprintindent make it possible to spec�
ify pretty printing layout rules as a part of any function that produces output�

They also make it very easy for the function to support detection of circularity

and sharing and abbreviation based on length and nesting depth� Using the

function setpprintdispatch� one can associate a user�de�ned pretty printing
function with any type of object� A small set of new format directives allows

concise implementation of user�de�ned pretty�printing functions� Together�

these facilities enable users to rede�ne the way code is displayed and allow

the full power of pretty printing to be applied to complex combinations of

data structures�

��

PRETTY PRINTING ���

Implementation note� This chapter describes the interface of the XP pretty
printer� XP is described fully in ����� which also explains how to obtain a portable
implementation� XP uses a highly e�cient linear
time algorithm� When properly
integrated into a Common Lisp� this algorithm supports pretty printing that is only
fractionally slower than ordinary printing�

����� Pretty Printing Control Variables

The function write accepts keyword arguments named �pprintdispatch�

�miserwidth� �rightmargin� and �lines� corresponding to these variables�

�Variable�
printpprintdispatch

When
printpretty
 is not nil� printing is controlled by the %pprint dispatch
table� stored in the variable
printpprintdispatch
� The initial value of

printpprintdispatch
 is implementation�dependent and causes traditional

pretty printing of Lisp code� The last section of this chapter explains how the

contents of this table can be changed�

�Variable�
printrightmargin

A primary goal of pretty printing is to keep the output between a pair of
margins� The left margin is set at the column where the output begins� If

this cannot be determined� the left margin is set to zero�

When
printrightmargin
 is not nil� it speci�es the right margin to

use when making layout decisions� When
printrightmargin
 is nil
the

initial value�� the right margin is set at the maximum line length that can
be displayed by the output stream without wraparound or truncation� If this

cannot be determined� the right margin is set to an implementation�dependent

value�

To allow for the possibility of variable�width fonts�
printrightmargin

is in units of ems!the width of an �m� in the font being used to display

characters on the relevant output stream at the moment when the variables

are consulted�

�Variable�
printmiserwidth

If
printmiserwidth
 is not nil� the pretty printer switches to a compact

style of output
called miser style� whenever the width available for printing

��� COMMON LISP

a substructure is less than or equal to
printmiserwidth
 ems� The initial

value of
printmiserwidth
 is implementation�dependent�

�Variable�
printlines

When given a value other than its initial value of nil�
printlines
 limits

the number of output lines produced when something is pretty printed� If an

attempt is made to go beyond
printlines
 lines� � ���
a space and two
periods� is printed at the end of the last line followed by all of the su�xes

closing delimiters� that are pending to be printed�

�let ��
printrightmargin
 ��� �
printlines
 ���

�pprint �progn �setq a
 b � c � d �����

�PROGN �SETQ A

B �

C � ����

The symbol ���� is printed out to ensure that a reader error will occur if

the output is later read� A symbol di	erent from ����� is used to indicate

that a di	erent kind of abbreviation has occurred��

����� Dynamic Control of the Arrangement of Output

The following functions and macros support precise control of what should be

done when a piece of output is too large to �t in the space available� Three

concepts underlie the way these operations work� logical blocks� conditional
newlines� and sections� Before proceeding further� it is important to de�ne

these terms�

The �rst line of �gure ���� shows a schematic piece of output� The charac�

ters in the output are represented by hyphens� The positions of conditional

newlines are indicated by digits� The beginnings and ends of logical blocks
are indicated in the �gure by ��� and ��� respectively�

The output as a whole is a logical block and the outermost section� This

section is indicated by the ��s on the second line of �gure ����� Logical blocks

nested within the output are speci�ed by the macro pprintlogicalblock�
Conditional newline positions are speci�ed by calls on pprintnewline� Each

conditional newline de�nes two sections
one before it and one after it� and

is associated with a third
the section immediately containing it��

The section after a conditional newline consists of all the output up to� but

not including�
a� the next conditional newline immediately contained in the

PRETTY PRINTING ���

Figure ����� Example of Logical Blocks� Conditional Newlines� and Sections

�	��������

		 																								

�� ���

��� ����

�������������� �����

same logical block� or if
a� is not applicable�
b� the next newline that is at a

lesser level of nesting in logical blocks� or if
b� is not applicable�
c� the end

of the output�
The section before a conditional newline consists of all the output back

to� but not including�
a� the previous conditional newline that is immedi�

ately contained in the same logical block� or if
a� is not applicable�
b� the

beginning of the immediately containing logical block� The last four lines in

�gure ���� indicate the sections before and after the four conditional newlines�
The section immediately containing a conditional newline is the shortest

section that contains the conditional newline in question� In �gure ����� the

�rst conditional newline is immediately contained in the section marked with

��s� the second and third conditional newlines are immediately contained in

the section before the fourth conditional newline� and the fourth conditional
newline is immediately contained in the section after the �rst conditional

newline�

Whenever possible� the pretty printer displays the entire contents of a sec�

tion on a single line� However� if the section is too long to �t in the space

available� line breaks are inserted at conditional newline positions within the
section�

�Function�pprintnewline kind �optional stream

The stream
which defaults to
standardoutput
� follows the standard con�

ventions for stream arguments to printing functions
that is� nil stands for

standardoutput
 and t stands for
terminalio
�� The kind argument

speci�es the style of conditional newline� It must be one of �linear� �fill�

�miser� or �mandatory� An error is signaled if any other value is supplied�

If stream is a pretty printing stream created by pprintlogicalblock� a line

break is inserted in the output when the appropriate condition below is sat�

��� COMMON LISP

is�ed� Otherwise� pprintnewline has no e	ect� The value nil is always

returned�

If kind is �linear� it speci�es a %linear�style� conditional newline� A line

break is inserted if and only if the immediately containing section cannot be

printed on one line� The e	ect of this is that line breaks are either inserted

at every linear�style conditional newline in a logical block or at none of them�

If kind is �miser� it speci�es a %miser�style� conditional newline� A line

break is inserted if and only if the immediately containing section cannot be

printed on one line and miser style is in e	ect in the immediately containing
logical block� The e	ect of this is that miser�style conditional newlines act

like linear�style conditional newlines� but only when miser style is in e	ect�

Miser style is in e	ect for a logical block if and only if the starting position of

the logical block is less than or equal to
printmiserwidth
 from the right
margin�

If kind is �fill� it speci�es a %�ll�style� conditional newline� A line break
is inserted if and only if either
a� the following section cannot be printed

on the end of the current line�
b� the preceding section was not printed on

a single line� or
c� the immediately containing section cannot be printed

on one line and miser style is in e	ect in the immediately containing logical

block� If a logical block is broken up into a number of subsections by �ll�style
conditional newlines� the basic e	ect is that the logical block is printed with

as many subsections as possible on each line� However� if miser style is in

e	ect� �ll�style conditional newlines act like linear�style conditional newlines�

If kind is �mandatory� it speci�es a %mandatory�style� conditional newline�

A line break is always inserted� This implies that none of the containing

sections can be printed on a single line and will therefore trigger the insertion

of line breaks at linear�style conditional newlines in these sections�

When a line break is inserted by any type of conditional newline� any blanks

that immediately precede the conditional newline are omitted from the output
and indentation is introduced at the beginning of the next line� By default�

the indentation causes the following line to begin in the same horizontal po�

sition as the �rst character in the immediately containing logical block�
The

indentation can be changed via pprintindent��

There are a variety of ways unconditional newlines can be introduced into

the output
for example� via terpri or by printing a string containing a
newline character�� As with mandatory conditional newlines� this prevents

any of the containing sections from being printed on one line� In general� when

an unconditional newline is encountered� it is printed out without suppression

of the preceding blanks and without any indentation following it� However�

if a per�line pre�x has been speci�ed
see pprintlogicalblock�� that pre�x

PRETTY PRINTING ���

will always be printed no matter how a newline originates�

�Macro�pprintlogicalblock �stream�symbol list
�� f�prefix j �per�line�prefixg p j �suffix s �� �

f formg�

This macro causes printing to be grouped into a logical block� It returns nil�

The stream�symbol must be a symbol� If it is nil� it is treated the same
as if it were
standardoutput
� If it is t� it is treated the same as if it were

terminalio
� The run�time value of stream�symbol must be a stream
or

nil standing for
standardoutput
 or t standing for
terminalio
�� The

logical block is printed into this destination stream�

The body
which consists of the forms� can contain any arbitrary Lisp

forms� Within the body� stream�symbol
or
standardoutput
 if stream�

symbol is nil� or
terminalio
 if stream�symbol is t� is bound to a �pretty
printing� stream that supports decisions about the arrangement of output

and then forwards the output to the destination stream� All the standard

printing functions
for example� write� princ� terpri� can be used to send

output to the pretty printing stream created by pprintlogicalblock� All
and only the output sent to this pretty printing stream is treated as being in

the logical block�

pprintlogicalblock and the pretty printing stream it creates have dy�

namic extent� It is unde�ned what happens if output is attempted outside

of this extent to the pretty printing stream created� It is unspeci�ed what

happens if� within this extent� any output is sent directly to the underlying

destination stream
by calling writechar� for example��

The �suffix� �prefix� and �perlineprefix arguments must all be expres�

sions that
at run time� evaluate to strings� The �suffix argument s
which
defaults to the null string� speci�es a su�x that is printed just after the logical

block� The �prefix and �perlineprefix arguments are mutually exclusive�

If neither �prefix nor �perlineprefix is speci�ed� a �prefix of the null

string is assumed� The �prefix argument speci�es a pre�x p that is printed

before the beginning of the logical block� The �perlineprefix speci�es a
pre�x p that is printed before the block and at the beginning of each subse�

quent line in the block� An error is signaled if �prefix and �perlineprefix

are both used or if a �suffix� �prefix� or �prelineprefix argument does

not evaluate to a string�

The list is interpreted as being a list that the body is responsible for print�

ing�
See pprintexitiflistexhausted and pprintpop�� If list does not
at

run time� evaluate to a list� it is printed using write�
This makes it easier

��� COMMON LISP

to write printing functions that are robust in the face of malformed argu�

ments�� If
printcircle

and possibly also
printshared
� is not nil and

list is a circular
or shared� reference to a cons� then an appropriate ����n����

marker is printed�
This makes it easy to write printing functions that pro�

vide full support for circularity and sharing abbreviation�� If
printlevel

is not nil and the logical block is at a dynamic nesting depth of greater than

printlevel
 in logical blocks� ����� is printed�
This makes it easy to write

printing functions that provide full support for depth abbreviation��

If any of the three preceding conditions occurs� the indicated output is

printed on stream�symbol and the body is skipped along with the printing of
the pre�x and su�x�
If the body is not responsible for printing a list� then the

�rst two tests above can be turned o	 by supplying nil for the list argument��

In addition to the list argument of pprintlogicalblock� the arguments of

the standard printing functions such as write� print� pprint� print
� and

pprint� as well as the arguments of the standard format directives such as

A� S�
and W� are all checked
when necessary� for circularity and shar�
ing� However� such checking is not applied to the arguments of the functions

writeline� writestring� and writechar or to the literal text output by

format� A consequence of this is that you must use one of the latter func�

tions if you want to print some literal text in the output that is not supposed
to be checked for circularity or sharing�
See the examples below��

Implementation note� Detection of circularity and sharing is supported by the
pretty printer by in essence performing the requested output twice� On the �rst
pass� circularities and sharing are detected and the actual outputting of characters
is suppressed� On the second pass� the appropriate ����n� and ����n���� markers are
inserted and characters are output�
A consequence of this two
pass approach to the detection of circularity and sharing

is that the body of a pprintlogicalblock must not perform any side
e�ects on the
surrounding environment� This includes not modifying any variables that are bound
outside of its scope� Obeying this restriction is facilitated by using pprintpop�
instead of an ordinary pop when traversing a list being printed by the body of a
pprintlogicalblock��

�Macro�pprintexitiflistexhausted

pprintexitiflistexhausted tests whether or not the list argument of

pprintlogicalblock has been exhausted
see pprintpop�� If this list has

been reduced to nil� pprintexitiflistexhausted terminates the execution

of the immediately containing pprintlogicalblock except for the printing

PRETTY PRINTING ���

of the su�x� Otherwise pprintexitiflistexhausted returns nil� An er�

ror message is issued if pprintexitiflistexhausted is used anywhere other

than syntactically nested within a call on pprintlogicalblock� It is unde�

�ned what happens if pprintpop is executed outside of the dynamic extent

of this pprintlogicalblock�

�Macro�pprintpop

pprintpop pops elements one at a time o	 the list argument of pprint

logicalblock� taking care to obey
printlength
�
printcircle
� and

printshared
� An error message is issued if it is used anywhere other than

syntactically nested within a call on pprintlogicalblock� It is unde�ned

what happens if pprintpop is executed outside of the dynamic extent of this
call on pprintlogicalblock�

Each time pprintpop is called� it pops the next value o	 the list argu�
ment of pprintlogicalblock and returns it� However� before doing this� it

performs three tests� If the remaining list is not a list
neither a cons nor

nil�� �� � is printed followed by the remaining list�
This makes it easier

to write printing functions that are robust in the face of malformed argu�
ments�� If
printlength
 is nil and pprintpop has already been called

printlength
 times within the immediately containing logical block� �����

is printed�
This makes it easy to write printing functions that properly han�

dle
printlength
�� If
printcircle

and possibly also
printshared
�

is not nil� and the remaining list is a circular
or shared� reference� then �� �
is printed followed by an appropriate ����n���� marker�
This catches instances

of cdr circularity and sharing in lists��

If any of the three preceding conditions occurs� the indicated output is

printed on the pretty printing stream created by the immediately containing

pprintlogicalblockand the execution of the immediately containing pprint

logicalblock is terminated except for the printing of the su�x�

If pprintlogicalblock is given a list argument of nil!because it is
not processing a list!pprintpop can still be used to obtain support for

printlength

see the example function pprintvector below�� In this sit�

uation� the �rst and third tests above are disabled and pprintpop always

returns nil�

�Function�pprintindent relativeto n �optional stream

pprintindent speci�es the indentation to use in a logical block� Stream

which defaults to
standardoutput
� follows the standard conventions for

��� COMMON LISP

stream arguments to printing functions� The argument n speci�es the inden�

tation in ems� If relative�to is �block� the indentation is set to the horizon�

tal position of the �rst character in the block plus n ems� If relative�to is

�current� the indentation is set to the current output position plus n ems�

The argument n can be negative� however� the total indentation cannot be

moved left of the beginning of the line or left of the end of the rightmost
per�line pre�x� Changes in indentation caused by pprintindent do not take

e	ect until after the next line break� In addition� in miser mode all calls on

pprintindent are ignored� forcing the lines corresponding to the logical block

to line up under the �rst character in the block�

An error is signaled if a value other than �block or �current is supplied for

relative�to� If stream is a pretty printing stream created by pprintlogical

block� pprintindent sets the indentation in the innermost dynamically en�
closing logical block� Otherwise� pprintindent has no e	ect� The value nil

is always returned�

�Function�pprinttab kind colnum colinc �optional stream

pprinttab speci�es tabbing as performed by the standard format directive

T� Stream
which defaults to
standardoutput
� follows the standard con�

ventions for stream arguments to printing functions� The arguments colnum

and colinc correspond to the two parameters to T and are in terms of ems�
The kind argument speci�es the style of tabbing� It must be one of �line
tab

as by T� �section
tab as by T� but measuring horizontal positions relative

to the start of the dynamically enclosing section�� �linerelative
tab as by

#T�� or �sectionrelative
tab as by #T� but measuring horizontal posi�
tions relative to the start of the dynamically enclosing section�� An error is

signaled if any other value is supplied for kind� If stream is a pretty printing

stream created by pprintlogicalblock� tabbing is performed� Otherwise�

pprinttab has no e	ect� The value nil is always returned�

�Function�pprintfill stream list �optional colon� atsign�

�Function�pprintlinear stream list �optional colon� atsign�
�Function�pprinttabular stream list �optional colon� atsign� tabsize

These three functions specify particular ways of pretty printing lists� Stream

follows the standard conventions for stream arguments to printing functions�

Each function prints parentheses around the output if and only if colon�
de�

fault t� is not nil� Each function ignores its atsign� argument and returns

nil�
These two arguments are included in this way so that these functions

PRETTY PRINTING ��	

can be used via ��� and as setpprintdispatch functions as well as di�

rectly�� Each function handles abbreviation and the detection of circularity

and sharing correctly and uses write to print list when given a non�list argu�

ment�

The function pprintlinear prints a list either all on one line or with each

element on a separate line� The function pprintfill prints a list with as
many elements as possible on each line� The function pprinttabular is the

same as pprintfill except that it prints the elements so that they line up

in columns� This function takes an additional argument tabsize
default ���

that speci�es the column spacing in ems�

As an example of the interaction of logical blocks� conditional newlines� and

indentation� consider the function pprintdefun below� This function pretty
prints a list whose car is defun in the standard way assuming that the length

of the list is exactly ��

��� Pretty printer function for DEFUN forms�

�defun pprintdefun �list�

�pprintlogicalblock �nil list �prefix ��� �suffix ����

�write �first list��

�writechar ����space�

�pprintnewline �miser�

�pprintindent �current ��

�write �second list��

�writechar ����space�

�pprintnewline �fill�

�write �third list��

�pprintindent �block
�

�writechar ����space�

�pprintnewline �linear�

�write �fourth list����

Suppose that one evaluates the following�

�pprintdefun �defun prod �x y� �
 x y���

If the line width available is greater than or equal to ��� all of the output

appears on one line� If the width is reduced to ��� a line break is inserted

at the linear�style conditional newline before �
 X Y�� producing the output

shown below� The �pprintindent �block
� causes �
 X Y� to be printed

at a relative indentation of � in the logical block�

��
 COMMON LISP

�DEFUN PROD �X Y�

�
 X Y��

If the width is ��� a line break is also inserted at the �ll�style conditional

newline before the argument list� The argument list lines up under the func�
tion name because of the call on �pprintindent �current �� before the

printing of the function name�

�DEFUN PROD

�X Y�

�
 X Y��

If
printmiserwidth
 were greater than or equal to ��� the output would

have been entirely in miser mode� All indentation changes are ignored in

miser mode and line breaks are inserted at miser�style conditional newlines�
The result would have been as follows�

�DEFUN

PROD

�X Y�

�
 X Y��

As an example of the use of a per�line pre�x� consider that evaluating the

expression

�pprintlogicalblock �nil nil �perlineprefix ���� ��

�pprintdefun �defun prod �x y� �
 x y����

produces the output

��� �DEFUN PROD

��� �X Y�

��� �
 X Y��

with a line width of �� and nil as the value of the printer control variable

printmiserwidth
�

If
printmiserwidth
 were not nil the output

��� �DEFUN

��� PROD

��� �X Y�

��� �
 X Y��

might appear instead��

PRETTY PRINTING ���

As a more complex
and realistic� example� consider the function pprintlet

below� This speci�es how to pretty print a let in the standard style� It is more

complex than pprintdefun because it has to deal with nested structure� Also�

unlike pprintdefun� it contains complete code to print readably any possible

list that begins with the symbol let� The outermost pprintlogicalblock
handles the printing of the input list as a whole and speci�es that parentheses

should be printed in the output� The second pprintlogicalblock handles

the list of binding pairs� Each pair in the list is itself printed by the innermost

pprintlogicalblock�
A loop is used instead of merely decomposing the pair
into two elements so that readable output will be produced no matter whether

the list corresponding to the pair has one element� two elements� or
being

malformed� has more than two elements�� A space and a �ll�style conditional

newline are placed after each pair except the last� The loop at the end of the

topmost pprintlogicalblock prints out the forms in the body of the let

separated by spaces and linear�style conditional newlines�

��� COMMON LISP

��� Pretty printer function for LET forms�

��� carefully coded to handle malformed binding pairs�

�defun pprintlet �list�

�pprintlogicalblock �nil list �prefix ��� �suffix ����

�write �pprintpop��

�pprintexitiflistexhausted�

�writechar ����space�

�pprintlogicalblock

�nil �pprintpop� �prefix ��� �suffix ����

�pprintexitiflistexhausted�

�loop �pprintlogicalblock

�nil �pprintpop� �prefix ��� �suffix ����

�pprintexitiflistexhausted�

�loop �write �pprintpop��

�pprintexitiflistexhausted�

�writechar ����space�

�pprintnewline �linear���

�pprintexitiflistexhausted�

�writechar ����space�

�pprintnewline �fill���

�pprintindent �block
�

�loop �pprintexitiflistexhausted�

�writechar ����space�

�pprintnewline �linear�

�write �pprintpop�����

Suppose that the following is evaluated with
printlevel
 having the value

� and
printcircle
 having the value t�

�pprintlet ���
�let �x �
printlength
 �f �g ����

�z � �� �k �car y���

�setq x �sqrt z�� ���
�����

If the line length is greater than or equal to ��� the output produced appears

on one line� However� if the line length is ��� line breaks are inserted at the
linear�style conditional newlines separating the forms in the body and the

output below is produced� Note that the degenerate binding pair X is printed

readably even though it fails to be a list� a depth abbreviation marker is

printed in place of �G ��� the binding pair �Z � �� is printed readably even

though it is not a proper list� and appropriate circularity markers are printed�

PRETTY PRINTING ���

���
�LET �X �
PRINTLENGTH
 �F ����� �Z � �� �K �CAR Y���

�SETQ X �SQRT Z��

���
����

If the line length is reduced to ��� a line break is inserted at one of the
�ll�style conditional newlines separating the binding pairs�

���
�LET �X �
PRINTPRETTY
 �F �����

�Z � �� �K �CAR Y���

�SETQ X �SQRT Z��

���
����

Suppose that the line length is further reduced to �� and
printlength

is set to �� In this situation� line breaks are inserted after both the �rst and

second binding pairs� In addition� the second binding pair is itself broken

across two lines� Clause
b� of the description of �ll�style conditional newlines

prevents the binding pair �Z � �� from being printed at the end of the third
line� Note that the length abbreviation hides the circularity from view and

therefore the printing of circularity markers disappears�

�LET �X

�
PRINTLENGTH

�F �����

�Z � �� ����

�SETQ X �SQRT Z��

����

The function pprinttabular could be de�ned as follows�

�defun pprinttabular �s list �optional �c� t� a� �size
���

�declare �ignore a���

�pprintlogicalblock

�s list �prefix �if c� ��� ��� �suffix �if c� ��� ����

�pprintexitiflistexhausted�

�loop �write �pprintpop� �stream s�

�pprintexitiflistexhausted�

�writechar ����space s�

�pprinttab �sectionrelative � size s�

�pprintnewline �fill s����

Evaluating the following with a line length of �� produces the output shown�

��� COMMON LISP

�princ �Roads ��

�pprinttabular nil �elm main maple center� nil nil ��

Roads ELM MAIN

MAPLE CENTER

The function below prints a vector using �������� notation�

�defun pprintvector �v�

�pprintlogicalblock �nil nil �prefix ������ �suffix ����

�let ��end �length v�� �i ���

�when �plusp end�

�loop �pprintpop�

�write �aref v i��

�if � �incf i� end� �return nil��

�writechar ����space�

�pprintnewline �fill������

Evaluating the following with a line length of �� produces the output shown�

�pprintvector ����
� �� ��	 � ��
� �� ��	 �� �
 ����

����
� �� ��	 �

��
� �� ��	

�� �
 ���

����� Format Directive Interface

The primary interface to operations for dynamically determining the arrange�

ment of output is provided through the functions above� However� an addi�

tional interface is provided via a set of format directives because� as shown
by the examples in this section and the next� format strings are typically a

much more compact way to specify pretty printing� In addition� without such

an interface� one would have to abandon the use of format when interacting

with the pretty printer�

W

Write� An arg� any Lisp object� is printed obeying every printer control vari�

able
as by write�� In addition� W interacts correctly with depth abbreviation

by not resetting the depth counter to zero� W does not accept parameters�

PRETTY PRINTING ���

If given the colon modi�er� W binds
printpretty
 to t� If given the atsign

modi�er� W binds
printlevel
 and
printlength
 to nil�

W provides automatic support for circularity detection� If
printcircle

and possibly also
printshared
� is not nil and W is applied to an argument

that is a circular
or shared� reference� an appropriate ����n���� marker is inserted
in the output instead of printing the argument�

$

Conditional newline� Without any modi�ers� $ is equivalent to �pprint

newline �linear�� The directive #$ is equivalent to �pprintnewline

�miser�� The directive �$ is equivalent to �pprintnewline �fill�� The

directive �#$ is equivalent to �pprintnewline �mandatory��

�str ��

Logical block� If �� is used to terminate a ���� directive� the directive is

equivalent to a call on pprintlogicalblock� The format argument cor�
responding to the ���� �� directive is treated in the same way as the

list argument to pprintlogicalblock� thereby providing automatic support

for non�list arguments and the detection of circularity� sharing� and depth

abbreviation� The portion of the format control string nested within the

���� �� speci�es the �prefix
or �perlineprefix�� �suffix� and body of
the pprintlogicalblock�

The format string portion enclosed by ���� �� can be divided into seg�

ments �pre
x �body �su�x �� by � directives� If the �rst section is ter�

minated by #�� it speci�es a per�line pre�x rather than a simple pre�x� The
pre�x and su�x cannot contain format directives� An error is signaled if ei�

ther the pre�x or su�x fails to be a constant string or if the enclosed portion

is divided into more than three segments�

If the enclosed portion is divided into only two segments� the su�x defaults

to the null string� If the enclosed portion consists of only a single segment�
both the pre�x and the su�x default to the null string� If the colon modi�er

is used
that is� ����� ���� the pre�x and su�x default to ��� and ����

respectively� instead of the null string�

The body segment can be any arbitrary format control string� This format
control string is applied to the elements of the list corresponding to the

���� �� directive as a whole� Elements are extracted from this list using

pprintpop� thereby providing automatic support for malformed lists and the

detection of circularity� sharing� and length abbreviation� Within the body

segment� acts like pprintexitiflistexhausted�

��� COMMON LISP

���� �� supports a feature not supported by pprintlogicalblock� If

�#� is used to terminate the directive
that is� ���� �#��� then a �ll�style

conditional newline is automatically inserted after each group of blanks imme�

diately contained in the body
except for blanks after a �newline� directive��

This makes it easy to achieve the equivalent of paragraph �lling�
If the atsign modi�er is used with ���� ��� the entire remaining argu�

ment list is passed to the directive as its argument� All of the remaining

arguments are always consumed by #���� ��� even if they are not all used

by the format string nested in the directive� Other than the di	erence in its
argument� #���� �� is exactly the same as ���� ��� except that circularity

and sharing� detection is not applied if the #���� �� is at top level in a

format string� This ensures that circularity detection is applied only to data

lists and not to format argument lists�

To a considerable extent� the basic form of the directive ���� � is incom�
patible with the dynamic control of the arrangement of output by W� $�

���� ��� I� and �T� As a result� an error is signaled if any of these direc�

tives is nested within ���� �� Beyond this� an error is also signaled if the

���� ����� � form of ���� � is used in the same format string with W�
$� ���� ��� I� or �T�

I

Indent� nI is equivalent to �pprintindent �block n�� �nI is equivalent
to �pprintindent �current n�� In both cases� n defaults to zero if it is

omitted�

�T

Tabulate� If the colon modi�er is used with the T directive� the tabbing
computation is done relative to the column where the section immediately

containing the directive begins� rather than with respect to column zero�

n�m�T is equivalent to �pprinttab �section n m�� n�m�#T is equiv�

alent to �pprinttab �sectionrelative n m�� The numerical parameters
are both interpreted as being in units of ems and both default to ��

 name

Call function� User�de�ned functions can be called from within a format

string by using the directive name � The colon modi�er� the atsign modi�er�

and arbitrarily many parameters can be speci�ed with the name directive�

The name can be any string that does not contain � �� All of the characters

in name are treated as if they were upper case� If name contains a ��� or

����� then everything up to but not including the �rst ��� or ���� is taken

PRETTY PRINTING ���

to be a string that names a package� Everything after the �rst ��� or ����
if

any� is taken to be a string that names a symbol� The function corresponding

to a name directive is obtained by looking up the symbol that has the

indicated name in the indicated package� If name does not contain a ��� or

����� then the whole name string is looked up in the user package�

When a name directive is encountered� the indicated function is called

with four or more arguments� The �rst four arguments are the output stream�

the format argument corresponding to the directive� the value t if the colon

modi�er was used
nil otherwise�� and the value t if the atsign modi�er was
used
nil otherwise�� The remaining arguments consist of any parameters

speci�ed with the directive� The function should print the argument appro�

priately� Any values returned by the function are ignored�

The three functions pprintlinear� pprintfill� and pprinttabular are
designed so that they can be called by ���
that is� pprintlinear �

 pprintfill � and pprinttabular � In particular they take colon and

atsign arguments�

As examples of the convenience of specifying pretty printing with format

strings� consider the functions pprintdefun and pprintlet used as examples

in the last section� They can be more compactly de�ned as follows� The

function pprintvector cannot be de�ned using format� because the data
structure it traverses is not a list� The function pprinttabular is inconvenient

to de�ne using format� because of the need to pass its tabsize argument

through to a �T directive nested within an iteration over a list�

�defun pprintdefun �list�

�format t � �� W #$ �I W �$ W
I $ W ��� list��

�defun pprintlet �list�

�format t � �� W �� #f �� #f W $ g �� �$ g ��
I

#f $ W g ���

list��

����� Compiling Format Control Strings

The control strings used by format are essentially programs that perform

printing� The macro formatter provides the e�ciency of using a compiled

function for printing without losing the visual compactness of format strings�

��� COMMON LISP

�Macro�formatter control�string

The control�string must be a literal string� An error is signaled if control�

string is not a valid format control string� The macro formatter expands into

an expression of the form �function �lambda �stream �rest args� �����

that does the printing speci�ed by control�string� The lambda created accepts

an output stream as its �rst argument and zero or more data values as its

remaining arguments� The value returned by the lambda is the tail
if any�

of the data values that are not printed out by control�string�
For example� if
the control�string is � A A�� the cddr
if any� of the data values is returned��

The form �formatter � " �#f S� g�� is equivalent to the following�

��� �lambda �stream �rest args�

�terpri stream�

�dotimes �n ��

�if �null args� �return nil��

�prin
 �pop args� stream�

�writestring �� � stream��

args�

In support of the above mechanism� format is extended so that it accepts

functions as its second argument as well as strings� When a function is pro�
vided� it must be a function of the form created by formatter� The function

is called with the appropriate output stream as its �rst argument and the

data arguments to format as its remaining arguments� The function should

perform whatever output is necessary and return the unused tail of the argu�
ments
if any�� The directives � and f g with no body are also extended

so that they accept functions as well as control strings� Every other stan�

dard function that takes a format string as an argument
for example� error

and warn� is also extended so that it can accept functions of the form above

instead�

����� Pretty Printing Dispatch Tables

When
printpretty
 is not nil� the pprint dispatch table in the variable

printpprintdispatch
 controls how objects are printed� The information
in this table takes precedence over all other mechanisms for specifying how to

print objects� In particular� it overrides user�de�ned printobject methods

and print functions for structures� However� if there is no speci�cation for

how to pretty print a particular kind of object� it is then printed using the

standard mechanisms as if
printpretty
 were nil�

PRETTY PRINTING ��	

A pprint dispatch table is a mapping from keys to pairs of values� The keys

are type speci�ers� The values are functions and numerical priorities� Basic

insertion and retrieval is done based on the keys with the equality of keys

being tested by equal� The function to use when pretty printing an object

is chosen by �nding the highest priority function in
printpprintdispatch

that is associated with a type speci�er that matches the object�

�Function�copypprintdispatch �optional table

A copy is made of table� which defaults to the current pprint dispatch table� If

table is nil� a copy is returned of the initial value of
printpprintdispatch
�

�Function�pprintdispatch object �optional table

This retrieves the highest priority function from a pprint table that is asso�

ciated with a type speci�er in the table that matches object� The function is

chosen by �nding all the type speci�ers in table that match the object and

selecting the highest priority function associated with any of these type spec�
i�ers� If there is more than one highest priority function� an arbitrary choice

is made� If no type speci�ers match the object� a function is returned that

prints object with
printpretty
 bound to nil�

As a second return value� pprintdispatch returns a
ag that is t if a

matching type speci�er was found in table and nil if not�

Table
which defaults to
printpprintdispatch
� must be a pprint dis�

patch table� Table can be nil� in which case retrieval is done in the initial

value of
printpprintdispatch
�

When
printpretty
 is t� �write object �stream s� is equivalent to
�funcall �pprintdispatch object� s object��

�Function�setpprintdispatch type function �optional priority table

This puts an entry into a pprint dispatch table and returns nil� The type

must be a valid type speci�er and is the key of the entry� The �rst action of

setpprintdispatch is to remove any pre�existing entry associated with type�
This guarantees that there will never be two entries associated with the same

type speci�er in a given pprint dispatch table� Equality of type speci�ers is

tested by equal�

Two values are associated with each type speci�er in a pprint dispatch

table� a function and a priority� The function must accept two arguments�

the stream to send output to and the object to be printed� The function

��
 COMMON LISP

should pretty print the object on the stream� The function can assume that

object satis�es type� The function should obey
printreadably
� Any values

returned by the function are ignored�

The priority
which defaults to �� must be a non�complex number� This

number is used as a priority to resolve con
icts when an object matches more

than one entry� An error is signaled if priority fails to be a non�complex
number�

The table
which defaults to the value of
printpprintdispatch
� must

be a pprint dispatch table� The speci�ed entry is placed in this table�

It is permissible for function to be nil� In this situation� there will be no

type entry in table after setpprintdispatch is evaluated�

To facilitate the use of pprint dispatch tables for controlling the

pretty printing of Lisp code� the type�speci
er argument of the function
setpprintdispatch is allowed to contain the form �cons car�type cdr�type��

This form indicates that the corresponding object must be a cons whose car

satis�es the type speci�er car�type and whose cdr satis�es the type speci�er

cdr�type� The cdr�type can be omitted� in which case it defaults to t�

The initial value of
printpprintdispatch
 is implementation�dependent�
However� the initial entries all use a special class of priorities that are less than

every priority that can be speci�ed using setpprintdispatch� This guaran�

tees that pretty printing functions speci�ed by users will override everything

in the initial value of
printpprintdispatch
�

Consider the following examples� The �rst form restores
printpprint

dispatch
 to its initial value� The next two forms then specify a special way

of pretty printing ratios� Note that the more speci�c type speci�er has to be

associated with a higher priority�

�setq
printpprintdispatch

�copypprintdispatch nil��

�defun divprint �s r colon� atsign��

�declare �ignore colon� atsign���

�format s �� D D�� �numerator �abs r�� �denominator r���

�setpprintdispatch ratio �formatter ����� divprint ���

�setpprintdispatch �and ratio �satisfies minusp��

�formatter ������ divprint ���

��

PRETTY PRINTING ���

�pprint �
 � � ��� prints� ������
 �� ����� � � ����

The following two forms illustrate the speci�cation of pretty printing func�

tions for particular types of Lisp code� The �rst form illustrates how to specify
the traditional method for printing quoted objects using � � syntax� Note the

care taken to ensure that data lists that happen to begin with quote will be

printed readably� The second form speci�es that lists beginning with the sym�

bol mylet should print the same way that lists beginning with let print when

the initial pprint dispatch table is in e	ect�

�setpprintdispatch �cons �member quote��

��� �lambda �s list�

�if �and �consp �cdr list�� �null �cddr list���

�funcall �formatter � W�� s �cadr list��

�pprintfill s list�����

�setpprintdispatch �cons �member mylet��

�pprintdispatch �let� nil��

The next example speci�es a default method for printing lists that do

not correspond to function calls� Note that� as shown in the de�nition of

pprinttabular above� pprintlinear� pprintfill� and pprinttabular are

de�ned with optional colon and atsign arguments so that they can be used as
pprint dispatch functions as well as ��� functions�

�setpprintdispatch

�cons �not �and symbol �satisfies fboundp����

��� pprintfill

��

With a line length of �� �pprint �� b c d e f g h i j k�� prints�

�� b c d

e f g h

i j k�

This �nal example shows how to de�ne a pretty printing function for a user

de�ned data structure�

�defstruct family mom kids�

��� COMMON LISP

�setpprintdispatch family

��� �lambda �s f�

�format s � #����� � W and �I $ pprintfill �� ���

�familymom f� �familykids f����

The pretty printing function for the structure family speci�es how

to adjust the layout of the output so that it can �t aesthetically into

a variety of line widths� In addition� it obeys the printer control
variables
printlevel
�
printlength
�
printlines
�
printcircle
�

printshared
� and
printescape
� and can tolerate several di	erent kinds

of malformity in the data structure� The output below shows what is printed

out with a right margin of ���
printpretty
 t�
printescape
 nil� and a
malformed kids list�

�write �list principalfamily

�makefamily �mom �Lucy�

�kids ��Mark� �Bob� � �Dan����

�rightmargin �� �pretty T �escape nil �miserwidth nil�

�PRINCIPALFAMILY

����Lucy and

Mark Bob � Dan��

Note that a pretty printing function for a structure is di	erent from the

structure�s print function� While print functions are permanently associated

with a structure� pretty printing functions are stored in pprint dispatch tables

and can be rapidly changed to re
ect di	erent printing needs� If there is no
pretty printing function for a structure in the current print dispatch table�

the print function
if any� is used instead�

��

Common Lisp Object System

BY DANIEL G� BOBROW� LINDA G� DEMICHIEL� RICHARD P� GABRIEL�

SONYA E� KEENE� GREGOR KICZALES� AND DAVID A� MOON

preface� X�J�� voted in June ���� h��i to adopt the �rst two chapters

of three� of the Common Lisp Object System speci�cation as a part of the

forthcoming draft Common Lisp standard�

This chapter presents the bulk of the �rst two chapters of the Common

Lisp Object System speci�cation� it is substantially identical to these two

speci�cation chapters as previously published elsewhere ��� �� ��� I have edited
the material only very lightly to conform to the overall style of this book and

to save a substantial number of pages by using a typographically condensed

presentation� I have inserted a small number of bracketed remarks� identi�ed

by the initials GLS� The chapter divisions of the original speci�cation have
become section divisions in this chapter� references to the three chapters of the

original speci�cation now refer to the three �parts� of the speci�cation�
See

the Acknowledgments to this second edition for acknowledgments to others

who contributed to the Common Lisp Object System speci�cation�� This

is not the last word on CLOS� X�J�� may well re�ne this material further�
Keene has written a good tutorial introduction to CLOS �����

!Guy L� Steele Jr�

�
��� Programmer Interface Concepts

The Common Lisp Object System
CLOS� is an object�oriented extension to
Common Lisp� It is based on generic functions� multiple inheritance� declar�

ative method combination� and a meta�object protocol�

The �rst two parts of this speci�cation describe the standard Programmer

Interface for the Common Lisp Object System� The �rst part� Programmer

Interface Concepts� contains a description of the concepts of the Common Lisp

Object System� and the second part� Functions in the Programmer Interface�

contains a description of the functions and macros in the Common Lisp Object

���

��� COMMON LISP

System Programmer Interface� The third part� The Common Lisp Object

System Meta�Object Protocol� explains how the Common Lisp Object System

can be customized� �The third part has not yet been approved by X�J�� for

inclusion in the forthcoming Common Lisp standard and is not included in

this book�!GLS�

The fundamental objects of the Common Lisp Object System are classes�
instances� generic functions� and methods�

A class object determines the structure and behavior of a set of other

objects� which are called its instances� Every Common Lisp object is an

instance of a class� The class of an object determines the set of operations

that can be performed on the object�

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it� A generic function object contains

a set of methods� a lambda�list� a method combination type� and other in�

formation� The methods de�ne the class�speci�c behavior and operations of

the generic function� a method is said to specialize a generic function� When
invoked� a generic function executes a subset of its methods based on the

classes of its arguments�

A generic function can be used in the same ways as an ordinary function in

Common Lisp� in particular� a generic function can be used as an argument

to funcall and apply and can be given a global or a local name�

A method is an object that contains a method function� a sequence of
parameter specializers that specify when the given method is applicable� and

a sequence of quali
ers that is used by the method combination facility to

distinguish among methods� Each required formal parameter of each method

has an associated parameter specializer� and the method will be invoked only

on arguments that satisfy its parameter specializers�

The method combination facility controls the selection of methods� the or�
der in which they are run� and the values that are returned by the generic func�

tion� The Common Lisp Object System o	ers a default method combination

type and provides a facility for declaring new types of method combination�

�
����� Error Terminology

The terminology used in this chapter to describe erroneous situations dif�

fers from the terminology used in the �rst edition� The new terminology

involves situations� a situation is the evaluation of an expression in some spe�

ci�c context� For example� a situation might be the invocation of a function

on arguments that fail to satisfy some speci�ed constraints�

COMMON LISP OBJECT SYSTEM ���

In the speci�cation of the Common Lisp Object System� the behavior of

programs in all situations is described� and the options available to the im�

plementor are de�ned� No implementation is allowed to extend the syntax

or semantics of the Object System except as explicitly de�ned in the Object

System speci�cation� In particular� no implementation is allowed to extend
the syntax of the Object System in such a way that ambiguity between the

speci�ed syntax of the Object System and those extensions is possible�

�When situation S occurs� an error is signaled��

This terminology has the following meaning�

� If this situation occurs� an error will be signaled in the interpreter and in

code compiled under all compiler safety optimization levels�

� Valid programs may rely on the fact that an error will be signaled in the
interpreter and in code compiled under all compiler safety optimization

levels�

� Every implementation is required to detect such an error in the interpreter

and in code compiled under all compiler safety optimization levels�

�When situation S occurs� an error should be signaled��

This terminology has the following meaning�

� If this situation occurs� an error will be signaled at least in the interpreter

and in code compiled under the safest compiler safety optimization level�

� Valid programs may not rely on the fact that an error will be signaled�

� Every implementation is required to detect such an error at least in the in�
terpreter and in code compiled under the safest compiler safety optimization

level�

� When an error is not signaled� the results are unde�ned
see below��

�When situation S occurs� the results are unde�ned��

This terminology has the following meaning�

� If this situation occurs� the results are unpredictable� The results may range

from harmless to fatal�

� Implementations are allowed to detect this situation and signal an error�

but no implementation is required to detect the situation�

��� COMMON LISP

� No valid program may depend on the e	ects of this situation� and all valid

programs are required to treat the e	ects of this situation as unpredictable�

�When situation S occurs� the results are unspeci�ed��

This terminology has the following meaning�

� The e	ects of this situation are not speci�ed in the Object System� but the

e	ects are harmless�

� Implementations are allowed to specify the e	ects of this situation�

� No portable program can depend on the e	ects of this situation� and all

portable programs are required to treat the situation as unpredictable but

harmless�

�The Common Lisp Object System may be extended to cover situation S��

The meaning of this terminology is that an implementation is free to treat

situation S in one of three ways�

� When situation S occurs� an error is signaled at least in the interpreter and

in code compiled under the safest compiler safety optimization level�

� When situation S occurs� the results are unde�ned�

� When situation S occurs� the results are de�ned and speci�ed�

In addition� this terminology has the following meaning�

� No portable program can depend on the e	ects of this situation� and all

portable programs are required to treat the situation as unde�ned�

�Implementations are free to extend the syntax S��

This terminology has the following meaning�

� Implementations are allowed to de�ne unambiguous extensions to syntax S�

� No portable program can depend on this extension� and all portable pro�
grams are required to treat the syntax as meaningless�

The Common Lisp Object System speci�cation may disallow certain exten�

sions while allowing others�

COMMON LISP OBJECT SYSTEM ���

�
����� Classes

A class is an object that determines the structure and behavior of a set of

other objects� which are called its instances�

A class can inherit structure and behavior from other classes� A class whose

de�nition refers to other classes for the purpose of inheriting from them is said

to be a subclass of each of those classes� The classes that are designated for
purposes of inheritance are said to be superclasses of the inheriting class�

A class can have a name� The function classname takes a class object and

returns its name� The name of an anonymous class is nil� A symbol can

name a class� The function findclass takes a symbol and returns the class

that the symbol names� A class has a proper name if the name is a symbol
and if the name of the class names that class� That is� a class C has the

proper name S if S " �classname C� and C " �findclass S�� Notice that

it is possible for �findclass S�� " �findclass S�� and S� �" S�� If C "

�findclass S�� we say that C is the class named S�

A class C� is a direct superclass of a class C� if C� explicitly designates

C� as a superclass in its de�nition� In this case� C� is a direct subclass of

C�� A class Cn is a superclass of a class C� if there exists a series of classes

C�� � � � � Cn�� such that Ci�� is a direct superclass of Ci for � � i � n� In this

case� C� is a subclass of Cn� A class is considered neither a superclass nor a
subclass of itself� That is� if C� is a superclass of C�� then C� �" C�� The set

of classes consisting of some given class C along with all of its superclasses is

called �C and its superclasses��

Each class has a class precedence list� which is a total ordering on the set of

the given class and its superclasses� The total ordering is expressed as a list
ordered from most speci�c to least speci�c� The class precedence list is used

in several ways� In general� more speci�c classes can shadow� or override�

features that would otherwise be inherited from less speci�c classes� The

method selection and combination process uses the class precedence list to
order methods from most speci�c to least speci�c�

When a class is de�ned� the order in which its direct superclasses are men�

tioned in the de�ning form is important� Each class has a local precedence

order � which is a list consisting of the class followed by its direct superclasses

in the order mentioned in the de�ning form�

A class precedence list is always consistent with the local precedence order of

each class in the list� The classes in each local precedence order appear within

the class precedence list in the same order� If the local precedence orders are

inconsistent with each other� no class precedence list can be constructed� and

an error is signaled� The class precedence list and its computation is discussed

��� COMMON LISP

in section �������

Classes are organized into a directed acyclic graph� There are two distin�

guished classes� named t and standardobject� The class named t has no
superclasses� It is a superclass of every class except itself� The class named

standardobject is an instance of the class standardclass and is a superclass

of every class that is an instance of standardclass except itself�

There is a mapping from the Common Lisp Object System class space into

the Common Lisp type space� Many of the standard Common Lisp types have

a corresponding class that has the same name as the type� Some Common

Lisp types do not have a corresponding class� The integration of the type and
class systems is discussed in section �������

Classes are represented by objects that are themselves instances of classes�

The class of the class of an object is termed themetaclass of that object� When
no misinterpretation is possible� the term metaclass will be used to refer to a

class that has instances that are themselves classes� The metaclass determines

the form of inheritance used by the classes that are its instances and the

representation of the instances of those classes� The Common Lisp Object

System provides a default metaclass� standardclass� that is appropriate for
most programs� The meta�object protocol provides mechanisms for de�ning

and using new metaclasses�

Except where otherwise speci�ed� all classes mentioned in this chapter are
instances of the class standardclass� all generic functions are instances of

the class standardgenericfunction� and all methods are instances of the

class standardmethod�

�
������� De
ning Classes

The macro defclass is used to de�ne a new named class� The de�nition of

a class includes the following�

� The name of the new class� For newly de�ned classes this is a proper name�

� The list of the direct superclasses of the new class�

� A set of slot speci
ers� Each slot speci�er includes the name of the slot and

zero or more slot options� A slot option pertains only to a single slot� If a
class de�nition contains two slot speci�ers with the same name� an error is

signaled�

� A set of class options� Each class option pertains to the class as a whole�

COMMON LISP OBJECT SYSTEM ��	

The slot options and class options of the defclass form provide mechanisms

for the following�

� Supplying a default initial value form for a given slot�

� Requesting that methods for generic functions be automatically generated

for reading or writing slots�

� Controlling whether a given slot is shared by instances of the class or

whether each instance of the class has its own slot�

� Supplying a set of initialization arguments and initialization argument de�

faults to be used in instance creation�

� Indicating that the metaclass is to be other than the default�

� Indicating the expected type for the value stored in the slot�

� Indicating the documentation string for the slot�

�
������� Creating Instances of Classes

The generic function makeinstance creates and returns a new instance of a

class� The Object System provides several mechanisms for specifying how a

new instance is to be initialized� For example� it is possible to specify the

initial values for slots in newly created instances either by giving arguments
to makeinstance or by providing default initial values�

Further initialization activities can be performed by methods written for

generic functions that are part of the initialization protocol� The complete

initialization protocol is described in section �������

�
������� Slots

An object that has standardclass as its metaclass has zero or more named

slots� The slots of an object are determined by the class of the object� Each
slot can hold one value� The name of a slot is a symbol that is syntactically

valid for use as a variable name�

When a slot does not have a value� the slot is said to be unbound� When

an unbound slot is read� the generic function slotunbound is invoked� The

system�supplied primary method for slotunbound signals an error�

The default initial value form for a slot is de�ned by the �initform slot

option� When the �initform form is used to supply a value� it is evaluated

��
 COMMON LISP

in the lexical environment in which the defclass form was evaluated� The

�initform along with the lexical environment in which the defclass form

was evaluated is called a captured �initform� See section �������

A local slot is de�ned to be a slot that is visible to exactly one instance�
namely the one in which the slot is allocated� A shared slot is de�ned to

be a slot that is visible to more than one instance of a given class and its

subclasses�

A class is said to de
ne a slot with a given name when the defclass form
for that class contains a slot speci�er with that name� De�ning a local slot

does not immediately create a slot� it causes a slot to be created each time an

instance of the class is created� De�ning a shared slot immediately creates a

slot�

The �allocation slot option to defclass controls the kind of slot that is
de�ned� If the value of the �allocation slot option is �instance� a local slot

is created� If the value of �allocation is �class� a shared slot is created�

A slot is said to be accessible in an instance of a class if the slot is de�ned

by the class of the instance or is inherited from a superclass of that class�

COMMON LISP OBJECT SYSTEM ���

At most one slot of a given name can be accessible in an instance� A shared

slot de�ned by a class is accessible in all instances of that class� A detailed

explanation of the inheritance of slots is given in section ���������

�
������� Accessing Slots

Slots can be accessed in two ways� by use of the primitive function slotvalue

and by use of generic functions generated by the defclass form�
The function slotvalue can be used with any slot name speci�ed in the

defclass form to access a speci�c slot accessible in an instance of the given

class�

The macro defclass provides syntax for generating methods to read and

write slots� If a reader is requested� a method is automatically generated for
reading the value of the slot� but no method for storing a value into it is

generated� If a writer is requested� a method is automatically generated for

storing a value into the slot� but no method for reading its value is generated�

If an accessor is requested� a method for reading the value of the slot and a
method for storing a value into the slot are automatically generated� Reader

and writer methods are implemented using slotvalue�

When a reader or writer is speci�ed for a slot� the name of the generic

function to which the generated method belongs is directly speci�ed� If the

name speci�ed for the writer option is the symbol name� the name of the
generic function for writing the slot is the symbol name� and the generic

function takes two arguments� the new value and the instance� in that order�

If the name speci�ed for the accessor option is the symbol name� the name of

the generic function for reading the slot is the symbol name� and the name of
the generic function for writing the slot is the list �setf name��

A generic function created or modi�ed by supplying reader� writer� or ac�

cessor slot options can be treated exactly as an ordinary generic function�

Note that slotvalue can be used to read or write the value of a slot whether

or not reader or writer methods exist for that slot� When slotvalue is used�
no reader or writer methods are invoked�

The macro withslots can be used to establish a lexical environment in

which speci�ed slots are lexically available as if they were variables� The

macro withslots invokes the function slotvalue to access the speci�ed slots�
The macro withaccessors can be used to establish a lexical environment

in which speci�ed slots are lexically available through their accessors as if they

were variables� The macro withaccessors invokes the appropriate accessors

to access the speci�ed slots� Any accessors speci�ed by withaccessors must

already have been de�ned before they are used�

��� COMMON LISP

�
����� Inheritance

A class can inherit methods� slots� and some defclass options from its su�

perclasses� The following sections describe the inheritance of methods� the

inheritance of slots and slot options� and the inheritance of class options�

�
������� Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to all

instances of a class is also applicable to all instances of any subclass of that
class�

The inheritance of methods acts the same way regardless of whether the

method was created by using one of the method�de�ning forms or by using one

of the defclass options that causes methods to be generated automatically�

The inheritance of methods is described in detail in section �������

�
������� Inheritance of Slots and Slot Options

The set of names of all slots accessible in an instance of a class C is the union

of the sets of names of slots de�ned by C and its superclasses� The structure

of an instance is the set of names of local slots in that instance�

In the simplest case� only one class among C and its superclasses de�nes a

slot with a given slot name� If a slot is de�ned by a superclass of C� the slot

is said to be inherited� The characteristics of the slot are determined by the

slot speci�er of the de�ning class� Consider the de�ning class for a slot S� If
the value of the �allocation slot option is �instance� then S is a local slot

and each instance of C has its own slot named S that stores its own value� If

the value of the �allocation slot option is �class� then S is a shared slot�

the class that de�ned S stores the value� and all instances of C can access that
single slot� If the �allocation slot option is omitted� �instance is used�

In general� more than one class among C and its superclasses can de�ne

a slot with a given name� In such cases� only one slot with the given name

is accessible in an instance of C� and the characteristics of that slot are a
combination of the several slot speci�ers� computed as follows�

� All the slot speci�ers for a given slot name are ordered from most speci�c

to least speci�c� according to the order in C �s class precedence list of the

classes that de�ne them� All references to the speci�city of slot speci�ers

immediately following refer to this ordering�

COMMON LISP OBJECT SYSTEM ���

� The allocation of a slot is controlled by the most speci�c slot speci�er� If

the most speci�c slot speci�er does not contain an �allocation slot option�

�instance is used� Less speci�c slot speci�ers do not a	ect the allocation�

� The default initial value form for a slot is the value of the �initform slot

option in the most speci�c slot speci�er that contains one� If no slot speci�er

contains an �initform slot option� the slot has no default initial value form�

� The contents of a slot will always be of type �and T� � � � Tn� where

T�� � � � � Tn are the values of the �type slot options contained in all of the

slot speci�ers� If no slot speci�er contains the �type slot option� the con�

tents of the slot will always be of type t� The result of attempting to store
in a slot a value that does not satisfy the type of the slot is unde�ned�

� The set of initialization arguments that initialize a given slot is the union
of the initialization arguments declared in the �initarg slot options in all

the slot speci�ers�

� The documentation string for a slot is the value of the �documentation slot
option in the most speci�c slot speci�er that contains one� If no slot speci�

�er contains a �documentation slot option� the slot has no documentation

string�

A consequence of the allocation rule is that a shared slot can be shad�

owed� For example� if a class C� de�nes a slot named S whose value for the

�allocation slot option is �class� that slot is accessible in instances of C�

and all of its subclasses� However� if C� is a subclass of C� and also de�nes

a slot named S� C��s slot is not shared by instances of C� and its subclasses�
When a class C� de�nes a shared slot� any subclass C� of C� will share this

single slot unless the defclass form for C� speci�es a slot of the same name

or there is a superclass of C� that precedes C� in the class precedence list of

C� that de�nes a slot of the same name�

A consequence of the type rule is that the value of a slot satis�es the type

constraint of each slot speci�er that contributes to that slot� Because the

result of attempting to store in a slot a value that does not satisfy the type

constraint for the slot is unde�ned� the value in a slot might fail to satisfy its

type constraint�

The �reader� �writer� and �accessor slot options create methods rather

than de�ne the characteristics of a slot� Reader and writer methods are in�

herited in the sense described in section ���������

Methods that access slots use only the name of the slot and the type of the

slot�s value� Suppose a superclass provides a method that expects to access a

��� COMMON LISP

shared slot of a given name� and a subclass de�nes a local slot with the same

name� If the method provided by the superclass is used on an instance of the

subclass� the method accesses the local slot�

�
������� Inheritance of Class Options

The �defaultinitargs class option is inherited� The set of defaulted initial�

ization arguments for a class is the union of the sets of initialization arguments

speci�ed in the �defaultinitargs class options of the class and its super�

classes� When more than one default initial value form is supplied for a given
initialization argument� the default initial value form that is used is the one

supplied by the class that is most speci�c according to the class precedence

list�

If a given �defaultinitargs class option speci�es an initialization argu�

ment of the same name more than once� an error is signaled�

�
������� Examples

�defclass C
 ��

��S
 �initform ��� �type number�

�S� �allocation �class���

�defclass C� �C
�

��S
 �initform � �type integer�

�S� �allocation �instance�

�S� �accessor C�S����

Instances of the class C
 have a local slot named S
� whose default initial

value is ��� and whose value should always be a number� The class C
 also

has a shared slot named S��

There is a local slot named S
 in instances of C�� The default initial value
of S
 is �� The value of S
 will be of type �and integer number�� There

are also local slots named S� and S� in instances of C�� The class C� has a

method for C�S� for reading the value of slot S�� there is also a method for

�setf C�S�� that writes the value of S��

�
����� Integrating Types and Classes

The Common Lisp Object System maps the space of classes into the Common

Lisp type space� Every class that has a proper name has a corresponding type

with the same name�

COMMON LISP OBJECT SYSTEM ���

The proper name of every class is a valid type speci�er� In addition� every

class object is a valid type speci�er� Thus the expression �typep object class�

evaluates to true if the class of object is class itself or a subclass of class�

The evaluation of the expression �subtypep class� class�� returns the values

t and t if class� is a subclass of class� or if they are the same class� otherwise
it returns the values nil and t� If I is an instance of some class C named

S and C is an instance of standardclass� the evaluation of the expression

�typeof I� will return S if S is the proper name of C � if S is not the proper

name of C� the expression �typeof I� will return C�

Because the names of classes and class objects are type speci�ers� they may

be used in the special form the and in type declarations�

Many but not all of the prede�ned Common Lisp type speci�ers have a

corresponding class with the same proper name as the type� These type spec�
i�ers are listed in table ����� For example� the type array has a corresponding

class named array� No type speci�er that is a list� such as �vector double�

float
���� has a corresponding class� The form deftype does not create

any classes�

Each class that corresponds to a prede�ned Common Lisp type speci�er can
be implemented in one of three ways� at the discretion of each implementation�

It can be a standard class
of the kind de�ned by defclass�� a structure class

de�ned by defstruct�� or a built�in class
implemented in a special� non�

extensible way��

A built�in class is one whose instances have restricted capabilities or special

representations� Attempting to use defclass to de�ne subclasses of a built�in

class signals an error� Calling makeinstance to create an instance of a built�

in class signals an error� Calling slotvalue on an instance of a built�in class

signals an error� Rede�ning a built�in class or using changeclass to change
the class of an instance to or from a built�in class signals an error� However�

built�in classes can be used as parameter specializers in methods�

It is possible to determine whether a class is a built�in class by checking

the metaclass� A standard class is an instance of standardclass� a built�in
class is an instance of builtinclass� and a structure class is an instance of

structureclass�

Each structure type created by defstruct without using the �type option

has a corresponding class� This class is an instance of structureclass� The
�include option of defstruct creates a direct subclass of the class that

corresponds to the included structure�

The purpose of specifying that many of the standard Common Lisp type

speci�ers have a corresponding class is to enable users to write methods that

discriminate on these types� Method selection requires that a class precedence

��� COMMON LISP

list can be determined for each class�

The hierarchical relationships among the Common Lisp type speci�ers are

mirrored by relationships among the classes corresponding to those types� The

existing type hierarchy is used for determining the class precedence list for

each class that corresponds to a prede�ned Common Lisp type� In some cases�
the �rst edition did not specify a local precedence order for two supertypes

of a given type speci�er� For example� null is a subtype of both symbol and

list� but the �rst edition did not specify whether symbol is more speci�c or

less speci�c than list� The CLOS speci�cation de�nes those relationships
for all such classes�

Table ���� lists the set of classes required by the Object System that cor�

respond to prede�ned Common Lisp type speci�ers� The superclasses of each

such class are presented in order from most speci�c to most general� thereby

de�ning the class precedence list for the class� The local precedence order for
each class that corresponds to a Common Lisp type speci�er can be derived

from this table�

Individual implementations may be extended to de�ne other type speci�ers

to have a corresponding class� Individual implementations can be extended
to add other subclass relationships and to add other elements to the class

precedence lists in the above table as long as they do not violate the type re�

lationships and disjointness requirements speci�ed in section ����� A standard

class de�ned with no direct superclasses is guaranteed to be disjoint from all

of the classes in the table� except for the class named t�
�At this point the original CLOS report speci�ed that certain Common Lisp

types were to appear in table ���� if and only if X�J�� voted to make them

disjoint from cons� symbol� array� number� and character� X�J�� voted to

do so in June ���� h��i� I have added these types and their class precedence
lists to the table� the new types are indicated by asterisks�!GLS�

�
����� Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its

direct superclasses� This ordering is called the local precedence order� It is an
ordered list of the class and its direct superclasses� The class precedence list

for a class C is a total ordering on C and its superclasses that is consistent

with the local precedence orders for C and its superclasses�

A class precedes its direct superclasses� and a direct superclass precedes all
other direct superclasses speci�ed to its right in the superclasses list of the

defclass form� For every class C� de�ne

RC " f
C �C���
C��C��� � � � �
Cn���Cn�g

COMMON LISP OBJECT SYSTEM ���

Table �	��� Class Precedence Lists for Prede�ned Types

Prede�ned Common Lisp Type Class Precedence List for Corresponding Class

array �array t�

bitvector �bitvector vector array sequence t�

character �character t�

complex �complex number t�

cons �cons list sequence t�

float �float number t�

function ! �function t�

hashtable ! �hashtable t�

integer �integer rational number t�

list �list sequence t�

null �null symbol list sequence t�

number �number t�

package ! �package t�

pathname ! �pathname t�

randomstate ! �randomstate t�

ratio �ratio rational number t�

rational �rational number t�

readtable ! �readtable t�

sequence �sequence t�

stream ! �stream t�

string �string vector array sequence t�

symbol �symbol t�

t �t�

vector �vector array sequence t�

�An asterisk indicates a type added to this table as a consequence of a portion of the
CLOS speci�cation that was conditional on X�J�� voting to make that type disjoint
from certain other built
in types h��i��GLS�

where C�� � � � �Cn are the direct superclasses of C in the order in which they

are mentioned in the defclass form� These ordered pairs generate the total
ordering on the class C and its direct superclasses�

Let SC be the set of C and its superclasses� Let R be

R "
�

c
 SC

Rc

The setRmay or may not generate a partial ordering� depending on whether

the Rc� c
 SC� are consistent� it is assumed that they are consistent and that

��� COMMON LISP

R generates a partial ordering� When the Rc are not consistent� it is said that

R is inconsistent�

To compute the class precedence list for C� topologically sort the elements of

SC with respect to the partial ordering generated by R� When the topological

sort must select a class from a set of two or more classes� none of which

are preceded by other classes with respect to R� the class selected is chosen

deterministically� as described below� If R is inconsistent� an error is signaled�

COMMON LISP OBJECT SYSTEM ��	

�
������� Topological Sorting

Topological sorting proceeds by �nding a class C in SC such that no other

class precedes that element according to the elements in R� The class C is

placed �rst in the result� Remove C from SC� and remove all pairs of the

form
C �D�� D
 SC� from R� Repeat the process� adding classes with no
predecessors to the end of the result� Stop when no element can be found

that has no predecessor�

If SC is not empty and the process has stopped� the set R is inconsistent� If

every class in the �nite set of classes is preceded by another� then R contains

a loop� That is� there is a chain of classes C�� � � � � Cn such that Ci precedes

Ci��� � � i � n� and Cn precedes C��

Sometimes there are several classes from SC with no predecessors� In this

case select the one that has a direct subclass rightmost in the class precedence

list computed so far� If there is no such candidate class� R does not generate
a partial ordering!the Rc� c
 SC� are inconsistent�

In more precise terms� let fN�� � � � �Nmg� m � �� be the classes from SC
with no predecessors� Let
C� � � �Cn�� n � �� be the class precedence list
constructed so far� C� is the most speci�c class� and Cn is the least speci�c�

Let � � j � n be the largest number such that there exists an i where

� � i � m and Ni is a direct superclass of Cj� Ni is placed next�

The e	ect of this rule for selecting from a set of classes with no predecessors

is that classes in a simple superclass chain are adjacent in the class precedence

list and that classes in each relatively separated subgraph are adjacent in the
class precedence list� For example� let T� and T� be subgraphs whose only

element in common is the class J� Suppose that no superclass of J appears in

either T� or T�� Let C� be the bottom of T�� and let C� be the bottom of T��

Suppose C is a class whose direct superclasses are C� and C� in that order�

then the class precedence list for C will start with C and will be followed by
all classes in T� except J� All the classes of T� will be next� The class J and

its superclasses will appear last�

�
������� Examples

This example determines a class precedence list for the class pie� The follow�

ing classes are de�ned�

�defclass pie �apple cinnamon� ���

�defclass apple �fruit� ���

�defclass cinnamon �spice� ���

��
 COMMON LISP

�defclass fruit �food� ���

�defclass spice �food� ���

�defclass food �� ���

The set S " fpie� apple� cinnamon� fruit� spice� food� standardobject� tg�
The set R " f
pie� apple��
apple� cinnamon��
cinnamon� standardobject��

apple� fruit��
fruit� standardobject��
cinnamon� spice��
spice�

standardobject��
fruit� food��
food� standardobject��
spice� food��

standardobject� t�g�
�The original CLOS speci�cation ��� �� contained a minor error in this

example� the pairs
cinnamon� standardobject��
fruit� standardobject��
and
spice� standardobject� were inadvertently omitted from R in the

preceding paragraph� It is important to understand that defclass

implicitly appends the class standardobject to the list of superclasses when

the metaclass is standardclass
the normal situation�� in order to insure
that standardobject will be a superclass of every instance of

standardclass except standardobject itself
see section �������� Rc is

then generated from this augmented list of superclasses� this is where the

extra pairs come from� I have corrected the example by adding these pairs

as appropriate throughout the example� The �nal result� the class
precedence list for pie� is unchanged�!GLS�

The class pie is not preceded by anything� so it comes �rst� the result so
far is �pie�� Remove pie from S and pairs mentioning pie from R to get

S " fapple� cinnamon� fruit� spice� food� standardobject� tg and
R " f
apple� cinnamon��
cinnamon� standardobject��
apple� fruit��

fruit� standardobject��
cinnamon� spice��
spice� standardobject��

fruit� food��
food� standardobject��
spice� food��
standardobject�

t�g�
The class apple is not preceded by anything� so it is next� the result is

�pie apple�� Removing apple and the relevant pairs results in

S " fcinnamon� fruit� spice� food� standardobject�tg and
R " f
cinnamon� standardobject��
fruit� standardobject��
cinnamon�
spice��
spice� standardobject��
fruit� food��
food� standardobject��

spice� food��
standardobject� t�g�
The classes cinnamon and fruit are not preceded by anything� so the one

with a direct subclass rightmost in the class precedence list computed so far

goes next� The class apple is a direct subclass of fruit� and the class pie is

a direct subclass of cinnamon� Because apple appears to the right of pie in

the precedence list� fruit goes next� and the result so far is �pie apple

fruit�� S " fcinnamon� spice� food� standardobject� tg�

COMMON LISP OBJECT SYSTEM ���

R " f
cinnamon� standardobject��
cinnamon� spice��
spice� standard
object��
food� standardobject��
spice� food��
standardobject� t�g�
The class cinnamon is next� giving the result so far as �pie apple fruit

cinnamon�� At this point S " fspice� food� standardobject� tg�
R " f
spice� standardobject��
food� standardobject��
spice� food��

standardobject� t�g�
The classes spice� food� standardobject� and t are then added in that

order� and the �nal class precedence list for pie is

�pie apple fruit cinnamon spice food standardobject t�

It is possible to write a set of class de�nitions that cannot be ordered� For
example�

�defclass newclass �fruit apple� ���

�defclass apple �fruit� ���

The class fruit must precede apple because the local ordering of super�

classes must be preserved� The class apple must precede fruit because a

class always precedes its own superclasses� When this situation occurs� an

error is signaled when the system tries to compute the class precedence list�
The following might appear to be a con
icting set of de�nitions�

�defclass pie �apple cinnamon� ���

�defclass pastry �cinnamon apple� ���

�defclass apple �� ���

�defclass cinnamon �� ���

The class precedence list for pie is

�pie apple cinnamon standardobject t�

The class precedence list for pastry is

�pastry cinnamon apple standardobject t�

It is not a problem for apple to precede cinnamon in the ordering of the
superclasses of pie but not in the ordering for pastry� However� it is not

possible to build a new class that has both pie and pastry as superclasses�

�
����� Generic Functions and Methods

A generic function is a function whose behavior depends on the classes or

identities of the arguments supplied to it� The methods de�ne the class�

��� COMMON LISP

speci�c behavior and operations of the generic function� The following sections

describe generic functions and methods�

�
������� Introduction to Generic Functions

A generic function object contains a set of methods� a lambda�list� a method

combination type� and other information�

Like an ordinary Lisp function� a generic function takes arguments� per�
forms a series of operations� and perhaps returns useful values� An ordinary

function has a single body of code that is always executed when the function

is called� A generic function has a set of bodies of code of which a subset is

selected for execution� The selected bodies of code and the manner of their

combination are determined by the classes or identities of one or more of the
arguments to the generic function and by its method combination type�

Ordinary functions and generic functions are called with identical function�

call syntax�

Generic functions are true functions that can be passed as arguments� re�
turned as values� used as the �rst argument to funcall and apply� and oth�

erwise used in all the ways an ordinary function may be used�

A name can be given to an ordinary function in one of two ways� a global

name can be given to a function using the defun construct� a local name can

be given using the flet or labels special forms� A generic function can be
given a global name using the defmethod or defgeneric construct� A generic

function can be given a local name using the genericflet� genericlabels�

or withaddedmethods special forms� The name of a generic function� like the

name of an ordinary function� can be either a symbol or a two�element list
whose �rst element is setf and whose second element is a symbol� This is

true for both local and global names�

The genericflet special form creates new local generic functions using the

set of methods speci�ed by the method de�nitions in the genericflet form�

The scoping of generic function names within a genericflet form is the same
as for flet�

The genericlabels special form creates a set of new mutually recursive

local generic functions using the set of methods speci�ed by the method def�

initions in the genericlabels form� The scoping of generic function names
within a genericlabels form is the same as for labels�

The withaddedmethods special form creates new local generic functions by

adding the set of methods speci�ed by the method de�nitions with a given

name in the withaddedmethods form to copies of the methods of the lexically

visible generic function of the same name� If there is a lexically visible ordinary

COMMON LISP OBJECT SYSTEM ���

function of the same name as one of the speci�ed generic functions� that

function becomes the method function of the default method for the new

generic function of that name�

The genericfunction macro creates an anonymous generic function with
the set of methods speci�ed by the method de�nitions that appear in the

genericfunction form�

When a defgeneric form is evaluated� one of three actions is taken�

� If a generic function of the given name already exists� the existing generic

function object is modi�ed� Methods speci�ed by the current defgeneric

form are added� and any methods in the existing generic function that were

de�ned by a previous defgeneric form are removed� Methods added by
the current defgeneric form might replace methods de�ned by defmethod

or defclass� No other methods in the generic function are a	ected or

replaced�

� If the given name names a non�generic function� a macro� or a special form�
an error is signaled�

� Otherwise a generic function is created with the methods speci�ed by the

method de�nitions in the defgeneric form�

Some forms specify the options of a generic function� such as the type

of method combination it uses or its argument precedence order� They

will be referred to as �forms that specify generic function options�� These
forms are defgeneric� genericfunction� genericflet� genericlabels�

and withaddedmethods�

Some forms de�ne methods for a generic function� They will be referred

to as �method�de�ning forms�� These forms are defgeneric� defmethod�
genericfunction� genericflet� genericlabels� withaddedmethods� and

defclass� Note that all the method�de�ning forms except defclass and

defmethod are also forms that specify generic function options�

�
������� Introduction to Methods

A method object contains a method function� a sequence of parameter spe�

cializers that specify when the given method is applicable� a lambda�list� and
a sequence of quali
ers that are used by the method combination facility to

distinguish among methods�

A method object is not a function and cannot be invoked as a function�

Various mechanisms in the Object System take a method object and invoke

�	� COMMON LISP

its method function� as is the case when a generic function is invoked� When

this occurs it is said that the method is invoked or called�

A method�de�ning form contains the code that is to be run when the argu�

ments to the generic function cause the method that it de�nes to be invoked�

When a method�de�ning form is evaluated� a method object is created and

one of four actions is taken�

� If a generic function of the given name already exists and if a method object
already exists that agrees with the new one on parameter specializers and

quali�ers� the new method object replaces the old one� For a de�nition of

one method agreeing with another on parameter specializers and quali�ers�

see section ���������

� If a generic function of the given name already exists and if there is no
method object that agrees with the new one on parameter specializers and

quali�ers� the existing generic function object is modi�ed to contain the

new method object�

� If the given name names a non�generic function� a macro� or a special form�

an error is signaled�

� Otherwise a generic function is created with the methods speci�ed by the
method�de�ning form�

If the lambda�list of a new method is not congruent with the lambda�

list of the generic function� an error is signaled� If a method�de�ning form

that cannot specify generic function options creates a new generic function�

a lambda�list for that generic function is derived from the lambda�lists of the

methods in the method�de�ning form in such a way as to be congruent with
them� For a discussion of congruence� see section ���������

Each method has a specialized lambda�list� which determines when that

method can be applied� A specialized lambda�list is like an ordinary lambda�

list except that a specialized parameter may occur instead of the name of a

required parameter� A specialized parameter is a list �variablename parame�
terspecializername�� where parameter�specializer�name is either a name that

names a class or a list �eql form�� A parameter specializer name denotes a

parameter specializer as follows�

� A name that names a class denotes that class�

� The list �eql form� denotes the type speci�er �eql object�� where object

is the result of evaluating form� The form form is evaluated in the lexical

environment in which the method�de�ning form is evaluated� Note that

COMMON LISP OBJECT SYSTEM �	�

form is evaluated only once� at the time the method is de�ned� not each

time the generic function is called�

Parameter specializer names are used in macros intended as the user�level

interface
defmethod�� while parameter specializers are used in the functional
interface�

�It is very important to understand clearly the distinction made in the

preceding paragraph� A parameter specializer name has the form of a type

speci�er but is semantically quite di	erent from a type speci�er� a parameter
specializer name of the form �eql form� is not a type speci�er� for it contains

a form to be evaluated� Type speci�ers never contain forms to be evaluated�

All parameter specializers
as opposed to parameter specializer names� are

valid type speci�ers� but not all type speci�ers are valid parameter specializers�
Macros such as defmethod take parameter specializer names and treat them as

speci�cations for constructing certain type speci�ers
parameter specializers�

that may then be used with such functions as findmethod�!GLS�

Only required parameters may be specialized� and there must be a parame�
ter specializer for each required parameter� For notational simplicity� if some

required parameter in a specialized lambda�list in a method�de�ning form is

simply a variable name� its parameter specializer defaults to the class named

t�

Given a generic function and a set of arguments� an applicable method is

a method for that generic function whose parameter specializers are satis�ed

by their corresponding arguments� The following de�nition speci�es what

it means for a method to be applicable and for an argument to satisfy a

parameter specializer�

Let hA�� � � � �Ani be the required arguments to a generic function in order�

Let hP�� � � � �Pni be the parameter specializers corresponding to the required

parameters of the method M in order� The method M is applicable when each

Ai satis
es Pi� If Pi is a class� and if Ai is an instance of a class C� then it is
said that Ai satis
es Pi when C " Pi or when C is a subclass of Pi� If Pi is of

the form �eql object�� then it is said that Ai satis�es Pi when the function

eql applied to Ai and object is true�

Because a parameter specializer is a type speci�er� the function typep can
be used during method selection to determine whether an argument satis�es

a parameter specializer� In general a parameter specializer cannot be a type

speci�er list� such as �vector singlefloat�� The only parameter specializer

that can be a list is �eql object�� This requires that Common Lisp de�ne
the type speci�er eql as if the following were evaluated�

�deftype eql �object� �member �object��

�	� COMMON LISP

�See section ����!GLS�

A method all of whose parameter specializers are the class named t is
called a default method� it is always applicable but may be shadowed by a

more speci�c method�

Methods can have quali
ers� which give the method combination procedure

a way to distinguish among methods� A method that has one or more qual�

i�ers is called a quali
ed method� A method with no quali�ers is called an

unquali
ed method� A quali�er is any object other than a list� that is� any
non�nil atom� The quali�ers de�ned by standard method combination and

by the built�in method combination types are symbols�

In this speci�cation� the terms primary method and auxiliary method are

used to partition methods within a method combination type according to

their intended use� In standard method combination� primary methods are

unquali�ed methods� and auxiliary methods are methods with a single quali�
�er that is one of �around� �before� or �after� When a method combination

type is de�ned using the short form of definemethodcombination� primary

methods are methods quali�ed with the name of the type of method combi�

nation� and auxiliary methods have the quali�er �around� Thus the terms

primary method and auxiliary method have only a relative de�nition within a
given method combination type�

�
������� Agreement on Parameter Specializers and Qual	
i
ers

Two methods are said to agree with each other on parameter specializers and
quali�ers if the following conditions hold�

� Both methods have the same number of required parameters� Suppose the

parameter specializers of the two methods are P��� � � � P��n and P��� � � � P��n�

� For each � � i � n� P��i agrees with P��i� The parameter specializer P��i

agrees with P��i if P��i and P��i are the same class or if P��i " �eql object���
P��i " �eql object��� and �eql object� object��� Otherwise P��i and P��i

do not agree�

� The lists of quali�ers of both methods contain the same non�nil atoms in

the same order� That is� the lists are equal�

COMMON LISP OBJECT SYSTEM �	�

�
������� Congruent Lambda	Lists for All Methods of a
Generic Function

These rules de�ne the congruence of a set of lambda�lists� including the

lambda�list of each method for a given generic function and the lambda�list
speci�ed for the generic function itself� if given�

� Each lambda�list must have the same number of required parameters�

� Each lambda�list must have the same number of optional parameters� Each

method can supply its own default for an optional parameter�

� If any lambda�list mentions �rest or �key� each lambda�list must mention

one or both of them�

� If the generic function lambda�list mentions �key� each method must accept

all of the keyword names mentioned after �key� either by accepting them
explicitly� by specifying �allowotherkeys� or by specifying �rest but not

�key� Each method can accept additional keyword arguments of its own�

The checking of the validity of keyword names is done in the generic func�

tion� not in each method� A method is invoked as if the keyword argument

pair whose keyword is �allowotherkeys and whose value is t were supplied�
though no such argument pair will be passed�

� The use of �allowotherkeys need not be consistent across lambda�lists� If

�allowotherkeys is mentioned in the lambda�list of any applicable method

or of the generic function� any keyword arguments may be mentioned in the

call to the generic function�

� The use of �aux need not be consistent across methods�

If a method�de�ning form that cannot specify generic function options cre�
ates a generic function� and if the lambda�list for the method mentions key�

word arguments� the lambda�list of the generic function will mention �key

but no keyword arguments��

�
������� Keyword Arguments in Generic Functions and
Methods

When a generic function or any of its methods mentions �key in a lambda�list�

the speci�c set of keyword arguments accepted by the generic function varies

according to the applicable methods� The set of keyword arguments accepted

�	� COMMON LISP

by the generic function for a particular call is the union of the keyword argu�

ments accepted by all applicable methods and the keyword arguments men�

tioned after �key in the generic function de�nition� if any� A method that has

�rest but not �key does not a	ect the set of acceptable keyword arguments�

If the lambda�list of any applicable method or of the generic function de�ni�
tion contains �allowotherkeys� all keyword arguments are accepted by the

generic function�

The lambda�list congruence rules require that each method accept all of the
keyword arguments mentioned after �key in the generic function de�nition� by

accepting them explicitly� by specifying �allowotherkeys� or by specifying

�rest but not �key� Each method can accept additional keyword arguments

of its own� in addition to the keyword arguments mentioned in the generic

function de�nition�

COMMON LISP OBJECT SYSTEM �		

If a generic function is passed a keyword argument that no applicable

method accepts� an error is signaled�

For example� suppose there are two methods de�ned for width as follows�

�defmethod width ��c characterclass� �key font� ����

�defmethod width ��p pictureclass� �key pixelsize� ����

Assume that there are no other methods and no generic function de�nition

for width� The evaluation of the following form will signal an error because

the keyword argument �pixelsize is not accepted by the applicable method�

�width �makeinstance characterclass �char ����Q�

�font baskerville �pixelsize
��

The evaluation of the following form will signal an error�

�width �makeinstance pictureclass �glyph �glyph ����Q��

�font baskerville �pixelsize
��

The evaluation of the following form will not signal an error if the class

named characterpictureclass is a subclass of both pictureclass and

characterclass�

�width �makeinstance characterpictureclass �char ����Q�

�font baskerville �pixelsize
��

�
����� Method Selection and Combination

When a generic function is called with particular arguments� it must deter�

mine the code to execute� This code is called the e�ective method for those
arguments� The e	ective method is a combination of the applicable methods

in the generic function� A combination of methods is a Lisp expression that

contains calls to some or all of the methods� If a generic function is called

and no methods apply� the generic function noapplicablemethod is invoked�
When the e	ective method has been determined� it is invoked with the

same arguments that were passed to the generic function� Whatever values it

returns are returned as the values of the generic function�

�
������� Determining the E�ective Method

The e	ective method for a set of arguments is determined by the following

three�step procedure�

�	
 COMMON LISP

�� Select the applicable methods�

�� Sort the applicable methods by precedence order� putting the most speci�c

method �rst�

�� Apply method combination to the sorted list of applicable methods� pro�

ducing the e	ective method�

Selecting the Applicable Methods� This step is described in sec�
tion ���������

Sorting the Applicable Methods by Precedence Order� To compare

the precedence of two methods� their parameter specializers are examined in

order� The default examination order is from left to right� but an alter�
native order may be speci�ed by the �argumentprecedenceorder option to

defgeneric or to any of the other forms that specify generic function options�

The corresponding parameter specializers from each method are compared�

When a pair of parameter specializers are equal� the next pair are compared
for equality� If all corresponding parameter specializers are equal� the two

methods must have di	erent quali�ers� in this case� either method can be

selected to precede the other�

If some corresponding parameter specializers are not equal� the �rst pair of

parameter specializers that are not equal determines the precedence� If both

parameter specializers are classes� the more speci�c of the two methods is the

method whose parameter specializer appears earlier in the class precedence

list of the corresponding argument� Because of the way in which the set of
applicable methods is chosen� the parameter specializers are guaranteed to be

present in the class precedence list of the class of the argument�

If just one parameter specializer is �eql object�� the method with that pa�

rameter specializer precedes the other method� If both parameter specializers
are eql forms� the specializers must be the same
otherwise the two methods

would not both have been applicable to this argument��

The resulting list of applicable methods has the most speci�c method �rst
and the least speci�c method last�

Applying Method Combination to the Sorted List of Applicable

Methods� In the simple case!if standard method combination is used and

all applicable methods are primary methods!the e	ective method is the most
speci�c method� That method can call the next most speci�c method by using

the function callnextmethod� The method that callnextmethod will call is

referred to as the next method� The predicate nextmethodp tests whether a

next method exists� If callnextmethod is called and there is no next most

speci�c method� the generic function nonextmethod is invoked�

COMMON LISP OBJECT SYSTEM �	�

In general� the e	ective method is some combination of the applicable meth�

ods� It is de�ned by a Lisp form that contains calls to some or all of the appli�

cable methods� returns the value or values that will be returned as the value

or values of the generic function� and optionally makes some of the methods

accessible by means of callnextmethod� This Lisp form is the body of the
e	ective method� it is augmented with an appropriate lambda�list to make it

a function�

The role of each method in the e	ective method is determined by its method
quali�ers and the speci�city of the method� A quali�er serves to mark a

method� and the meaning of a quali�er is determined by the way that these

marks are used by this step of the procedure� If an applicable method has

an unrecognized quali�er� this step signals an error and does not include that

method in the e	ective method�

When standard method combination is used together with quali�ed meth�

ods� the e	ective method is produced as described in section ���������

Another type of method combination can be speci�ed by using the �method

combination option of defgeneric or of any of the other forms that specify

generic function options� In this way this step of the procedure can be cus�

tomized�

New types of method combination can be de�ned by using the define

methodcombination macro�

The meta�object level also o	ers a mechanism for de�ning new types of
method combination� The generic function computeeffectivemethod re�

ceives as arguments the generic function� the method combination object� and

the sorted list of applicable methods� It returns the Lisp form that de�nes the

e	ective method� A method for computeeffectivemethod can be de�ned di�

rectly by using defmethod or indirectly by using definemethodcombination�
A method combination object is an object that encapsulates the method com�

bination type and options speci�ed by the �methodcombination option to

forms that specify generic function options�

Implementation note� In the simplest implementation� the generic function would
compute the e�ective method each time it was called� In practice� this will be too
ine�cient for some implementations� Instead� these implementations might employ
a variety of optimizations of the three
step procedure� Some illustrative examples
of such optimizations are the following�

� Use a hash table keyed by the class of the arguments to store the e�ective method�

� Compile the e�ective method and save the resulting compiled function in a table�

�	� COMMON LISP

� Recognize the Lisp form as an instance of a pattern of control structure and
substitute a closure that implements that structure�

� Examine the parameter specializers of all methods for the generic function and
enumerate all possible e�ective methods� Combine the e�ective methods� together
with code to select from among them� into a single function and compile that
function� Call that function whenever the generic function is called�

�
������� Standard Method Combination

Standard method combination is supported by the class standardgeneric

function� It is used if no other type of method combination is speci�ed or if

the built�in method combination type standard is speci�ed�

Primary methods de�ne the main action of the e	ective method� while
auxiliary methods modify that action in one of three ways� A primary method

has no method quali�ers�

An auxiliary method is a method whose method quali�er is �before�

�after� or �around� Standard method combination allows no more than one

quali�er per method� if a method de�nition speci�es more than one quali�er
per method� an error is signaled�

� A �before method has the keyword �before as its only quali�er� A

�beforemethod speci�es code that is to be run before any primary method�

� An �aftermethod has the keyword �after as its only quali�er� An �after

method speci�es code that is to be run after primary methods�

� An �around method has the keyword �around as its only quali�er� An
�around method speci�es code that is to be run instead of other applicable

methods but that is able to cause some of them to be run�

The semantics of standard method combination are as follows�

� If there are any �around methods� the most speci�c �around method is

called� It supplies the value or values of the generic function�

� Inside the body of an �around method� callnextmethod can be used to
call the next method� When the next method returns� the �aroundmethod

can execute more code� perhaps based on the returned value or values� The

generic function nonextmethod is invoked if callnextmethod is used and

there is no applicable method to call� The function nextmethodp may be

used to determine whether a next method exists�

COMMON LISP OBJECT SYSTEM �	�

� If an �around method invokes callnextmethod� the next most speci�c

�aroundmethod is called� if one is applicable� If there are no �aroundmeth�

ods or if callnextmethod is called by the least speci�c �around method�

the other methods are called as follows�

� All the �before methods are called� in most�speci�c��rst order� Their

values are ignored� An error is signaled if callnextmethod is used in a

�before method�

� The most speci�c primary method is called� Inside the body of a pri�

mary method� callnextmethod may be used to call the next most spe�

ci�c primary method� When that method returns� the previous primary
method can execute more code� perhaps based on the returned value or

values� The generic function nonextmethod is invoked if callnextmethod

is used and there are no more applicable primary methods� The function

nextmethodp may be used to determine whether a next method exists�
If callnextmethod is not used� only the most speci�c primary method is

called�

� All the �after methods are called in most�speci�c�last order� Their

values are ignored� An error is signaled if callnextmethod is used in an

�after method�

� If no �around methods were invoked� the most speci�c primary method

supplies the value or values returned by the generic function� The value or

values returned by the invocation of callnextmethod in the least speci�c

�around method are those returned by the most speci�c primary method�

In standard method combination� if there is an applicable method but no

applicable primary method� an error is signaled�

The �before methods are run in most�speci�c��rst order and the �after

methods are run in least�speci�c��rst order� The design rationale for this

di	erence can be illustrated with an example� Suppose class C� modi�es
the behavior of its superclass� C�� by adding �before and �after methods�

Whether the behavior of the class C� is de�ned directly by methods on C� or is

inherited from its superclasses does not a	ect the relative order of invocation

of methods on instances of the class C�� Class C��s �before method runs
before all of class C��s methods� Class C��s �after method runs after all of

class C��s methods�

By contrast� all �around methods run before any other methods run� Thus

a less speci�c �around method runs before a more speci�c primary method�

�
� COMMON LISP

If only primary methods are used and if callnextmethod is not used� only

the most speci�c method is invoked� that is� more speci�c methods shadow

more general ones�

�
������� Declarative Method Combination

The macro definemethodcombination de�nes new forms of method combina�

tion� It provides a mechanism for customizing the production of the e	ective

method� The default procedure for producing an e	ective method is described

in section ��������� There are two forms of definemethodcombination� The
short form is a simple facility� the long form is more powerful and more

verbose� The long form resembles defmacro in that the body is an ex�

pression that computes a Lisp form� it provides mechanisms for implement�

ing arbitrary control structures within method combination and for arbi�
trary processing of method quali�ers� The syntax and use of both forms

of definemethodcombination are explained in section �����

�
������� Built	in Method Combination Types

The Common Lisp Object System provides a set of built�in method combina�

tion types� To specify that a generic function is to use one of these method

combination types� the name of the method combination type is given as

the argument to the �methodcombination option to defgeneric or to the

�methodcombination option to any of the other forms that specify generic
function options�

The names of the built�in method combination types are �� and� append�
list� max� min� nconc� or� progn� and standard�

The semantics of the standard built�in method combination type were

described in section ��������� The other built�in method combination types
are called simple built�in method combination types�

The simple built�in method combination types act as though they were
de�ned by the short form of definemethodcombination� They recognize two

roles for methods�

� An �around method has the keyword symbol �around as its sole quali�

�er� The meaning of �around methods is the same as in standard method

combination� Use of the functions callnextmethod and nextmethodp is

supported in �around methods�

COMMON LISP OBJECT SYSTEM �
�

� A primary method has the name of the method combination type as its sole

quali�er� For example� the built�in method combination type and recognizes

methods whose sole quali�er is and� these are primary methods� Use of the

functions callnextmethod and nextmethodp is not supported in primary

methods�

The semantics of the simple built�in method combination types are as follows�

� If there are any �around methods� the most speci�c �around method is

called� It supplies the value or values of the generic function�

� Inside the body of an �around method� the function callnextmethod can

be used to call the next method� The generic function nonextmethod is

invoked if callnextmethod is used and there is no applicable method to

call� The function nextmethodp may be used to determine whether a next

method exists� When the next method returns� the �around method can
execute more code� perhaps based on the returned value or values�

� If an �around method invokes callnextmethod� the next most speci�c
�aroundmethod is called� if one is applicable� If there are no �aroundmeth�

ods or if callnextmethod is called by the least speci�c �around method� a

Lisp form derived from the name of the built�in method combination type

and from the list of applicable primary methods is evaluated to produce the

value of the generic function� Suppose the name of the method combination
type is operator and the call to the generic function is of the form

�generic�function a� ��� an�

Let M�� � � � �Mk be the applicable primary methods in order� then the de�

rived Lisp form is

�operator hM� a� � � � ani ��� hMk a� � � � ani�

If the expression hMi a� � � � ani is evaluated� the method Mi will be applied

to the arguments a� � � � an� For example� if operator is or� the expression

hMi a� � � � ani is evaluated only if hMj a� � � � ani� � � j � i � returned nil�

The default order for the primary methods is �mostspecificfirst� How�
ever� the order can be reversed by supplying �mostspecificlast as the

second argument to the �methodcombination option�

The simple built�in method combination types require exactly one quali�er

per method� An error is signaled if there are applicable methods with no

quali�ers or with quali�ers that are not supported by the method combination

�
� COMMON LISP

type� An error is signaled if there are applicable �around methods and no

applicable primary methods�

�
���
� Meta	objects

The implementation of the Object System manipulates classes� methods� and

generic functions� The meta�object protocol speci�es a set of generic functions
de�ned by methods on classes� the behavior of those generic functions de�nes

the behavior of the Object System� The instances of the classes on which

those methods are de�ned are called meta�objects� Programming at the meta�

object protocol level involves de�ning new classes of meta�objects along with

methods specialized on these classes�

COMMON LISP OBJECT SYSTEM �
�

�
���
��� Metaclasses

The metaclass of an object is the class of its class� The metaclass determines
the representation of instances of its instances and the forms of inheritance

used by its instances for slot descriptions and method inheritance� The meta�

class mechanism can be used to provide particular forms of optimization or to

tailor the Common Lisp Object System for particular uses� The protocol for
de�ning metaclasses is discussed in the third part of the CLOS speci�cation�

The Common Lisp Object System Meta�Object Protocol� �The third part has

not yet been approved by X�J�� for inclusion in the forthcoming Common

Lisp standard and is not included in this book�!GLS�

�
���
��� Standard Metaclasses

The Common Lisp Object System provides a number of prede�ned meta�
classes� These include the classes standardclass� builtinclass� and

structureclass�

� The class standardclass is the default class of classes de�ned by defclass�

� The class builtinclass is the class whose instances are classes that
have special implementations with restricted capabilities� Any class that

corresponds to a standard Common Lisp type might be an instance of

builtinclass� The prede�ned Common Lisp type speci�ers that are

required to have corresponding classes are listed in table ����� It is

implementation�dependent whether each of these classes is implemented
as a built�in class�

� All classes de�ned by means of defstruct are instances of structureclass�

�
���
��� Standard Meta	objects

The Object System supplies a standard set of meta�objects� called stan�

dard meta�objects� These include the class standardobject and in�
stances of the classes standardmethod� standardgenericfunction� and

methodcombination�

� The class standardmethod is the default class of methods that are de�ned

by the forms defmethod� defgeneric� genericfunction� genericflet�

genericlabels� and withaddedmethods�

�
� COMMON LISP

� The class standardgenericfunction is the default class of generic func�

tions de�ned by the forms defmethod� defgeneric� genericfunction�

genericflet� genericlabels� withaddedmethods� and defclass�

� The class named standardobject is an instance of the class standardclass

and is a superclass of every class that is an instance of standardclass
except itself�

� Every method combination object is an instance of a subclass of the class

methodcombination�

�
����� Object Creation and Initialization

The generic function makeinstance creates and returns a new instance of a

class� The �rst argument is a class or the name of a class� and the remaining

arguments form an initialization argument list�
The initialization of a new instance consists of several distinct steps� includ�

ing the following� combining the explicitly supplied initialization arguments

with default values for the unsupplied initialization arguments� checking the

validity of the initialization arguments� allocating storage for the instance�
�lling slots with values� and executing user�supplied methods that perform

additional initialization� Each step of makeinstance is implemented by a

generic function to provide a mechanism for customizing that step� In ad�

dition� makeinstance is itself a generic function and thus also can be cus�

tomized�
The Object System speci�es system�supplied primary methods for each step

and thus speci�es a well�de�ned standard behavior for the entire initialization

process� The standard behavior provides four simple mechanisms for control�

ling initialization�

� Declaring a symbol to be an initialization argument for a slot� An initializa�
tion argument is declared by using the �initarg slot option to defclass�

This provides a mechanism for supplying a value for a slot in a call to

makeinstance�

� Supplying a default value form for an initialization argument� De�

fault value forms for initialization arguments are de�ned by using the
�defaultinitargs class option to defclass� If an initialization argument

is not explicitly provided as an argument to makeinstance� the default

value form is evaluated in the lexical environment of the defclass form

that de�ned it� and the resulting value is used as the value of the initializa�

tion argument�

COMMON LISP OBJECT SYSTEM �
	

� Supplying a default initial value form for a slot� A default initial value form

for a slot is de�ned by using the �initform slot option to defclass� If no

initialization argument associated with that slot is given as an argument

to makeinstance or is defaulted by �defaultinitargs� this default initial

value form is evaluated in the lexical environment of the defclass form
that de�ned it� and the resulting value is stored in the slot� The �initform

form for a local slot may be used when creating an instance� when updating

an instance to conform to a rede�ned class� or when updating an instance

to conform to the de�nition of a di	erent class� The �initform form for a
shared slot may be used when de�ning or re�de�ning the class�

� De�ning methods for initializeinstance and sharedinitialize� The
slot��lling behavior described above is implemented by a system�

supplied primary method for initializeinstance which invokes

sharedinitialize� The generic function sharedinitialize implements

the parts of initialization shared by these four situations� when making an
instance� when re�initializing an instance� when updating an instance to

conform to a rede�ned class� and when updating an instance to conform to

the de�nition of a di	erent class� The system�supplied primary method for

sharedinitialize directly implements the slot��lling behavior described

above� and initializeinstance simply invokes sharedinitialize�

�
������� Initialization Arguments

An initialization argument controls object creation and initialization� It is
often convenient to use keyword symbols to name initialization arguments�

but the name of an initialization argument can be any symbol� including nil�

An initialization argument can be used in two ways� to �ll a slot with a value

or to provide an argument for an initialization method� A single initialization

argument can be used for both purposes�

An initialization argument list is a list of alternating initialization argument
names and values� Its structure is identical to a property list and also to the

portion of an argument list processed for �key parameters� As in those lists�

if an initialization argument name appears more than once in an initialization

argument list� the leftmost occurrence supplies the value and the remaining
occurrences are ignored� The arguments to makeinstance
after the �rst

argument� form an initialization argument list� Error checking of initialization

argument names is disabled if the keyword argument pair whose keyword is

�allowotherkeys and whose value is non�nil appears in the initialization

argument list�

�

 COMMON LISP

An initialization argument can be associated with a slot� If the initialization

argument has a value in the initialization argument list� the value is stored

into the slot of the newly created object� overriding any �initform form

associated with the slot� A single initialization argument can initialize more

than one slot� An initialization argument that initializes a shared slot stores
its value into the shared slot� replacing any previous value�

An initialization argument can be associated with a method� When an ob�

ject is created and a particular initialization argument is supplied� the generic

functions initializeinstance� sharedinitialize� and allocateinstance

are called with that initialization argument�s name and value as a keyword

argument pair� If a value for the initialization argument is not supplied in the

initialization argument list� the method�s lambda�list supplies a default value�

Initialization arguments are used in four situations� when making an in�

stance� when re�initializing an instance� when updating an instance to con�

form to a rede�ned class� and when updating an instance to conform to the

de�nition of a di	erent class�

Because initialization arguments are used to control the creation and ini�

tialization of an instance of some particular class� we say that an initialization

argument is �an initialization argument for� that class�

�
������� Declaring the Validity of Initialization Argu	
ments

Initialization arguments are checked for validity in each of the four situa�

tions that use them� An initialization argument may be valid in one situa�

tion and not another� For example� the system�supplied primary method for

makeinstance de�ned for the class standardclass checks the validity of its
initialization arguments and signals an error if an initialization argument is

supplied that is not declared valid in that situation�

There are two means of declaring initialization arguments valid�

� Initialization arguments that �ll slots are declared valid by the �initarg

slot option to defclass� The �initarg slot option is inherited from su�
perclasses� Thus the set of valid initialization arguments that �ll slots for

a class is the union of the initialization arguments that �ll slots declared

valid by that class and its superclasses� Initialization arguments that �ll

slots are valid in all four contexts�

� Initialization arguments that supply arguments to methods are declared

valid by de�ning those methods� The keyword name of each keyword pa�

COMMON LISP OBJECT SYSTEM �
�

rameter speci�ed in the method�s lambda�list becomes an initialization ar�

gument for all classes for which the method is applicable� Thus method

inheritance controls the set of valid initialization arguments that supply

arguments to methods� The generic functions for which method de�nitions

serve to declare initialization arguments valid are as follows�

� Making an instance of a class� allocateinstance�

initializeinstance� and sharedinitialize� Initialization arguments

declared valid by these methods are valid when making an instance of a

class�

� Re�initializing an instance� the functions reinitializeinstance and
sharedinitialize� Initialization arguments declared valid by these

methods are valid when re�initializing an instance�

� Updating an instance to conform to a rede�ned class� updateinstance

forredefinedclass and sharedinitialize� Initialization arguments

declared valid by these methods are valid when updating an instance to
conform to a rede�ned class�

� Updating an instance to conform to the de�nition of a di	erent class�

updateinstancefordifferentclass and sharedinitialize� Initial�

ization arguments declared valid by these methods are valid when up�

dating an instance to conform to the de�nition of a di	erent class�

The set of valid initialization arguments for a class is the set of valid initial�
ization arguments that either �ll slots or supply arguments to methods� along

with the prede�ned initialization argument �allowotherkeys� The default

value for �allowotherkeys is nil� The meaning of �allowotherkeys is the

same here as when it is passed to an ordinary function�

�
������� Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by using

the �defaultinitargs class option� If an initialization argument is declared

valid by some particular class� its default value form might be speci�ed by

a di	erent class� In this case �defaultinitargs is used to supply a default
value for an inherited initialization argument�

The �defaultinitargs option is used only to provide default values for

initialization arguments� it does not declare a symbol as a valid initialization

argument name� Furthermore� the �defaultinitargs option is used only to

provide default values for initialization arguments when making an instance�

�
� COMMON LISP

The argument to the �defaultinitargs class option is a list of alternating

initialization argument names and forms� Each form is the default value

form for the corresponding initialization argument� The default value form

of an initialization argument is used and evaluated only if that initialization

argument does not appear in the arguments to makeinstance and is not
defaulted by a more speci�c class� The default value form is evaluated in the

lexical environment of the defclass form that supplied it� the result is used

as the initialization argument�s value�

The initialization arguments supplied to makeinstance are combined with

defaulted initialization arguments to produce a defaulted initialization ar�

gument list� A defaulted initialization argument list is a list of alternating

initialization argument names and values in which unsupplied initialization
arguments are defaulted and in which the explicitly supplied initialization ar�

guments appear earlier in the list than the defaulted initialization arguments�

Defaulted initialization arguments are ordered according to the order in the

class precedence list of the classes that supplied the default values�

There is a distinction between the purposes of the �defaultinitargs

and the �initform options with respect to the initialization of slots� The

�defaultinitargs class option provides a mechanism for the user to give a
default value form for an initialization argument without knowing whether

the initialization argument initializes a slot or is passed to a method� If that

initialization argument is not explicitly supplied in a call to makeinstance�

the default value form is used� just as if it had been supplied in the call� In
contrast� the �initform slot option provides a mechanism for the user to give

a default initial value form for a slot� An �initform form is used to initialize

a slot only if no initialization argument associated with that slot is given as

an argument to makeinstance or is defaulted by �defaultinitargs�

The order of evaluation of default value forms for initialization arguments

and the order of evaluation of �initform forms are unde�ned� If the order of

evaluation matters� use initializeinstance or sharedinitializemethods�

�
������� Rules for Initialization Arguments

The �initarg slot option may be speci�ed more than once for a given slot�

The following rules specify when initialization arguments may be multiply

de�ned�

� A given initialization argument can be used to initialize more than one

slot if the same initialization argument name appears in more than one

�initarg slot option�

COMMON LISP OBJECT SYSTEM �
�

� A given initialization argument name can appear in the lambda�list of more

than one initialization method�

� A given initialization argument name can appear both in an �initarg slot

option and in the lambda�list of an initialization method�

If two or more initialization arguments that initialize the same slot are

given in the arguments to makeinstance� the leftmost of these initialization

arguments in the initialization argument list supplies the value� even if the

initialization arguments have di	erent names�

If two or more di	erent initialization arguments that initialize the
same slot have default values and none is given explicitly in the argu�

ments to makeinstance� the initialization argument that appears in a

�defaultinitargs class option in the most speci�c of the classes supplies

the value� If a single �defaultinitargs class option speci�es two or more

initialization arguments that initialize the same slot and none is given ex�
plicitly in the arguments to makeinstance� the leftmost argument in the

�defaultinitargs class option supplies the value� and the values of the re�

maining default value forms are ignored�

Initialization arguments given explicitly in the arguments to makeinstance

appear to the left of defaulted initialization arguments� Suppose that the

classes C� and C� supply the values of defaulted initialization arguments for
di	erent slots� and suppose that C� is more speci�c than C�� then the de�

faulted initialization argument whose value is supplied by C� is to the left

of the defaulted initialization argument whose value is supplied by C� in the

defaulted initialization argument list� If a single �defaultinitargs class
option supplies the values of initialization arguments for two di	erent slots�

the initialization argument whose value is speci�ed farther to the left in the

defaultinitargs class option appears farther to the left in the defaulted

initialization argument list�

If a slot has both an �initform form and an �initarg slot option� and the

initialization argument is defaulted using �defaultinitargs or is supplied to
makeinstance� the captured �initform form is neither used nor evaluated�

The following is an example of the preceding rules�

�defclass q �� ��x �initarg a���

�defclass r �q� ��x �initarg b��

��defaultinitargs a
 b ���

��� COMMON LISP

Defaulted Initialization Contents

Form Argument List of Slot

�makeinstance r� �a
 b ��

�makeinstance r a �� �a � b �� �

�makeinstance r b �� �b � a
� �

�makeinstance r a
 a �� �a
 a � b ��

�
������� Shared	Initialize

The generic function sharedinitialize is used to �ll the slots of an in�
stance using initialization arguments and �initform forms when an instance

is created� when an instance is re�initialized� when an instance is updated to

conform to a rede�ned class� and when an instance is updated to conform to

a di	erent class� It uses standard method combination� It takes the following
arguments� the instance to be initialized� a speci�cation of a set of names of

slots accessible in that instance� and any number of initialization arguments�

The arguments after the �rst two must form an initialization argument list�

The second argument to sharedinitialize may be one of the following�

� It can be a list of slot names� which speci�es the set of those slot names�

� It can be nil� which speci�es the empty set of slot names�

� It can be the symbol t� which speci�es the set of all of the slots�

There is a system�supplied primary method for sharedinitialize whose
�rst parameter specializer is the class standardobject� This method behaves

as follows on each slot� whether shared or local�

� If an initialization argument in the initialization argument list speci�es a

value for that slot� that value is stored into the slot� even if a value has

already been stored in the slot before the method is run� The a	ected slots
are independent of which slots are indicated by the second argument to

sharedinitialize�

� Any slots indicated by the second argument that are still unbound at this

point are initialized according to their �initform forms� For any such

slot that has an �initform form� that form is evaluated in the lexical
environment of its de�ning defclass form and the result is stored into

the slot� For example� if a �before method stores a value in the slot� the

�initform form will not be used to supply a value for the slot� If the second

argument speci�es a name that does not correspond to any slots accessible

in the instance� the results are unspeci�ed�

COMMON LISP OBJECT SYSTEM ���

� The rules mentioned in section �������� are obeyed�

The generic function sharedinitialize is called by the system�

supplied primary methods for the generic functions initializeinstance�

reinitializeinstance� updateinstancefordifferentclass� and update

instanceforredefinedclass� Thus methods can be written for shared

initialize to specify actions that should be taken in all of these contexts�

�
������� Initialize	Instance

The generic function initializeinstance is called by makeinstance to ini�

tialize a newly created instance� It uses standard method combination� Meth�

ods for initializeinstance can be de�ned in order to perform any initial�

ization that cannot be achieved with the simple slot��lling mechanisms�

��� COMMON LISP

During initialization� initializeinstance is invoked after the following

actions have been taken�

� The defaulted initialization argument list has been computed by combin�
ing the supplied initialization argument list with any default initialization

arguments for the class�

� The validity of the defaulted initialization argument list has been checked�

If any of the initialization arguments has not been declared valid� an error

is signaled�

� A new instance whose slots are unbound has been created�

The generic function initializeinstance is called with the new in�
stance and the defaulted initialization arguments� There is a system�

supplied primary method for initializeinstance whose parameter spe�

cializer is the class standardobject� This method calls the generic func�

tion sharedinitialize to �ll in the slots according to the initialization

arguments and the �initform forms for the slots� the generic function
sharedinitialize is called with the following arguments� the instance� t�

and the defaulted initialization arguments�

Note that initializeinstance provides the defaulted initialization argu�
ment list in its call to sharedinitialize� so the �rst step performed by the

system�supplied primary method for sharedinitialize takes into account

both the initialization arguments provided in the call to makeinstance and

the defaulted initialization argument list�

Methods for initializeinstance can be de�ned to specify actions to

be taken when an instance is initialized� If only �after methods for

initializeinstance are de�ned� they will be run after the system�supplied
primary method for initialization and therefore they will not interfere with

the default behavior of initializeinstance�

The Object System provides two functions that are useful in the bodies of
initializeinstance methods� The function slotboundp returns a boolean

value that indicates whether a speci�ed slot has a value� this provides a mecha�

nism for writing �aftermethods for initializeinstance that initialize slots

only if they have not already been initialized� The function slotmakunbound

causes the slot to have no value�

COMMON LISP OBJECT SYSTEM ���

�
������� De
nitions of Make	Instance and Initialize	
Instance

The generic function makeinstance behaves as if it were de�ned as follows�

except that certain optimizations are permitted�

��� COMMON LISP

�defmethod makeinstance ��class standardclass� �rest initargs�

�setq initargs �defaultinitargs class initargs��

���

�let ��instance �apply ��� allocateinstance class initargs���

�apply ��� initializeinstance instance initargs�

instance��

�defmethod makeinstance ��classname symbol� �rest initargs�

�apply ��� makeinstance �findclass classname� initargs��

The elided code in the de�nition of makeinstance checks the supplied ini�
tialization arguments to determine whether an initialization argument was

supplied that neither �lled a slot nor supplied an argument to an appli�

cable method� This check could be implemented using the generic func�

tions classprototype� computeapplicablemethods� functionkeywords�

and classslotinitargs� See the third part of the Common Lisp Object
System speci�cation for a description of this initialization argument check�

�The third part has not yet been approved by X�J�� for inclusion in the

forthcoming Common Lisp standard and is not included in this book�!GLS�

The generic function initializeinstance behaves as if it were de�ned as

follows� except that certain optimizations are permitted�

�defmethod initializeinstance

��instance standardobject� �rest initargs�

�apply ��� sharedinitialize instance t initargs���

These procedures can be customized at either the Programmer Interface

level� the meta�object level� or both�

Customizing at the Programmer Interface level includes using the

�initform� �initarg� and �defaultinitargsoptions to defclass� as well as

de�ning methods for makeinstance and initializeinstance� It is also pos�
sible to de�ne methods for sharedinitialize� which would be invoked by the

generic functions reinitializeinstance� updateinstanceforredefined

class� updateinstancefordifferentclass� and initializeinstance�

The meta�object level supports additional customization by allowing methods
to be de�ned on makeinstance� defaultinitargs� and allocateinstance�

Parts � and � of the Common Lisp Object System speci�cation document

each of these generic functions and the system�supplied primary methods�

�The third part has not yet been approved by X�J�� for inclusion in the

forthcoming Common Lisp standard and is not included in this book�!GLS�

COMMON LISP OBJECT SYSTEM ��	

Implementations are permitted to make certain optimizations to

initializeinstance and sharedinitialize� The description of shared

initialize in section ���� mentions the possible optimizations�

Because of optimization� the check for valid initialization arguments might

not be implemented using the generic functions classprototype� compute
applicablemethods� functionkeywords� and classslotinitargs� In ad�

dition� methods for the generic function defaultinitargs and the system�

supplied primary methods for allocateinstance� initializeinstance� and

sharedinitialize might not be called on every call to makeinstance or
might not receive exactly the arguments that would be expected�

�
������ Rede
ning Classes

A class that is an instance of standardclass can be rede�ned if the new class

will also be an instance of standardclass� Rede�ning a class modi�es the

existing class object to re
ect the new class de�nition� it does not create a new

class object for the class� Any method object created by a �reader� �writer�
or �accessor option speci�ed by the old defclass form is removed from the

corresponding generic function� Methods speci�ed by the new defclass form

are added�

When the class C is rede�ned� changes are propagated to its instances and

to instances of any of its subclasses� Updating such an instance occurs at an
implementation�dependent time� but no later than the next time a slot of that

instance is read or written� Updating an instance does not change its identity

as de�ned by the eq function� The updating process may change the slots

of that particular instance� but it does not create a new instance� Whether
updating an instance consumes storage is implementation�dependent�

Note that rede�ning a class may cause slots to be added or deleted� If

a class is rede�ned in a way that changes the set of local slots accessible

in instances� the instances will be updated� It is implementation�dependent

whether instances are updated if a class is rede�ned in a way that does not
change the set of local slots accessible in instances�

The value of a slot that is speci�ed as shared both in the old class and in

the new class is retained� If such a shared slot was unbound in the old class�

it will be unbound in the new class� Slots that were local in the old class and
that are shared in the new class are initialized� Newly added shared slots are

initialized�

Each newly added shared slot is set to the result of evaluating the captured

�initform form for the slot that was speci�ed in the defclass form for the

new class� If there is no �initform form� the slot is unbound�

��
 COMMON LISP

If a class is rede�ned in such a way that the set of local slots accessible

in an instance of the class is changed� a two�step process of updating the

instances of the class takes place� The process may be explicitly started by

invoking the generic function makeinstancesobsolete� This two�step process

can happen in other circumstances in some implementations� For example� in
some implementations this two�step process will be triggered if the order of

slots in storage is changed�

The �rst step modi�es the structure of the instance by adding new local

slots and discarding local slots that are not de�ned in the new version of the

class� The second step initializes the newly added local slots and performs
any other user�de�ned actions� These steps are further speci�ed in the next

two sections�

�
�������� Modifying the Structure of Instances

The �rst step modi�es the structure of instances of the rede�ned class to

conform to its new class de�nition� Local slots speci�ed by the new class

de�nition that are not speci�ed as either local or shared by the old class are

added� and slots not speci�ed as either local or shared by the new class de��
nition that are speci�ed as local by the old class are discarded� The names of

these added and discarded slots are passed as arguments to updateinstance

forredefinedclass as described in the next section�

The values of local slots speci�ed by both the new and old classes are

retained� If such a local slot was unbound� it remains unbound�

The value of a slot that is speci�ed as shared in the old class and as local
in the new class is retained� If such a shared slot was unbound� the local slot

will be unbound�

�
�������� Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any other

user�de�ned actions� This step is implemented by the generic function update

instanceforredefinedclass� which is called after completion of the �rst
step of modifying the structure of the instance�

The generic function updateinstanceforredefinedclass takes four re�

quired arguments� the instance being updated after it has undergone the �rst

step� a list of the names of local slots that were added� a list of the names of

local slots that were discarded� and a property list containing the slot names

and values of slots that were discarded and had values� Included among the

COMMON LISP OBJECT SYSTEM ���

discarded slots are slots that were local in the old class and that are shared

in the new class�

The generic function updateinstanceforredefinedclass also takes any

number of initialization arguments� When it is called by the system to update

an instance whose class has been rede�ned� no initialization arguments are
provided�

There is a system�supplied primary method for the generic function update

instanceforredefinedclasswhose parameter specializer for its instance ar�

gument is the class standardobject� First this method checks the validity
of initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid
see section ���������� Then it calls

the generic function sharedinitialize with the following arguments� the

instance� the list of names of the newly added slots� and the initialization

arguments it received�

�
�������� Customizing Class Rede
nition

Methods for updateinstanceforredefinedclass may be de�ned to spec�

ify actions to be taken when an instance is updated� If only �after meth�

ods for updateinstanceforredefinedclass are de�ned� they will be run

after the system�supplied primary method for initialization and therefore
will not interfere with the default behavior of updateinstanceforredefined

class� Because no initialization arguments are passed to updateinstance

forredefinedclasswhen it is called by the system� the �initform forms for

slots that are �lled by �before methods for updateinstanceforredefined

class will not be evaluated by sharedinitialize�

Methods for sharedinitialize may be de�ned to customize class rede��

nition
see section ����������

�
�������� Extensions

There are two allowed extensions to class rede�nition�

� The Object System may be extended to permit the new class to be an
instance of a metaclass other than the metaclass of the old class�

� The Object System may be extended to support an updating process

when either the old or the new class is an instance of a class other than

standardclass that is not a built�in class�

��� COMMON LISP

�
������ Changing the Class of an Instance

The function changeclass can be used to change the class of an instance

from its current class� Cfrom� to a di	erent class� Cto� it changes the structure

of the instance to conform to the de�nition of the class Cto�

Note that changing the class of an instance may cause slots to be added or

deleted�

When changeclass is invoked on an instance� a two�step updating process

takes place� The �rst step modi�es the structure of the instance by adding
new local slots and discarding local slots that are not speci�ed in the new

version of the instance� The second step initializes the newly added local

slots and performs any other user�de�ned actions� These steps are further

described in the following two sections�

�
�������� Modifying the Structure of an Instance

In order to make an instance conform to the class Cto� local slots speci�ed by

the class Cto that are not speci�ed by the class Cfrom are added� and local
slots not speci�ed by the class Cto that are speci�ed by the class Cfrom are

discarded�

The values of local slots speci�ed by both the class Cto and the class Cfrom

are retained� If such a local slot was unbound� it remains unbound�

The values of slots speci�ed as shared in the class Cfrom and as local in the

class Cto are retained�

This �rst step of the update does not a	ect the values of any shared slots�

�
�������� Initializing Newly Added Local Slots

The second step of the update initializes the newly added slots and per�

forms any other user�de�ned actions� This step is implemented by the generic

function updateinstancefordifferentclass� The generic function update

instancefordifferentclass is invoked by changeclass after the �rst step
of the update has been completed�

The generic function updateinstancefordifferentclass is invoked on
two arguments computed by changeclass� The �rst argument passed is a

copy of the instance being updated and is an instance of the class Cfrom�

this copy has dynamic extent within the generic function changeclass� The

second argument is the instance as updated so far by changeclass and is an

instance of the class Cto�

COMMON LISP OBJECT SYSTEM ���

The generic function updateinstancefordifferentclass also takes any

number of initialization arguments� When it is called by changeclass� no

initialization arguments are provided�

There is a system�supplied primary method for the generic function update

instancefordifferentclass that has two parameter specializers� each of
which is the class standardobject� First this method checks the validity

of initialization arguments and signals an error if an initialization argument

is supplied that is not declared valid
see section ���������� Then it calls

the generic function sharedinitialize with the following arguments� the

instance� a list of names of the newly added slots� and the initialization argu�
ments it received�

�
�������� Customizing the Change of Class of an Instance

Methods for updateinstancefordifferentclass may be de�ned to specify

actions to be taken when an instance is updated� If only �after methods for

updateinstancefordifferentclass are de�ned� they will be run after the

system�supplied primary method for initialization and will not interfere with
the default behavior of updateinstancefordifferentclass� Because no

initialization arguments are passed to updateinstancefordifferentclass

when it is called by changeclass� the �initform forms for slots that are

�lled by �before methods for updateinstancefordifferentclass will not

be evaluated by sharedinitialize�

Methods for sharedinitialize may be de�ned to customize class rede��
nition
see section ����������

�
������ Reinitializing an Instance

The generic function reinitializeinstancemay be used to change the val�

ues of slots according to initialization arguments�

The process of reinitialization changes the values of some slots and performs

any user�de�ned actions�

Reinitialization does not modify the structure of an instance to add or delete
slots� and it does not use any �initform forms to initialize slots�

The generic function reinitializeinstance may be called directly� It

takes one required argument� the instance� It also takes any number of ini�

tialization arguments to be used by methods for reinitializeinstance or

for sharedinitialize� The arguments after the required instance must form

an initialization argument list�

��� COMMON LISP

There is a system�supplied primary method for reinitializeinstance

whose parameter specializer is the class standardobject� First this method

checks the validity of initialization arguments and signals an error if an initial�

ization argument is supplied that is not declared valid
see section ����������

Then it calls the generic function sharedinitialize with the following ar�
guments� the instance� nil� and the initialization arguments it received�

COMMON LISP OBJECT SYSTEM ���

�
�������� Customizing Reinitialization

Methods for the generic function reinitializeinstance may be de�ned to

specify actions to be taken when an instance is updated� If only �after

methods for reinitializeinstance are de�ned� they will be run after the

system�supplied primary method for initialization and therefore will not in�

terfere with the default behavior of reinitializeinstance�

Methods for sharedinitialize may be de�ned to customize class rede��

nition
see section ����������

�
��� Functions in the Programmer Interface

This section describes the functions� macros� special forms� and generic func�
tions provided by the Common Lisp Object System Programmer Interface�

The Programmer Interface comprises the functions and macros that are suf�

�cient for writing most object�oriented programs�

This section is reference material that requires an understanding of the basic
concepts of the Common Lisp Object System� The functions are arranged in

alphabetical order for convenient reference�

The description of each function� macro� special form� and generic function

includes its purpose� its syntax� the semantics of its arguments and returned

values� and often an example and cross�references to related functions�

The syntax description for a function� macro� or special form describes its

parameters� The description of a generic function includes descriptions of

the methods that are de�ned on that generic function by the Common Lisp

Object System� A method signature is used to describe the parameters and
parameter specializers for each method�

The following is an example of the format for the syntax description of a

generic function with the method signature for one primary method�

�Generic function�f x y �optional z �key �k

�Primary method �f �x class� �y t� �optional z �key �k

This description indicates that the generic function f has two required param�
eters� x and y� In addition� there is an optional parameter z and a keyword

parameter �k�

The method signature indicates that this method on the generic function f

has two required parameters� x� which must be an instance of the class class�

and y� which can be any object� In addition� there is an optional parameter z

��� COMMON LISP

and a keyword parameter �k� The signature also indicates that this method

on f is a primary method and has no quali�ers�

The syntax description for a generic function describes the lambda�list of

the generic function itself� while the method signatures describe the lambda�

lists of the de�ned methods�

The generic functions described in this book are all standard generic func�

tions� They all use standard method combination�

Any implementation of the Common Lisp Object System is allowed to pro�

vide additional methods on the generic functions described here�

It is useful to categorize the functions and macros according to their role
in this standard�

� Tools used for simple object�oriented programming

These tools allow for de�ning new classes� methods� and generic functions

and for making instances� Some tools used within method bodies are also
listed here� Some of the macros listed here have a corresponding function

that performs the same task at a lower level of abstraction�

callnextmethod initializeinstance

changeclass makeinstance

defclass nextmethodp

defgeneric slotboundp

defmethod slotvalue

genericflet withaccessors

genericfunction withaddedmethods

genericlabels withslots

� Functions underlying the commonly used macros

addmethod reinitializeinstance

classname removemethod

computeapplicablemethods sharedinitialize

ensuregenericfunction slotexistsp

findclass slotmakunbound

findmethod slotmissing

functionkeywords slotunbound

makeinstancesobsolete updateinstancefordifferentclass

noapplicablemethod updateinstanceforredefinedclass

nonextmethod

� Tools for declarative method combination

COMMON LISP OBJECT SYSTEM ���

callmethod methodcombinationerror

definemethodcombination methodqualifiers

invalidmethoderror

� General Common Lisp support tools

classof printobject

documentation symbolmacrolet

�Note that describe appeared in this list in the original CLOS proposal ���
��� but X�J�� voted in March ���� h��i not to make describe a generic

function after all
see describeobject��!GLS�

�At this point the original CLOS report contained a description of the �� ��

and � notation� that description is omitted here� I have adopted the notation

for use throughout this book� It is described in section ������!GLS�

�Generic function�addmethod genericfunction method

�Primary method �addmethod

�genericfunction standardgenericfunction� �method method�

The generic function addmethod adds a method to a generic function� It

destructively modi�es the generic function and returns the modi�ed generic

function as its result�

The generic�function argument is a generic function object�
The method argument is a method object� The lambda�list of the method

function must be congruent with the lambda�list of the generic function� or

an error is signaled�

The modi�ed generic function is returned� The result of addmethod is eq
to the generic�function argument�

If the given method agrees with an existing method of the generic function

on parameter specializers and quali�ers� the existing method is replaced� See

section �������� for a de�nition of agreement in this context�

If the method object is a method object of another generic function� an
error is signaled�

See section �������� as well as defmethod� defgeneric� findmethod� and

removemethod�

�Macro�callmethod method next�method�list

The macro callmethod is used in method combination� This macro hides the

implementation�dependent details of how methods are called� It can be used

��� COMMON LISP

only within an e	ective method form� for the name callmethod is de�ned

only within the lexical scope of such a form�

The macro callmethod invokes the speci�ed method� supplying it with ar�

guments and with de�nitions for callnextmethod and for nextmethodp� The
arguments are the arguments that were supplied to the e	ective method form

containing the invocation of callmethod� The de�nitions of callnextmethod

and nextmethodp rely on the list of method objects given as the second ar�

gument to callmethod�

The callnextmethod function available to the method that is the �rst

subform will call the �rst method in the list that is the second subform�

The callnextmethod function available in that method� in turn� will call the

second method in the list that is the second subform� and so on� until the list
of next methods is exhausted�

The method argument is a method object� the next�method�list argument

is a list of method objects�

A list whose �rst element is the symbol makemethod and whose second

element is a Lisp form can be used instead of a method object as the �rst

subform of callmethod or as an element of the second subform of callmethod�

Such a list speci�es a method object whose method function has a body that

is the given form�

The result of callmethod is the value or values returned by the method

invocation�

See callnextmethod� definemethodcombination� and nextmethodp�

�Function�callnextmethod �rest args

The function callnextmethod can be used within the body of a method
de�ned by a method�de�ning form to call the next method�

The function callnextmethod returns the value or values returned by the

method it calls� If there is no next method� the generic function nonextmethod

is called�

The type of method combination used determines which methods can invoke

callnextmethod� The standard method combination type allows callnext

method to be used within primary methods and �around methods�

The standard method combination type de�nes the next method according

to the following rules�

� If callnextmethod is used in an �around method� the next method is the

next most speci�c �around method� if one is applicable�

COMMON LISP OBJECT SYSTEM ��	

� If there are no �around methods at all or if callnextmethod is called by

the least speci�c �around method� other methods are called as follows�

� All the �before methods are called� in most�speci�c��rst order� The

function callnextmethod cannot be used in �before methods�

� The most speci�c primary method is called� Inside the body of a primary

method� callnextmethod may be used to pass control to the next most

speci�c primary method� The generic function nonextmethod is called if

callnextmethod is used and there are no more primary methods�

� All the �after methods are called in most�speci�c�last order� The func�

tion callnextmethod cannot be used in �after methods�

For further discussion of the use of callnextmethod� see sections ��������

and ���������

When callnextmethod is called with no arguments� it passes the current

method�s original arguments to the next method� Neither argument default�

ing� nor using setq� nor rebinding variables with the same names as param�

eters of the method a	ects the values callnextmethod passes to the method

it calls�

When callnextmethod is called with arguments� the next method is called

with those arguments� When providing arguments to callnextmethod� the

following rule must be satis�ed or an error is signaled� The ordered set of
methods applicable for a changed set of arguments for callnextmethodmust

be the same as the ordered set of applicable methods for the original arguments

to the generic function� Optimizations of the error checking are possible� but

they must not change the semantics of callnextmethod�

If callnextmethod is called with arguments but omits optional arguments�

the next method called defaults those arguments�

The function callnextmethod returns the value or values returned by the
method it calls�

Further computation is possible after callnextmethod returns�

The de�nition of the function callnextmethod has lexical scope
for it is
de�ned only within the body of a method de�ned by a method�de�ning form�

and inde�nite extent�

For generic functions using a type of method combination de�ned by the
short form of definemethodcombination� callnextmethod can be used in

�around methods only�

The function nextmethodp can be used to test whether or not there is a

next method�

��
 COMMON LISP

If callnextmethod is used in methods that do not support it� an error is

signaled�

See sections ������� ��������� and �������� as well as the functions define

methodcombination� nextmethodp� and nonextmethod�

�Generic function�changeclass instance newclass
�Primary method �changeclass �instance standardobject�

�newclass standardclass�

�Primary method �changeclass �instance t� �newclass symbol�

The generic function changeclass changes the class of an instance to a new

class� It destructively modi�es and returns the instance�

If in the old class there is any slot of the same name as a local slot in the

new class� the value of that slot is retained� This means that if the slot has a

value� the value returned by slotvalue after changeclass is invoked is eql
to the value returned by slotvalue before changeclass is invoked� Similarly�

if the slot was unbound� it remains unbound� The other slots are initialized

as described in section ��������

The instance argument is a Lisp object�

The new�class argument is a class object or a symbol that names a class�

If the second of the preceding methods is selected� that method invokes

changeclass on instance and �findclass newclass��

The modi�ed instance is returned� The result of changeclass is eq to the

instance argument�

Examples�

�defclass position �� ���

�defclass xyposition �position�

��x �initform � �initarg �x�

�y �initform � �initarg �y���

�defclass rhothetaposition �position�

��rho �initform ��

�theta �initform ����

�defmethod updateinstancefordifferentclass �before

��old xyposition�

�new rhothetaposition�

�key�

COMMON LISP OBJECT SYSTEM ���

�� Copy the position information from old to new to make new

�� be a rhothetaposition at the same position as old�

�let ��x �slotvalue old x��

�y �slotvalue old y���

�setf �slotvalue new rho� �sqrt �� �
 x x� �
 y y���

�slotvalue new theta� �atan y x����

��� At this point an instance of the class xyposition can be

��� changed to be an instance of the class rhothetaposition

��� using changeclass�

�setq p
 �makeinstance xyposition �x � �y ���

�changeclass p
 rhothetaposition�

��� The result is that the instance bound to p
 is now

��� an instance of the class rhothetaposition�

��� The updateinstancefordifferentclass method

��� performed the initialization of the rho and theta

��� slots based on the values of the x and y slots�

��� which were maintained by the old instance�

After completing all other actions� changeclass invokes the generic func�

tion updateinstancefordifferentclass� The generic function update

instancefordifferentclass can be used to assign values to slots in the
transformed instance�

The generic function changeclass has several semantic di�culties� First�

it performs a destructive operation that can be invoked within a method on

an instance that was used to select that method� When multiple methods

are involved because methods are being combined� the methods currently

executing or about to be executed may no longer be applicable� Second� some
implementations might use compiler optimizations of slot access� and when the

class of an instance is changed the assumptions the compiler made might be

violated� This implies that a programmer must not use changeclass inside

a method if any methods for that generic function access any slots� or the
results are unde�ned�

See section ������� as well as updateinstancefordifferentclass�

��� COMMON LISP

�Generic function�classname class

�Primary method �classname �class class�

The generic function classname takes a class object and returns its name�

The class argument is a class object� The new�value argument is any object�

The name of the given class is returned�

The name of an anonymous class is nil�

If S is a symbol such that S "�classname C� and C " �findclass S��

then S is the proper name of C
see section ��������

See also section ������ and findclass�

�Generic function��setf classname� newvalue class

�Primary method ��setf classname� newvalue �class class�

The generic function �setf classname� takes a class object and sets its name�
The class argument is a class object� The new�value argument is any object�

�Function�classof object

The function classof returns the class of which the given object is an in�

stance� The argument to classof may be any Common Lisp object� The

function classof returns the class of which the argument is an instance�

�Function�computeapplicablemethods genericfunction
functionarguments

Given a generic function and a set of arguments� the function compute

applicablemethods returns the set of methods that are applicable for those

arguments�

The methods are sorted according to precedence order� See section �������

The generic�function argument must be a generic function object� The

function�arguments argument is a list of the arguments to that generic func�

tion� The result is a list of the applicable methods in order of precedence� See

section �������

�Macro�defclass class�name � fsuperclass�nameg� �
� fslot�speci
erg� � �� �class�option ��

COMMON LISP OBJECT SYSTEM ���

class�name ��" symbol

superclass�name ��" symbol

slot�speci
er ��" slot�name j
slot�name ���slot�option ���
slot�name ��" symbol

slot�option ��" f�reader reader�function�nameg�
j f�writer writer�function�nameg�
j f�accessor reader�function�nameg�
j f�allocation allocation�typeg
j f�initarg initarg�nameg�
j f�initform formg
j f�type type�speci
erg
j f�documentation stringg

��� COMMON LISP

reader�function�name ��" symbol

writer�function�name ��" function�name�

function�name ��" fsymbol j �setf symbol�g
initarg�name ��" symbol

allocation�type ��" �instance j �class
class�option ��" ��defaultinitargs initarglist�

j ��documentation string�

j ��metaclass classname�

initarg�list ��" finitarg�name default�initial�value�formg�

The macro defclass de�nes a new named class� It returns the new class

object as its result�

The syntax of defclass provides options for specifying initialization ar�

guments for slots� for specifying default initialization values for slots� and for

requesting that methods on speci�ed generic functions be automatically gener�

ated for reading and writing the values of slots� No reader or writer functions
are de�ned by default� their generation must be explicitly requested�

De�ning a new class also causes a type of the same name to be de�ned�

The predicate �typep object classname� returns true if the class of the given

object is class�name itself or a subclass of the class class�name� A class object
can be used as a type speci�er� Thus �typep object class� returns true if the

class of the object is class itself or a subclass of class�

The class�name argument is a non�nil symbol� It becomes the proper

name of the new class� If a class with the same proper name already exists
and that class is an instance of standardclass� and if the defclass form for

the de�nition of the new class speci�es a class of class standardclass� the

de�nition of the existing class is replaced�

Each superclass�name argument is a non�nil symbol that speci�es a direct
superclass of the new class� The new class will inherit slots and methods from

each of its direct superclasses� from their direct superclasses� and so on� See

section ������ for a discussion of how slots and methods are inherited�

Each slot�speci
er argument is the name of the slot or a list consisting of
the slot name followed by zero or more slot options� The slot�name argument

is a symbol that is syntactically valid for use as a variable name� If there are

any duplicate slot names� an error is signaled�

The following slot options are available�

� The �reader slot option speci�es that an unquali�ed method is to be de�

�ned on the generic function named reader�function�name to read the value

of the given slot� The reader�function�name argument is a non�nil symbol�

The �reader slot option may be speci�ed more than once for a given slot�

COMMON LISP OBJECT SYSTEM ���

� The �writer slot option speci�es that an unquali�ed method is to be de�

�ned on the generic function named writer�function�name to write the value

of the slot� The writer�function�name argument is a function�name� The

�writer slot option may be speci�ed more than once for a given slot�

� The �accessor slot option speci�es that an unquali�ed method is to be

de�ned on the generic function named reader�function�name to read the
value of the given slot and that an unquali�ed method is to be de�ned on

the generic function named �setf readerfunctionname� to be used with

setf to modify the value of the slot� The reader�function�name argument

is a non�nil symbol� The �accessor slot option may be speci�ed more
than once for a given slot�

� The �allocation slot option is used to specify where storage is to be allo�

cated for the given slot� Storage for a slot may be located in each instance

or in the class object itself� for example� The value of the allocation�type

argument can be either the keyword �instance or the keyword �class�
The �allocation slot option may be speci�ed at most once for a given

slot� If the �allocation slot option is not speci�ed� the e	ect is the same

as specifying �allocation �instance�

� If allocation�type is �instance� a local slot of the given name is allocated

in each instance of the class�

� If allocation�type is �class� a shared slot of the given name is allocated�
The value of the slot is shared by all instances of the class� If a class C�

de�nes such a shared slot� any subclass C� of C� will share this single

slot unless the defclass form for C� speci�es a slot of the same name or

there is a superclass of C� that precedes C� in the class precedence list

of C� and that de�nes a slot of the same name�

� The �initform slot option is used to provide a default initial value form to
be used in the initialization of the slot� The �initform slot option may be

speci�ed at most once for a given slot� This form is evaluated every time

it is used to initialize the slot� The lexical environment in which this form

is evaluated is the lexical environment in which the defclass form was
evaluated� Note that the lexical environment refers both to variables and

to functions� For local slots� the dynamic environment is the dynamic envi�

ronment in which makeinstance was called� for shared slots� the dynamic

environment is the dynamic environment in which the defclass form was

evaluated� See section �������

��� COMMON LISP

No implementation is permitted to extend the syntax of defclass to allow

�slotname form� as an abbreviation for �slotname �initform form��

� The �initarg slot option declares an initialization argument named
initarg�name and speci�es that this initialization argument initializes the

given slot� If the initialization argument has a value in the call to

initializeinstance� the value will be stored into the given slot� and the

slot�s �initform slot option� if any� is not evaluated� If none of the initial�
ization arguments speci�ed for a given slot has a value� the slot is initialized

according to the �initform slot option� if speci�ed� The �initarg slot op�

tion can be speci�ed more than once for a given slot� The initarg�name

argument can be any symbol�

� The �type slot option speci�es that the contents of the slot will always

be of the speci�ed data type� It e	ectively declares the result type of the

reader generic function when applied to an object of this class� The result
of attempting to store in a slot a value that does not satisfy the type of the

slot is unde�ned� The �type slot option may be speci�ed at most once for

a given slot� The �type slot option is further discussed in section ���������

� The �documentation slot option provides a documentation string for the

slot�

Each class option is an option that refers to the class as a whole or to all

class slots� The following class options are available�

� The �defaultinitargs class option is followed by a list of alternating ini�

tialization argument names and default initial value forms� If any of these

initialization arguments does not appear in the initialization argument list

supplied to makeinstance� the corresponding default initial value form is
evaluated� and the initialization argument name and the form�s value are

added to the end of the initialization argument list before the instance is

created
see section �������� The default initial value form is evaluated

each time it is used� The lexical environment in which this form is eval�

uated is the lexical environment in which the defclass form was eval�
uated� The dynamic environment is the dynamic environment in which

makeinstance was called� If an initialization argument name appears more

than once in a �defaultinitargs class option� an error is signaled� The

�defaultinitargs class option may be speci�ed at most once�

� The �documentation class option causes a documentation string to be at�

tached to the class name� The documentation type for this string is type�

The form �documentation classname type� may be used to retrieve the

COMMON LISP OBJECT SYSTEM ���

documentation string� The �documentation class option may be speci�ed

at most once�

� The �metaclass class option is used to specify that instances of the class

being de�ned are to have a di	erent metaclass than the default provided
by the system
the class standardclass�� The class�name argument is

the name of the desired metaclass� The �metaclass class option may be

speci�ed at most once�

The new class object is returned as the result�

If a class with the same proper name already exists and that class is an

instance of standardclass� and if the defclass form for the de�nition of

the new class speci�es a class of class standardclass� the existing class is

rede�ned� and instances of it
and its subclasses� are updated to the new
de�nition at the time that they are next accessed
see section ���������

Note the following rules of defclass for standard classes�

� It is not required that the superclasses of a class be de�ned before the

defclass form for that class is evaluated�

� All the superclasses of a class must be de�ned before an instance of the

class can be made�

� A class must be de�ned before it can be used as a parameter specializer in
a defmethod form�

The Object System may be extended to cover situations where these rules

are not obeyed�

Some slot options are inherited by a class from its superclasses� and some
can be shadowed or altered by providing a local slot description� No class

options except �defaultinitargs are inherited� For a detailed description of

how slots and slot options are inherited� see section ���������

The options to defclass can be extended� An implementation must signal
an error if it observes a class option or a slot option that is not implemented

locally�

It is valid to specify more than one reader� writer� accessor� or initialization

argument for a slot� No other slot option may appear more than once in a
single slot description� or an error is signaled�

If no reader� writer� or accessor is speci�ed for a slot� the slot can be accessed

only by the function slotvalue�

See sections ������� ������� �������� ������� ������ as well as slotvalue�

makeinstance� and initializeinstance�

��� COMMON LISP

�Macro�defgeneric function�name lambda�list

�� �option j fmethod�descriptiong� ��

function�name ��" fsymbol j �setf symbol�g
lambda�list ��" � fvarg�

��optional fvar j �var�g� �
��rest var �
��key fkeyword�parameterg� ��allow�other�keys� � �

keyword�parameter ��" var j � fvar j �keyword var�g �
option ��" ��argumentprecedenceorder fparameternameg� �

j �declare fdeclarationg� �

j ��documentation string�
j ��methodcombination symbol fargg� �
j ��genericfunctionclass classname�

j ��methodclass classname�

method�description ��" ��method fmethod�quali
erg�
specialized�lambda�list

�� fdeclarationg� j documentation ��

f formg� �
method�quali
er ��" non�nil�atom

specialized�lambda�list ��"

� fvar j �var parameter�specializer�name�g�
��optional fvar j �var �initform �supplied�p�parameter � � �g� �
��rest var �

��key fspecialized�keyword�parameterg� ��allow�other�keys� �
��aux fvar j �var �initform� �g� � �

specialized�keyword�parameter ��"
var j � fvar j �keyword var�g �initform �supplied�p�parameter � � �

parameter�specializer�name ��" symbol j �eql eqlspecializerform�

The macro defgeneric is used to de�ne a generic function or to specify
options and declarations that pertain to a generic function as a whole�

If �fboundp functionname� is nil� a new generic function is created� If

�fdefinition functionspeci
er� is a generic function� that generic function

is modi�ed� If function�name� names a non�generic function� a macro� or a

special form� an error is signaled�

�X�J�� voted in March ���� h��i to use fdefinition in the previous para�

graph� as shown� rather than symbolfunction� as it appeared in the original

COMMON LISP OBJECT SYSTEM ��	

report on CLOS ��� ��� The vote also changed all occurrences of function�

speci
er in the original report to function�name� this change is re
ected

here�!GLS�

Each method�description de�nes a method on the generic function� The

lambda�list of each method must be congruent with the lambda�list speci�ed

by the lambda�list option� If this condition does not hold� an error is signaled�

See section �������� for a de�nition of congruence in this context�

The macro defgeneric returns the generic function object as its result�

The function�name argument is a non�nil symbol or a list of the form �setf

symbol��

��
 COMMON LISP

The lambda�list argument is an ordinary function lambda�list with the fol�

lowing exceptions�

� The use of �aux is not allowed�

� Optional and keyword arguments may not have default initial value forms
nor use supplied�p parameters� The generic function passes to the method

all the argument values passed to it� and only those� default values are not

supported� Note that optional and keyword arguments in method de�ni�

tions� however� can have default initial value forms and can use supplied�p

parameters�

The following options are provided� A given option may occur only once�
or an error is signaled�

� The �argumentprecedenceorder option is used to specify the order in

which the required arguments in a call to the generic function are tested

for speci�city when selecting a particular method� Each required argument�

as speci�ed in the lambda�list argument� must be included exactly once as
a parameter�name so that the full and unambiguous precedence order is

supplied� If this condition is not met� an error is signaled�

� The declare option is used to specify declarations that pertain to the
generic function� The following standard Common Lisp declaration is al�

lowed�

� An optimize declaration speci�es whether method selection should be
optimized for speed or space� but it has no e	ect on methods� To control

how a method is optimized� an optimize declaration must be placed

directly in the defmethod form or method description� The optimization

qualities speed and space are the only qualities this standard requires�
but an implementation can extend the Common Lisp Object System to

recognize other qualities� A simple implementation that has only one

method selection technique and ignores the optimize declaration is valid�

The special� ftype� function� inline� notinline� and declaration dec�

larations are not permitted� Individual implementations can extend the

declare option to support additional declarations� If an implementation

notices a declaration that it does not support and that has not been pro�

claimed as a non�standard declaration name in a declaration proclama�
tion� it should issue a warning�

� The �documentation argument associates a documentation string with the

generic function� The documentation type for this string is function� The

COMMON LISP OBJECT SYSTEM ���

form �documentation functionname� function�may be used to retrieve

this string�

� The �genericfunctionclass option may be used to specify that the

generic function is to have a di	erent class than the default provided by

the system
the class standardgenericfunction�� The class�name argu�

ment is the name of a class that can be the class of a generic function�
If function�name speci�es an existing generic function that has a di	erent

value for the �genericfunctionclass argument and the new generic func�

tion class is compatible with the old� changeclass is called to change the

class of the generic function� otherwise an error is signaled�

� The �methodclass option is used to specify that all methods on this generic

function are to have a di	erent class from the default provided by the system

the class standardmethod�� The class�name argument is the name of a

class that is capable of being the class of a method�

� The �methodcombination option is followed by a symbol that names a

type of method combination� The arguments
if any� that follow that

symbol depend on the type of method combination� Note that the stan�

dard method combination type does not support any arguments� How�
ever� all types of method combination de�ned by the short form of

definemethodcombination accept an optional argument named order � de�

faulting to �mostspecificfirst� where a value of �mostspecificlast re�

verses the order of the primary methods without a	ecting the order of the
auxiliary methods�

The method�description arguments de�ne methods that will be associated

with the generic function� The method�quali
er and specialized�lambda�list

arguments in a method description are the same as for defmethod�

The form arguments specify the method body� The body of the method is
enclosed in an implicit block� If function�name is a symbol� this block bears

the same name as the generic function� If function�name is a list of the form

�setf symbol�� the name of the block is symbol�

The generic function object is returned as the result�

The e	ect of the defgeneric macro is as if the following three steps were

performed� �rst� methods de�ned by previous defgeneric forms are removed�

second� ensuregenericfunction is called� and �nally� methods speci�ed by

the current defgeneric form are added to the generic function�

If no method descriptions are speci�ed and a generic function of the same

name does not already exist� a generic function with no methods is created�

��� COMMON LISP

The lambda�list argument of defgeneric speci�es the shape of lambda�

lists for the methods on this generic function� All methods on the resulting

generic function must have lambda�lists that are congruent with this shape� If

a defgeneric form is evaluated and some methods for that generic function

have lambda�lists that are not congruent with that given in the defgeneric

form� an error is signaled� For further details on method congruence� see

section ���������

Implementations can extend defgeneric to include other options� It is

required that an implementation signal an error if it observes an option that
is not implemented locally�

See section �������� as well as defmethod� ensuregenericfunction� and

genericfunction�

�Macro�definemethodcombination name �� �short�form�option ��
�Macro�definemethodcombination name lambda�list

� fmethod�group�speci
erg� �
���arguments � lambda�list��
���generic�function generic�fn�symbol��

�� fdeclarationg� j doc�string ��
f formg�

short�form�option ��" �documentation string

j �identitywithoneargument boolean
j �operator operator

method�group�speci
er ��" �variable f fquali
er�patterng� j predicateg
�� �long�form�option �� �

long�form�option ��" �description formatstring

j �order order
j �required boolean

The macro definemethodcombination is used to de�ne new types of method
combination�

There are two forms of definemethodcombination� The short form is a

simple facility for the cases that are expected to be most commonly needed�

The long form is more powerful but more verbose� It resembles defmacro in
that the body is an expression� usually using backquote� that computes a Lisp

form� Thus arbitrary control structures can be implemented� The long form

also allows arbitrary processing of method quali�ers�

In both the short and long forms� name is a symbol� By convention� non�

keyword� non�nil symbols are usually used�

COMMON LISP OBJECT SYSTEM ���

The short�form syntax of definemethodcombination is recognized when

the second subform is a non�nil symbol or is not present� When the short

form is used� name is de�ned as a type of method combination that produces

a Lisp form �operator methodcall methodcall � � � �� The operator is a symbol

that can be the name of a function� macro� or special form� The operator can
be speci�ed by a keyword option� it defaults to name�

Keyword options for the short form are the following�

� The �documentation option is used to document the method�combination

type�

� The �identitywithoneargument option enables an optimization when

boolean is true
the default is false�� If there is exactly one applicable

method and it is a primary method� that method serves as the e	ective

method and operator is not called� This optimization avoids the need to
create a new e	ective method and avoids the overhead of a function call�

This option is designed to be used with operators such as progn� and� ��

and max�

� The �operator option speci�es the name of the operator� The operator

argument is a symbol that can be the name of a function� macro� or special
form� By convention� name and operator are often the same symbol� This

is the default� but it is not required�

None of the subforms is evaluated�

These types of method combination require exactly one quali�er per
method� An error is signaled if there are applicable methods with no quali�ers

or with quali�ers that are not supported by the method combination type�

A method combination procedure de�ned in this way recognizes two roles

for methods� A method whose one quali�er is the symbol naming this type of
method combination is de�ned to be a primary method� At least one primary

method must be applicable or an error is signaled� A method with �around as

its one quali�er is an auxiliary method that behaves the same as an �around

method in standard method combination� The function callnextmethod can
be used only in �around methods� it cannot be used in primary methods

de�ned by the short form of the definemethodcombination macro�

A method combination procedure de�ned in this way accepts an optional

argument named order� which defaults to �mostspecificfirst� A value
of �mostspecificlast reverses the order of the primary methods without

a	ecting the order of the auxiliary methods�

The short form automatically includes error checking and support for

�around methods�

��� COMMON LISP

For a discussion of built�in method combination types� see section ���������

The long�form syntax of definemethodcombination is recognized when the

second subform is a list�

The lambda�list argument is an ordinary lambda�list� It receives any ar�

guments provided after the name of the method combination type in the

�methodcombination option to defgeneric�

A list of method group speci�ers follows� Each speci�er selects a subset

of the applicable methods to play a particular role� either by matching their
quali�ers against some patterns or by testing their quali�ers with a predicate�

These method group speci�ers de�ne all method quali�ers that can be used

with this type of method combination� If an applicable method does not fall

into any method group� the system signals the error that the method is invalid
for the kind of method combination in use�

Each method group speci�er names a variable� During the execution of the

forms in the body of definemethodcombination� this variable is bound to a

list of the methods in the method group� The methods in this list occur in
most�speci�c��rst order�

A quali�er pattern is a list or the symbol
� A method matches a quali�

�er pattern if the method�s list of quali�ers is equal to the quali�er pattern

except that the symbol
 in a quali�er pattern matches anything�� Thus a

quali�er pattern can be one of the following� the empty list ��� which matches
unquali�ed methods� the symbol
� which matches all methods� a true list�

which matches methods with the same number of quali�ers as the length of

the list when each quali�er matches the corresponding list element� or a dot�

ted list that ends in the symbol

the
 matches any number of additional
quali�ers��

Each applicable method is tested against the quali�er patterns and predi�

cates in left�to�right order� As soon as a quali�er pattern matches or a predi�

cate returns true� the method becomes a member of the corresponding method

group and no further tests are made� Thus if a method could be a member of
more than one method group� it joins only the �rst such group� If a method

group has more than one quali�er pattern� a method need only satisfy one of

the quali�er patterns to be a member of the group�

The name of a predicate function can appear instead of quali�er patterns
in a method group speci�er� The predicate is called for each method that has

not been assigned to an earlier method group� it is called with one argument�

the method�s quali�er list� The predicate should return true if the method is

to be a member of the method group� A predicate can be distinguished from

a quali�er pattern because it is a symbol other than nil or
�

COMMON LISP OBJECT SYSTEM ���

If there is an applicable method whose quali�ers are not valid for the method

combination type� the function invalidmethoderror is called�

Method group speci�ers can have keyword options following the quali�er

patterns or predicate� Keyword options can be distinguished from additional

quali�er patterns because they are neither lists nor the symbol
� The keyword
options are�

� The �description option is used to provide a description of the role of

methods in the method group� Programming environment tools use �apply

��� format stream formatstring �methodqualifiers method�� to print
this description� which is expected to be concise� This keyword option al�

lows the description of a method quali�er to be de�ned in the same module

that de�nes the meaning of the method quali�er� In most cases� format�

string will not contain any format directives� but they are available for
generality� If �description is not speci�ed� a default description is gener�

ated based on the variable name and the quali�er patterns and on whether

this method group includes the unquali�ed methods� The argument format�

string is not evaluated�

� The �order option speci�es the order of methods� The order argument is
a form that evaluates to �mostspecificfirst or �mostspecificlast� If

it evaluates to any other value� an error is signaled� This keyword option

is a convenience and does not add any expressive power� If �order is not

speci�ed� it defaults to �mostspecificfirst�

� The �required option speci�es whether at least one method in this method
group is required� If the boolean argument is non�nil and the method

group is empty
that is� no applicable methods match the quali�er patterns

or satisfy the predicate�� an error is signaled� This keyword option is a

convenience and does not add any expressive power� If �required is not

speci�ed� it defaults to nil� The boolean argument is not evaluated�

The use of method group speci�ers provides a convenient syntax to select
methods� to divide them among the possible roles� and to perform the neces�

sary error checking� It is possible to perform further �ltering of methods in

the body forms by using normal list�processing operations and the functions

methodqualifiers and invalidmethoderror� It is permissible to use setq

on the variables named in the method group speci�ers and to bind additional

variables� It is also possible to bypass the method group speci�er mechanism

and do everything in the body forms� This is accomplished by writing a single

method group with
 as its only quali�er pattern� the variable is then bound

to a list of all of the applicable methods� in most�speci�c��rst order�

��� COMMON LISP

The body forms compute and return the Lisp form that speci�es how the

methods are combined� that is� the e	ective method� The e	ective method

uses the macro callmethod� The de�nition of this macro has lexical scope and

is available only in an e	ective method form� Given a method object in one of

the lists produced by the method group speci�ers and a list of next methods�
the macro callmethod will invoke the method so that callnextmethod will

have available the next methods�

When an e	ective method has no e	ect other than to call a single method�

some implementations employ an optimization that uses the single method

directly as the e	ective method� thus avoiding the need to create a new

e	ective method� This optimization is active when the e	ective method
form consists entirely of an invocation of the callmethod macro whose

�rst subform is a method object and whose second subform is nil� Each

definemethodcombination body is responsible for stripping o	 redundant

invocations of progn� and� multiplevalueprog
� and the like� if this opti�

mization is desired�

The list ��arguments � lambdalist� can appear before any declaration or

documentation string� This form is useful when the method combination type
performs some speci�c behavior as part of the combined method and that be�

havior needs access to the arguments to the generic function� Each parameter

variable de�ned by lambda�list is bound to a form that can be inserted into the

e	ective method� When this form is evaluated during execution of the e	ec�
tive method� its value is the corresponding argument to the generic function�

If lambda�list is not congruent to the generic function�s lambda�list� additional

ignored parameters are automatically inserted until it is congruent� Thus it is

permissible for lambda�list to receive fewer arguments than the number that

the generic function expects�

Erroneous conditions detected by the body should be reported with method

combinationerror or invalidmethoderror� these functions add any neces�
sary contextual information to the error message and will signal the appro�

priate error�

The body forms are evaluated inside the bindings created by the lambda�

list and method group speci�ers� Declarations at the head of the body are

positioned directly inside bindings created by the lambda�list and outside the

bindings of the method group variables� Thus method group variables cannot

be declared�

Within the body forms � generic�function�symbol is bound to the generic

function object�

If a doc�string argument is present� it provides the documentation for the

method combination type�

COMMON LISP OBJECT SYSTEM ���

The functions methodcombinationerror and invalidmethoderror can be

called from the body forms or from functions called by the body forms �

The actions of these two functions can depend on implementation�dependent

dynamic variables automatically bound before the generic function compute

effectivemethod is called�

Note that two methods with identical specializers� but with di	erent qual�

i�ers� are not ordered by the algorithm described in step � of the method

selection and combination process described in section ������� Normally the
two methods play di	erent roles in the e	ective method because they have

di	erent quali�ers� and no matter how they are ordered in the result of step �

the e	ective method is the same� If the two methods play the same role and

their order matters� an error is signaled� This happens as part of the quali�er

pattern matching in definemethodcombination�

��� COMMON LISP

The value returned by the definemethodcombination macro is the new

method combination object�

Most examples of the long form of definemethodcombination also illus�
trate the use of the related functions that are provided as part of the declar�

ative method combination facility�

��� Examples of the short form of definemethodcombination

�definemethodcombination and �identitywithoneargument t�

�defmethod func and ��x class
� y�

����

��� The equivalent of this example in the long form is�

�definemethodcombination and

��optional �order �mostspecificfirst��

��around ��around��

�primary �and� �order order �required t��

�let ��form �if �rest primary�

�and �#�mapcar ��� �lambda �method�

�callmethod �method ����

primary��

�callmethod ��first primary� ������

�if around

�callmethod ��first around�

��#�rest around�

�makemethod �form���

form���

��� Examples of the long form of definemethodcombination

��� The default methodcombination technique

�definemethodcombination standard ��

��around ��around��

�before ��before��

�primary �� �required t�

�after ��after���

COMMON LISP OBJECT SYSTEM ��	

�flet ��callmethods �methods�

�mapcar ��� �lambda �method�

�callmethod �method ����

methods���

�let ��form �if �or before after �rest primary��

�multiplevalueprog

�progn �#�callmethods before�

�callmethod ��first primary�

��rest primary���

�#�callmethods �reverse after���

�callmethod ��first primary� ������

�if around

�callmethod ��first around�

��#�rest around�

�makemethod �form���

form����

��� A simple way to try several methods until one returns nonnil

�definemethodcombination or ��

��methods �or���

�or �#�mapcar ��� �lambda �method�

�callmethod �method ����

methods���

��� A more complete version of the preceding

�definemethodcombination or

��optional �order �mostspecificfirst��

��around ��around��

�primary �or���

�� Process the order argument

�case order

��mostspecificfirst�

��mostspecificlast �setq primary �reverse primary���

�otherwise �methodcombinationerror

� S is an invalid order� #

�mostspecificfirst and �mostspecificlast

are the possible values��

order���

��
 COMMON LISP

�� Must have a primary method

�unless primary

�methodcombinationerror �A primary method is required����

�� Construct the form that calls the primary methods

�let ��form �if �rest primary�

�or �#�mapcar ��� �lambda �method�

�callmethod �method ����

primary��

�callmethod ��first primary� ������

�� Wrap the around methods around that form

�if around

�callmethod ��first around�

��#�rest around�

�makemethod �form���

form���

��� The same thing� using the �order and �required keyword options

�definemethodcombination or

��optional �order �mostspecificfirst��

��around ��around��

�primary �or� �order order �required t��

�let ��form �if �rest primary�

�or �#�mapcar ��� �lambda �method�

�callmethod �method ����

primary��

�callmethod ��first primary� ������

�if around

�callmethod ��first around�

��#�rest around�

�makemethod �form���

form���

��� This shortform call is behaviorally identical to the preceding�

�definemethodcombination or �identitywithoneargument t�

��� Order methods by positive integer qualifiers� note that �around

��� methods are disallowed here in order to keep the example small�

�definemethodcombination examplemethodcombination ��

��methods positiveintegerqualifierp��

COMMON LISP OBJECT SYSTEM ���

�progn �#�mapcar ��� �lambda �method�

�callmethod �method ����

�stablesort methods ��� �

�key ��� �lambda �method�

�first �methodqualifiers

method�������

�defun positiveintegerqualifierp �methodqualifiers�

�and � �length methodqualifiers�
�

�typep �first methodqualifiers� �integer �
����

��� Example of the use of �arguments

�definemethodcombination prognwithlock ��

��methods ����

��arguments object�

�unwindprotect

�progn �lock �objectlock �object��

�#�mapcar ��� �lambda �method�

�callmethod �method ����

methods��

�unlock �objectlock �object����

The �methodcombination option of defgeneric is used to specify that a

generic function should use a particular method combination type� The argu�

ment to the �methodcombinationoption is the name of a method combination

type�

See sections ������ and �������� as well as callmethod� methodqualifiers�

methodcombinationerror� invalidmethoderror� and defgeneric�

�Macro�defmethod function�name fmethod�quali
erg�
specialized�lambda�list
�� fdeclarationg� j doc�string �� f formg�

function�name ��" fsymbol j �setf symbol�g
method�quali
er ��" non�nil�atom

parameter�specializer�name ��" symbol j �eql eqlspecializerform�

The macro defmethod de�nes a method on a generic function�

If �fboundp functionname� is nil� a generic function is created with de�

fault values for the argument precedence order
each argument is more speci�c

��� COMMON LISP

than the arguments to its right in the argument list�� for the generic func�

tion class
the class standardgenericfunction�� for the method class
the

class standardmethod�� and for the method combination type
the standard

method combination type�� The lambda�list of the generic function is con�

gruent with the lambda�list of the method being de�ned� if the defmethod

form mentions keyword arguments� the lambda�list of the generic function

will mention �key
but no keyword arguments�� If function�name names a

non�generic function� a macro� or a special form� an error is signaled�

If a generic function is currently named by function�name� where function�

name is a symbol or a list of the form �setf symbol�� the lambda�list of the

method must be congruent with the lambda�list of the generic function� If

this condition does not hold� an error is signaled� See section �������� for a
de�nition of congruence in this context�

The function�name argument is a non�nil symbol or a list of the form �setf

symbol�� It names the generic function on which the method is de�ned�

Each method�quali
er argument is an object that is used by method com�

bination to identify the given method� A method quali�er is a non�nil atom�
The method combination type may further restrict what a method quali�er

may be� The standard method combination type allows for unquali�ed meth�

ods or methods whose sole quali�er is the keyword �before� the keyword

�after� or the keyword �around�

A specialized�lambda�list is like an ordinary function lambda�list except that

the name of a required parameter can be replaced by a specialized parameter�

a list of the form �variablename parameterspecializername�� Only required
parameters may be specialized� A parameter specializer name is a symbol that

names a class or �eql eqlspecializerform�� The parameter specializer name

�eql eqlspecializerform� indicates that the corresponding argument must be

eql to the object that is the value of eql�specializer�form for the method

to be applicable� If no parameter specializer name is speci�ed for a given
required parameter� the parameter specializer defaults to the class named t�

See section ���������

The form arguments specify the method body� The body of the method is
enclosed in an implicit block� If function�name is a symbol� this block bears

the same name as the generic function� If function�name is a list of the form

�setf symbol�� the name of the block is symbol�

The result of defmethod is the method object�

The class of the method object that is created is that given by the method
class option of the generic function on which the method is de�ned�

If the generic function already has a method that agrees with the method

being de�ned on parameter specializers and quali�ers� defmethod replaces the

COMMON LISP OBJECT SYSTEM ���

existing method with the one now being de�ned� See section �������� for a

de�nition of agreement in this context�

The parameter specializers are derived from the parameter specializer

names as described in section ���������

The expansion of the defmethod macro refers to each specialized parame�
ter
see the ignore declaration speci�er�� including parameters that have an

explicit parameter specializer name of t� This means that a compiler warning

does not occur if the body of the method does not refer to a specialized pa�

rameter� Note that a parameter that specializes on t is not synonymous with

an unspecialized parameter in this context�

See sections ��������� ��������� and ���������

�At this point the original CLOS report ��� �� contained a speci�cation for

describe as a generic function� This speci�cation is omitted here because

X�J�� voted in March ���� h��i not to make describe a generic function

after all
see describeobject��!GLS�

�Generic function�documentation x �optional doctype

�Primary method �documentation

�method standardmethod� �optional doctype

�Primary method �documentation

�genericfunction standardgenericfunction� �optional

doctype

�Primary method �documentation �class standardclass� �optional

doctype

�Primary method �documentation

�methodcombination methodcombination� �optional

doctype

�Primary method �documentation

�slotdescription standardslotdescription� �optional

doctype

�Primary method �documentation �symbol symbol� �optional doctype

�Primary method �documentation �list list� �optional doctype

The ordinary function documentation
see section ����� is replaced by a
generic function� The generic function documentation returns the docu�

mentation string associated with the given object if it is available� otherwise

documentation returns nil�

The �rst argument of documentation is a symbol� a function�name list of

the form �setf symbol�� a method object� a class object� a generic function

��� COMMON LISP

object� a method combination object� or a slot description object� Whether a

second argument should be supplied depends on the type of the �rst argument�

� If the �rst argument is a method object� a class object� a generic func�

tion object� a method combination object� or a slot description object� the

second argument must not be supplied� or an error is signaled�

� If the �rst argument is a symbol or a list of the form �setf symbol�� the
second argument must be supplied�

� The forms

�documentation symbol function�

and

�documentation �setf symbol� function�

return the documentation string of the function� generic function� special
form� or macro named by the symbol or list�

� The form �documentation symbol variable� returns the documenta�

tion string of the special variable or constant named by the symbol�

� The form �documentation symbol structure� returns the documen�

tation string of the defstruct structure named by the symbol�

� The form �documentation symbol type� returns the documentation

string of the class object named by the symbol� if there is such a class�

If there is no such class� it returns the documentation string of the type
speci�er named by the symbol�

� The form �documentation symbol setf� returns the documentation

string of the defsetf or definesetfmethod de�nition associated with

the symbol�

� The form �documentation symbol methodcombination� returns the

documentation string of the method combination type named by the

symbol�

An implementation may extend the set of symbols that are acceptable as
the second argument� If a symbol is not recognized as an acceptable argument

by the implementation� an error must be signaled�

The documentation string associated with the given object is returned un�

less none is available� in which case documentation returns nil�

COMMON LISP OBJECT SYSTEM ���

�Generic function��setf documentation� newvalue x �optional

doctype

�Primary method ��setf documentation� newvalue

�method standardmethod� �optional doctype

�Primary method ��setf documentation� newvalue
�genericfunction standardgenericfunction� �optional doctype

�Primary method ��setf documentation� newvalue

�class standardclass� �optional doctype

�Primary method ��setf documentation� newvalue
�methodcombination methodcombination� �optional doctype

�Primary method ��setf documentation� newvalue

�slotdescription standardslotdescription� �optional doctype

�Primary method ��setf documentation� newvalue

�symbol symbol� �optional doctype
�Primary method ��setf documentation� newvalue

�list list� �optional doctype

The generic function �setf documentation� is used to update the documen�
tation�

The �rst argument of �setf documentation� is the new documentation�

The second argument of documentation is a symbol� a function�name list of

the form �setf symbol�� a method object� a class object� a generic function

object� a method combination object� or a slot description object� Whether
a third argument should be supplied depends on the type of the second argu�

ment� See documentation�

�Function�ensuregenericfunction functionname �key �lambdalist

�argumentprecedenceorder �declare �documentation

�genericfunctionclass �methodcombination �methodclass

�environment

function�name ��" fsymbol j �setf symbol�g
The function ensuregenericfunction is used to de�ne a globally named

generic function with no methods or to specify or modify options and decla�

rations that pertain to a globally named generic function as a whole�
If �fboundp functionname� is nil� a new generic function is created� If

�fdefinition functionname� is a non�generic function� a macro� or a special

form� an error is signaled�

�X�J�� voted in March ���� h��i to use fdefinition in the previous para�

graph� as shown� rather than symbolfunction� as it appeared in the original

��� COMMON LISP

report on CLOS ��� ��� The vote also changed all occurrences of function�

speci
er in the original report to function�name� this change is re
ected

here�!GLS�

If function�name speci�es a generic function that has a di	erent value for

any of the following arguments� the generic function is modi�ed to have

the new value� �argumentprecedenceorder� �declare� �documentation�

�methodcombination�

If function�name speci�es a generic function that has a di	erent value for

the �lambdalist argument� and the new value is congruent with the lambda�
lists of all existing methods or there are no methods� the value is changed�

otherwise an error is signaled�

If function�name speci�es a generic function that has a di	erent value for

the �genericfunctionclass argument and if the new generic function class

is compatible with the old� changeclass is called to change the class of the

generic function� otherwise an error is signaled�

If function�name speci�es a generic function that has a di	erent

�methodclass value� the value is changed but any existing methods are not

changed�

The function�name argument is a symbol or a list of the form �setf sym�

bol��

The keyword arguments correspond to the option arguments of defgeneric�

except that the �methodclass and �genericfunctionclass arguments can
be class objects as well as names�

The �environment argument is the same as the �environment argument
to macro expansion functions� It is typically used to distinguish between

compile�time and run�time environments�

The �methodcombination argument is a method combination object�

The generic function object is returned� See defgeneric�

�Function�findclass symbol �optional errorp environment

The function findclass returns the class object named by the given symbol

in the given environment�

The �rst argument to findclass is a symbol�

If there is no such class and the errorp argument is not supplied or is non�

nil� findclass signals an error� If there is no such class and the errorp

argument is nil� findclass returns nil� The default value of errorp is t�

The optional environment argument is the same as the �environment argu�

ment to macro expansion functions� It is typically used to distinguish between

compile�time and run�time environments�

COMMON LISP OBJECT SYSTEM ���

The result of findclass is the class object named by the given symbol�

The class associated with a particular symbol can be changed by using setf

with findclass� The results are unde�ned if the user attempts to change the

class associated with a symbol that is de�ned as a type speci�er in chapter ��

See section �������

�Generic function�findmethod genericfunction methodquali
ers
specializers �optional errorp

�Primary method �findmethod

�genericfunction standardgenericfunction� methodquali
ers

specializers �optional errorp

The generic function findmethod takes a generic function and returns the

method object that agrees on method quali�ers and parameter specializers

with the method�quali
ers and specializers arguments of findmethod� See

section �������� for a de�nition of agreement in this context�
The generic�function argument is a generic function�

The method�quali
ers argument is a list of the method quali�ers for the

method� The order of the method quali�ers is signi�cant�

The specializers argument is a list of the parameter specializers for the
method� It must correspond in length to the number of required arguments

of the generic function� or an error is signaled� This means that to obtain

the default method on a given generic function� a list whose elements are the

class named t must be given�

If there is no such method and the errorp argument is not supplied or is
non�nil� findmethod signals an error� If there is no such method and the

errorp argument is nil� findmethod returns nil� The default value of errorp

is t�

The result of findmethod is the method object with the given method
quali�ers and parameter specializers�

See section ���������

�Generic function�functionkeywords method

�Primary method �functionkeywords �method standardmethod�

The generic function functionkeywords is used to return the keyword pa�
rameter speci�ers for a given method�

The method argument is a method object�

The generic function functionkeywords returns two values� a list of the ex�

plicitly named keywords and a boolean that states whether �allowotherkeys

had been speci�ed in the method de�nition�

��� COMMON LISP

�Special form�genericflet � f�function�name lambda�list
�� �option j fmethod�descriptiong� �� �g� �

f formg�

The genericflet special form is analogous to the flet special form� It

produces new generic functions and establishes new lexical function de�nition
bindings� Each generic function is created with the set of methods speci�ed

by its method descriptions�

The special form genericflet is used to de�ne generic functions whose

names are meaningful only locally and to execute a series of forms with these

function de�nition bindings� Any number of such local generic functions may

be de�ned�

The names of functions de�ned by genericflet have lexical scope� they
retain their local de�nitions only within the body of the genericflet� Any

references within the body of the genericflet to functions whose names are

the same as those de�ned within the genericflet are thus references to the

local functions instead of to any global functions of the same names� The
scope of these generic function de�nition bindings� however� includes only the

body of genericflet� not the de�nitions themselves� Within the method

bodies� local function names that match those being de�ned refer to global

functions de�ned outside the genericflet� It is thus not possible to de�ne

recursive functions with genericflet�

The function�name� lambda�list � option� method�quali
er� and specialized�
lambda�list arguments are the same as for defgeneric�

A genericflet local method de�nition is identical in form to the method

de�nition part of a defmethod�

The body of each method is enclosed in an implicit block� If function�

name is a symbol� this block bears the same name as the generic function� If

function�name is a list of the form �setf symbol�� the name of the block is

symbol�

The result returned by genericflet is the value or values returned by the
last form executed� If no forms are speci�ed� genericflet returns nil�

See genericlabels� defmethod� defgeneric� and genericfunction�

�Macro�genericfunction lambda�list �� �option j fmethod�descriptiong� ��

option ��" ��argumentprecedenceorder fparameternameg� �

j �declare fdeclarationg� �

j ��documentation string�

j ��methodcombination symbol fargg� �

COMMON LISP OBJECT SYSTEM ��	

j ��genericfunctionclass classname�

j ��methodclass classname�

method�description ��" ��method fmethod�quali
erg�
specialized�lambda�list

fdeclaration j documentationg�
f formg� �

The genericfunction macro creates an anonymous generic function� The

generic function is created with the set of methods speci�ed by its method

descriptions�

The option� method�quali
er� and specialized�lambda�list arguments are the
same as for defgeneric�

The generic function object is returned as the result�

If no method descriptions are speci�ed� an anonymous generic function with

no methods is created�
See defgeneric� genericflet� genericlabels� and defmethod�

�Special form�genericlabels � f�function�name lambda�list
�� �option j fmethod�descriptiong� �� �g� �

f formg�

The genericlabels special form is analogous to the labels special form� It

produces new generic functions and establishes new lexical function de�nition
bindings� Each generic function is created with the set of methods speci�ed

by its method descriptions�

The special form genericlabels is used to de�ne generic functions whose

names are meaningful only locally and to execute a series of forms with these
function de�nition bindings� Any number of such local generic functions may

be de�ned�

The names of functions de�ned by genericlabels have lexical scope� they

retain their local de�nitions only within the body of the genericlabels

construct� Any references within the body of the genericlabels con�
struct to functions whose names are the same as those de�ned within the

genericlabels form are thus references to the local functions instead of to

any global functions of the same names� The scope of these generic function

de�nition bindings includes the method bodies themselves as well as the body
of the genericlabels construct�

The function�name� lambda�list � option� method�quali
er� and specialized�

lambda�list arguments are the same as for defgeneric�

A genericlabels local method de�nition is identical in form to the method

de�nition part of a defmethod�

��
 COMMON LISP

The body of each method is enclosed in an implicit block� If function�

name is a symbol� this block bears the same name as the generic function� If

function�name is a list of the form �setf symbol�� the name of the block is

symbol�

The result returned by genericlabels is the value or values returned by

the last form executed� If no forms are speci�ed� genericlabels returns nil�

See genericflet� defmethod� defgeneric� genericfunction�

�Generic function�initializeinstance instance �rest initargs

�Primary method �initializeinstance �instance standardobject�

�rest initargs

The generic function initializeinstance is called by makeinstance to ini�

tialize a newly created instance� The generic function initializeinstance

is called with the new instance and the defaulted initialization arguments�

The system�supplied primary method on initializeinstance initializes

the slots of the instance with values according to the initialization arguments

and the �initform forms of the slots� It does this by calling the generic
function sharedinitialize with the following arguments� the instance� t

this indicates that all slots for which no initialization arguments are provided

should be initialized according to their �initform forms� and the defaulted

initialization arguments�

The instance argument is the object to be initialized�

The initargs argument consists of alternating initialization argument names

and values�

The modi�ed instance is returned as the result�

Programmers can de�ne methods for initializeinstance to specify ac�

tions to be taken when an instance is initialized� If only �after methods

are de�ned� they will be run after the system�supplied primary method for
initialization and therefore will not interfere with the default behavior of

initializeinstance�

See sections ������� ��������� and �������� as well as sharedinitialize�

makeinstance� slotboundp� and slotmakunbound�

�Function�invalidmethoderror method formatstring �rest args

The function invalidmethoderror is used to signal an error when there is an

applicable method whose quali�ers are not valid for the method combination

type� The error message is constructed by using a format string and any

arguments to it� Because an implementation may need to add additional

COMMON LISP OBJECT SYSTEM ���

contextual information to the error message� invalidmethoderror should be

called only within the dynamic extent of a method combination function�

The function invalidmethoderror is called automatically when a method

fails to satisfy every quali�er pattern and predicate in a definemethod

combination form� A method combination function that imposes addi�

tional restrictions should call invalidmethoderror explicitly if it encounters
a method it cannot accept�

The method argument is the invalid method object�

The format�string argument is a control string that can be given to format�

and args are any arguments required by that string�

Whether invalidmethoderror returns to its caller or exits via throw is

implementation�dependent�

See definemethodcombination�

�Generic function�makeinstance class �rest initargs

�Primary method �makeinstance �class standardclass� �rest initargs

�Primary method �makeinstance �class symbol� �rest initargs

The generic function makeinstance creates a new instance of the given class�

The generic function makeinstance may be used as described in sec�

tion �������

The class argument is a class object or a symbol that names a class� The

remaining arguments form a list of alternating initialization argument names

and values�

If the second of the preceding methods is selected� that method invokes

makeinstance on the arguments �findclass class� and initargs�

The initialization arguments are checked within makeinstance
see sec�
tion ��������

The new instance is returned�

The meta�object protocol can be used to de�ne new methods on
makeinstance to replace the object�creation protocol�

See section ������ as well as defclass� initializeinstance� and classof�

�Generic function�makeinstancesobsolete class

�Primary method �makeinstancesobsolete �class standardclass�

�Primary method �makeinstancesobsolete �class symbol�

The generic function makeinstancesobsolete is invoked automatically by

the system when defclass has been used to rede�ne an existing standard

��� COMMON LISP

class and the set of local slots accessible in an instance is changed or the order

of slots in storage is changed� It can also be explicitly invoked by the user�

The function makeinstancesobsolete has the e	ect of initiating the pro�
cess of updating the instances of the class� During updating� the generic

function updateinstanceforredefinedclass will be invoked�

The class argument is a class object symbol that names the class whose
instances are to be made obsolete�

If the second of the preceding methods is selected� that method invokes

makeinstancesobsolete on �findclass class��

The modi�ed class is returned� The result of makeinstancesobsolete is

eq to the class argument supplied to the �rst of the preceding methods�

See section ������� as well as updateinstanceforredefinedclass�

�Function�methodcombinationerror formatstring �rest args

The function methodcombinationerror is used to signal an error in method

combination� The error message is constructed by using a format string
and any arguments to it� Because an implementation may need to add addi�

tional contextual information to the error message� methodcombinationerror

should be called only within the dynamic extent of a method combination

function�

The format�string argument is a control string that can be given to format�

and args are any arguments required by that string�

Whether methodcombinationerror returns to its caller or exits via throw

is implementation�dependent�

See definemethodcombination�

�Generic function�methodqualifiers method

�Primary method �methodqualifiers �method standardmethod�

The generic function methodqualifiers returns a list of the quali�ers of the

given method�

The method argument is a method object�

A list of the quali�ers of the given method is returned�

Example�

�setq methods �removeduplicates methods

�fromend t

�key ��� methodqualifiers

�test ��� equal��

COMMON LISP OBJECT SYSTEM ���

See definemethodcombination�

�Function�nextmethodp

The locally de�ned function nextmethodp can be used within the body of

a method de�ned by a method�de�ning form to determine whether a next
method exists�

The function nextmethodp takes no arguments�

The function nextmethodp returns true or false�

Like callnextmethod� the function nextmethodp has lexical scope
for it is

de�ned only within the body of a method de�ned by a method�de�ning form�
and inde�nite extent�

See callnextmethod�

�Generic function�noapplicablemethod genericfunction

�rest functionarguments

�Primary method �noapplicablemethod �genericfunction t�

�rest functionarguments

The generic function noapplicablemethod is called when a generic function

of the class standardgenericfunction is invoked and no method on that
generic function is applicable� The default method signals an error�

The generic function noapplicablemethod is not intended to be called by

programmers� Programmers may write methods for it�

The generic�function argument of noapplicablemethod is the generic func�

tion object on which no applicable method was found�
The function�arguments argument is a list of the arguments to that generic

function�

�Generic function�nonextmethod genericfunction method �rest args

�Primary method �nonextmethod

�genericfunction standardgenericfunction�

�method standardmethod� �rest args

The generic function nonextmethod is called by callnextmethod when there

is no next method� The system�supplied method on nonextmethod signals an
error�

The generic function nonextmethod is not intended to be called by pro�

grammers� Programmers may write methods for it�

The generic�function argument is the generic function object to which the

method that is the second argument belongs�

��� COMMON LISP

The method argument is the method that contains the call to

callnextmethod for which there is no next method�

The args argument is a list of the arguments to callnextmethod�

See callnextmethod�

�Generic function�printobject object stream

�Primary method �printobject �object standardobject� stream

The generic function printobject writes the printed representation of an

object to a stream� The function printobject is called by the print system�

it should not be called by the user�

COMMON LISP OBJECT SYSTEM ���

Each implementation must provide a method on the class standardobject

and methods on enough other classes so as to ensure that there is always an

applicable method� Implementations are free to add methods for other classes�

Users can write methods for printobject for their own classes if they do not

wish to inherit an implementation�supplied method�

The �rst argument is any Lisp object� The second argument is a stream� it
cannot be t or nil�

The function printobject returns its �rst argument� the object�

Methods on printobject must obey the print control special variables

named
printxxx
 for various xxx� The speci�c details are the following�

� Each method must implement
printescape
�

� The
printpretty
 control variable can be ignored by most methods other

than the one for lists�

� The
printcircle
 control variable is handled by the printer and can be

ignored by methods�

� The printer takes care of
printlevel
 automatically� provided that each

method handles exactly one level of structure and calls write
or an equiv�
alent function� recursively if there are more structural levels� The printer�s

decision of whether an object has components
and therefore should not

be printed when the printing depth is not less than
printlevel
� is

implementation�dependent� In some implementations its printobject

method is not called� in others the method is called� and the determination

that the object has components is based on what it tries to write to the

stream�

� Methods
that produce output of inde�nite length must obey
printlength
� but

most methods other than the one for lists can ignore it�

� The
printbase
�
printradix
�
printcase
�
printgensym
� and

printarray
 control variables apply to speci�c types of objects and are
handled by the methods for those objects�

� X�J�� voted in June ���� h��i to add the following point� All methods for

printobject must obey
printreadably
� which takes precedence over

all other printer control variables� This includes both user�de�ned methods

and implementation�de�ned methods�

If these rules are not obeyed� the results are unde�ned�

��� COMMON LISP

In general� the printer and the printobjectmethods should not rebind the

print control variables as they operate recursively through the structure� but

this is implementation�dependent�

In some implementations the stream argument passed to a printobject

method is not the original stream but is an intermediate stream that im�

plements part of the printer� Methods should therefore not depend on the

identity of this stream�

All of the existing printing functions
write� prin
� print� princ� pprint�

writetostring� prin
tostring� princtostring� the S and A format op�
erations� and the B� D� E� F� G� !� O� R� and X format operations when

they encounter a non�numeric value� are required to be changed to go through

the printobject generic function� Each implementation is required to replace

its former implementation of printing with one or more printobject meth�

ods� Exactly which classes have methods for printobject is not speci�ed�
it would be valid for an implementation to have one default method that is

inherited by all system�de�ned classes�

�Generic function�reinitializeinstance instance �rest initargs

�Primary method �reinitializeinstance �instance standardobject�

�rest initargs

The generic function reinitializeinstance can be used to change the values

of local slots according to initialization arguments� This generic function is

called by the Meta�Object Protocol� It can also be called by users�

The system�supplied primary method for reinitializeinstance checks

the validity of initialization arguments and signals an error if an initializa�
tion argument is supplied that is not declared valid� The method then calls

the generic function sharedinitialize with the following arguments� the

instance� nil
which means no slots should be initialized according to their

�initform forms� and the initialization arguments it received�

The instance argument is the object to be initialized�

The initargs argument consists of alternating initialization argument names

and values�

The modi�ed instance is returned as the result�

Initialization arguments are declared valid by using the �initarg option
to defclass� or by de�ning methods for reinitializeinstance or shared

initialize� The keyword name of each keyword parameter speci�er in

the lambda�list of any method de�ned on reinitializeinstance or shared

initialize is declared a valid initialization argument name for all classes for

which that method is applicable�

COMMON LISP OBJECT SYSTEM ���

See sec�

tions �������� ��������� �������� as well as initializeinstance� slotboundp�

updateinstanceforredefinedclass� updateinstancefordifferentclass�

slotmakunbound� and sharedinitialize�

�Generic function�removemethod genericfunction method

�Primary method �removemethod

�genericfunction standardgenericfunction� method

The generic function removemethod removes a method from a generic func�

tion� It destructively modi�es the speci�ed generic function and returns the

modi�ed generic function as its result�

The generic�function argument is a generic function object�

Themethod argument is a method object� The function removemethod does

not signal an error if the method is not one of the methods on the generic

function�

The modi�ed generic function is returned� The result of removemethod is

eq to the generic�function argument�

See findmethod�

�Generic function�sharedinitialize instance slotnames �rest initargs

�Primary method �sharedinitialize �instance standardobject�

slotnames �rest initargs

The generic function sharedinitialize is used to �ll the slots of an instance

using initialization arguments and �initform forms� It is called when an

instance is created� when an instance is re�initialized� when an instance is

updated to conform to a rede�ned class� and when an instance is updated
to conform to a di	erent class� The generic function sharedinitialize

is called by the system�supplied primary method for initializeinstance�

reinitializeinstance� updateinstanceforredefinedclass� and update

instancefordifferentclass�

The generic function sharedinitialize takes the following arguments� the

instance to be initialized� a speci�cation of a set of names of slots accessible
in that instance� and any number of initialization arguments� The arguments

after the �rst two must form an initialization argument list� The system�

supplied primary method on sharedinitialize initializes the slots with val�

ues according to the initialization arguments and speci�ed �initform forms�

The second argument indicates which slots should be initialized according to

��� COMMON LISP

their �initform forms if no initialization arguments are provided for those

slots�

The system�supplied primary method behaves as follows� regardless of
whether the slots are local or shared�

� If an initialization argument in the initialization argument list speci�es a

value for that slot� that value is stored into the slot� even if a value has

already been stored in the slot before the method is run�

� Any slots indicated by the second argument that are still unbound at this

point are initialized according to their �initform forms� For any such

slot that has an �initform form� that form is evaluated in the lexical

environment of its de�ning defclass form and the result is stored into

the slot� For example� if a �before method stores a value in the slot� the
�initform form will not be used to supply a value for the slot�

� The rules mentioned in section �������� are obeyed�

The instance argument is the object to be initialized�

The slot�names argument speci�es the slots that are to be initialized ac�

cording to their �initform forms if no initialization arguments apply� It is

supplied in one of three forms as follows�

� It can be a list of slot names� which speci�es the set of those slot names�

� It can be nil� which speci�es the empty set of slot names�

� It can be the symbol t� which speci�es the set of all of the slots�

The initargs argument consists of alternating initialization argument names

and values�

The modi�ed instance is returned as the result�

Initialization arguments are declared valid by using the �initarg option to

defclass� or by de�ning methods for sharedinitialize� The keyword name

of each keyword parameter speci�er in the lambda�list of any method de�ned
on sharedinitialize is declared a valid initialization argument name for all

classes for which that method is applicable�

Implementations are permitted to optimize �initform forms that neither
produce nor depend on side e	ects by evaluating these forms and storing

them into slots before running any initializeinstance methods� rather

than by handling them in the primary initializeinstance method�
This

optimization might be implemented by having the allocateinstancemethod

copy a prototype instance��

COMMON LISP OBJECT SYSTEM ��	

Implementations are permitted to optimize default initial value forms for

initialization arguments associated with slots by not actually creating the

complete initialization argument list when the only method that would receive

the complete list is the method on standardobject� In this case� default

initial value forms can be treated like �initform forms� This optimization
has no visible e	ects other than a performance improvement�

See sections �������

��������� �������� as well as initializeinstance� reinitializeinstance�

updateinstanceforredefinedclass� updateinstancefordifferentclass�

slotboundp� and slotmakunbound�

�Function�slotboundp instance slotname

The function slotboundp tests whether a speci�c slot in an instance is bound�

The arguments are the instance and the name of the slot�

The function slotboundp returns true or false�

This function allows for writing �after methods on initializeinstance

in order to initialize only those slots that have not already been bound�

If no slot of the given name exists in the instance� slotmissing is called as

follows�

�slotmissing �classof instance�

instance

slot�name

slotboundp�

The function slotboundp is implemented using slotboundpusingclass�
See slotmissing�

�Function�slotexistsp object slotname

The function slotexistsp tests whether the speci�ed object has a slot of the

given name�

The object argument is any object� The slot�name argument is a symbol�
The function slotexistsp returns true or false�

The function slotexistsp is implemented using slotexistspusingclass�

�Function�slotmakunbound instance slotname

The function slotmakunbound restores a slot in an instance to the unbound

state�

��
 COMMON LISP

The arguments to slotmakunbound are the instance and the name of the

slot�

The instance is returned as the result�

If no slot of the given name exists in the instance� slotmissing is called as

follows�

�slotmissing �classof instance�

instance
slot�name

slotmakunbound�

The function slotmakunbound is implemented using slotmakunboundusing

class� See slotmissing�

�Generic function�slotmissing class object slotname operation

�optional newvalue

�Primary method �slotmissing �class t� object slotname operation
�optional newvalue

The generic function slotmissing is invoked when an attempt is made to

access a slot in an object whose metaclass is standardclass and the name

of the slot provided is not a name of a slot in that class� The default method
signals an error�

The generic function slotmissing is not intended to be called by program�

mers� Programmers may write methods for it�

The required arguments to slotmissing are the class of the object that

is being accessed� the object� the slot name� and a symbol that indicates the
operation that caused slotmissing to be invoked� The optional argument to

slotmissing is used when the operation is attempting to set the value of the

slot�

If a method written for slotmissing returns values� these values get re�

turned as the values of the original function invocation�

The generic function slotmissing may be called during evaluation of
slotvalue� �setf slotvalue�� slotboundp� and slotmakunbound� For each

of these operations the corresponding symbol for the operation argument is

slotvalue� setf� slotboundp� and slotmakunbound� respectively�

The set of arguments
including the class of the instance� facilitates de�ning

methods on the metaclass for slotmissing�

COMMON LISP OBJECT SYSTEM ���

�Generic function�slotunbound class instance slotname

�Primary method �slotunbound �class t� instance slotname

The generic function slotunbound is called when an unbound slot is read in

an instance whose metaclass is standardclass� The default method signals
an error�

The generic function slotunbound is not intended to be called by program�

mers� Programmers may write methods for it� The function slotunbound

is called only by the function slotvalueusingclass and thus indirectly by
slotvalue�

The arguments to slotunbound are the class of the instance whose slot was

accessed� the instance itself� and the name of the slot�

If a method written for slotunbound returns values� these values get re�

turned as the values of the original function invocation�
An unbound slot may occur if no �initform form was speci�ed for the slot

and the slot value has not been set� or if slotmakunbound has been called on

the slot�

See slotmakunbound�

�Function�slotvalue object slotname

The function slotvalue returns the value contained in the slot slot�name of

the given object� If there is no slot with that name� slotmissing is called� If

the slot is unbound� slotunbound is called�

The macro setf can be used with slotvalue to change the value of a slot�
The arguments are the object and the name of the given slot�

The result is the value contained in the given slot�

If an attempt is made to read a slot and no slot of the given name exists in

the instance� slotmissing is called as follows�

�slotmissing �classof instance�

instance

slot�name

slotvalue�

If an attempt is made to write a slot and no slot of the given name exists
in the instance� slotmissing is called as follows�

�slotmissing �classof instance�

instance

slot�name

setf

��� COMMON LISP

new�value�

The function slotvalue is implemented using slotvalueusingclass�

Implementations may optimize slotvalue by compiling it in�line�

See slotmissing and slotunbound�

�At this point the original CLOS report ��� �� contained a speci�cation for
symbolmacrolet� This speci�cation is omitted here� Instead� a description of

symbolmacrolet appears with those of related constructs in chapter ��!GLS�

�Generic function�updateinstancefordifferentclass

previous current �rest initargs

�Primary method �updateinstancefordifferentclass

�previous standardobject� �current standardobject� �rest initargs

The generic function updateinstancefordifferentclass is not intended to
be called by programmers� Programmers may write methods for it� This

function is called only by the function changeclass�

The system�supplied primary method on updateinstancefordifferent

class checks the validity of initialization arguments and signals an error if

an initialization argument is supplied that is not declared valid� This method
then initializes slots with values according to the initialization arguments and

initializes the newly added slots with values according to their �initform

forms� It does this by calling the generic function sharedinitialize with

the following arguments� the instance� a list of names of the newly added slots�
and the initialization arguments it received� Newly added slots are those local

slots for which no slot of the same name exists in the previous class�

Methods for updateinstancefordifferentclass can be de�ned to specify

actions to be taken when an instance is updated� If only �after methods

for updateinstancefordifferentclass are de�ned� they will be run after

the system�supplied primary method for initialization and therefore will not
interfere with the default behavior of updateinstancefordifferentclass�

The arguments to updateinstancefordifferentclass are computed by

changeclass� When changeclass is invoked on an instance� a copy of that

instance is made� changeclass then destructively alters the original instance�

The �rst argument to updateinstancefordifferentclass� previous � is that
copy� it holds the old slot values temporarily� This argument has dynamic ex�

tent within changeclass� if it is referenced in any way once updateinstance

fordifferentclass returns� the results are unde�ned� The second argument

to updateinstancefordifferentclass� current� is the altered original in�

stance�

COMMON LISP OBJECT SYSTEM ���

The intended use of previous is to extract old slot values by using slotvalue

or withslots or by invoking a reader generic function� or to run other methods

that were applicable to instances of the original class�

The initargs argument consists of alternating initialization argument names

and values�

The value returned by updateinstancefordifferentclass is ignored by
changeclass�

See the example for the function changeclass�

Initialization arguments are declared valid by using the �initarg option to

defclass� or by de�ning methods for updateinstancefordifferentclass or

sharedinitialize� The keyword name of each keyword parameter speci�er

in the lambda�list of any method de�ned on updateinstancefordifferent

class or sharedinitialize is declared a valid initialization argument name

for all classes for which that method is applicable�

Methods on updateinstancefordifferentclass can be de�ned to initial�
ize slots di	erently from changeclass� The default behavior of changeclass

is described in section ��������

See sections �������� ��������� and �������� as well as changeclass and

sharedinitialize�

��� COMMON LISP

�Generic function�updateinstanceforredefinedclass

instance addedslots discardedslots propertylist �rest initargs

�Primary method �updateinstanceforredefinedclass

�instance standardobject� addedslots discardedslots propertylist

�rest initargs

The generic function updateinstanceforredefinedclass is not intended to
be called by programmers� Programmers may write methods for it� The

generic function updateinstanceforredefinedclass is called by the mech�

anism activated by makeinstancesobsolete�

The system�supplied primary method on updateinstancefordifferent

class checks the validity of initialization arguments and signals an error if

an initialization argument is supplied that is not declared valid� This method

then initializes slots with values according to the initialization arguments and
initializes the newly added slots with values according to their �initform

forms� It does this by calling the generic function sharedinitialize with

the following arguments� the instance� a list of names of the newly added slots�

and the initialization arguments it received� Newly added slots are those local
slots for which no slot of the same name exists in the old version of the class�

When makeinstancesobsolete is invoked or when a class has been rede�

�ned and an instance is being updated� a property list is created that captures
the slot names and values of all the discarded slots with values in the original

instance� The structure of the instance is transformed so that it conforms to

the current class de�nition� The arguments to updateinstanceforredefined

class are this transformed instance� a list of the names of the new slots added
to the instance� a list of the names of the old slots discarded from the instance�

and the property list containing the slot names and values for slots that were

discarded and had values� Included in this list of discarded slots are slots that

were local in the old class and are shared in the new class�

The initargs argument consists of alternating initialization argument names

and values�

The value returned by updateinstanceforredefinedclass is ignored�

Initialization arguments are declared valid by using the �initarg option to
defclass or by de�ning methods for updateinstanceforredefinedclass or

sharedinitialize� The keyword name of each keyword parameter speci�er

in the lambda�list of any method de�ned on updateinstanceforredefined

class or sharedinitialize is declared a valid initialization argument name
for all classes for which that method is applicable�

See sections �������� ��������� and �������� as well as sharedinitialize

and makeinstancesobsolete�

COMMON LISP OBJECT SYSTEM ���

�defclass position �� ���

�defclass xyposition �position�

��x �initform � �accessor positionx�

�y �initform � �accessor positiony���

��� It turns out polar coordinates are used more than Cartesian

��� coordinates� so the representation is altered and some new

��� accessor methods are added�

�defmethod updateinstanceforredefinedclass �before

��pos xyposition� added deleted plist �key�

�� Transform the xy coordinates to polar coordinates

�� and store into the new slots�

�let ��x �getf plist x��

�y �getf plist y���

�setf �positionrho pos� �sqrt �� �
 x x� �
 y y���

�positiontheta pos� �atan y x����

�defclass xyposition �position�

��rho �initform � �accessor positionrho�

�theta �initform � �accessor positiontheta���

��� All instances of the old xyposition class will be updated

��� automatically�

��� The new representation has the look and feel of the old one�

�defmethod positionx ��pos xyposition��

�withslots �rho theta� pos �
 rho �cos theta����

�defmethod �setf positionx� �newx �pos xyposition��

�withslots �rho theta� pos

�let ��y �positiony pos���

�setq rho �sqrt �� �
 newx newx� �
 y y���

theta �atan y newx��

newx���

�defmethod positiony ��pos xyposition��

�withslots �rho theta� pos �
 rho �sin theta����

��� COMMON LISP

�defmethod �setf positiony� �newy �pos xyposition��

�withslots �rho theta� pos

�let ��x �positionx pos���

�setq rho �sqrt �� �
 x x� �
 newy newy���

theta �atan newy x��

newy���

�Macro�withaccessors � fslot�entryg� � instance�form

fdeclarationg� f formg�

The macro withaccessors creates a lexical environment in which speci�ed
slots are lexically available through their accessors as if they were variables�

The macro withaccessors invokes the appropriate accessors to access the

speci�ed slots� Both setf and setq can be used to set the value of the slot�

The result returned is that obtained by executing the forms speci�ed by

the body argument�

Example�

�withaccessors ��x positionx� �y positiony�� p

�setq x y��

A withaccessors expression of the form

�withaccessors �slot�entry� ��� slot�entryn� instance
declaration� ��� declarationm�

form� ��� formk�

expands into the equivalent of

�let ��in instance��

�symbolmacrolet ��variable�name� �accessor�name� in��

���

�variable�namen �accessor�namen in���

declaration� ��� declarationm�

form� ��� formk�

�X�J�� voted in March ���� h���i to modify the de�nition of

symbolmacrolet substantially and also voted h���i to allow declarations be�

fore the body of symbolmacrolet but with peculiar treatment of special

and type declarations� The syntactic changes are re
ected in this de�nition
of withaccessors�!GLS�

See withslots and symbolmacrolet�

COMMON LISP OBJECT SYSTEM ���

�Special form�withaddedmethods �function�name lambda�list

�� �option j fmethod�descriptiong� �� �

f formg�

The withaddedmethods special form produces new generic functions and es�

tablishes new lexical function de�nition bindings� Each generic function is

created by adding the set of methods speci�ed by its method de�nitions to a

copy of the lexically visible generic function of the same name and its meth�
ods� If such a generic function does not already exist� a new generic function

is created� this generic function has lexical scope�

The special form withaddedmethods is used to de�ne functions whose

names are meaningful only locally and to execute a series of forms with these
function de�nition bindings�

The names of functions de�ned by withaddedmethods have lexical

scope� they retain their local de�nitions only within the body of the

withaddedmethods construct� Any references within the body of the
withaddedmethods construct to functions whose names are the same as those

de�ned within the withaddedmethods form are thus references to the local

functions instead of to any global functions of the same names� The scope of

these generic function de�nition bindings includes the method bodies them�

selves as well as the body of the withaddedmethods construct�

The function�name� option� method�quali
er� and specialized�lambda�list ar�

guments are the same as for defgeneric�

The body of each method is enclosed in an implicit block� If function�
name is a symbol� this block bears the same name as the generic function� If

function�name is a list of the form �setf symbol�� the name of the block is

symbol�

The result returned by withaddedmethods is the value or values of the last
form executed� If no forms are speci�ed� withaddedmethods returns nil�

If a generic function with the given name already exists� the lambda�list

speci�ed in the withaddedmethods form must be congruent with the lambda�

lists of all existing methods on that function as well as with the lambda�lists
of all methods de�ned by the withaddedmethods form� otherwise an error is

signaled�

If function�name speci�es an existing generic function that has a di	erent

value for any of the following option arguments� the copy of that generic
function is modi�ed to have the new value� �argumentprecedenceorder�

declare� �documentation� �genericfunctionclass� �methodcombination�

If function�name speci�es an existing generic function that has a di	erent

value for the �methodclass option argument� that value is changed in the copy

��� COMMON LISP

of that generic function� but any methods copied from the existing generic

function are not changed�

If a function of the given name already exists� that function is copied into

the default method for a generic function of the given name� Note that this
behavior di	ers from that of defgeneric�

If a macro or special form of the given name already exists� an error is

signaled�

If there is no existing generic function� the option arguments have the same
default values as the option arguments to defgeneric�

See genericlabels� genericflet� defmethod� defgeneric� and ensure

genericfunction�

�Macro�withslots � fslot�entryg� � instance�form fdeclarationg� f formg�

slot�entry ��" slot�name j �variablename slotname�

The macro withslots creates a lexical context for referring to speci�ed slots

as though they were variables� Within such a context the value of the slot can
be speci�ed by using its slot name� as if it were a lexically bound variable�

Both setf and setq can be used to set the value of the slot�

The macro withslots translates an appearance of the slot name as a vari�

able into a call to slotvalue�

The result returned is that obtained by executing the forms speci�ed by

the body argument�

Example�

�withslots �x y� position

�sqrt �� �
 x x� �
 y y����

�withslots ��x
 x� �y
 y�� position

�withslots ��x� x� �y� y�� position�

�psetf x
 x�

y
 y�����

�withslots �x y� position

�setq x �
� x�

y �
� y���

A withslots expression of the form�

COMMON LISP OBJECT SYSTEM ��	

�withslots �slot�entry� ��� slot�entryn� instance

declaration� ��� declarationm�

form� ��� formk�

expands into the equivalent of

�let ��in instance��

�symbolmacrolet �Q� ��� Qn�

declaration� ��� declarationm�

form� ��� formk�

where Qj is

�slot�entry j �slotvalue in slot�entry j��

if slot�entryj is a symbol and is

�variable�namej �slotvalue in slot�name j��

if slot�entryj is of the form �variable�namej slot�namej��
�X�J�� voted in March ���� h���i to modify the de�nition of

symbolmacrolet substantially and also voted h���i to allow declarations be�

fore the body of symbolmacrolet but with peculiar treatment of special

and type declarations� The syntactic changes are re
ected in this de�nition

of withslots�!GLS�
See withaccessors and symbolmacrolet�

��

Conditions

BY KENT M� PITMAN

preface� The language de�ned by the �rst edition contained an enormous

lacuna� although facilities were speci�ed for signaling errors� no means was

de�ned for handling errors� This occurred not through neglect of the issue� but
because this part of the Lisp language generally was in a state of
ux� There

were several proposals at the time� The committee� �nding that it could not

agree on any one proposal� agreed to disagree and omit error handling from

Common Lisp for the time being� This defect has now been addressed�

X�J�� voted in June ���� h��i to adopt the Common Lisp Condition System

as a part of the forthcoming draft Common Lisp standard� X�J�� voted in

March ���� h���i to amend the speci�cation of conditions to integrate them
with the Common Lisp Object System
see chapter ���� X�J�� voted in

June ���� h��i to amend the speci�cation of restarts in certain ways� These

amendments have been incorporated here with little further comment�

This chapter presents the bulk of the Common Lisp Condition System pro�

posal� written by Kent M� Pitman and amended by X�J��� I have edited it

only very lightly to conform to the overall style of this book and have inserted

a small number of bracketed remarks identi�ed by the initials GLS� Please see
the Acknowledgments to this second edition for the author�s acknowledgments

to others who contributed to the Condition System proposal�

!Guy L� Steele Jr�

����� Introduction

Often we �nd it useful to describe a function in terms of its behavior in

�normal situations�� For example� we may say informally that the function �

returns the sum of its arguments or that the function readchar returns the

next available character on a given input stream�

��

CONDITIONS ���

Sometimes� however� an �exceptional situation� will arise that does not �t

neatly into such descriptions� For example� � might receive an argument that

is not a number� or readchar might receive as a single argument a stream

that has no more available characters� This distinction between normal and

exceptional situations is in some sense arbitrary but is often very useful in
practice�

For example� suppose a function f were de�ned to allow only integer ar�

guments but also guaranteed to detect and signal an error for non�integer

arguments� Such a description is in fact internally inconsistent
that is� para�

doxical� because the function�s behavior is well�de�ned for non�integers� Yet
we would not want this annoying paradox to force description of f as a func�

tion that accepts any kind of argument
just in case f is being called only as

a quick way to signal an error� for example�� Using the normal�exceptional

distinction� we can say clearly that f accepts integers in the normal situation

and signals an error in exceptional situations� Moreover� we can say that when
we refer to the de�nition of a function informally� it is acceptable to speak

only of its normal behavior� For example� we can speak informally about f as

a function that accepts only integers without feeling that we are committing

some awful fraud�

Not all exceptional situations are errors� For example� a program that is
directing the typing of a long line of text may come to an end�of�line� It is

possible that no real harm will result from failing to signal end�of�line to its

caller because the operating system will simply force a carriage return on the

output device� which will continue typing on the next line� However� it may
still be interesting to establish a protocol whereby the printing program can

inform its caller of end�of�line exceptions� The caller could then opt to deal

with these situations in interesting ways at certain times� For example� a caller

might choose to terminate printing� obtaining an end�of�line truncation� The

important thing� however� is that the failure of the caller to provide advice
about the situation need not prevent the printer program from operating

correctly�

Mechanisms for dealing with exceptional situations vary widely� When

an exceptional situation is encountered� a program may attempt to handle

it by returning a distinguished value� returning an additional value� setting
a variable� calling a function� performing a special transfer of control� or

stopping the program altogether and entering the debugger�

For the most part� the facilities described in this chapter do not introduce

any fundamentally new way of dealing with exceptional situations� Rather�

they encapsulate and formalize useful patterns of data and control
ow that

have been seen to be useful in dealing with exceptional situations�

��� COMMON LISP

A proper conceptual approach to errors should perhaps begin from �rst

principles� with a discussion of conditions in general� and eventually work up to

the concept of an error as just one of the many kinds of conditions� However�

given the primitive state of error�handling technology� a proper buildup may

be as inappropriate as requiring that a beggar learn to cook a gourmet meal
before being allowed to eat� Thus� we deal �rst with the essentials!error

handling!and then go back later to �ll in the missing details�

����� Changes in Terminology

In this section� we introduce changes to the terminology de�ned in sec�

tion ������

A condition is an interesting situation in a program that has been detected
and announced� Later we allow this term also to refer to objects that programs

use to represent such situations�

An error is a condition in which normal program execution may not continue
without some form of intervention
either interactively by the user or under

some sort of program control� as described below��

The process by which a condition is formally announced by a program is

called signaling� The function signal is the primitive mechanism by which

such announcement is done� Other abstractions� such as error and cerror�

are built using signal�

The �rst edition is ambiguous about the reason why a particular program

action �is an error�� There are two principal reasons why an action may be

an error without being required to signal an error�

� Detecting the error might be prohibitively expensive�

For example� �� nil �� is an error� It is likely that the designers of Com�

mon Lisp believed this would be an error in all implementations but felt it
might be excessively expensive to detect the problem in compiled code on

stock hardware� so they did not require that it signal an error�

� Some implementations might implement the behavior as an extension�

For example� �loop for x from
 to � do �print x�� is an error be�
cause loop is not de�ned to take atoms in its body� In fact� however� some

implementations o	er an extension that makes this well�de�ned� In order

to leave room for such extensions� the �rst edition used the �is an error�

terminology to keep implementors from being forced to signal an error in

the extended implementations�

CONDITIONS ���

�This example was written well before the vote by X�J�� in January ����

to add exactly this extension to the forthcoming draft standard
see chap�

ter ����!GLS�

In this chapter� we use the following terminology� �Compare this to the

terminology presented in section �������!GLS�

� If the signaling of a condition or error is part of a function�s contract in all

situations� we say that it �signals� or �must signal� that condition or error�

� If the signaling of a condition or error is optional for some important rea�

son
such as performance�� we say that the program �might signal� that

condition or error� In this case� we are de�ning the operation to be illegal

in all implementations� but allowing some implementations to fail to detect

the error�

� If an action is left unde�ned for the sake of implementation�dependent ex�

tension� we say that it �is unde�ned� or �has unde�ned e	ect�� This means

that it is not possible to depend portably upon the e	ects of that action� A

program that has unde�ned e	ect may enter the debugger� transfer control�

or modify data in unpredictable ways�

� In the special case where only the return value of an operation is not well

de�ned but any side e	ect and transfer�of�control behavior is well de�ned�

we say that it has �unde�ned value�� In this case� the number and nature

of the return values is not de�ned� but the function can reasonably be

expected to return� It is worth noting that under this description� there are
some
though not many� legitimate ways in which such return value
s� can

be used� For example� if the function foo has no side e	ects and unde�ned

value� the expression �length �list �foo��� is completely well de�ned

even for portable code� However� the e	ect of �print �list �foo��� is
not well de�ned�

����� Survey of Concepts

This section discusses various aspects of the condition system by topic� illus�

trating them with extensive examples� The next section contains de�nitions

of speci�c functions� macros� and other facilities�

������� Signaling Errors

Conceptually� signaling an error in a program is an admission by that program

that it does not know how to continue and requires external intervention� Once

��� COMMON LISP

an error is signaled� any decision about how to continue must come from the

�outside��

The simplest way to signal an error is to use the error function with

format�style arguments describing the error for the sake of the user interface�
If error is called and there are no active handlers
described in sections ������

and �������� the debugger will be entered and the error message will be typed

out� For example�

Lisp� �defun factorial �x�

�cond ��or �not �typep x integer�� �minusp x��

�error � S is not a valid argument to FACTORIAL��

x��

��zerop x�
�

�t �
 x �factorial � x
������

� FACTORIAL

Lisp� �factorial ���

� ����������
	�������

Lisp� �factorial
�

Error�
 is not a valid argument to FACTORIAL�

To continue� type �CONTINUE followed by an option number�

� Return to Lisp Toplevel�

Debug�

In general� a call to error cannot directly return� Unless special work has

been done to override this behavior� the debugger will be entered and there

will be no option to simply continue�

The only exception may be that some implementations may provide debug�

ger commands for interactively returning from individual stack frames� even

then� however� such commands should never be used except by someone who

has read the erring code and understands the consequences of continuing from
that point� In particular� the programmer should feel con�dent about writing

code like this�

�defun wargames�nowinscenario ��

�when �true� �error �Pushing the button would be stupid����

�pushthebutton��

In this scenario� there should be no chance that the function error will return

and the button will be pushed�

Remark� It should be noted that the notion of �no chance� that the button will be

CONDITIONS ���

pushed is relative only to the language model� it assumes that the language is accu

rately implemented� In practice� compilers have bugs� computers have glitches� and
users have been known to interrupt at inopportune moments and use the debugger
to return from arbitrary stack frames� Such violations of the language model are
beyond the scope of the condition system but not necessarily beyond the scope of po

tential failures that the programmer should consider and defend against� The possi

bility of such unusual failures may of course also in�uence the design of code meant to
handle less drastic situations� such as maintaining a database uncorrupted��KMP
and GLS

In some cases� the programmer may have a single� well�de�ned idea of a

reasonable recovery strategy for this particular error� In that case� he can use

the function cerror� which speci�es information about what would happen if

the user did simply continue from the call to cerror� For example�

Lisp� �defun factorial �x�

�cond ��not �typep x integer��

�error � S is not a valid argument to FACTORIAL��

x��

��minusp x�

�let ��xmagnitude � x���

�cerror �Compute � D�� instead��

�� D�� is not defined�� xmagnitude�

� �factorial xmagnitude����

��zerop x�
�

�t �
 x �factorial � x
������

� FACTORIAL

Lisp� �factorial ��

Error� ���� is not defined�

To continue� type �CONTINUE followed by an option number�

� Compute ���� instead�

�� Return to Lisp Toplevel�

Debug� �continue

� �

������� Trapping Errors

By default� a call to error will force entry into the debugger� You can over�

ride that behavior in a variety of ways� The simplest
and most blunt� tool for

inhibiting entry to the debugger on an error is to use ignoreerrors� In the

��� COMMON LISP

normal situation� forms in the body of ignoreerrors are evaluated sequen�

tially and the last value is returned� If a condition of type error is signaled�

ignoreerrors immediately returns two values� namely nil and the condition

that was signaled� the debugger is not entered and no error message is printed�

For example�

Lisp� �setq filename �nosuchfile��

� �nosuchfile�

Lisp� �ignoreerrors �open filename �direction �input��

� NIL and ����FILEERROR ���	����

The second return value is an object that represents the kind of error� This

is explained in greater detail in section �������

In many cases� however� ignoreerrors is not desirable because it deals with

too many kinds of errors� Contrary to the belief of some� a program that does
not enter the debugger is not necessarily better than one that does� Excessive

use of ignoreerrors may keep the program out of the debugger� but it may

not increase the program�s reliability� because the program may continue to

run after encountering errors other than those you meant to work past� In

general� it is better to attempt to deal only with the particular kinds of errors
that you believe could legitimately happen� That way� if an unexpected error

comes along� you will still �nd out about it�

ignoreerrors is a useful special case built from a more general facility�

handlercase� that allows the programmer to deal with particular kinds of
conditions
including non�error conditions� without a	ecting what happens

when other kinds of conditions are signaled� For example� an e	ect equivalent

to that of ignoreerrors above is achieved in the following example�

Lisp� �setq filename �nosuchfile��

� �nosuchfile�

Lisp� �handlercase �open filename �direction �input�

�error �condition�

�values nil condition���

� NIL and ����FILEERROR ���	����

However� using handlercase� one can indicate a more speci�c condition type

than just �error�� Condition types are explained in detail later� but the syntax

looks roughly like the following�

Lisp� �makunbound filename�

� FILENAME

Lisp� �handlercase �open filename �direction �input�

CONDITIONS ���

�fileerror �condition�

�values nil condition���

Error� The variable FILENAME is unbound�

To continue� type �CONTINUE followed by an option number�

� Retry getting the value of FILENAME�

�� Specify a value of FILENAME to use this time�

�� Specify a value of FILENAME to store and use�

�� Return to Lisp Toplevel�

Debug�

������� Handling Conditions

Blind transfer of control to a handlercase is only one possible kind of re�

covery action that can be taken when a condition is signaled� The low�level

mechanism o	ers great
exibility in how to continue once a condition has been
signaled�

The basic idea behind condition handling is that a piece of code called the
signaler recognizes and announces the existence of an exceptional situation

using signal or some function built on signal
such as error��

The process of signaling involves the search for and invocation of a handler�
a piece of code that will attempt to deal appropriately with the situation�

If a handler is found� it may either handle the situation� by performing some
non�local transfer of control� or decline to handle it� by failing to perform a

non�local transfer of control� If it declines� other handlers are sought�

Since the lexical environment of the signaler might not be available to han�
dlers� a data structure called a condition is created to represent explicitly the

relevant state of the situation� A condition either is created explicitly using

makecondition and then passed to a function such as signal� or is created

implicitly by a function such as signal when given appropriate non�condition
arguments�

In order to handle the error� a handler is permitted to use any non�local
transfer of control such as go to a tag in a tagbody� return from a block�

or throw to a catch� In addition� structured abstractions of these primitives

are provided for convenience in exception handling�

A handler can be made dynamically accessible to a program by use of

handlerbind� For example� to create a handler for a condition of type

arithmeticerror� one might write�

�handlerbind ��arithmeticerror handler��body�

��� COMMON LISP

The handler is a function of one argument� the condition� If a condition of

the designated type is signaled while the body is executing
and there are no

intervening handlers�� the handler would be invoked on the given condition�

allowing it the option of transferring control� For example� one might write

a macro that executes a body� returning either its value
s� or the two values
nil and the condition�

�defmacro withoutarithmeticerrors ��body forms�

�let ��tag �gensym���

%�block �tag

�handlerbind ��arithmeticerror

��� �lambda �c� �Argument c is a condition

�returnfrom �tag �values nil c�����

�#body����

The handler is executed in the dynamic context of the signaler� except that
the set of available condition handlers will have been rebound to the value that

was active at the time the condition handler was made active� If a handler

declines
that is� it does not transfer control�� other handlers are sought� If no

handler is found and the condition was signaled by error or cerror
or some

function such as assert that behaves like these functions�� the debugger is
entered� still in the dynamic context of the signaler�

������� Object	Oriented Basis of Condition Handling

Of course� the ability of the handler to usefully handle an exceptional situation
is related to the quality of the information it is provided� For example� if all

errors were signaled by

�error �some format string��

then the only piece of information that would be accessible to the handler

would be an object of type simpleerror that had a slot containing the format

string�

If this were done� stringequal would be the preferred way to tell one error
from another� and it would be very hard to allow
exibility in the presentation

of error messages because existing handlers would tend to be broken by even

tiny variations in the wording of an error message� This phenomenon has

been the major failing of most error systems previously available in Lisp� It

is fundamentally important to decouple the error message string
the human

CONDITIONS ��	

interface� from the objects that formally represent the error state
the program

interface�� We therefore have the notion of typed conditions� and of formal

operations on those conditions that make them inspectable in a structured

way�

This object�oriented approach to condition handling has the following im�

portant advantages over a text�based approach�

� Conditions are classi�ed according to subtype relationships� making it easy
to test for categories of conditions�

� Conditions have named slot values through which parameters are conveyed

from the program that signals the condition to the program that handles

it�

� Inheritance of methods and slots reduces the amount of explicit speci�cation

necessary to achieve various interesting e	ects�

Some condition types are de�ned by this document� but the set of condition

types is extensible using definecondition� Common Lisp condition types

are in fact CLOS classes� and condition objects are ordinary CLOS objects�
definecondition merely provides an abstract interface that is a bit more

convenient than defclass for de�ning conditions�

Here� as an example� we de�ne a two�argument function called divide that

is patterned after the function but does some stylized error checking�

�defun divide �numerator denominator�

�cond ��or �not �numberp numerator��

�not �numberp denominator���

�error ��DIVIDE S S� Bad arguments��

numerator denominator��

��zerop denominator�

�error divisionbyzero

�operator divide

�operands �list numerator denominator���

�t ������

Note that in the �rst clause we have used error with a string argu�
ment and in the second clause we have named a particular condition type�

divisionbyzero� In the case of a string argument� the condition type that

will be signaled is simpleerror�

The particular kind of error that is signaled may be important in cases

where handlers are active� For example� simpleerror inherits from type

error� which in turn inherits from type condition� On the other hand�

��
 COMMON LISP

divisionbyzero inherits from arithmeticerror� which inherits from error�

which inherits from condition� So if a handler existed for arithmeticerror

while a divisionbyzero condition was signaled� that handler would be tried�

however� if a simpleerror condition were signaled in the same context� the

handler for type arithmeticerror would not be tried�

������� Restarts

In older Lisp dialects
such as MacLisp�� an attempt to signal an error of a

given type often carried with it an implicit promise to support the standard

recovery strategy for that type of error� If the signaler knew the type of error

but for whatever reason was unable to deal with the standard recovery strategy

for that kind of error� it was necessary to signal an untyped error
for which
there was no de�ned recovery strategy�� This sometimes led to confusion

when people signaled typed errors without realizing the full implications of

having done so� but more often than not it meant that users simply avoided

typed errors altogether�

The Common Lisp Condition System� which is modeled after the Zetalisp

condition system� corrects this troublesome aspect of previous Lisp dialects by
creating a clear separation between the act of signaling an error of a particular

type and the act of saying that a particular way of recovery is appropriate�

In the divide example above� simply signaling an error does not imply a

willingness on the part of the signaler to cooperate in any corrective action�
For example� the following sample interaction illustrates that the only recovery

action o	ered for this error is �Return to Lisp Toplevel��

Lisp� �� �divide � �� 	�

Error� Attempt to divide � by ��

To continue� type �CONTINUE followed by an option number�

� Return to Lisp Toplevel�

Debug� �continue

Returned to Lisp Toplevel�

Lisp�

When an error is detected and the function error is called� execution cannot

continue normally because error will not directly return� Control can be

transferred to other points in the program� however� by means of specially

established �restarts��

CONDITIONS ���

������� Anonymous Restarts

The simplest kind of restart involves structured transfer of control using a

macro called restartcase� The restartcase form allows execution of a piece

of code in a context where zero or more restarts are active� and where if one

of those restarts is �invoked�� control will be transferred to the corresponding
clause in the restartcase form� For example� we could rewrite the previous

divide example as follows�

�defun divide �numerator denominator�

�loop

�restartcase

�return

�cond ��or �not �numberp numerator��

�not �numberp denominator���

�error ��DIVIDE S S� Bad arguments��

numerator denominator��

��zerop denominator�

�error divisionbyzero

�operator divide

�operands �list numerator denominator���

�t ������

�nil �arg
 arg��

�report �Provide new arguments for use by DIVIDE��

�interactive

�lambda ��

�list �promptfor number �Numerator� ��

�promptfor number �Denominator� ����

�setq numerator arg
 denominator arg���

�nil �result�

�report �Provide a value to return from DIVIDE��

�interactive

�lambda �� �list �promptfor number �Result� ����

�return result�����

Remark� The function promptfor used in this chapter in a number of places is
not a part of Common Lisp� It is used in the examples in this chapter only to keep
the presentation simple� It is assumed to accept a type speci�er and optionally a
format string and associated arguments� It uses the format string and associated
arguments as part of an interactive prompt� and uses read to read a Lisp object�
however� only an object of the type indicated by the type speci�er is accepted�

��� COMMON LISP

The question of whether or not promptfor �or something like it� would be a useful
addition to Common Lisp is under consideration by X�J��� but as of January ����
no action has been taken� In spite of its use in a number of examples� nothing in
the Common Lisp Condition System depends on this function�

In the example� the nil at the head of each clause means that it is an
�anonymous� restart� Anonymous restarts are typically invoked only from

within the debugger� As we shall see later� it is possible to have �named

restarts� that may be invoked from code without the need for user interven�

tion�

If the arguments to anonymous restarts are not optional� then special infor�

mation must be provided about what the debugger should use as arguments�

Here the �interactive keyword is used to specify that information�

The �report keyword introduces information to be used when presenting

the restart option to the user
by the debugger� for example��

Here is a sample interaction that takes advantage of the restarts provided

by the revised de�nition of divide�

Lisp� �� �divide � �� 	�

Error� Attempt to divide � by ��

To continue� type �CONTINUE followed by an option number�

� Provide new arguments for use by the DIVIDE function�

�� Provide a value to return from the DIVIDE function�

�� Return to Lisp Toplevel�

Debug� �continue

Numerator� �

Denominator� �

� �

������� Named Restarts

In addition to anonymous restarts� one can have named restarts� which can

be invoked by name from within code� As a trivial example� one could write

�restartcase �invokerestart foo ��

�foo �x� �� x
���

to add � to
� returning �� This trivial example is conceptually analogous to

writing�

CONDITIONS ���

�� �catch something �throw something ���
�

For a more realistic example� the code for the function symbolvalue might
signal an unbound variable error as follows�

�restartcase �error �The variable S is unbound�� variable�

�continue ��

�report

�lambda �s� �Argument s is a stream

�format s �Retry getting the value of S�� variable��

�symbolvalue variable��

�usevalue �value�

�report

�lambda �s� �Argument s is a stream

�format s �Specify a value of S to use this time��

variable��

value�

�storevalue �value�

�report

�lambda �s� �Argument s is a stream

�format s �Specify a value of S to store and use��

variable��

�setf �symbolvalue variable� value�

value��

If this were part of the implementation of symbolvalue� then it would be

possible for users to write a variety of automatic handlers for unbound variable
errors� For example� to make unbound variables evaluate to themselves� one

might write

�handlerbind ��unboundvariable

��� �lambda �c� �Argument c is a condition

�when �findrestart usevalue�

�invokerestart usevalue

�cellerrorname c������

body�

�����
� Restart Functions

For commonly used restarts� it is conventional to de�ne a program interface

that hides the use of invokerestart� Such program interfaces to restarts are

called restart functions�

�	� COMMON LISP

The normal convention is for the function to share the name of the restart�

The pre�de�ned functions abort� continue� mufflewarning� storevalue�

and usevalue are restart functions� With usevalue the above example of

handlerbind could have been written more concisely as

�handlerbind ��unboundvariable

��� �lambda �c� �Argument c is a condition

�usevalue �cellerrorname c�����

body�

������� Comparison of Restarts and Catch�Throw

One important feature that restartcase
or restartbind� o	ers that catch

does not is the ability to reason about the available points to which control

might be transferred without actually attempting the transfer� One could� for
example� write

�ignoreerrors �throw �����

which is a sort of poor man�s variation of

�when �findrestart something�

�invokerestart something��

but there is no way to use ignoreerrors and throw to simulate something

like

�when �and �findrestart something�

�findrestart somethingelse��

�invokerestart something��

or even just

�when �and �findrestart something�

�yesornop �Do something� ���

�invokerestart something��

because the degree of inspectability that comes with simply writing

�ignoreerrors �throw �����

is too primitive!getting the desired information also forces transfer of control�

perhaps at a time when it is not desirable�

CONDITIONS �	�

Many programmers have previously evolved strategies like the following on

a case�by�case basis�

�defvar
footagisavailable
 nil�

�defun fn
 ��

�catch foo

�let ��
footagisavailable
 t��

��� �fn�� ������

�defun fn� ��

���

�if
footagisavailable
 �throw foo t��

����

The facility provided by restartcase and findrestart is intended to pro�

vide a standardized protocol for this sort of information to be communicated
between programs that were developed independently so that individual vari�

ations from program to program do not thwart the overall modularity and

debuggability of programs�

Another di	erence between the restart facility and the catch�throw facility

is that a catch with any given tag completely shadows any outer pending

catch that uses the same tag� Because of the presence of computerestarts�

however� it is possible to see shadowed restarts� which may be very useful in

some situations
particularly in an interactive debugger��

�	� COMMON LISP

�������� Generalized Restarts

restartcase is a mechanism that allows only imperative transfer of control

for its associated restarts� restartcase is built on a lower�level mechanism

called restartbind� which does not force transfer of control�

restartbind is to restartcase as handlerbind is to handlercase� The

syntax is

�restartbind ��name function � options�� � body�

The body is executed in a dynamic context within which the function will

be called whenever �invokerestart name� is executed� The options are

keyword�style and are used to pass information such as that provided with

the �report keyword in restartcase�

A restartcase expands into a call to restartbind where the function

simply does an unconditional transfer of control to a particular body of code�

passing along �argument� information in a structured way�

It is also possible to write restarts that do not transfer control� Such restarts

may be useful in implementing various special commands for the debugger that

are of interest only in certain situations� For example� one might imagine a
situation where �le space was exhausted and the following was done in an

attempt to free space in directory dir�

�restartbind ��nil ��� �lambda �� �expungedirectory dir��

�reportfunction

��� �lambda �stream�

�format stream �Expunge A��

�directorynamestring dir�����

�cerror �Try this file operation again��

directoryfull �directory dir��

In this case� the debugger might be entered and the user could �rst perform

the expunge
which would not transfer control from the debugger context�

and then retry the �le operation�

Lisp� �open �FOO� �direction �output�

Error� The directory PS��JDOE� is full�

To continue� type �CONTINUE followed by an option number�

� Try this file operation again�

�� Expunge PS��JDOE��

�� Return to Lisp Toplevel�

Debug� �continue �

CONDITIONS �	�

Expunging PS��JDOE� ��� � records freed�

Debug� �continue

� ����OUTPUTSTREAM �PS��JDOE�FOO�LSP� �����	��

�������� Interactive Condition Handling

When a program does not know how to continue� and no active handler is

able to advise it� the �interactive condition handler�� or �debugger�� can be

entered� This happens implicitly through the use of functions such as error
and cerror� or explicitly through the use of the function invokedebugger�

The interactive condition handler never returns directly� it returns only

through structured non�local transfer of control to specially de�ned restart

points that can be set up either by the system or by user code� The mech�

anisms that support the establishment of such structured restart points for
portable code are outlined in sections ������ through ��������

Actually� implementations may also provide extended debugging facilities

that allow return from arbitrary stack frames� Although such commands

are frequently useful in practice� their e	ects are implementation�dependent

because they violate the Common Lisp program abstraction� The e	ect of
using such commands is unde�ned with respect to Common Lisp�

�������� Serious Conditions

The ignoreerrors macro will trap conditions of type error� There are�

however� conditions that are not of type error�

Some conditions are not considered errors but are still very serious� so

we call them serious conditions and we use the type seriouscondition to

represent them� Conditions such as those that might be signaled for �stack
over
ow� or �storage exhausted� are in this category�

The type error is a subtype of seriouscondition� and it would technically

be correct to use the term �serious condition� to refer to all serious conditions

whether errors or not� However� normally we use the term �serious condition�

to refer to things of type seriouscondition but not of type error�

The point of the distinction between errors and other serious conditions is
that some conditions are known to occur for reasons that are beyond the scope

of Common Lisp to specify clearly� For example� we know that a stack will

generally be used to implement function calling� and we know that stacks tend

to be of �nite size and are prone to over
ow� Since the available stack size may

vary from implementation to implementation� from session to session� or from

�	� COMMON LISP

function call to function call� it would be confusing to have expressions such as

�ignoreerrors �� a b�� return a number sometimes and nil other times if

a and b were always bound to numbers and the stack just happened to over
ow

on a particular call� For this reason� only conditions of type error and not all

conditions of type seriouscondition are trapped by ignoreerrors� To trap
other conditions� a lower�level facility must be used
such as handlerbind or

handlercase��

By convention� the function error is preferred over signal to signal con�

ditions of type seriouscondition
including those of type error�� It is the
use of the function error� and not the type of the condition being signaled�

that actually causes the debugger to be entered�

Compatibility note� The Common Lisp Condition System di�ers from that of
Zetalisp in this respect� In Zetalisp the debugger is entered for an unhandled signal
if the error function is used or if the condition is of type error�

�������� Non	Serious Conditions

Some conditions are neither errors nor serious conditions� They are signaled

to give other programs a chance to intervene� but if no action is taken� com�
putation simply continues normally�

For example� an implementation might choose to signal a non�serious
and

implementation�dependent� condition called endofline when output reaches

the last character position on a line of character output� In such an imple�

mentation� the signaling of this condition might allow a convenient way for
other programs to intervene� producing output that is truncated at the end

of a line�

By convention� the function signal is used to signal conditions that are not

serious� It would be possible to signal serious conditions using signal� and
the debugger would not be entered if the condition went unhandled� However�

by convention� handlers will generally tend to assume that serious conditions

and errors were signaled by calling the error function
and will therefore

force entry to the interactive condition handler� and that they should work

to avoid this�

�������� Condition Types

Some types of conditions are prede�ned by the system� All types of conditions

are subtypes of condition� That is� �typep x condition� is true if and

only if the value of x is a condition�

CONDITIONS �		

Implementations supporting multiple
or non�hierarchical� type inheritance

are expressly permitted to exploit multiple inheritance in the tree of condition

types as implementation�dependent extensions� as long as such extensions are

compatible with the speci�cations in this chapter� �X�J�� voted in March ����

h���i to integrate the Condition System and the Object System� so multiple
inheritance is always available for condition types�!GLS�

In order to avoid problems in portable code that runs both in systems with

multiple type inheritance and in systems without it� programmers are explic�

itly warned that while all correct Common Lisp implementations will ensure
that �typep c condition� is true for all conditions c
and all subtype rela�

tionships indicated in this chapter will also be true�� it should not be assumed

that two condition types speci�ed to be subtypes of the same third type are

disjoint�
In some cases� disjoint subtypes are identi�ed explicitly� but such

disjointness is not to be assumed by default�� For example� it follows from
the subtype descriptions contained in this chapter that in all implementa�

tions �typep c controlerror� implies �typep c error�� but note that

�typep c controlerror� does not imply �not �typep c cellerror���

�������� Signaling Conditions

When a condition is signaled� the system tries to locate the most appropriate

handler for the condition and to invoke that handler�

Handlers are established dynamically using handlerbind or abstractions

built on handlerbind�

If an appropriate handler is found� it is called� In some circumstances�
the handler may decline simply by returning without performing a non�local

transfer of control� In such cases� the search for an appropriate handler is

picked up where it left o	� as if the called handler had never been present�

If no handler is found� or if all handlers that were found decline� signal
returns nil�

Although it follows from the description above� it is perhaps worth noting

explicitly that the lookup procedure described here will prefer a general but

more
dynamically� local handler over a speci�c but less
dynamically� local
handler� Experience with existing condition systems suggests that this is a

reasonable approach and works adequately in most situations� Some care

should be taken when binding handlers for very general kinds of conditions�

such as is done in ignoreerrors� Often� binding for a more speci�c condition

type than error is more appropriate�

�	
 COMMON LISP

�������� Resignaling Conditions

�The contents of this section are still a subject of some debate within X�J���

The reader may wish to take this section with a grain of salt�!GLS�

Note that signaling a condition has no side e	ect on that condition� and

that there is no dynamic state contained in a condition object� As such� it
may at times be reasonable and appropriate to consider caching condition ob�

jects for repeated use� re�signaling conditions from within handlers� or saving

conditions away somewhere and re�signaling them later�

For example� it may be desirable for the system to pre�allocate objects of

type storagecondition so that they can be signaled when needed without
attempting to allocate more storage�

�������� Condition Handlers

A handler is a function of one argument� the condition to be handled� The
handler may inspect the object to be sure it is �interested� in handling the

condition�

A handler is executed in the dynamic context of the signaler� except that

the set of available condition handlers will have been rebound to the value

that was active at the time the condition handler was made active� The intent
of this is to prevent in�nite recursion because of errors in a condition handler�

After inspecting the condition� the handler should take one of the following

actions�

� It might decline to handle the condition
by simply returning�� When this

happens� the returned values are ignored and the e	ect is the same as if the
handler had been invisible to the mechanism seeking to �nd a handler� The

next handler in line will be tried� or if no such handler exists� the condition

will go unhandled�

� It might handle the condition
by performing some non�local transfer of

control�� This may be done either primitively using go� return� or throw�
or more abstractly using a function such as abort or invokerestart�

� It might signal another condition�

� It might invoke the interactive debugger�

In fact� the latter two actions
signaling another condition or entering the

debugger� are really just ways of putting o	 the decision to either handle or

decline� or trying to get someone else to make such a decision� Ultimately� all

a handler can do is to handle or decline to handle�

CONDITIONS �	�

������
� Printing Conditions

When
printescape
 is nil
for example� when the princ function or the A

directive is used with format�� the report method for the condition will be in�

voked� This will be done automatically by functions such as invokedebugger�
break� and warn� but there may still be situations in which it is desirable to

have a condition report under explicit user control� For example�

�let ��form �open �nosuchfile����

�handlercase �eval form�

�seriouscondition �c�

�format t � �Evaluation of S failed� " A� form c����

might print something like

Evaluation of �OPEN �nosuchfile�� failed�

The file �nosuchfile� was not found�

Some suggestions about the form of text typed by report methods�

� The message should generally be a complete sentence� beginning with a

capital letter and ending with appropriate punctuation
usually a period��

� The message should not include any introductory text such as �Error�� or

�Warning�� and should not be followed by a trailing newline� Such text

will be added as may be appropriate to context by the routine invoking the

report method�

� Except where unavoidable� the tab character
which is only semi�standard

anyway� should not be used in error messages� Its e	ect may vary from

one implementation to another and may cause problems even within an

implementation because it may do di	erent things depending on the column

at which the error report begins�

� Single�line messages are preferred� but newlines in the middle of long mes�

sages are acceptable�

� If any program
for example� the debugger� displays messages indented

from the prevailing left margin
for example� indented seven spaces because
they are pre�xed by the seven�character herald �Error� ��� then that pro�

gram will take care of inserting the appropriate indentation into the extra

lines of a multi�line error message� Similarly� a program that pre�xes error

messages with semicolons so that they appear to be comments should take

care of inserting a semicolon at the beginning of each line in a multi�line

�	� COMMON LISP

error message�
These rules are important because� even within a single

implementation� there may be more than one program that presents error

messages to the user� and they may use di	erent styles of presentation�

The caller of error cannot anticipate all such possible styles� and so it is

incumbent upon the presenter of the message to make any necessary ad�
justments��

�Note� These recommendations expand upon those in section �����!GLS�

When
printescape
 is not nil� the object should print in some useful

but usually fairly abbreviated� fashion according to the style of the imple�

mentation� It is not expected that a condition will be printed in a form
suitable for read� Something like ����ARITHMETICERROR
	��� is �ne�

X�J�� voted in March ���� h���i to integrate the Condition System and

the Object System� In the original Condition System proposal� no function

was provided for directly accessing or setting the printer for a condition type�

or for invoking it� the techniques described above were the sole interface to
reporting� The vote speci�ed that� in CLOS terms� condition reporting is

mediated through the printobject method for the condition type
that is�

class� in question� with
printescape
 bound to nil� Specifying ��report

fn� to definecondition when de�ning condition type C is equivalent to a

separate method de�nition�

�defmethod printobject ��x C� stream�

�if
printescape

�callnextmethod�

�funcall ��� fn x stream���

Note that the method uses fn to print the condition only when
printescape

has the value nil�

����� Program Interface to the Condition System

This section describes functions� macros� variables� and condition types asso�

ciated with the Common Lisp Condition System�

������� Signaling Conditions

The functions in this section provide various mechanisms for signaling warn�

ings� breaks� continuable errors� and fatal errors�

CONDITIONS �	�

�Function�error datum �rest arguments

�This supersedes the description of error given in section �����!GLS�

Invokes the signal facility on a condition� If the condition is not han�

dled� �invokedebugger condition� is executed� As a consequence of calling
invokedebugger� error never directly returns to its caller� the only exit from

this function can come by non�local transfer of control in a handler or by use

of an interactive debugging command�

If datum is a condition� then that condition is used directly� In this case�

it is an error for the list of arguments to be non�empty� that is� error must
have been called with exactly one argument� the condition�

If datum is a condition type
a class or class name�� then the condition used

is e	ectively the result of �apply ��� makecondition datum arguments��

If datum is a string� then the condition used is e	ectively the result of

�makecondition simpleerror

�formatstring datum

�formatarguments arguments�

�Function�cerror continueformatstring datum �rest arguments

�This supersedes the description of cerror given in section �����!GLS�

The function cerror invokes the error facility on a condition� If the con�

dition is not handled� �invokedebugger condition� is executed� While sig�

naling is going on� and while control is in the debugger
if it is reached�� it

is possible to continue program execution
thereby returning from the call to

cerror� using the continue restart�

If datum is a condition� then that condition is used directly� In this case� the

list of arguments need not be empty� but will be used only with the continue�

format�string and will not be used to initialize datum�

If datum is a condition type
a class or class name�� then the condition used

is e	ectively the result of �apply ��� makecondition datum arguments��

If datum is a string� then the condition used is e	ectively the result of

�makecondition simpleerror

�formatstring datum
�formatarguments arguments�

The continue�format�string must be a string� Note that if datum is not a

string� then the format arguments used by the continue�format�string will still

be the list of arguments
which is in keyword format if datum is a condition

�
� COMMON LISP

type�� In this case� some care may be necessary to set up the continue�format�

string correctly� The format directive
� which ignores and skips over format

arguments� may be particularly useful in this situation�

The value returned by cerror is nil�

�Function�signal datum �rest arguments

Invokes the signal facility on a condition� If the condition is not handled�

signal returns nil�

If datum is a condition� then that condition is used directly� In this case�

it is an error for the list of arguments to be non�empty� that is� error must
have been called with exactly one argument� the condition�

If datum is a condition type
a class or class name�� then the condition used

is e	ectively the result of �apply ��� makecondition datum arguments��

If datum is a string� then the condition used is e	ectively the result of

�makecondition simpleerror

�formatstring datum

�formatarguments arguments�

Note that if �typep condition
breakonsignals
� is true� then the de�

bugger will be entered prior to beginning the process of signaling� The

continue restart function may be used to continue with the signaling pro�

cess� the restart is associated with the signaled condition as if by use of

withconditionrestarts� This is true also for all other functions and macros
that signal conditions� such as warn� error� cerror� assert� and checktype�

During the dynamic extent of a call to signal with a particular condition�

the e	ect of calling signal again on that condition object for a distinct ab�

stract event is not de�ned� For example� although a handler may resignal a
condition in order to allow outer handlers �rst shot at handling the condition�

two distinct asynchronous keyboard events must not signal an the same
eq�

condition object at the same time�

For further details about signaling and handling� see the discussion of con�
dition handlers in section ��������

�Variable�
breakonsignals

This variable is intended primarily for use when the user is debugging pro�

grams that do signaling� The value of
breakonsignals
 should be suitable

as a second argument to typep� that is� a type or type speci�er�

CONDITIONS �
�

When �typep condition
breakonsignals
� is true� then calls to signal

and to other advertised functions such as error that implicitly call signal�

will enter the debugger prior to signaling that condition� The continue restart

may be used to continue with the normal signaling process� the restart is

associated with the signaled condition as if by use of withconditionrestarts�

Note that nil is a valid type speci�er� If the value of
breakonsignals

is nil� then signal will never enter the debugger in this implicit manner�

When setting this variable� the user is encouraged to choose the most re�

strictive speci�cation that su�ces� Setting this
ag e	ectively violates the

modular handling of condition signaling that this chapter seeks to establish�
Its complete e	ect may be unpredictable in some cases� since the user may

not be aware of the variety or number of calls to signal that are used in

programs called only incidentally�

By default!and certainly in any �production� use!the value of this vari�

able should be nil� both for reasons of performance and for reasons of mod�

ularity and abstraction�

X�J�� voted in March ���� h��i to remove
breakonwarnings
 from the

language�
breakonsignals
 o	ers all the power of
breakonwarnings
 and

more�

Compatibility note� This variable is similar to the Zetalisp variable
traceconditions except for the obvious di�erence that zl�traceconditions takes
a type or list of types while �breakonsignals� takes a single type speci�er�
�There is no loss of generality in Common Lisp because the or type speci�er may

be used to indicate that any of a set of conditions should enter the debugger��GLS�

������� Assertions

These facilities are designed to make it convenient for the user to insert error

checks into code�

�Macro�checktype place typespec �string�

�This supersedes the description of checktype given in section �����!GLS�

A checktype form signals an error of type typeerror if the contents of

place are not of the desired type�

If a condition is signaled� handlers of this condition can use the functions

typeerrordatum and typeerrorexpectedtype to access the contents of place

and the typespec� respectively�

�
� COMMON LISP

This function can return only if the storevalue restart is invoked� either

explicitly from a handler or implicitly as one of the options o	ered by the

debugger� The restart is associated with the signaled condition as if by use of

withconditionrestarts�

If storevalue is called� checktype will store the new value that is the
argument to storevalue
or that is prompted for interactively by the debug�

ger� in place and start over� checking the type of the new value and signaling

another error if it is still not the desired type� Subforms of place may be

evaluated multiple times because of the implicit loop generated� checktype

returns nil�

The place must be a generalized variable reference acceptable to setf� The

typespec must be a type speci�er� it is not evaluated� The string should be

an English description of the type� starting with an inde�nite article
�a� or

�an��� it is evaluated� If the string is not supplied� it is computed automat�
ically from the typespec�
The optional string argument is allowed because

some applications of checktype may require a more speci�c description of

what is wanted than can be generated automatically from the type speci�er��

The error message will mention the place� its contents� and the desired type�

Implementation note� An implementation may choose to generate a somewhat
di�erently worded error message if it recognizes that place is of a particular form�
such as one of the arguments to the function that called checktype�

Lisp� �setq aardvarks �sam harry fred��

� �SAM HARRY FRED�

Lisp� �checktype aardvarks �array
 �����

Error� The value of AARDVARKS� �SAM HARRY FRED��

is not a �long array�

To continue� type �CONTINUE followed by an option number�

� Specify a value to use instead�

�� Return to Lisp Toplevel�

Debug� �continue

Use Value� ����sam fred harry�

� NIL

Lisp� aardvarks

� ����ARRAY�
��	
�

Lisp� �map list ��� identity aardvarks�

� �SAM FRED HARRY�

Lisp� �setq aacount foo�

� FOO

CONDITIONS �
�

Lisp� �checktype aacount �integer �
� �a nonnegative integer��

Error� The value of AACOUNT� FOO� is not a nonnegative integer�

To continue� type �CONTINUE followed by an option number�

� Specify a value to use instead�

�� Return to Lisp Toplevel�

Debug� �continue �

Lisp�

Compatibility note� In Zetalisp� the equivalent facility is called checkargtype�

�Macro�assert test�form �� fplaceg� � �datum fargumentg� � �
�This supersedes the description of assert given in section �����!GLS�

An assert form signals an error if the value of the test�form is nil� Con�
tinuing from this error using the continue restart will allow the user to alter

the values of some variables� and assert will then start over� evaluating the

test�form again�
The restart is associated with the signaled condition as if

by use of withconditionrestarts�� assert returns nil�

The test�form may be any form� Each place
there may be any number of

them� or none� must be a generalized variable reference acceptable to setf�

These should be variables on which test�form depends� whose values may
sensibly be changed by the user in attempting to correct the error� Subforms of

each place are evaluated only if an error is signaled� and may be re�evaluated if

the error is re�signaled
after continuing without actually �xing the problem��

The datum and arguments are evaluated only if an error is to be signaled�

and re�evaluated if the error is to be signaled again�

If datum is a condition� then that condition is used directly� In this case� it

is an error to specify any arguments�

If datum is a condition type
a class or class name�� then the condi�

tion used is e	ectively the result of �apply ��� makecondition datum �list

fargumentg� ���
If datum is a string� then the condition used is e	ectively the result of

�makecondition simpleerror

�formatstring datum

�formatarguments �list fargumentg� ��

If datum is omitted� then a condition of type simpleerror is constructed

using the test�form as data� For example� the following might be used�

�
� COMMON LISP

�makecondition simpleerror

�formatstring �The assertion S failed��

�formatarguments �test�form��

Note that the test�form itself� and not its value� is used as the format argu�

ment�

Implementation note� The debugger need not include the test�form in the error
message� and any places should not be included in the message� but they should be
made available for the user�s perusal� If the user gives the �continue� command� an
opportunity should be presented to alter the values of any or all of the references�
The details of this depend on the implementation�s style of user interface� of course�

Here is an example of the use of assert�

�setq x �makearray �� �� �initialelement ���

�setq y �makearray �� �� �initialelement 	��

�defun matrixmultiply �a b�

�let ��
printarray
 nil��

�assert �and � �arrayrank a� �arrayrank b� ��

� �arraydimension a
�

�arraydimension b ����

�a b�

�Cannot multiply S by S�� a b�

�reallymatrixmultiply a b���

�matrixmultiply x y�

Error� Cannot multiply ����ARRAY��
����� by ����ARRAY��
������

To continue� type �CONTINUE followed by an option number�

� Specify new values�

�� Return to Lisp Toplevel�

Debug� �continue

Value for A� x

Value for B� �makearray �� �� �initialelement ��

�����A���� �� �� �� ���

��� �� �� �� ���

��� �� �� �� ���

��� �� �� �� ���

��� �� �� �� ����

CONDITIONS �
	

������� Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase� except

that no otherwise clause is permitted� Similarly� the syntax for ecase and

ccase is the same as for case except for the otherwise clause�

etypecase and ecase are similar to typecase and case� respectively� but

signal a non�continuable error rather than returning nil if no clause is se�
lected�

ctypecase and ccase are also similar to typecase and case� respectively�

but signal a continuable error if no clause is selected�

�Macro�etypecase keyform f�type f formg� �g�

�This supersedes the description of etypecase given in section �����!GLS�

This control construct is similar to typecase� but no explicit otherwise

or t clause is permitted� If no clause is satis�ed� etypecase signals an error

of type typeerror� with a message constructed from the clauses� It is not

permissible to continue from this error� To supply an error message� the user

should use typecase with an otherwise clause containing a call to error�

The name of this function stands for �exhaustive type case� or �error�checking

type case��
Example�

Lisp� �setq x
 ��

�
 �

Lisp� �etypecase x

�integer �
 x ���

�symbol �symbolvalue x���

Error� The value of X�
 �� is neither an integer nor a symbol�

To continue� type �CONTINUE followed by an option number�

� Return to Lisp Toplevel�

Debug�

�Macro�ctypecase keyplace f�type f formg� �g�

�This supersedes the description of ctypecase given in section �����!GLS�
This control construct is similar to typecase� but no explicit otherwise or

t clause is permitted�

The keyplace must be a generalized variable reference acceptable to setf�

If no clause is satis�ed� ctypecase signals an error
of type typeerror� with

a message constructed from the clauses� This error may be continued using

�

 COMMON LISP

the storevalue restart� The argument to storevalue is stored in keyplace

and then ctypecase starts over� making the type tests again� Subforms of

keyplace may be evaluated multiple times� If the storevalue restart is invoked

interactively� the user will be prompted for the value to be used�

The name of this function is mnemonic for �continuable
exhaustive� type

case��

Example�

Lisp� �setq x
 ��

�
 �

Lisp� �ctypecase x

�integer �
 x ���

�symbol �symbolvalue x���

Error� The value of X�
 �� is neither an integer nor a symbol�

To continue� type �CONTINUE followed by an option number�

� Specify a value to use instead�

�� Return to Lisp Toplevel�

Debug� �continue

Use value� ��	

Error� The value of X� ��	� is neither an integer nor a symbol�

To continue� type �CONTINUE followed by an option number�

� Specify a value to use instead�

�� Return to Lisp Toplevel�

Debug� �continue

Use value�
�

� ��

�Macro�ecase keyform f� f� fkeyg� � j keyg f formg� �g�

�This supersedes the description of ecase given in section �����!GLS�

This control construct is similar to case� but no explicit otherwise or t

clause is permitted� If no clause is satis�ed� ecase signals an error
of type

typeerror� with a message constructed from the clauses� It is not permissible

to continue from this error� To supply an error message� the user should use

case with an otherwise clause containing a call to error� The name of this
function stands for �exhaustive case� or �error�checking case��

Example�

Lisp� �setq x
 ��

�
 �

CONDITIONS �
�

Lisp� �ecase x

�alpha �foo��

�omega �bar��

��zeta phi� �baz���

Error� The value of X�
 �� is not ALPHA� OMEGA� ZETA� or PHI�

To continue� type �CONTINUE followed by an option number�

� Return to Lisp Toplevel�

Debug�

�Macro�ccase keyplace f� f� fkeyg� � j keyg f formg� �g�

�This supersedes the description of ccase given in section �����!GLS�

This control construct is similar to case� but no explicit otherwise or t

clause is permitted�

The keyplace must be a generalized variable reference acceptable to setf�
If no clause is satis�ed� ccase signals an error
of type typeerror� with a

message constructed from the clauses� This error may be continued using the

storevalue restart� The argument to storevalue is stored in keyplace and

then ccase starts over� making the type tests again� Subforms of keyplace may

be evaluated multiple times� If the storevalue restart is invoked interactively�
the user will be prompted for the value to be used�

The name of this function is mnemonic for �continuable
exhaustive� case��

Implementation note� The typeerror signaled by ccase and ecase is free to
choose any representation of the acceptable argument type that it wishes for place

ment in the expected
type slot� It will always work to use type �member � keys��
but in some cases it may be more e�cient� for example� to use a type that represents
an integer subrange or a type composed using the or type speci�er�

������� Handling Conditions

These macros allow a program to gain control when a condition is signaled�

�Macro�handlercase expression f�typespec � �var� � f formg� �g�

Executes the given expression in a context where various speci�ed handlers

are active�

Each typespec may be any type speci�er� If during the execution of the

expression a condition is signaled for which there is an appropriate clause!

that is� one for which �typep condition typespec� is true!and if there is no

�
� COMMON LISP

intervening handler for conditions of that type� then control is transferred to

the body of the relevant clause
unwinding the dynamic state appropriately

in the process� and the given variable var is bound to the condition that

was signaled� If no such condition is signaled and the computation runs to

completion� then the values resulting from the expression are returned by
the handlercase form�

If more than one case is provided� those cases are made accessible in parallel�

That is� in

�handlercase expression

�type� �var�� form��

�type� �var�� form���

if the �rst clause
containing form�� has been selected� the handler for the

second is no longer visible
and vice versa��

The cases are searched sequentially from top to bottom� If a signaled condi�

tion matches more than one case
possible if there is type overlap� the earlier

of the two cases will be selected�

CONDITIONS �
�

If the variable var is not needed� it may be omitted� That is� a clause such

as

�type �var� �declare �ignore var�� form�

may be written using the following shorthand notation�

�type �� form�

If there are no forms in a selected case� the case returns nil� Note that

�handlercase expression

�type� �var�� � body��

�type� �var�� � body��
����

is approximately equivalent to

�block ���
����block

�let ���������var��

�tagbody

�handlerbind ��type� ��� �lambda �temp�

�setq ������� temp�

�go ��������tag����

�type� ��� �lambda �temp�

�setq ������� temp�

�go ��������tag����

����

�returnfrom ���
��� expression��

������� �returnfrom ���
��� �let ��var� ��������� � body���

������� �returnfrom ���
��� �let ��var� ��������� � body���

������

�Note the use of �gensyms� such as ����block
 as block names� variables� and

tagbody tags in this example� and the use of ���n and ���n��� read�macro syntax
to indicate that the very same gensym appears in multiple places�!GLS�

As a special case� the typespec can also be the symbol �noerror in the last
clause� If it is� it designates a clause that will take control if the expression

returns normally� In that case� a completely general lambda�list may follow

the symbol �noerror� and the arguments to which the lambda�list parameters

are bound are like those for multiplevaluecall on the return value of the

expression� For example�

��� COMMON LISP

�handlercase expression

�type� �var�� � body��

�type� �var�� � body��

���

�typen �varn� � bodyn�
��noerror �nvar� nvar� ��� nvarm� � nbody��

is approximately equivalent to

�block ���
����errorreturn

�multiplevaluecall ��� �lambda �nvar� nvar� ��� nvarm� � nbody�
�block ��������normalreturn

�returnfrom ���
���

�handlercase �returnfrom ������� expression�

�type� �var�� � body��

�type� �var�� � body��
���

�typen �varn� � bodyn������

Examples of the use of handlercase�

�handlercase � x y�

�divisionbyzero �� nil��

�handlercase �open
thefile
 �direction �input�

�fileerror �condition� �format t � �Fooey� A "� condition���

�handlercase �someuserfunction�

�fileerror �condition� condition�

�divisionbyzero �� ��

��or unboundvariable undefinedfunction� �� unbound��

�handlercase �intern x y�

�error �condition� condition�

��noerror �symbol status�

�declare �ignore symbol��

status��

�Macro�ignoreerrors f formg�

Executes its body in a context that handles conditions of type error by

returning control to this form� If no such condition is signaled� any values

CONDITIONS ���

returned by the last form are returned by ignoreerrors� Otherwise� two

values are returned� nil and the error condition that was signaled�

ignoreerrors could be de�ned by

�defmacro ignoreerrors ��body forms�

�handlercase �progn �#forms�

�error �c� �values nil c���

�Macro�handlerbind � f�typespec handler�g� � f formg�

Executes body in a dynamic context where the given handler bindings are in

e	ect� Each typespec may be any type speci�er� Each handler form should

evaluate to a function to be used to handle conditions of the given type
s�
during execution of the forms� This function should take a single argument�

the condition being signaled�

If more than one binding is speci�ed� the bindings are searched sequentially

from top to bottom in search of a match
by visual analogy with typecase��

If an appropriate typespec is found� the associated handler is run in a context
where none of the handler bindings are visible
to avoid recursive errors�� For

example� in the case of

�handlerbind ��unboundvariable ��� �lambda �����

�error ��� �lambda ������

����

if an unbound variable error is signaled in the body
and not handled by an

intervening handler�� the �rst function will be called� If any other kind of

error is signaled� the second function will be called� In either case� neither

handler will be active while executing the code in the associated function�

������� De
ning Conditions

�The contents of this section are still a subject of some debate within X�J���
The reader may wish to take this section with a grain of salt� two aspirin

tablets� and call a hacker in the morning�!GLS�

�Macro�definecondition name � fparent�typeg� �
�� fslot�speci
erg� � foptiong� �

De�nes a new condition type called name� which is a subtype of each given

parent�type� Except as otherwise noted� the arguments are not evaluated�

��� COMMON LISP

Objects of this condition type will have all of the indicated slots� plus any

additional slots inherited from the parent types
its superclasses�� If the slots

list is omitted� the empty list is assumed�

A slot must have the form

slot�speci
er ��" slot�name j
slot�name ���slot�option ���

For the syntax of a slot�option� see defclass� The slots of a condition object
are normal CLOS slots� Note that withslotsmay be used instead of accessor

functions to access slots of a condition object�

makecondition will accept keywords
in the keyword package� with the

print name of any of the designated slots� and will initialize the corresponding

slots in conditions it creates�

Accessors are created according to the same rules as used by defclass�

The valid options are as follows�

��documentation doc�string�

The doc�string should be either nil or a string that describes the purpose

of the condition type� If this option is omitted� nil is assumed� Calling

�documentation name type� will retrieve this information�

��report exp�

If exp is not a literal string� it must be a suitable argument to the function

special form� The expression �function exp� will be evaluated in the current

lexical environment� It should produce a function of two arguments� a condi�

tion and a stream� that prints on the stream a description of the condition�
This function is called whenever the condition is printed while
printescape

is nil�

If exp is a literal string� it is shorthand for

�lambda �c s�

�declare �ignore c��

�writestring exp s��

�That is� a function is provided that will simply write the given string literally
to the stream� regardless of the particular condition object supplied�!GLS�

The �report option is processed after the new condition type has been

de�ned� so use of the slot accessors within the report function is permitted�

If this option is not speci�ed� information about how to report this type of

condition will be inherited from the parent�type�

CONDITIONS ���

�X�J�� voted in March ���� h���i to integrate the Condition Sys�

tem and the Object System� In the original Condition System proposal�

definecondition allowed only one parent�type
the inheritance structure was

a simple hierarchy�� Slot descriptions were much simpler� even simpler than

those for defstruct�

slot ��" slot�name j
slot�name� j
slot�name default�value�
Similarly� definecondition allowed a �concname option similar to that of

defstruct�

��conc�name symbol�or�string�

Not now part of Common Lisp� As with defstruct� this sets up au�

tomatic pre�xing of the names of slot accessors� Also as in defstruct� the

default behavior is to use the name of the new type� name� followed by a
hyphen�
Generated names are interned in the package that is current at the

time that the definecondition is processed��

One consequence of the vote was to make definecondition slot descriptions

like those of defclass�!GLS�

Here are some examples of the use of definecondition�

The following form de�nes a condition of type peg holemismatch that

inherits from a condition type called blocksworlderror�

�definecondition peg holemismatch �blocksworlderror�

�pegshape holeshape�

��report

�lambda �condition stream�

�withslots �pegshape holeshape� condition

�format stream �A A peg cannot go in a A hole��

pegshape holeshape����

The new type has slots pegshape and holeshape� so makecondition will
accept �pegshape and �holeshape keywords� The withslots macro may

be used to access the pegshape and holeshape slots� as illustrated in the

�report information�

Here is another example� This de�nes a condition called machineerror

that inherits from error�

�definecondition machineerror �error�

��machinename

�reader machineerrormachinename��

��� COMMON LISP

��report �lambda �condition stream�

�format stream �There is a problem with A��

�machineerrormachinename condition�����

Building on this de�nition� we can de�ne a new error condition that is a
subtype of machineerror for use when machines are not available�

�definecondition machinenotavailableerror �machineerror� ��

��report �lambda �condition stream�

�format stream �The machine A is not available��

�machineerrormachinename condition�����

We may now de�ne a still more speci�c condition� built upon machinenot

availableerror� that provides a default for machinename but does not pro�

vide any new slots or report information� It just gives the machinename slot
a default initialization�

�definecondition myfavoritemachinenotavailableerror

�machinenotavailableerror�

��machinename �initform �MC�LCS�MIT�EDU����

Note that since no �report clause was given� the information inherited from

machinenotavailableerror will be used to report this type of condition�

������� Creating Conditions

The function makecondition is the basic means for creating condition objects�

�Function�makecondition type �rest slotinitializations

Constructs a condition object of the given type using slot�initializations as a

speci�cation of the initial value of the slots� The newly created condition is

returned�
The slot�initializations are alternating keyword�value pairs� For example�

�makecondition peg holemismatch

�pegshape square �holeshape round�

������� Establishing Restarts

The lowest�level form that creates restart points is called restartbind� The

restartcasemacro is an abstraction that addresses many common needs for

restartbind while o	ering a more palatable syntax� See also withsimple

CONDITIONS ��	

restart� The function that transfers control to a restart point established by

one of these macros is called invokerestart�

All restarts have dynamic extent� a restart does not survive execution of

the form that establishes it�

�Macro�withsimplerestart �name format�string f format�argumentg� �
f formg�

This is shorthand for one of the most common uses of restartcase�

If the restart designated by name is not invoked while executing the forms�
all values returned by the last form are returned� If that restart is invoked�

control is transferred to the withsimplerestart form� which immediately

returns the two values nil and t�

The name may be nil� in which case an anonymous restart is established�

withsimplerestart could be de�ned by

�defmacro withsimplerestart ��restartname formatstring

�rest formatarguments�

�body forms�

�restartcase �progn �#forms�

��restartname ��

�report

�lambda �stream�

�format stream �formatstring �#formatarguments��

�values nil t����

Here is an example of the use of withsimplerestart�

Lisp� �defun readevalprintloop �level�

�withsimplerestart

�abort �Exit command level D�� level�

�loop

�withsimplerestart

�abort �Return to command level D�� level�

�let ��form �prog� �freshline�

�read�

�freshline����

�prin
 �eval form�������

� READEVALPRINTLOOP

Lisp� �readevalprintloop
�

�� a ��

��
 COMMON LISP

Error� The argument� A� to the function � was of the wrong type�

The function expected a number�

To continue� type �CONTINUE followed by an option number�

� Specify a value to use this time�

�� Return to command level
�

�� Exit command level
�

�� Return to Lisp Toplevel�

Debug�

Compatibility note� In contrast to the way that Zetalisp has traditionally de�ned
abort as a kind of condition to be handled� the Common Lisp Condition System
de�nes abort as a way to restart ��proceed� in Zetalisp terms��

Remark� Some readers may wonder what ought to be done by the �abort� key
�or whatever the implementation�s interrupt key is�Control
C or Control
G� for
example�� Such interrupts� whether synchronous or asynchronous in nature� are
beyond the scope of this chapter and indeed are not currently addressed by Common
Lisp at all� This may be a topic worth standardizing under separate cover� Here is
some speculation about some possible things that might happen�

An implementation might simply call abort or break directly without signaling
any condition�

Another implementation might signal some condition related to the fact that a
key had been pressed rather than to the action that should be taken� This is one way
to allow user customization� Perhaps there would be an implementation
dependent
keyboardinterrupt condition type with a slot containing the key that was pressed�
or perhaps there would be such a condition type� but rather than its having slots�
di�erent subtypes of that type with names like keyboardabort� keyboardbreak� and
so on might be signaled� That implementation would then document the action it
would take if user programs failed to handle the condition� and perhaps ways for
user programs to usefully dismiss the interrupt�

Implementation note� Implementors are encouraged to make sure that there is
always a restart named abort around any user code so that user code can call abort
at any time and expect something reasonable to happen� exactly what the reason

able thing is may vary somewhat� Typically� in an interactive program� invoking
abort should return the user to top level� though in some batch or multi
processing
situations killing the running process might be more appropriate�

CONDITIONS ���

�Macro�restartcase expression f�case�name arglist
fkeyword valueg�
f formg� �g�

The expression is evaluated in a dynamic context where the clauses have spe�

cial meanings as points to which control may be transferred� If the expression

�nishes executing and returns any values� all such values are simply returned
by the restartcase form� While the expression is running� any code may

transfer control to one of the clauses
see invokerestart�� If a transfer oc�

curs� the forms in the body of that clause will be evaluated and any values

returned by the last such form will be returned by the restartcase form�

As a special case� if the expression is a list whose car is signal� error�

cerror� or warn� then withconditionrestarts is implicitly used to associate
the restarts with the condition to be signaled� For example�

�restartcase �signal weirderror�

�becomeconfused ����

�rewindlineprinter ����

�haltandcatchfire �����

is equivalent to

�restartcase �withconditionrestarts

weirderror

�list �findrestart becomeconfused�

�findrestart rewindlineprinter�

�findrestart haltandcatchfire��

�signal weirderror��

�becomeconfused ����

�rewindlineprinter ����

�haltandcatchfire �����

If there are no forms in a selected clause� restartcase returns nil�

The case�name may be nil or a symbol naming this restart�

It is possible to have more than one clause use the same case�name� In this
case� the �rst clause with that name will be found by findrestart� The other

clauses are accessible using computerestarts� �In this respect� restartcase

is rather di	erent from case�!GLS�

Each arglist is a normal lambda�list containing parameters to be bound

during the execution of its corresponding forms� These parameters are used

to pass any necessary data from a call to invokerestart to the restartcase

clause�

��� COMMON LISP

By default� invokerestartinteractively will pass no arguments and all

parameters must be optional in order to accommodate interactive restarting�

However� the parameters need not be optional if the �interactive keyword

has been used to inform invokerestartinteractively about how to com�

pute a proper argument list�

The valid keyword value pairs are the following�

�test fn

The fn must be a suitable argument for the function special form� The ex�

pression �function fn� will be evaluated in the current lexical environment�

It should produce a function of one argument� a condition� If this func�

tion returns nil when given some condition� functions such as findrestart�
computerestart� and invokerestart will not consider this restart when

searching for restarts associated with that condition� If this pair is not sup�

plied� it is as if

�lambda �c� �declare �ignore c�� t�

were used for the fn�

�interactive fn

The fn must be a suitable argument for the function special form� The ex�
pression �function fn� will be evaluated in the current lexical environment�

It should produce a function of no arguments that returns arguments to be

used by invokerestartinteractively when invoking this function� This

function will be called in the dynamic environment available prior to any
restart attempt� It may interact with the user on the stream in
queryio
�

If a restart is invoked interactively but no �interactive option was sup�
plied� the argument list used in the invocation is the empty list�

�report exp

If exp is not a literal string� it must be a suitable argument to the function

special form� The expression �function exp� will be evaluated in the current

lexical environment� It should produce a function of one argument� a stream�

that prints on the stream a description of the restart� This function is called

whenever the restart is printed while
printescape
 is nil�

If exp is a literal string� it is shorthand for

�lambda �s� �writestring exp s��

CONDITIONS ���

�That is� a function is provided that will simply write the given string literally

to the stream�!GLS�

If a named restart is asked to report but no report information has been

supplied� the name of the restart is used in generating default report text�

When
printescape
 is nil� the printer will use the report information

for a restart� For example� a debugger might announce the action of typing

��continue� by executing the equivalent of

�format
debugio
 � � S A "� �continue somerestart�

which might then display as something like

�CONTINUE Return to command level�

It is an error if an unnamed restart is used and no report information is

provided�

Rationale� Unnamed restarts are required to have report information on the
grounds that they are generally only useful interactively� and an interactive option
that has no description is of little value�

Implementation note� Implementations are encouraged to warn about this error
at compilation time�

At run time� this error might be noticed when entering the debugger� Since
signaling an error would probably cause recursive entry into the debugger �causing
yet another recursive error� and so on�� it is suggested that the debugger print some
indication of such problems when they occur� but not actually signal errors�

Note that

�restartcase expression
�name� arglist� options� � body��

�name� arglist� options� � body��

����

is essentially equivalent to

��� COMMON LISP

�block ���
����block

�let ����������var� nil��

�tagbody

�restartbind ��name� ��� �lambda ��rest temp�

�setq ������� temp�

�go ��������tag���

hslightly transformed options�i�
�name� ��� �lambda ��rest temp�

�setq ������� temp�

�go ��������tag���

hslightly transformed options�i�
����

�returnfrom ���
��� expression��

������� �returnfrom ���
���
�apply ��� �lambda arglist� � body�� ���������

������� �returnfrom ���
���

�apply ��� �lambda arglist� � body�� ���������

������

�Note the use of �gensyms� such as ����block
 as block names� variables� and
tagbody tags in this example� and the use of ���n and ���n��� read�macro syntax

to indicate that the very same gensym appears in multiple places�!GLS�

Here are some examples of the use of restartcase�

�loop

�restartcase �return �apply function someargs��

�newfunction �newfunction�

�report �Use a different function��

�interactive

�lambda ��

�list �promptfor function �Function� ����

�setq function newfunction����

�loop

�restartcase �return �apply function someargs��

�nil �newfunction�

�report �Use a different function��

�interactive

�lambda ��

�list �promptfor function �Function� ����

�setq function newfunction����

CONDITIONS ���

�restartcase �acommandloop�

�returnfromcommandlevel ��

�report

�lambda �s� �Argument s is a stream
�format s �Return from command level D�� level��

nil��

�loop

�restartcase �anotherrandomcomputation�

�continue �� nil���

The �rst and second examples are equivalent from the point of view of someone

using the interactive debugger� but they di	er in one important aspect for non�

interactive handling� If a handler �knows about� named restarts� as in� for

example�

�when �findrestart newfunction�

�invokerestart newfunction thereplacement��

then only the �rst example� and not the second� will have control transferred
to its correction clause� since only the �rst example uses a restart named

newfunction�

Here is a more complete example�

�let ��myfood milk�

�mycolor greenishblue��

�do ��

��not �badfoodcolorp myfood mycolor���

�restartcase �error badfoodcolor

�food myfood �color mycolor�

�usefood �newfood�

�report �Use another food��

�setq myfood newfood��

�usecolor �newcolor�

�report �Use another color��

�setq mycolor newcolor����

�� We won t get to here until MYFOOD

�� and MYCOLOR are compatible�

�list myfood mycolor��

Assuming that usefood and usecolor have been de�ned as

��� COMMON LISP

�defun usefood �newfood�

�invokerestart usefood newfood��

�defun usecolor �newcolor�

�invokerestart usecolor newcolor��

a handler can then restart from the error in either of two ways� It may correct

the color or correct the food� For example�

��� �lambda �c� ��� �usecolor white� ���� �Corrects color

��� �lambda �c� ��� �usefood cheese� ���� �Corrects food

Here is an example using handlerbind and restartcase that refers to a

condition type fooerror� presumably de�ned elsewhere�

�handlerbind ��fooerror ��� �lambda �ignore� �usevalue 	����

�restartcase �error fooerror�

�usevalue �x� �
 x x����

� ��

�Macro�restartbind � f�name function fkeyword valueg� �g� � f formg�

Executes a body of forms in a dynamic context where the given restart bind�

ings are in e	ect�

Each name may be nil to indicate an anonymous restart� or some other

symbol to indicate a named restart�
Each function is a form that should evaluate to a function to be used to

perform the restart� If invoked� this function may either perform a non�

local transfer of control or it may return normally� The function may take

whatever arguments the programmer feels are appropriate� it will be invoked
only if invokerestart is used from a program� or if a user interactively

asks the debugger to invoke it� In the case of interactive invocation� the

�interactivefunction option is used�

The valid keyword value pairs are as follows�

�test�function form

The form will be evaluated in the current lexical environment and should

return a function of one argument� a condition� If this function returns nil

when given some condition� functions such as findrestart� computerestart�

and invokerestart will not consider this restart when searching for restarts

associated with that condition� If this pair is not supplied� it is as if

CONDITIONS ���

��� �lambda �c� �declare �ignore c�� t�

were used for the form�

�interactive�function form

The form will be evaluated in the current lexical environment and should re�

turn a function of no arguments that constructs a list of arguments to be used

by invokerestartinteractively when invoking this restart� The function

may prompt interactively using
queryio
 if necessary�

�report�function form

The form will be evaluated in the current lexical environment and should

return a function of one argument� a stream� that prints on the stream a

summary of the action this restart will take� This function is called whenever

the restart is printed while
printescape
 is nil�

�Macro�withconditionrestarts condition�form restarts�form

fdeclarationg� f formg�

The value of condition�form should be a condition C and the value of restarts�

form should be a list of restarts �R� R� ����� The forms of the body are

evaluated as an implicit progn� While in the dynamic context of the body�

an attempt to �nd a restart associated with a particular condition C � will
consider the restarts R�� R�� � � � if C � is eq to C�
Usually this macro is not used explicitly in code� because restartcase

handles most of the common uses in a way that is syntactically more concise�

�The X�J�� vote h��i left it unclear whether withconditionrestarts per�
mits declarations to appear at the heads of its body� I believe that was the
intent� but this is only my interpretation�!GLS�

�����
� Finding and Manipulating Restarts

The following functions determine what restarts are active and invoke restarts�

�Function�computerestarts �optional condition

Uses the dynamic state of the program to compute a list of the restarts that

are currently active� See restartbind�

If condition is nil or not supplied� all outstanding restarts are returned� If

condition is not nil� only restarts associated with that condition are returned�

��� COMMON LISP

Each restart represents a function that can be called to perform some form

of recovery action� usually a transfer of control to an outer point in the running

program� Implementations are free to implement these objects in whatever

manner is most convenient� the objects need have only dynamic extent
rela�

tive to the scope of the binding form that instantiates them��
The list that results from a call to computerestarts is ordered so that the

inner
that is� more recently established� restarts are nearer the head of the

list�

Note� too� that computerestarts returns all valid restarts� including
anonymous ones� even if some of them have the same name as others and

would therefore not be found by findrestart when given a symbol argu�

ment�

Implementations are permitted� but not required� to return di	erent
that

is� non�eq� lists from repeated calls to computerestarts while in the same
dynamic environment� It is an error to modify the list that is returned by

computerestarts�

�Function�restartname restart

Returns the name of the given restart� or nil if it is not named�

�Function�findrestart restartidenti
er �optional condition

Searches for a particular restart in the current dynamic environment�

If condition is nil or not supplied� all outstanding restarts are considered�

If condition is not nil� only restarts associated with that condition are con�
sidered�

If the restart�identi
er is a non�nil symbol� then the innermost
that is�

most recently established� restart with that name is returned� nil is returned

if no such restart is found�
If restart�identi
er is a restart object� then it is simply returned� unless it

is not currently active� in which case nil is returned�

Although anonymous restarts have a name of nil� it is an error for the sym�

bol nil to be given as the restart�identi
er� Applications that would seem to

require this should be rewritten to make appropriate use of computerestarts
instead�

�Function�invokerestart restartidenti
er �rest arguments

Calls the function associated with the given restart�identi
er� passing any

given arguments� The restart�identi
er must be a restart or the non�null name

CONDITIONS ��	

of a restart that is valid in the current dynamic context� If the argument is

not valid� an error of type controlerror will be signaled�

Implementation note� Restart functions call this function� not vice versa�

�Function�invokerestartinteractively restartidenti
er

Calls the function associated with the given restart�identi
er� prompting for

any necessary arguments� The restart�identi
er must be a restart or the non�
null name of a restart that is valid in the current dynamic context� If the

argument is not valid� an error of type controlerror will be signaled�

The function invokerestartinteractively will prompt for arguments by
executing the code provided in the �interactive keyword to restartcase

or �interactivefunction keyword to restartbind�

If no �interactive or �interactivefunction option has been supplied

in the corresponding restartcase or restartbind� then it is an error if the
restart takes required arguments� If the arguments are optional� an empty

argument list will be used in this case�

Once invokerestartinteractively has calculated the arguments� it sim�
ply performs �apply ��� invokerestart restartidenti
er arguments��

invokerestartinteractively is used internally by the debugger and may

also be useful in implementing other portable� interactive debugging tools�

������� Warnings

Warnings are a subclass of errors that are conventionally regarded as �mild��

�Function�warn datum �rest arguments

�This supersedes the description of warn given in section �����!GLS�

Warns about a situation� by signaling a condition of type warning�

If datum is a condition� then that condition is used directly� In this case�

if the condition is not of type warning or arguments is non�nil� an error of

type typeerror is signaled�

If datum is a condition type
a class or class name�� then the condition

used is e	ectively the result of �apply ��� makecondition datum arguments��

This result must be of type warning or an error of type typeerror is signaled�

If datum is a string� then the condition used is e	ectively the result of

��
 COMMON LISP

�makecondition simpleerror

�formatstring datum

�formatarguments arguments�

The precise mechanism for warning is as follows�

�� The warning condition is signaled�

While the warning condition is being signaled� the mufflewarning restart

is established for use by a handler to bypass further action by warn
that

is� to cause warn to immediately return nil��

As part of the signaling process� if �typep condition
breakonsignals
�

is true� then a break will occur prior to beginning the signaling process�

�� If no handlers for the warning condition are found� or if all such handlers

decline� then the condition will be reported to
erroroutput
 by the warn

function
with possible implementation�speci�c extra output such as motion
to a fresh line before or after the display of the warning� or supplying some

introductory text mentioning the name of the function that called warn or

the fact that this is a warning��

�� The value returned by warn
if it returns� is nil�

�������� Restart Functions

Common Lisp has the following restart functions built in�

�Function�abort �optional condition

This function transfers control to the restart named abort� If no such restart

exists� abort signals an error of type controlerror�

If condition is nil or not supplied� all outstanding restarts are considered�

If condition is not nil� only restarts associated with that condition are con�

sidered�

The purpose of the abort restart is generally to allow control to return to

the innermost �command level��

�Function�continue �optional condition

This function transfers control to the restart named continue� If no such

restart exists� continue returns nil�

CONDITIONS ���

If condition is nil or not supplied� all outstanding restarts are considered�

If condition is not nil� only restarts associated with that condition are con�

sidered�

The continue restart is generally part of simple protocols where there

is a single �obvious� way to continue� as with break and cerror� Some
user�de�ned protocols may also wish to incorporate it for similar reasons� In

general� however� it is more reliable to design a special�purpose restart with

a name that better suits the particular application�

�Function�mufflewarning �optional condition

This function transfers control to the restart named mufflewarning� If no

such restart exists� mufflewarning signals an error of type controlerror�

If condition is nil or not supplied� all outstanding restarts are considered�
If condition is not nil� only restarts associated with that condition are con�

sidered�

warn sets up this restart so that handlers of warning conditions have a way

to tell warn that a warning has already been dealt with and that no further
action is warranted�

�Function�storevalue value �optional condition

This function transfers control
and one value� to the restart named

storevalue� If no such restart exists� storevalue returns nil�

If condition is nil or not supplied� all outstanding restarts are considered�

If condition is not nil� only restarts associated with that condition are con�

sidered�
The storevalue restart is generally used by handlers trying to recover from

errors of types such as cellerror or typeerror� where the handler may wish

to supply a replacement datum to be stored permanently�

�Function�usevalue value �optional condition

This function transfers control
and one value� to the restart named usevalue�

If no such restart exists� usevalue returns nil�

If condition is nil or not supplied� all outstanding restarts are considered�
If condition is not nil� only restarts associated with that condition are con�

sidered�

The usevalue restart is generally used by handlers trying to recover from

errors of types such as cellerror� where the handler may wish to supply a
replacement datum for one�time use�

��� COMMON LISP

�������� Debugging Utilities

Common Lisp does not specify exactly what a debugger is or does� but it does

provide certain means for indicating intent to transfer control to a supervisory

or debugging facility�

�Function�break �optional formatstring �rest formatarguments

�This supersedes the description of break given in section �����!GLS�

The function break prints the message described by the format�string and

format�arguments and then goes directly into the debugger without allowing

any possibility of interception by programmed error�handling facilities�

If no format�string is supplied� a suitable default will be generated�

If continued� break returns nil�

Note that break is presumed to be used as a way of inserting temporary

debugging �breakpoints� in a program� not as a way of signaling errors� it
is expected that continuing from a break will not trigger any unusual re�

covery action� For this reason� break does not take the additional format

control string that cerror takes as its �rst argument� This and the lack of

any possibility of interception by programmed error handling are the only

program�visible di	erences between break and cerror� The user interface
aspects of these functions are permitted to vary more widely� for example� it

is permissible for a read�eval�print loop to be entered by break rather than

by the conventional debugger�

break could be de�ned by

�defun break ��optional �formatstring �Break��

�rest formatarguments�

�withsimplerestart �continue �Return from BREAK���

�invokedebugger

�makecondition simplecondition

�formatstring formatstring

�formatarguments formatarguments���

nil�

�Function�invokedebugger condition

Attempts interactive handling of its argument� which must be a condition�

If the variable
debuggerhook
 is not nil� it will be called as a func�

tion on two arguments� the condition being handled and the value of

CONDITIONS ���

debuggerhook
� If a hook function returns normally� the standard debugger

will be tried�

The standard debugger will never directly return� Return can occur only

by a special transfer of control� such as the use of a restart�

Remark� The exact way in which the debugger interacts with users is expected to
vary considerably from system to system� For example� some systems may use a
keyboard interface� while others may use a mouse interface� Of those systems using
keyboard commands� some may use single
character commands and others may use
parsed line
at
a
time commands� The exact set of commands will vary as well� The
important properties of a debugger are that it makes information about the error
accessible and that it makes the set of apparent restarts easily accessible�
It is desirable to have a mode where the debugger allows other features� such as

the ability to inspect data� stacks� etc� However� it may sometimes be appropriate to
have this kind of information hidden from users� Experience on the Lisp Machines
has shown that some users who are not programmers develop a terrible phobia of
debuggers� The reason for this usually may be traced to the fact that the debugger is
very foreign to them and provides an overwhelming amount of information of interest
only to programmers� With the advent of restarts� there is a clear mechanism for
the construction of �friendly� debuggers� Programmers can be taught how to get
to the information they need for debugging� but it should be possible to construct
user interfaces to the debugger that are natural� convenient� intelligible� and friendly
even to non
programmers�

�Variable�
debuggerhook

This variable should hold either nil or a function of two arguments� a con�
dition and the value of
debuggerhook
� This function may either handle

the condition
transfer control� or return normally
allowing the standard

debugger to run��

Note that� to minimize recursive errors while debugging�
debuggerhook

is bound to nil when calling this function� When evaluating code typed in by
the user interactively� the hook function may want to bind
debuggerhook

to the function that was its second argument so that recursive errors can be

handled using the same interactive facility�

����� Prede
ned Condition Types

�The proposal for the Common Lisp Condition System introduced a new no�

tation for documenting types� treating them in the same syntactic manner

��� COMMON LISP

as functions and variables� This notation is used in this section but is not

re
ected throughout the entire book�!GLS�

X�J�� voted in March ���� h���i to integrate the Condition System and

the Object System� All condition types are CLOS classes and all condition

objects are ordinary CLOS objects�

�Type�restart

This is the data type used to represent a restart�

The Common Lisp condition type hierarchy is illustrated in table �����

The types that are not leaves in the hierarchy
that is� condition� warning�

storagecondition� error� arithmeticerror� controlerror� and so on� are

provided primarily for type inclusion purposes� Normally they would not be
directly instantiated�

Implementations are permitted to support non�portable synonyms for these

types� as well as to introduce other types that are above� below� or between

the types shown in this tree as long as the indicated subtype relationships are

not violated�
The types simplecondition� seriouscondition� and warning are pair�

wise disjoint� The type error is also disjoint from types simplecondition

and warning�

�Type�condition

All types of conditions� whether error or non�error� must inherit from this
type�

�Type�warning

All types of warnings should inherit from this type� This is a subtype of

condition�

�Type�seriouscondition

All serious conditions
conditions serious enough to require interactive inter�
vention if not handled� should inherit from this type� This is a subtype of

condition�

This condition type is provided primarily for terminological convenience�

In fact� signaling a condition that inherits from seriouscondition does not

force entry into the debugger� Rather� it is conventional to use error
or

CONDITIONS ���

Table �
��� Condition Type Hierarchy

condition

simplecondition

seriouscondition

error

simpleerror

arithmeticerror

divisionbyzero

floatingpointoverflow

floatingpointunderflow

���

cellerror

unboundvariable

undefinedfunction

���

controlerror

fileerror

packageerror

programerror

streamerror

endoffile

���

typeerror

simpletypeerror

���

���

storagecondition

���

warning

simplewarning

���

���

something built on error� to signal conditions that are of this type� and to

use signal to signal conditions that are not of this type�

�Type�error

All types of error conditions inherit from this condition� This is a subtype of

seriouscondition�

��� COMMON LISP

The default condition type for signal and warn is simplecondition� The

default condition type for error and cerror is simpleerror�

�Type�simplecondition

Conditions signaled by signal when given a format string as a �rst argu�

ment are of this type� This is a subtype of condition� The initialization
keywords �formatstring and �formatarguments are supported to initialize

the slots� which can be accessed using simpleconditionformatstring and

simpleconditionformatarguments� If �formatarguments is not supplied to

makecondition� the format�arguments slot defaults to nil�

�Type�simplewarning

Conditions signaled by warn when given a format string as a �rst argu�

ment are of this type� This is a subtype of warning� The initialization

keywords �formatstring and �formatarguments are supported to initialize

the slots� which can be accessed using simpleconditionformatstring and
simpleconditionformatarguments� If �formatarguments is not supplied to

makecondition� the format�arguments slot defaults to nil�

In implementations supporting multiple inheritance� this type will also be

a subtype of simplecondition�

�Type�simpleerror

Conditions signaled by error and cerror when given a format string as a

�rst argument are of this type� This is a subtype of error� The initialization

keywords �formatstring and �formatarguments are supported to initialize

the slots� which can be accessed using simpleconditionformatstring and

simpleconditionformatarguments� If �formatarguments is not supplied to
makecondition� the format�arguments slot defaults to nil�

In implementations supporting multiple inheritance� this type will also be

a subtype of simplecondition�

�Function�simpleconditionformatstring condition

Accesses the format�string slot of a given condition� which must be of type

simplecondition� simplewarning� simpleerror� or simpletypeerror�

CONDITIONS ���

�Function�simpleconditionformatarguments condition

Accesses the format�arguments slot of a given condition� which must be of type

simplecondition� simplewarning� simpleerror� or simpletypeerror�

�Type�storagecondition

Conditions that relate to storage over
ow should inherit from this type� This

is a subtype of seriouscondition�

�Type�typeerror

Errors in the transfer of data in a program should inherit from this type�

This is a subtype of error� For example� conditions to be signaled by

checktype should inherit from this type� The initialization keywords �datum

and �expectedtype are supported to initialize the slots� which can be accessed

using typeerrordatum and typeerrorexpectedtype�

�Function�typeerrordatum condition

Accesses the datum slot of a given condition� which must be of type

typeerror�

�Function�typeerrorexpectedtype condition

Accesses the expected�type slot of a given condition� which must be of type

typeerror� Users of typeerror conditions are expected to �ll this slot with

an object that is a valid Common Lisp type speci�er�

�Type�simpletypeerror

Conditions signaled by facilities similar to checktype may want to use this

type� The initialization keywords �formatstring and �formatarguments

are supported to initialize the slots� which can be accessed using

simpleconditionformatstring and simpleconditionformatarguments� If
�formatarguments is not supplied to makecondition� the format�arguments

slot defaults to nil�

In implementations supporting multiple inheritance� this type will also be

a subtype of simplecondition�

��� COMMON LISP

�Type�programerror

Errors relating to incorrect program syntax that are statically detectable

should inherit from this type
regardless of whether they are in fact statically

detected�� This is a subtype of error� This is not a subtype of controlerror�

�Type�controlerror

Errors in the dynamic transfer of control in a program should inherit from
this type� This is a subtype of error� This is not a subtype of programerror�

The errors that result from giving throw a tag that is not active or from
giving go or returnfrom a tag that is no longer dynamically available are

control errors�

On the other hand� the errors that result from naming a go tag or

returnfrom tag that is not lexically apparent are not control errors� They

are program errors� See programerror�

�Type�packageerror

Errors that occur during operations on packages should inherit from this type�

This is a subtype of error� The initialization keyword �package is supported

to initialize the slot� which can be accessed using packageerrorpackage�

�Function�packageerrorpackage condition

Accesses the package
or package name� that was being modi�ed or manipu�

lated in a condition of type packageerror�

�Type�streamerror

Errors that occur during input from� output to� or closing a stream should

inherit from this type� This is a subtype of error� The initialization key�

word �stream is supported to initialize the slot� which can be accessed using

streamerrorstream�

�Function�streamerrorstream condition

Accesses the o	ending stream of a condition of type streamerror�

CONDITIONS ��	

�Type�endoffile

The error that results when a read operation is done on a stream that has no

more tokens or characters should inherit from this type� This is a subtype of

streamerror�

�Type�fileerror

Errors that occur during an attempt to open a �le� or during some low�level

transaction with a �le system� should inherit from this type� This is a subtype
of error� The initialization keyword �pathname is supported to initialize the

slot� which can be accessed using fileerrorpathname�

�Function�fileerrorpathname condition

Accesses the o	ending pathname of a condition of type fileerror�

�Type�cellerror

Errors that occur while accessing a location should inherit from this type�

This is a subtype of error� The initialization keyword �name is supported to

initialize the slot� which can be accessed using cellerrorname�

�Function�cellerrorname condition

Accesses the o	ending cell name of a condition of type cellerror�

�Type�unboundvariable

The error that results from trying to access the value of an unbound variable

should inherit from this type� This is a subtype of cellerror�

�Type�undefinedfunction

The error that results from trying to access the value of an unde�ned function

should inherit from this type� This is a subtype of cellerror�

Remark� �Note� This remark was written well before the vote by X�J�� in June
���� h��i to add the Common Lisp Object System to the forthcoming draft standard
�see chapter ��� and the vote to integrate the Condition System and the Object
System� I have retained the remark here for reasons of historical interest��GLS�

��
 COMMON LISP

Some readers may wonder why undefinedfunction is not de�ned to inherit from
some condition such as controlerror� The answer is that any such arrangement
would require the presence of multiple inheritance�a luxury we do not currently
have �without resorting to deftype� which we are currently avoiding�� When the
Common Lisp Object System comes into being� we might want to consider issues
like this� Multiple inheritance makes a lot of things in a condition system much
more �exible to deal with�

�Type�arithmeticerror

Errors that occur while doing arithmetic type operations should inherit from

this type� This is a subtype of error� The initialization keywords �operation
and �operands are supported to initialize the slots� which can be accessed

using arithmeticerroroperation and arithmeticerroroperands�

�Function�arithmeticerroroperation condition

Accesses the o	ending operation of a condition of type arithmeticerror�

�Function�arithmeticerroroperands condition

Accesses a list of the o	ending operands in a condition of type

arithmeticerror�

�Type�divisionbyzero

Errors that occur because of division by zero should inherit from this type�

This is a subtype of arithmeticerror�

�Type�floatingpointoverflow

Errors that occur because of
oating�point over
ow should inherit from this

type� This is a subtype of arithmeticerror�

�Type�floatingpointunderflow

Errors that occur because of
oating�point under
ow should inherit from this
type� This is a subtype of arithmeticerror�

Appendix A

Series

BY RICHARD C� WATERS

preface� A series is a data structure much like a sequence� with similar

kinds of operations� The di	erence is that in many situations� operations on

series may be composed functionally and yet execute iteratively� without the

need to construct intermediate series values explicitly� In this manner� series

provide both the clarity of a functional programming style and the e�ciency
of an iterative programming style�

The remainder of this chapter consists of a description by Richard C� Waters

of his work on an existing implementation of series� This is the culmination

of many years of design and use of this approach� during which some �������
lines of application code have been written
by about half a dozen people

over the course of seven years� using the series facility in nearly all iteration

situations� This includes one large system
KBEmacs� of over ������ lines of

code�

I have edited the chapter only very lightly to conform to the overall style
of this book� Please see the Preface to this book for more information about

the genesis of the series approach and its relationship to the work of X�J���

!Guy L� Steele Jr�

A��� Introduction

Series combine aspects of sequences� streams� and loops� Like sequences� series

represent totally ordered multi�sets� In addition� the series functions have
the same
avor as the sequence functions!namely� they operate on whole

series� rather than extracting elements to be processed by other functions�

For instance� the series expression below computes the sum of the positive

elements in a list�

�collectsum �chooseif ��� plusp �scan �
 � � ����� � �

���

��� COMMON LISP

Like streams� series can represent unbounded sets of elements and are sup�

ported by lazy evaluation� each element of a series is not computed until it is

needed� For instance� the series expression below returns a list of the �rst �ve

even natural numbers and their sum� The call on scanrange returns a series

of all the even natural numbers� However� since no elements beyond the �rst
�ve are ever used� no elements beyond the �rst �ve are ever computed�

�let ��x �subseries �scanrange �from � �by �� � ����

�values �collect x� �collectsum x���

� �� � � � �� and ��

Like sequences and unlike streams� a series is not altered when its elements

are accessed� For instance� both users of x above receive the same elements�

A totally ordered multi�set of elements can be represented in a loop by the

successive values of a variable� This is extremely e�cient� because it avoids

the need to store the elements as a group in any kind of data structure� In

most situations� series expressions achieve this same high level of e�ciency�
because they are automatically transformed into loops before being evaluated

or compiled� For instance� the �rst expression above is transformed into a

loop like the following�

�let ��sum ���

�dolist �i �
 � � �� sum�

�when �plusp i� �setq sum �� sum i����� � �

A wide variety of algorithms can be expressed clearly and succinctly with
series expressions� In particular� at least �� percent of the loops programmers

typically write can be replaced by series expressions that are much easier to

understand and modify� and just as e�cient� From this perspective� the key

feature of series is that they are supported by a rich set of functions� These

functions more or less correspond to the union of the operations provided by
the sequence functions� the loop clauses� and the vector operations of APL�

Some series expressions cannot be transformed into loops� This is unfortu�
nate� because while transformable series expressions are much more e�cient

than equivalent expressions involving sequences or streams� non�transformable

series expressions are much less e�cient� Whenever a problem comes up that

blocks the transformation of a series expression� a warning message is issued�

On the basis of information in the message� it is usually easy to provide an
e�cient �x for the problem
see section A����

Fortunately� most series expressions can be transformed into loops� In par�

ticular� pure expressions
ones that do not store series in variables� can always

SERIES ���

be transformed� As a result� the best approach for programmers to take is

simply to write series expressions without worrying about transformability�

When problems come up� they can be ignored
since they cannot lead to the

computation of incorrect results� or dealt with on an individual basis�

Implementation note� The series functions and the theory underlying them are
described in greater detail in ���� ���� These reports also discuss the algorithms
required to transform series expressions into loops and explain how to obtain a
portable implementation�

A��� Series Functions

Throughout this chapter the notation Sj is used to denote the j th element of

the series S� As in a list or vector� the �rst element of a series has the subscript

zero�

The ��� macro character syntax ���Zlist denotes a series that contains the

elements of list� This syntax is also used when series are printed�

�chooseif ��� symbolp ���Z�a � b�� � ���Z�a b�

Series are self�evaluating objects and the series data type is disjoint from all
other types�

�Type speci
er �series elementtype

The type speci�er �series elementtype� denotes the set of series whose ele�

ments are all members of the type element�type�

�Function�series arg �rest args

The function series returns an unbounded series that endlessly repeats the

values of the arguments� The second example below shows the preferred

method for constructing a bounded series�

�series b c� � ���Z�b c b c b c ����

�scan �list a b c�� � ���Z�a b c�

���� COMMON LISP

A����� Scanners

Scanners create series outputs based on non�series inputs� Either they operate
based on some formula
for example� scanning a range of integers� or they

enumerate the elements in an aggregate data structure
for example� scanning

the elements in a list or array��

�Function�scanrange �key ��start �� ��by
� ��type number�

�upto �below �downto �above �length

The function scanrange returns a series of numbers starting with the �start

argument
default integer �� and counting up by the �by argument
default
integer
�� The �type argument
default number� is a type speci�er indicating

the type of numbers in the series produced� The �type argument must be a

not necessarily proper� subtype of number� The �start and �by arguments

must be of that type�
One of the last �ve arguments may be used to specify the kind of end test

to be used� these are called termination arguments� If �upto is speci�ed�

counting continues only so long as the numbers generated are less than or

equal to �upto� If �below is speci�ed� counting continues only so long as the

numbers generated are less than �below� If �downto is speci�ed� counting
continues only so long as the numbers generated are greater than or equal

to �downto� If �above is speci�ed� counting continues only so long as the

numbers generated are greater than �above� If �length is speci�ed� it must

be a non�negative integer and the output series has this length�

If none of the termination arguments are speci�ed� the output has un�
bounded length� If more than one termination argument is speci�ed� it is an

error�

�scanrange �upto �� � ���Z��
 � � ��

�scanrange �from
 �by
 �above �� � ���Z�
 �
 � ��

�scanrange �from �� �by �
 �type float� � ���Z��� �� �	 ����

�scanrange� � ���Z��
 � � � � � ����

�Function�scan sequence

�Function�scan type sequence

scan returns a series containing the elements of sequence in order� The type

argument is a type speci�er indicating the type of sequence to be scanned� it

must be a
not necessarily proper� subtype of sequence� If type is omitted� it

defaults to list�
This function exhibits an argument pattern that is unusual

SERIES ����

for Common Lisp� an �optional� argument preceding a required argument�

This pattern cannot be expressed in the usual manner with �optional� It is

indicated above by two de�nition lines� showing the two possible argument

patterns��

If the sequence is a list� it must be a proper list ending in nil� Scanning

is signi�cantly more e�cient if it can be determined at compile time whether

type is a subtype of list or vector and for vectors what the length of the
vector is�

�scan �a b c�� � ���Z�a b c�

�scan string �BAR�� � ���Z�����B ����A ����R�

�Function�scansublists list

scansublists returns a series containing the successive sublists of list� The

list must be a proper list ending in nil�

�scansublists �a b c�� � ���Z��a b c� �b c� �c��

�Function�scanmultiple type
rstsequence �rest moresequences

Several sequences can be scanned at once by using several calls on scan�

Each call on scan will test to see when its sequence runs out of elements and
execution will stop as soon as any of the sequences are exhausted� Although

very robust� this approach to scanning can be ine�cient� In situations where

it is known in advance which sequence is the shortest� scanmultiple can be

used to obtain the same results more rapidly�

scanmultiple is similar to scan except that several sequences can be

scanned at once� If there are n sequence inputs� scanmultiple returns n

series containing the elements of these sequences� It must be the case that
none of the sequence inputs is shorter than the �rst sequence� All of the

output series are the same length as the �rst input sequence� Extra elements

in the other input sequences are ignored� Using scanmultiple is more e��

cient than using multiple instances of scan� because scanmultiple only has

to check for the �rst input running out of elements�

If type is of the form �values t� � � � txm�� then there must be m sequence

inputs and the ith sequence must have type ti� Otherwise there can be any

number of sequence inputs� each of which must have type type�

���� COMMON LISP

�multiplevaluebind �data weights�

�scanmultiple list �
 � � � �� �� � � � ���

�collect �mapfn t ���
 data weights���

� ��
� � �
��

�Function�scanlistsoflists listsoflists �optional leaftest
�Function�scanlistsoflistsfringe listsoflists �optional leaftest

The argument lists�of�lists is viewed as a tree where each internal node is

a non�empty list and the elements of the list are the children of the node�

scanlistsoflists and scanlistsoflistsfringe each scan lists�of�lists in
preorder and return a series of its nodes� scanlistsoflists returns every

node in the tree� scanlistsoflistsfringe returns only the leaf nodes�

The scan proceeds as follows� The argument lists�of�lists can be any Lisp

object� If lists�of�lists is an atom or satis�es the predicate leaf�test
if present��
it is a leaf node�
The predicate can count on being applied only to conses��

Otherwise� lists�of�lists is a
not necessarily proper� list� The �rst element of

lists�of�lists is recursively scanned in full� followed by the second and so on

until a non�cons cdr is encountered� Whether or not this �nal cdr is nil� it is

ignored�

�scanlistsoflists ���� �nil���

� ���Z����� �nil�� ��� � �nil� nil�

�scanlistsoflistsfringe ���� �nil��� � ���Z�� nil�

�scanlistsoflistsfringe ���� �nil��

��� �lambda �e� �numberp �car e����

� ���Z���� nil�

�Function�scanalist alist �optional �test ��� eql�

�Function�scanplist plist

�Function�scanhash table

When given an association list� a property list� or a hash table
respectively��

each of these functions produces two outputs� a series of keys K and a series of

the corresponding values V� Each key in the input appears exactly once in the

output� even if it appears more than once in the input�
The test argument
of scanalist speci�es the equality test between keys� it defaults to eql��

The two outputs have the same length� Each Vj is the value returned by the

appropriate accessing function
cdr of assoc� getf� or gethash� respectively�

when given Kj� scanalist and scanplist scan keys in the order they appear

in the underlying structure� scanhash scans keys in no particular order�

SERIES ����

�scanplist �a
 b ��� � ���Z�a b� and ���Z�
 ��

�scanalist ��a �
� nil �a � �� �b � ����

� ���Z�a b� and ���Z�
 ��

�Function�scansymbols �optional �package
package
�

scansymbols returns a series� in no particular order� and possibly containing
duplicates� of the symbols accessible in package
which defaults to the current

package��

�Function�scanfile
lename �optional �reader ��� read�

scanfile opens the �le named by the string
le�name and applies the func�

tion reader to it repeatedly until the end of the �le is reached� Reader
must accept the standard input function arguments input�stream� eof�error�

p� and eof�value as its arguments�
For instance� reader can be read�

readpreservingwhitespace� readline� or readchar�� If omitted� reader

defaults to read� scanfile returns a series of the values returned by reader�
up to but not including the value returned when the end of the �le is reached�

The �le is correctly closed� even if an abort occurs�

�Function�scanfn type init step �optional test

The higher�order function scanfn supports the general concept of scanning�

The type argument is a type speci�er indicating the type of values returned
by init and step� The values type speci�er can be used for this argument

to indicate multiple types� however� type cannot indicate zero values� If type

indicates m types t�� � � � � tm� then scanfn returns m series T�� � � � � Tm� where

Ti has the type �series ti�� The arguments init� step� and test are functions�

The init must be of type �function �� �values t� ��� tm���
The step must be of type �function �t� ��� tm� �values t� ��� tm���

The test
if present� must be of type �function �t� ��� tm� t��

The elements of the Ti are computed as follows�

�values T�� ��� Tm�� �funcall init�

�values T�j ��� Tmj� �funcall step T�	j�
 ��� Tm	j�
�

The outputs all have the same length� If there is no test� the outputs have

unbounded length� If there is a test� the outputs consist of the elements up to�

but not including� the �rst elements
with index j� say� for which the following

termination test is not nil�

���� COMMON LISP

�funcall test T�j ��� Tmj�

It is guaranteed that step will not be applied to the elements that pass this
termination test�

If init� step� or test has side e	ects when invoked� it can count on being

called in the order indicated by the equations above� with test called just

before step on each cycle� However� given the lazy evaluation nature of series�

these functions will not be called until their outputs are actually used
if
ever�� In addition� no assumptions can be made about the relative order of

evaluation of these calls with regard to execution in other parts of a given

series expression� The �rst example below scans down a list stepping two

elements at a time� The second example generates two unbounded series� the
integers counting up from � and the sequence of partial sums of the �rst i

integers�

�scanfn t ��� �lambda �� �a b c d�� ��� cddr ��� null�

� ���Z��a b c d� �c d��

�scanfn �values integer integer�

��� �lambda �� �values
 ���

��� �lambda �i sum� �values �� i
� �� sum i����

� ���Z�
 � � � ���� and ���Z��
 � � ����

�Function�scanfninclusive type init step test

The higher�order function scanfninclusive is the same as scanfn except

that the �rst set of elements for which test returns a non�null value is included

in the output� As with scanfn� it is guaranteed that step will not be applied
to the elements for which test is non�null�

A����� Mapping

By far the most common kind of series operation is mapping� In cognizance
of this fact� four di	erent ways are provided for specifying mapping� one fun�

damental form
mapfn� and three shorthand forms that are more convenient

in particular common situations�

�Function�mapfn type function �rest seriesinputs

The higher�order function mapfn supports the general concept of mapping�

The type argument is a type speci�er indicating the type of values returned

SERIES ���	

by function� The values construct can be used to indicate multiple types�

however� type cannot indicate zero values� If type indicates m types t�� � � � � tm�

then mapfn returns m series T�� � � � � Tm� where Ti has the type �series ti��

The argument function is a function� The remaining arguments
if any� are

all series� Let these series be S�� � � � � Sn and suppose that Si has the type
�series si��

The function must be of type

�function �s� ��� sn� �values t� ��� tm��

The length of each output is the same as the length of the shortest input� If

there are no bounded series inputs� the outputs are unbounded� The elements

of the Ti are the results of applying function to the corresponding elements

of the series inputs�

�values T�j ��� Tmj� � �funcall function S�j ��� Snj�

If function has side e	ects� it can count on being called �rst on the Si�� then

on the Si�� and so on� However� given the lazy evaluation nature of series�
function will not be called on any group of input elements until the result is

actually used
if ever�� In addition� no assumptions can be made about the

relative order of evaluation of the calls on function with regard to execution

in other parts of a given series expression�

�mapfn integer ��� � ���Z�
 � �� ���Z�� ��� � ���Z�� 	�

�mapfn t ��� gensym� � ���Z�����G� ����G� ����G� ����

�mapfn �values integer rational� ��� floor ���Z�
 � � �
� ���

� ���Z��
 �� and ���Z�
 � � � ��

The ��� macro character syntax ���M makes it easy to specify uses of mapfn

where type is t and the function is a named function� The notation

����Mfunction ���� is an abbreviation for �mapfn t ��� function ����� The

form function can be the printed representation of any Lisp object� The
notation ���Mfunction can appear only in the function position of a list�

�collect ����M
� �scan �
 � ����� � �� � ��

�Macro�mapping � f� fvar j � fvarg� �g value�g� � fdeclarationg� f formg�

The macro mappingmakes it easy to specify uses of mapfn where type is t and

the function is a literal lambda� The syntax of mapping is analogous to that of

let� The binding list speci�es zero or more variables that are bound in parallel

to successive values of series� The value part of each pair is an expression that

���
 COMMON LISP

must produce a series� The declarations and forms are treated as the body

of a lambda expression that is mapped over the series values� A series of the

�rst values returned by this lambda expression is returned as the result of

mapping�

�mapping ��x r� �y s�� ���� �
�mapfn t ��� �lambda �x y� ���� r s�

�mapping ��x �scan �� � �����

�expt �abs x� ���

� ���Z�� � �	�

The form mapping supports a special syntax that facilitates the use of series
functions returning multiple values� Instead of being a single variable� the

variable part of a var�value pair can be a list of variables� This list is treated

the same way as the �rst argument to multiplevaluebind and can be used

to access the elements of multiple series returned by a series function�

�mapping ���i v� �scanplist �a
 b �����

�list i v��

� ���Z��a
� �b ���

�Macro�iterate � f� fvar j � fvarg� �g value�g� � fdeclarationg� f formg�

The form iterate is the same as mapping� except that after mapping the

forms over the values� the results are discarded and nil is returned�

�let ��item �scan ��
� ��� �������

�iterate ��x ����Mcar item���

�if �plusp x� �prin
 x����

� nil
after printing �
���

To a �rst approximation� iterate and mapping di	er in the same way

as mapc and mapcar� In particular� like mapc� iterate is intended to be

used in situations where the forms are being evaluated for side e	ects rather

than for their results� However� given the lazy evaluation semantics of series�

the di	erence between iterate and mapping is more than just a question of
e�ciency�

If mapcar is used in a situation where the output is not used� time is wasted

unnecessarily creating the output list� However� if mapping is used in a sit�

uation where the output is not used� no computation is performed� because

series elements are not computed until they are used� Thus iterate can be

SERIES ����

thought of as a declaration that the indicated computation is to be performed

even though the output is not used for anything�

A����� Truncation and Other Simple Transducers

Transducers compute series from series and form the heart of most series
expressions� Mapping is by far the most common transducer� This section

presents a number of additional simple transducers�

�Function�cotruncate �rest seriesinputs

�Function�until bools �rest seriesinputs
�Function�untilif pred �rest seriesinputs

Each of these functions accepts one or more series inputs S�� � � � � Sn as its

�rest argument and returns n series outputs T�� � � � � Tn that contain the

same elements in the same order!that is� Tij�Sij� Let k be the length of
the shortest input Si� cotruncate truncates the series so that each output

has length k � Let k � be the position of the �rst element in the boolean series

bools that is not nil or� if every element is nil� the length of bools� until

truncates the series so that each output has length �min k k �� Let itk�� be
the position of the �rst element in S� such that �pred S�k � is not nil or�

if there is no such element� the length of S�� untilif truncates the series so

that each output has length �min k k ��

�cotruncate ���Z�
 � � �� ���Z�a b c��

� ���Z�
 � �� and ���Z�a b c�

�until ���Z�nil nil t nil� ���Z�
 � � �� ���Z�a b c��

� ���Z�
 �� and ���Z�a b�

�untilif ��� minusp ���Z�
 � � �� ���Z�a b c��

� ���Z�
 �� and ���Z�a b�

�Function�previous items �optional �default nil� �amount
�

The series returned by previous is the same as the input series items except
that it is shifted to the right by the positive integer amount� The shifting is

done by inserting amount copies of default before items and discarding amount

elements from the end of items�

�previous ���Z�
�

�� �� � ���Z��
�

�

���� COMMON LISP

�Function�latch items �key �after �before �pre �post

The series returned by latch is the same as the input series items except

that some of the elements are replaced by other values� latch acts like a

latch electronic circuit component� Each input element causes the creation of

a corresponding output element� After a speci�ed number of non�null input

elements have been encountered� the latch is triggered and the output mode
is permanently changed�

The �after and �before arguments specify the latch point� The latch

point is just after the �after�th non�null element in items or just before the

�before�th non�null element� If neither �after nor �before is speci�ed� an

�after of
 is assumed� If both are speci�ed� it is an error�

If a �pre is speci�ed� every element prior to the latch point is replaced

by this value� If a �post is speci�ed� every element after the latch point is
replaced by this value� If neither is speci�ed� a �post of nil is assumed�

�latch ���Z�nil c nil d e�� � ���Z�nil c nil nil nil�

�latch ���Z�nil c nil d e� �before � �post t� � ���Z�nil c nil t t�

�Function�collectingfn type init function �rest seriesinputs

The higher�order function collectingfn supports the general concept of a

simple transducer with internal state� The type argument is a type speci�er

indicating the type of values returned by function� The values construct

can be used to indicate multiple types� however� type cannot indicate zero

values� If type indicates m types t�� � � � � tm� then collectingfn returns m
series T�� � � � � Tm� where Ti has the type �series ti�� The arguments init

and function are functions� The remaining arguments
if any� are all series�

Let these series be S�� � � � � Sn and suppose that Si has the type �series si��

The init must be of type �function �� �values t� ��� tm���

The function must be of type

�function �t� ��� tm s� ��� sn� �values t� ��� tm��

The length of each output is the same as the length of the shortest input� If
there are no bounded series inputs� the outputs are unbounded� The elements

of the Ti are computed as follows�

�values T�� ��� Tm�� �
�multiplevaluecall function �funcall init� S�� ��� Sn��

SERIES ����

�values T�j ��� Tmj� �
�funcall function T�	j�
 ��� Tm	j�
 S�j ��� Snj�

If init or function has side e	ects� it can count on being called in the order

indicated by the equations above� However� given the lazy evaluation nature
of series� these functions will not be called until their outputs are actually

used
if ever�� In addition� no assumptions can be made about the relative

order of evaluation of these calls with regard to execution in other parts of

a given series expression� The second example below computes a series of
partial sums of the numbers in an input series� The third example computes

two output series� the partial sums of its �rst input and the partial products

of its second input�

�defun runningaverages �floatlist�

�multiplevaluecall ��� mapfn

float ���

�collectingfn �values float integer�

��� �lambda �� �values ��� ��

��� �lambda �s n x� �values �� s x� �� n
����

floatlist���

�collectingfn integer ��� �lambda �� �� ��� � ���Z�
 � ���

� ���Z�
 � ��

�collectingfn �values integer integer�

��� �lambda �� �values �
��

��� �lambda �sum prod x y�

�values �� sum x� �
 prod y���

���Z�� � ��

���Z�
 � ���

� ���Z��
�
�� and ���Z�
 � ��

A����� Conditional and Other Complex Transducers

This section presents a number of complex transducers� including ones that
support conditional computation�

�Function�choose bools �optional �items bools�

�Function�chooseif pred items

Each of these functions takes in a series of elements
items� and returns a

series containing the same elements in the same order� but with some elements

���� COMMON LISP

removed� choose removes itemsj if boolsj is nil or j is beyond the end of bools�

If items is omitted� choose returns the non�null elements of bools� chooseif

removes itemsj if �pred itemsj� is nil�

�choose ���Z�t nil t nil� ���Z�a b c d�� � ���Z�a c�

�collectsum �chooseif ��� plusp ���Z�
 � � ���� � �

�Function�expand bools items �optional �default nil�

expand is a quasi�inverse of choose� The output contains the elements of

the input series items spread out into the positions speci�ed by the non�null
elements in bools!that is� itemsj is in the position occupied by the j th non�

null element in bools� The other positions in the output are occupied by

default� The output stops as soon as bools runs out of elements or a non�null

element in bools is encountered for which there is no corresponding element
in items�

�expand ���Z�nil t nil t t� ���Z�a b c�� � ���Z�nil a nil b c�

�expand ���Z�nil t nil t t� ���Z�a�� � ���Z�nil a nil�

�Function�split items �rest testseriesinputs

�Function�splitif items �rest testpredicates

These functions are like choose and chooseif except that instead of produc�

ing one restricted output� they partition the input series items between several

outputs� If there are n test inputs following items� then there are n # � out�
puts� Each input element is placed in exactly one output series� depending on

the outcome of a sequence of tests� If the element itemsj fails the �rst k � �

tests and passes the kh test� it is put in the kth output� If itemsj fails every

test� it is placed in the last output� In addition� all output stops as soon as
any series input runs out of elements� The test inputs to split are series of

values� itemsj passes the kth test if the j th element of the kth test series is

not nil� The test inputs to splitif are predicates� itemsj passes the kth test

if the kth test predicate returns non�null when applied to itemsj�

�split ���Z�
 � � �� ���Z�t nil nil t��

� ���Z�
 �� and ���Z�� ��

�multiplevaluebind ��x x� �splitif ���Z�
 � � �� ��� plusp�

�values �collectsum �x� �collectsum x���

� � and �

SERIES ����

�Function�catenate �rest seriesinputs

catenate combines two or more series into one long series by appending them

end to end� The length of the output is the sum of the lengths of the inputs�

�catenate ���Z�b c� ���Z�� ���Z�d�� � ���Z�b c d�

�Function�subseries items start �optional below

subseries returns a series containing the elements of the input series items

indexed by the non�negative integers from start up to� but not including�

below� If below is omitted or greater than the length of items� the output goes

all the way to the end of items�

�subseries ���Z�a b c d�
� � ���Z�b c d�

�subseries ���Z�a b c d�
 �� � ���Z�b c�

�Function�positions bools

positions returns a series of the indices of the non�null elements in the series

input bools�

�positions ���Z�t nil t ���� � ���Z�� � ��

�Function�mask monotonicindices

mask is a quasi�inverse of positions� The series inputmonotonic�indices must

be a strictly increasing series of non�negative integers� The output� which is

always unbounded� contains t in the positions speci�ed by monotonic�indices

and nil everywhere else�

�mask ���Z�� � ��� � ���Z�t nil t t nil nil ����

�mask ���Z��� � ���Z�nil nil ����

�mask �positions ���Z�nil a nil b nil���

� ���Z�nil t nil t nil ����

�Function�mingle items� items� comparator

The series returned by mingle contains all and only the elements of the two

input series� The length of the output is the sum of the lengths of the inputs

and is unbounded if either input is unbounded� The order of the elements

remains unchanged� however� the elements from the two inputs are stably

intermixed under the control of the comparator�

���� COMMON LISP

The comparator must accept two arguments and return non�null if and

only if its �rst argument is strictly less than its second argument
in some

appropriate sense�� At each step� the comparator is used to compare the

current elements in the two series� If the current element from items� is

strictly less than the current element from items�� the current element is
removed from items� and transferred to the output� Otherwise� the next

output element comes from items��

�mingle ���Z�
 � 	 �� ���Z�� � �� ��� �� � ���Z�
 � � � 	 � ��

�mingle ���Z�
 	 � �� ���Z�� � �� ��� �� � ���Z�
 � � 	 � � ��

�Function�chunk m n items

This function has the e	ect of breaking up the input series items into
possibly
overlapping� chunks of length m� The starting positions of successive chunks

di	er by n� The inputs m and n must both be positive integers�

chunk produces m output series� The ith chunk provides the ith element

for each of the m outputs� Suppose that the length of items is l� The length

of each output is b� #
l �m��nc� The ith element of the kth output is the

i � n # k�th element of items
i and k counting from zero��

Note that if l � m� there will be no output elements� and if l � m is not

a multiple of n� the last few input elements will not appear in the output� If

m � n� one can guarantee that the last chunk will contain the last element of
items by catenating n � � copies of an appropriate padding value to the end

of items�

The �rst example below shows chunk being used to compute a moving

average� The second example shows chunk being used to convert a property

list into an association list�

�mapping ���xi xi�
 xi��� �chunk �
 ���Z�
 � � � � �����

� �� xi xi�
 xi��� ���

� ���Z�� � � ��

�collect

�mapping ���prop val� �chunk � � �scan �a � b � c ������

�cons prop val���

� ��a � �� �b � �� �c � ���

A����� Collectors

Collectors produce non�series outputs based on series inputs� They either

create a summary value based on some formula
the sum� for example� or

SERIES ����

collect the elements of a series in an aggregate data structure
such as a list��

�Function�collectfirst items �optional �default nil�

�Function�collectlast items �optional �default nil�

�Function�collectnth n items �optional �default nil�

Given a series items� these functions return the �rst element� the last ele�
ment� and the nth element� respectively� If items has no elements
or no nth

element�� default is returned� If default is not speci�ed� then nil is used for

default�

�collectfirst ���Z�� z� � z

�collectlast ���Z�a b c�� � c

�collectnth
 ���Z�a b c�� � b

�Function�collectlength items

collectlength returns the number of elements in a series�

�collectlength ���Z�a b c�� � �

�Function�collectsum numbers �optional �type number�

collectsum returns the sum of the elements in a series of numbers� The type

is a type speci�er that indicates the type of sum to be created� If type is not

speci�ed� then number is used for the type� If there are no elements in the

input� a zero
of the appropriate type� is returned�

�collectsum ���Z�
�

��
���� � ���

�collectsum ���Z�� complex� � ���C�� ��

�Function�collectmax numbers

�Function�collectmin numbers

Given a series of non�complex numbers� these functions compute the maxi�

mum element and the minimum element� respectively� If there are no elements

in the input� nil is returned�

�collectmax ���Z��
 � ��� � �

�collectmin ���Z�
��
�

��
���� �
�

�collectmin ���Z��� � nil

���� COMMON LISP

�Function�collectand bools

collectand returns the and of the elements in a series� As with the macro

and� nil is returned if any element of bools is nil� Otherwise� the last element

of bools is returned� The value t is returned if there are no elements in bools�

�collectand ���Z�a b c�� � c

�collectand ���Z�a nil c�� � nil

�Function�collector bools

collector returns the or of the elements in a series� As with the macro or�

nil is returned if every element of bools is nil� Otherwise� the �rst non�null

element of bools is returned� The value nil is returned if there are no elements

in bools�

�collector ���Z�nil b c�� � b

�collector ���Z��� � nil

�Function�collect items

�Function�collect type items

collect returns a sequence containing the elements of the series items� The

type is a type speci�er indicating the type of sequence to be created� It must be

either a proper subtype of sequence or the symbol bag� If type is omitted� it

defaults to list�
This function exhibits an argument pattern that is unusual

for Common Lisp� an �optional� argument preceding a required argument�
This pattern cannot be expressed in the usual manner with �optional� It is

indicated above by two de�nition lines� showing the two possible argument

patterns��

If the type is bag� a list is created with the elements in whatever order
can be most e�ciently obtained� Otherwise� the order of the elements in the

sequence is the same as the order in items� If type speci�es a length
that is�

of a vector� this length must be greater than or equal to the length of items�

The nth element of items is placed in the nth slot of the sequence produced�

Any unneeded slots are left in their initial state� Collecting is signi�cantly
more e�cient if it can be determined at compile time whether type is a subtype

of list or vector and for vectors what the length of the vector is�

�collect ���Z�a b c�� � �a b c�

�collect bag ���Z�a b c�� � �c a b� or �b a c� or � � �

�collect �vector integer �� ���Z�
 � ��� � ����
 � ��

SERIES ���	

�Function�collectappend sequences

�Function�collectappend type sequences

Given a series of sequences� collectappend returns a new sequence by con�

catenating these sequences together in order� The type is a type speci�er
indicating the type of sequence created and must be a proper subtype of

sequence� If type is omitted� it defaults to list�
This function exhibits an

argument pattern that is unusual for Common Lisp� an �optional� argument

preceding a required argument� This pattern cannot be expressed in the usual
manner with �optional� It is indicated above by two de�nition lines� showing

the two possible argument patterns��

It must be possible for every element of every sequence in the input series

to be an element of a sequence of type type� The result does not share any

structure with the sequences in the input�

�collectappend ���Z��a b� nil �c d��� � �a b c d�

�collectappend string ���Z��a � �big � �cat��� � �a big cat�

�Function�collectnconc lists

collectnconc nconcs the elements of the series lists together in order and
returns the result� This is the same as collectappend except that the input

must be a series of lists� the output is always a list� the concatenation is

done rapidly by destructively modifying the input elements� and therefore the

output shares all of its structure with the input elements�

�Function�collectalist keys values

�Function�collectplist keys values

�Function�collecthash keys values �key �test �size �rehashsize

�rehashthreshold

Given a series of keys and a series of corresponding values� these functions

return an association list� a property list� and a hash table� respectively� Fol�

lowing the order of the input� each keysj�valuesj pair is entered into the output
so that it overrides all earlier associations� If one of the input series is longer

than the other� the extra elements are ignored� The keyword arguments of

collecthash specify attributes of the hash table produced and have the same

meanings as the arguments to makehashtable�

�collectalist ���Z�a b c� ���Z�
 ��� � ��b � �� �a �
��

�collectplist ���Z�a b c� ���Z�
 ��� � �b � a
�

�collecthash ���Z�� ���Z�
 �� �test ��� eq� � han empty hash tablei

���
 COMMON LISP

�Function�collectfile
lename items �optional �printer ��� print�

This creates a �le named
le�name and writes the elements of the series items

into it using the function printer� Printer must accept two inputs� an object

and an output stream�
For instance� printer can be print� prin
� princ�
pprint� writechar� writestring� or writeline�� If omitted� printer defaults

to print� The value t is returned� The �le is correctly closed� even if an abort

occurs�

�Function�collectfn type init function �rest seriesinputs

The higher�order function collectfn supports the general concept of col�

lecting� It is identical to collectingfn except that it returns only the last
element of each series computed� If there are no elements in these series� the

values returned by init are passed on directly as the output of collectfn�

�collectfn integer ��� �lambda �� �� ��� � ���Z�
 � ��� � �

�collectfn integer ��� �lambda �� �� ��� � ���Z��� � �

�collectfn integer ��� �lambda ��
� ���
 ���Z�
 � � � ��� �
��

A����� Alteration of Series

Series that come from scanning data structures such as lists and vectors are

closely linked to these structures� The function alter can be used to modify

the underlying data structure with reference to the series derived from it�

Conversely� it is possible to modify a series by destructively modifying the
data structure it is derived from� However� given the lazy evaluation nature

of series� the e	ects of such modi�cations can be very hard to predict� As a

result� this kind of modi�cation is inadvisable��

�Function�alter destinations items

alter changes the series destinations so that it contains the elements in the

series items� More importantly� in the manner of setf� the data structure
that underlies destinations is changed so that if the series destinations were

to be regenerated� the new values would be obtained� The alteration process

stops as soon as either input runs out of elements� The value nil is always

returned� In the example below each negative element in a list is replaced

with its square�

SERIES ����

�let
 ��data �list
 � � � � ���

�x �chooseif ��� minusp �scan data����

�alter x ����M
 x x��

data�

� �
 � � � �� ��

alter can be applied only to series that are alterable� scan� scanalist�
scanmultiple� scanplist� and scanlistsoflistsfringe produce alterable

series� However� the alterability of the output of scanlistsoflistsfringe

is incomplete� If scanlistsoflistsfringe is applied to an object that is a

leaf� altering the output series does not change the object�
In general� the output of a transducer is alterable as long as the elements of

the output come directly from the elements of an input that is alterable� In

particular� the outputs of choose� chooseif� split� splitif� cotruncate�

until� untilif� and subseries are alterable as long as the corresponding

inputs are alterable�

�Function�toalter items alterfn �rest args

Given a series items� toalter returns an alterable seriesA containing the same

elements� The argument alter�fn is a function� The remaining arguments are

all series� Let these series be S�� � � � � Sn� If there are n arguments after alter�

fn� alter�fn must accept n#� inputs� If �alter A B� is later encountered� the
expression �mapfn t alterfn B S� ��� Sn� is implicitly evaluated� For each

element in B� alter�fn should make appropriate changes in the data structure

underlying A�

As an example� consider the following de�nition of a series function that

scans the elements of a list� Alteration is performed by changing cons cells in
the list being scanned�

�defun scanlist �list�

�declare �optimizableseriesfunction��

�let ��sublists �scansublists list���

�toalter ����Mcar sublists�

��� �lambda �new parent� �setf �car parent� new��

sublists���

A��� Optimization

Series expressions are transformed into loops by pipelining them!the com�

putation is converted from a form where entire series are computed one after

���� COMMON LISP

the other to a form where the series are incrementally computed in parallel�

In the resulting loop� each individual element is computed just once� used�

and then discarded before the next element is computed� For this pipelining

to be possible� a number of restrictions have to be satis�ed� Before these

restrictions are explained� it will be useful to consider a related issue�

The composition of two series functions cannot be pipelined unless the des�
tination function consumes series elements in the same order that the source

function produces them� Taken together� the series functions guarantee that

this will always be true� because they all follow the same �xed processing or�

der� In particular� they are all preorder functions!they process the elements
of their series inputs and outputs in ascending order starting with the �rst

element� Further� while it is easy for users to de�ne new series functions� it is

impossible to de�ne one that is not a preorder function�

It turns out that most series operations can easily be implemented in a

preorder fashion� the most notable exceptions being reversal and sorting� As

a result� little is lost by outlawing non�preorder series functions� If some non�
preorder operation has to be applied to a series� the series can be collected into

a list or vector and the operation applied to this new data structure�
This is

ine�cient� but no less e�cient than what would be required if non�preorder

series functions were supported��

A����� Basic Restrictions

The transformation of series expressions into loops is required to occur at some

time before compiled code is actually run� Optimization may or may not be
applied to interpreted code� If any of the restrictions described below are

violated� optimization is not possible� In this situation� a warning message is

issued at the time optimization is attempted and the code is left unoptimized�

This is not a fatal error and does not prevent the correct results from being
computed� However� given the large improvements in e�ciency to be gained�

it is well worth �xing any violations that occur� This is usually easy to do�

�Variable�
suppressserieswarnings

If this variable is set
or bound� to anything other than its default value of nil�

warnings about conditions that block the optimization of series expressions

are suppressed�

Before the restrictions on series expressions are discussed� it will be useful

to de�ne precisely what is meant by the term series expression� This term

SERIES ����

is semantic rather than syntactic in nature� Imagine a program converted

from Lisp code into a data
ow graph� In a data
ow graph� functions are

represented as boxes� and both control
ow and data
ow are represented as

arrows between the boxes� Constructs such as let and setq are converted

into patterns of data
ow arcs� Control constructs such as if and loop are
converted into patterns of control
ow arcs� Suppose further that all loops

have been converted into tail recursions so that the graph is acyclic�

A series expression is a subgraph of the data
ow graph for a program that

contains a group of interacting series functions� More speci�cally� given a

call f on a series function� the series expression E containing it is de�ned as
follows� E contains f� Every function using a series created by a function in

E is in E� Every function computing a series used by a function in E is in E�

Finally� suppose that two functions g and h are in E and that there is a data

ow path consisting of series and�or non�series data
ow arcs from g to h�

Every function touched by this path
be it a series function or not� is in E�

For optimization to be possible� series expressions have to be

statically analyzable� As with most other optimization processes� a series

expression cannot be transformed into a loop at compile time� unless it can

be determined at compile time exactly what computation is being performed�

This places a number of relatively minor limits on what can be written� For
example� for optimization to be possible the type arguments to higher�order

functions such as mapfn and collectingfn have to be quoted constants� Sim�

ilarly� the numeric arguments to chunk have to be constants� In addition� if

funcall is used to call a series function� the function called has to be of the
form �function �����

For optimization to be possible� every series created within a

series expression must be used solely inside the expression� If a series

is transmitted outside of the expression that creates it� it has to be physically

represented as a whole� This is incompatible with the transformations required

to pipeline the creating expression� To avoid this problem� a series must not be
returned as a result of a series expression as a whole� assigned to a free variable�

assigned to a special variable� or stored in a data structure� A corollary of

the last point is that when de�ning new optimizable series functions� series

cannot be passed into �rest arguments� Further� optimization is blocked if
a series is passed as an argument to an ordinary Lisp function� Series can be

passed only to the series functions in section A�� and to new series functions

de�ned using the declaration optimizableseriesfunction�

For optimization to be possible� series expressions must corre�

spond to straight�line computations� That is to say� the data
ow graph

corresponding to a series expression cannot contain any conditional branches�

���� COMMON LISP

Complex control
ow is incompatible with pipelining�� Optimization is pos�

sible in the presence of standard straight�line forms such as progn� funcall�

setq� lambda� let� let
� and multiplevaluebind as long as none of the vari�

ables bound are special� There is also no problem with macros as long as they

expand into series functions and straight�line forms� However� optimization is
blocked by forms that specify complex control
ow
i�e�� conditionals if� cond�

etc�� looping constructs loop� do� etc�� or branching constructs tagbody� go�

catch� etc���

In the �rst example below� optimization is blocked� because the if form is
inside the series expression� In the second example� however� optimization is

possible� because although the if feeds data to the series expression� it is not

inside the corresponding subgraph� Both of the expressions below produce

the same value� but the second one is much more e�cient�

�collect �if flag �scan x� �scan y��� �Warning message issued

�collect �scan �if flag x y���

A����� Constraint Cycles

Even if a series expression satis�es all of the restrictions above� it still may

not be possible to transform the expression into a loop� The sole remaining

problem is that if a series is used in two places� the two uses may place incom�
patible constraints on the times at which series elements should be produced�

The series expression below shows a situation where this problem arises�

The expression creates a series x of the elements in a list� It then creates a

normalized series by dividing each element of x by the sum of the elements in

x� Finally� the expression returns the maximum of the normalized elements�

�let ��x �scan �
 � � ����� �Warning message issued

�collectmax ����M x �series �collectsum x����� �
 �

The two uses of x in the expression place contradictory constraints on the

way pipelined evaluation must proceed� collectsum requires that all of the el�

ements of x be produced before the sum can be returned� and series requires

that its input be available before it can start to produce its output� However�
���M requires that the �rst element of x be available at the same time as the

�rst element of the output of series� For pipelining to work� the �rst element

of the output of series
and therefore the output of collectsum� must be

available before the second element of x is produced� Unfortunately� this is

impossible�

SERIES ����

Figure A��� A Constraint Cycle in a Series Expression

scan

sum series

�M� max

The essence of the inconsistency above is the cycle of constraints used in the

argument� This in turn stems from a cycle in the data
ow graph underlying

the expression� In �gure A�� function calls are represented by boxes and data

ow is represented by arrows� Simple arrows indicate the
ow of series values
and cross�hatched arrows indicate the
ow of non�series values�

Given a data
ow graph corresponding to a series expression� a constraint

cycle is a closed oriented loop of data
ow arcs such that each arc is traversed

exactly once and no non�series arc is traversed backward�
Series data
ow

arcs can be traversed in either direction�� A constraint cycle is said to pass
through an input or output port when exactly one of the arcs in the cycle

touches the port� In �gure A�� the data
ow arcs touching scan� sum� series�

and ���M form a constraint cycle� Note that if the output of scan were not

a series� this loop would not be a constraint cycle� because there would be
no valid way to traverse it� Also note that while the constraint cycle passes

through all the other ports it touches� it does not pass through the output of

scan�

Whenever a constraint cycle passes through a non�series output� an argu�

ment analogous to the one above can be constructed and therefore pipelining
will be impossible� When this situation arises� a warning message is issued

identifying the problematical port and the cycle passing through it� For in�

stance� the warning triggered by the example above states that the constraint

cycle associated with scan� collectsum� series� and ���M passes through the

non�series output of collectsum�

Given this kind of detailed information� it is easy to alleviate the problem�

To start with� every cycle must contain at least one function that has two

series data
ows leaving it� At worst� the cycle can be broken by duplicating

this function
and any functions computing series used by it�� For instance�

the example above can be rewritten as shown below�

���� COMMON LISP

�let ��x �scan �
 � � ����

�sum �collectsum �scan �
 � � ������

�collectmax ����M x �series sum����

�
 �

It would be easy enough to automatically apply code copying to break prob�
lematical constraint cycles� However� this is not done for two reasons� First�

there is considerable virtue in maintaining the property that each function in

a series expression turns into one piece of computation in the loop produced�

Users can be con�dent that series expressions that look simple and e�cient

actually are simple and e�cient� Second� with a little creativity� constraint
problems can often be resolved in ways that are much more e�cient than

copying code� In the example above� the con
ict can be eliminated e�ciently

by interchanging the operation of computing the maximum with the operation

of normalizing an element�

�let ��x �scan �
 � � �����

� �collectmax x� �collectsum x��� �
 �

The restriction that optimizable series expressions cannot contain constraint

cycles that pass through non�series outputs places limitations on the qualita�

tive character of optimizable series expressions� In particular� they all must

have the general form of creating some number of series using scanners� com�
puting various intermediate series using transducers� and then computing one

or more summary results using collectors� The output of a collector cannot

be used in the intermediate computation unless it is the output of a separate

subexpression�

It is worthy of note that the last expression above �xes the constraint

con
ict by moving the non�series output out of the cycle� rather than by

breaking the cycle� This illustrates the fact that constraint cycles that do

not pass through non�series outputs do not necessarily cause problems� They

cause problems only if they pass through o��line ports�

A series input port or series output port of a series function is on�line if and

only if it is processed in lockstep with all the other on�line ports as follows�

the initial element of each on�line input is read� then the initial element of

each on�line output is written� then the second element of each on�line input
is read� then the second element of each on�line output is written� and so on�

Ports that are not on�line are o	�line� If all of the series ports of a function

are on�line� the function is said to be on�line� otherwise� it is o	�line�
The

above extends the standard de�nition of the term on�line so that it applies to

individual ports as well as whole functions��

SERIES ����

If all of the ports a cycle passes through are on�line� the lockstep processing

of these ports guarantees that there cannot be any con
icts between the con�

straints associated with the cycle� However� passing through an o	�line port

leads to the same kinds of problems as passing through a non�series output�

Most of the series functions are on�line� In particular� scanners and col�
lectors are all on�line as are many transducers� However� the transducers

in section A���� are o	�line� In particular� the series inputs of catenate�

chooseif� chunk� expand� mask� mingle� positions� and subseries along

with the series outputs of choose� split� and splitif are o	�line�

In summary� the fourth and �nal restriction is that for optimization to be
possible� a series expression cannot contain a constraint cycle that

passes through a non�series output or an o��line port� Whenever this

restriction is violated a warning message is issued� Violations can be �xed

either by breaking the cycle or restructuring the computation so that the

o	ending port is removed from the cycle�

A����� De
ning New Series Functions

New functions operating on series can be de�ned just as easily as new functions

operating on any other data type� However� expressions containing these new

functions cannot be transformed into loops unless a complete analysis of the

functions is available� Among other things� this implies that the de�nition of

a new series function must appear before its �rst use�

�Declaration speci
er �optimizableseriesfunction

The declaration speci�er �optimizableseriesfunction integer� indicates
that the function being de�ned is a series function that needs to be ana�

lyzed so that it can be optimized when it appears in series expressions�
A

warning is issued if the function being de�ned neither takes a series as input

nor produces a series as output�� Integer
default �� speci�es the number of

values returned by the function being de�ned�
This cannot necessarily be
determined by local analysis�� The only place optimizableseriesfunction

is allowed to appear is in a declaration immediately inside a defun� As an

example� the following shows how a simpli�ed version of collectsum could

be de�ned�

�defun simplecollectsum �numbers�

�declare �optimizableseriesfunction
��

�collectfn number ��� �lambda �� �� ��� � numbers��

���� COMMON LISP

�Declaration speci
er �offlineport

The declaration speci�er �offlineport portspec� portspec� ���� speci�

�es that the indicated inputs and outputs are o	�line� This declara�

tion speci�er is only allowed in a defun that contains the declaration
optimizableseriesfunction� Each port�spec must either be a symbol that

is one of the inputs of the function or an integer j indicating the j th output

counting from zero�� For example� �offlineport x
� indicates that the

input x and the second output are o	�line� Every port that is not mentioned
in an offlineport declaration is assumed to be on�line� A warning is issued

whenever a port�s actual on�line�o	�line status does not agree with its de�

clared status� This makes it easier to keep track of which ports are o	�line

and which are not� Note that o	�line ports virtually never arise when de�ning

scanners or reducers�

A����� Declarations

A key feature of Lisp is that variable declarations are strictly optional� Nev�

ertheless� it is often the case that they are necessary in situations where e��

ciency matters� Therefore� it is important that it be possible for programmers

to provide declarations for every variable in a program� The transformation of
series expressions into loops presents certain problems in this regard� because

the loops created contain variables not evident in the original code� How�

ever� if the information described below is supplied by the user� appropriate

declarations can be generated for all of the loop variables created�

All the explicit variables that are bound in a series expression
for exam�

ple� by a let that is part of the expression� should be given informative

declarations making use of the type speci�er �series elementtype� where

appropriate�

Informative types should be supplied to series functions
such as scan and

mapfn� that have type arguments� When using scan it is important to specify

the type of element in the sequence as well as the sequence itself
for exam�

ple� by using �vector
 integer� as opposed to merely vector�� The form
�list elementtype� can be used to specify the type of elements in a list�

If it is appropriate to have a type more speci�c than �series t� as�

sociated with the output of ���M� ���Z� scanalist� scanfile� scanhash�

scanlistsoflistsfringe� scanlistsoflists� scanplist� series� latch�

or catenate� then the form the must be used to specify this type�

SERIES ���	

Finally� if the expression computing a non�series argument to a series vari�

able is neither a variable nor a constant� the must be used to specify the type

of its result�

For example� the declarations in the series expressions below are su�cient

to ensure that every loop variable will have an accurate declaration�

�collectlast �chooseif ��� plusp �scan �list integer� data���

�collect �vector
 float�

�mapfn float ���

�series �the integer �car data���

�the �series integer� �scanfile f����

The amount of information the user has to provide is reduced by the fact

that this information can be propagated from place to place� For instance� the

variable holding the output of chooseif holds a subset of the elements held by

the input variable� As a result� it is appropriate for it to have the same type�
When de�ning a new series function� the type speci�er serieselementtype

can be used to indicate where type propagation should occur�

�Type speci
er �serieselementtype

The type speci�er �serieselementtype variable� denotes the type of el�
ements in the series held in variable� Variable must be a variable car�

rying a series value
for example� a series argument of a series function��

serieselementtype can be used only in three places� in a declaration in a

let� mapping� producing� or other binding form in a series expression� in a
declaration in a defun being used to de�ne a series function� or in a type

argument to a series function� As an example� consider that collectlast

could have been de�ned as follows� The use of serieselementtype ensures

that the internal variable keeping track of the most recent item has the correct

type�

�defun collectlast �items �optional �default nil��

�declare �optimizableseriesfunction��

�collectfn �serieselementtype items�

��� �lambda �� default�

��� �lambda �old new� new�

items��

���
 COMMON LISP

A��� Primitives

A large number of series functions are provided� because there are a large

number of useful operations that can be performed on series� However� this

functionality can be boiled down to a small number of primitive constructs�

collectingfn embodies the fundamental idea of series computations that

utilize internal state� It can be used as the basis for de�ning any on�line

transducer�

until embodies the fundamental idea of producing a series that is shorter

than the shortest input series� In particular� it embodies the idea of computing
a bounded series from non�series inputs� Together with collectingfn� until

can be used to de�ne scanfn� which can be used as the basis for de�ning all

the other scanners�

collectlast embodies the fundamental idea of producing a non�series
value from a series� Together with collectingfn� it can be used to de�ne

collectfn� which
with the occasional assistance of until� can be used as

the basis for de�ning all the other collectors�

producing embodies the fundamental idea of preorder computation� It can
be used as the basis for de�ning all the other series functions� including the

o	�line transducers�

In addition to the above� four primitives support various specialized as�

pects of series functions� Alterability is supported by the function toalter

and the declaration propagatealterability� The propagation of type in�
formation is supported by the type speci�er serieselementtype� The best

implementation of certain series functions requires the form encapsulated�

�Macro�producing output�list input�list fdeclarationg� f formg�

producing computes and returns a group of series and non�series outputs

given a group of series and non�series inputs� The key feature of producing is

that some or all of the series inputs and outputs can be processed in an o	�line
way� To support this� the processing in the body
consisting of the forms� is

performed from the perspective of generators and gatherers
see appendix B��

Each series input is converted to a generator before being used in the body�

Each series output is associated with a gatherer in the body�

The output�list has the same syntax as the binding list of a let� The

names of the variables must be distinct from each other and from the names

of the variables in the inputlist� If there are n variables in the output�list�

producing computes n outputs� There must be at least one output variable�

The variables act as the names for the outputs and can be used in either of two

SERIES ����

ways� First� if an output variable has a value associated with it in the output�

list� then the variable is treated as holding a non�series value� The variable is

initialized to the indicated value and can be used in any way desired in the

body� The eventual output value is whatever value is in the variable when the

execution of the body terminates� Second� if an output variable does not have
a value associated with it in the output�list� the variable is given as its value

a gatherer that collects elements� The only valid way to use the variable in

the body is in a call on nextout� The output returned is a series containing

these elements� If the body never terminates� this series is unbounded�

The input�list also has the same syntax as the binding list of a let� The

names of the variables must be distinct from each other and the names of the

variables in the output�list� The values can be series or non�series� If the value

is not explicitly speci�ed� it defaults to nil� The variables act logically both
as inputs and state variables and can be used in one of two ways� First� if an

input variable is associated with a non�series value� then it is given this value

before the evaluation of the body begins and can be used in any way desired

in the body� Second� if an input variable is associated with a series� then the

variable is given a generator corresponding to this series as its initial value�
The only valid way to use the variable in the body is in a call on nextin�

There can be declarations at the start of the body� However� the

only declarations allowed are ignore declarations� type declarations� and

propagatealterability declarations
see below�� In particular� it is an error
for any of the input or output variables to be special�

In conception� the body can contain arbitrary Lisp expressions� After the

appropriate generators and gatherers have been set up� the body is executed

until it terminates� If the body never terminates� the series outputs
if any� are
unbounded in length and the non�series outputs
if any� are never produced�

Although easy to understand� this view of what can happen in the body

presents severe di�culties when optimizing
and even when evaluating� series

expressions that contain calls on producing� As a result� several limitations
are imposed on the form of the body to simplify the processing required�

The �rst limitation is that� exclusive of any declarations� the body must

have the form �loop �tagbody ������ The following example shows how

producing could be used to implement a scanner creating an unbounded

series of integers�

���� COMMON LISP

�producing �nums� ��num ���

�declare �integer num� �type �series integer� nums��

�loop

�tagbody

�setq num �
� num��

�nextout nums num����

� ���Z�
 � � � ����

The second limitation is that the form terminateproducingmust be used
to terminate the execution of the body� Any other method of terminating

the body
with return� for example� is an error� The following example

shows how producing could be used to implement the operation of summing

a series� The function terminateproducing is used to stop the computation

when numbers runs out of elements�

�producing ��sum ��� ��numbers ���Z�
 � ��� num�

�loop

�tagbody

�setq num �nextin numbers �terminateproducing���

�setq sum �� sum num�����

� �

The third limitation is that calls on nextout associated with output vari�

ables must appear at top level in the tagbody in the body� They cannot be
nested in other forms� In addition� an output variable can be the destination

of at most one call on nextout and if it is the destination of a nextout� it

cannot be used in any other way�

If the call on nextout for a given output appears in the �nal part of the

tagbody in the body� after everything other than other calls on nextout� then

the output is an on�line output!a new value is written on every cycle of the
body� Otherwise the output is o	�line�

The following example shows how producing could be used to split a series

into two parts� Items are read in one at a time and tested� Depending on

the test� they are written to one of two outputs� Note the use of labels and

branches to keep the calls on nextout at top level� Both outputs are o	�line�

The �rst example above shows an on�line output�

SERIES ����

�producing �items
 items�� ��items ���Z�
 � � ��� item�

�loop

�tagbody �setq item �nextin items �terminateproducing���

�if �not �plusp item�� �go D��

�nextout items
 item�

�go F�

D �nextout items� item�

F ���

� ���Z�
 �� and ���Z�� ��

The fourth limitation is that the calls on nextin associated with an input

variable v must appear at top level in the tagbody in the body� nested in
assignments of the form �setq var �nextin v ������ They cannot be nested

in other forms� In addition� an input variable can be the source for at most

one call on nextin and if it is the source for a nextin� it cannot be used in

any other way�

If the call on nextin for a given input has as its sole termination action

�terminateproducing� and appears in the initial part of the tagbody in the
body� before anything other than similar calls on nextin� then the input is

an on�line input!a new value is read on every cycle of the body� Otherwise

the input is o	�line�

The example below shows how producing could be used to concatenate two

series� To start with� elements are read from the �rst input series� When this

runs out� a
ag is set and reading begins from the second input� Both inputs
are o	�line�
Compare this to the example above� which shows an on�line

input��

�producing �items� ��item
 ���Z�
 ���

�item� ���Z�� ���

�in� nil�

item�

�loop

�tagbody �if in� �go D��

�setq item �nextin item
 �setq in� t� �go D���

�go F�

D �setq item �nextin item� �terminateproducing���

F �nextout items item����

� ���Z�
 � � ��

���� COMMON LISP

�Macro�terminateproducing

This form
which takes no arguments� is used to terminate execution of
the

expansion of� the producing macro�

As with the form go� terminateproducing does not return any values�

rather� control immediately leaves the current context�

The form terminateproducing is allowed to appear only in a producing

body and causes the termination of the enclosing call on producing�

�Declaration speci
er �propagatealterability

The declaration speci�er �propagatealterability input output� indicates

that attempts to alter an element of output should be satis�ed by altering the

corresponding element of input�
The corresponding element of input is the

one most recently read at the moment when the output element is written��

This declaration may appear only in a call on producing� The input
and output arguments must be an input and an output� respectively� of the

producing macro� The example below shows how the propagation of alter�

ability could be supported in a simpli�ed version of until�

�defun simpleuntil �bools items�

�declare �optimizableseriesfunction��

�producing �z� ��x bools� �y items� bool item�

�declare �propagatealterability y z��

�loop

�tagbody

�setq bool �nextin x �terminateproducing���

�setq item �nextin y �terminateproducing���

�if bool �terminateproducing��

�nextout z item�����

�Macro�encapsulated encapsulating�fn scanner�or�collector

Some of the features provided by Common Lisp are supported solely by en�

capsulating forms� For example� there is no way to specify a cleanup ex�
pression that will always be run� even when an abort occurs� without using

unwindprotect� encapsulated makes it possible to take advantage of forms

such as unwindprotect when de�ning a series function�

encapsulated speci�es a function that places an encapsulating form around

the computation performed by its second argument� The �rst argument must

be a quoted function that takes a Lisp expression and wraps the appropriate

SERIES ����

encapsulating form around it� returning the resulting code� The second input

must be a literal call on scanfn� scanfninclusive� or collectfn� The second

argument can count on being evaluated in the scope of the encapsulating

form� The values returned by the second argument are returned as the values

of encapsulated� The following shows how encapsulated could be used to
de�ne a simpli�ed version of collectfile�

�defun collectfilewrap �file name body�

%�withopenfile ��file �name �direction �output� �body��

�defmacro simplecollectfile �name items�

�let ��file �gensym���

�encapsulated ��� �lambda �body�

�collectfilewrap �file �name body��

�collectfn t ��� �lambda �� t�

��� �lambda �state item�

�print item �file�

state�

�items����

Appendix B

Generators and Gatherers

BY CRISPIN PERDUE AND RICHARD C� WATERS

preface� Generators and gatherers are yet another approach� closely re�
lated to series� to providing iteration in a functional style�

The remainder of this chapter consists of a description by Crispin Perdue
and Richard C� Waters of their work on an existing implementation of gen�

erators and gatherers� I have edited the chapter only very lightly to conform

to the overall style of this book� Please see the Preface to this book for more

information about the genesis of the generators�gatherers approach and its

relationship to the work of X�J���

!Guy L� Steele Jr�

B��� Introduction

Generators are generalized input streams in the sense of Smalltalk ����� A

generator can produce a potentially unbounded number of elements of any

type� Individual elements are not computed until requested by nextin� When

an element is taken from a generator� it is removed by side e	ect� Subsequent
uses of nextin obtain later elements�

There is a close relationship between a generator and a series of the elements
it produces� In particular� any series can be converted into a generator� As a

result� all the scanner functions used for creating series
see appendix A� can

be used to create generators as well� There is no need to have a separate set

of functions for creating generators�

Gatherers are generalized output streams� Elements of any type can be

entered into a gatherer using nextout� The gatherer combines the elements

together in time�sequence order into a net result� This result can be retrieved
using resultof�

There is a close relationship between a gatherer and a collector function that

combines elements in the same way� In particular� any one�input one�output

����

GENERATORS AND GATHERERS ����

collector can be converted into a gatherer� As a result� all the collectors used

for computing summary results from series can be used to create gatherers�

There is no need to have a separate set of functions for creating gatherers�

B��� Generators

These functions create and process generators�

�Function�generator series

Given a series� generator returns a generator containing the same elements�

�Macro�nextin generator factiong�

nextin returns the next element in the generator generator� The actions can
be any Lisp expressions� They are evaluated if and only if no more elements

can be retrieved from generator� If there are no more elements and no actions�

it is an error� It is also an error to apply nextin to a generator a second time

after the generator has run out of elements� As an example of generators�

consider the following�

�let ��x �generator �scan �
 � � ������

�withoutputtostring �s�

�loop �prin
 �nextin x �return�� s�

�prin
 �nextin x �return�� s�

�princ ��� s����

� �
������

B��� Gatherers

These functions create and process gatherers�

�Function�gatherer collector

The collector must be a function of type �function ��series t��� t���

Given this function� gatherer returns a gatherer that accepts elements of

type t� and returns a �nal result of type t�� The method for combining ele�

ments used by the gatherer is the same as the one used by the collector�

���� COMMON LISP

�Function�nextout gatherer item

Given a gatherer and a value� nextout enters the value into the gatherer�

�Function�resultof gatherer

resultof retrieves the net result from a gatherer� resultof can be applied
at any time� However� it is an error to apply resultof twice to the same

gatherer or to apply nextout to a gatherer once resultof has been applied�

�let ��g �gatherer ��� collectsum���

�dolist �i �
 � � ���

�nextout g i�

�if �evenp i� �nextout g �

� i����

�resultof g��

� 	�

�Macro�gathering � f�var fn�g� � f formg�

The �rst subform must be a list of pairs� The �rst element of each pair� var�

must be a variable name� The second element of each pair� fn� must be a

form that when wrapped in �function ���� is acceptable as an argument
to gatherer� Each symbol is bound to a gatherer constructed from the cor�

responding collector� The body
consisting of the forms� is evaluated in the

scope of these bindings� When this evaluation is complete� gathering returns

the resultof each gatherer� If there are n pairs in the binding list� gathering
returns n values� For example�

�defun examp �data�

�gathering ��x collect� �y collectsum��

�iterate ��i �scan data���

�case �first i�

��slot �nextout x �second i���

��part �dolist �j �second i�� �nextout x j����

�nextout y �third i�����

�examp ���slot a
�� ��part �c d� ����� � �a c d� and ��

As a further illustration of gatherers� consider the following de�nition for a

simpli�ed version of gathering that handles only one binding pair�

GENERATORS AND GATHERERS ���	

�defmacro simplegathering ���var collector�� �body body�

�let ���var �gatherer �function �collector����

�#body

�resultof �var���

The full capabilities of gathering can be supported in much the same way�

B��� Discussion

The idea of generators and gatherers was �rst proposed by Pavel Curtis� A

key aspect of his proposal was the realization that generators and gatherers

can be implemented simply and elegantly as closures and that these closures
can be compiled very e�ciently if certain conditions are met�

First� the compiler must support an optimization Curtis calls �let eversion�

in addition to the optimization methods presented in ����� If a closure is

created and used entirely within a limited lexical scope� the scopes of any

bound variables nested in the closure can be enlarged
everted� to enclose all
the uses of the closure� This allows the variables to be allocated on the stack

rather than the heap�

Second� for a generator�gatherer closure to be compiled e�ciently� it must

be possible to determine at compile time exactly what closure is involved and
exactly what the scope of use of the closure is� There are several aspects to

this� The expression creating the generator�gatherer cannot refer to a free

series variable� The generator�gatherer must be stored in a local variable�

This variable must be used only in calls of nextin� nextout� and resultof�
and not inside a closure� In particular the generator�gatherer cannot be stored

in a data structure� stored in a special variable� or returned as a result value�

All of the examples above satisfy these restrictions� For instance� once the

uses of gathering and iterate have been optimized� the body of examp is as

e�cient as any loop performing the same computation�
The implementation discussed in ���� includes a portable Common Lisp

implementation of generators and gatherers� Although the implementation

does not support optimizations of the kind discussed in ����� it fully optimizes

uses of gathering�

Appendix C

Backquote

Here is the code for an implementation of backquote syntax
see sec�

tion ������� that I have found quite useful in explaining to myself the be�

havior of nested backquotes� It implements the formal rules for backquote

processing and optionally applies a code simpli�er to the result� One must
be very careful in choosing the simpli�cation rules� the rules given here work�

but some Common Lisp implementations have run into trouble at one time or

another by using a simpli�cation rule that does not work in all cases� Code

transformations that are plausible when single forms are involved are likely

to fail in the presence of splicing�

At the end of this appendix are some samples of nested backquote syntax

with commentary�

��� Common Lisp backquote implementation� written in Common Lisp�

��� Author� Guy L� Steele Jr� Date� �	 December
���

��� Tested under Symbolics Common Lisp and Lucid Common Lisp�

��� This software is in the public domain�

��� ! is pseudobackquote and " is pseudocomma� This makes it

��� possible to test this code without interfering with normal

��� Common Lisp syntax�

��� The following are unique tokens used during processing�

��� They need not be symbols� they need not even be atoms�

�defvar
comma
 �makesymbol �COMMA���

�defvar
commaatsign
 �makesymbol �COMMAATSIGN���

�defvar
commadot
 �makesymbol �COMMADOT���

�defvar
bqlist
 �makesymbol �BQLIST���

�defvar
bqappend
 �makesymbol �BQAPPEND���

�defvar
bqlist

 �makesymbol �BQLIST
���

���

BACKQUOTE ����

�defvar
bqnconc
 �makesymbol �BQNCONC���

�defvar
bqclobberable
 �makesymbol �BQCLOBBERABLE���

�defvar
bqquote
 �makesymbol �BQQUOTE���

�defvar
bqquotenil
 �list
bqquote
 nil��

��� Reader macro characters�

��� !foo is read in as �BACKQUOTE foo�

��� "foo is read in as �����COMMA foo�

��� "#foo is read in as �����COMMAATSIGN foo�

��� "�foo is read in as �����COMMADOT foo�

��� where ����COMMA is the value of the variable
COMMA
� etc�

��� BACKQUOTE is an ordinary macro �not a readmacro� that

��� processes the expression foo� looking for occurrences of

��� ����COMMA� ����COMMAATSIGN� and ����COMMADOT� It constructs code

��� in strict accordance with the rules on pages ������ of

��� the first edition �pages ������ of this second edition��

��� It then optionally applies a code simplifier�

�setmacrocharacter ����!

��� �lambda �stream char�

�declare �ignore char��

�list backquote �read stream t nil t����

�setmacrocharacter ����"

��� �lambda �stream char�

�declare �ignore char��

�case �peekchar nil stream t nil t�

�����# �readchar stream t nil t�

�list
commaatsign
 �read stream t nil t���

������ �readchar stream t nil t�

�list
commadot
 �read stream t nil t���

�otherwise �list
comma
 �read stream t nil t������

��� If the value of
BQSIMPLIFY
 is nonNIL� then BACKQUOTE

��� processing applies the code simplifier� If the value is NIL�

��� then the code resulting from BACKQUOTE is exactly that

��� specified by the official rules�

�defparameter
bqsimplify
 t�

���� COMMON LISP

�defmacro backquote �x�

�bqcompletelyprocess x��

��� Backquote processing proceeds in three stages�

���

��� �
� BQPROCESS applies the rules to remove occurrences of

��� ����COMMA� ����COMMAATSIGN� and ����COMMADOT corresponding to

��� this level of BACKQUOTE� �It also causes embedded calls to

��� BACKQUOTE to be expanded so that nesting is properly handled��

��� Code is produced that is expressed in terms of functions

��� ����BQLIST� ����BQAPPEND� and ����BQCLOBBERABLE� This is done

��� so that the simplifier will simplify only list construction

��� functions actually generated by BACKQUOTE and will not involve

��� any user code in the simplification� ����BQLIST means LIST�

��� ����BQAPPEND means APPEND� and ����BQCLOBBERABLE means IDENTITY

��� but indicates places where �"�� was used and where NCONC may

��� therefore be introduced by the simplifier for efficiency�

���

��� ��� BQSIMPLIFY� if used� rewrites the code produced by

��� BQPROCESS to produce equivalent but faster code� The

��� additional functions ����BQLIST
 and ����BQNCONC may be

��� introduced into the code�

���

��� ��� BQREMOVETOKENS goes through the code and replaces

��� ����BQLIST with LIST� ����BQAPPEND with APPEND� and so on�

��� ����BQCLOBBERABLE is simply eliminated �a call to it being

��� replaced by its argument�� ����BQLIST
 is replaced by either

��� LIST
 or CONS �the latter is used in the twoargument case�

��� purely to make the resulting code a tad more readable��

�defun bqcompletelyprocess �x�

�let ��rawresult �bqprocess x���

�bqremovetokens �if
bqsimplify

�bqsimplify rawresult�

rawresult����

�defun bqprocess �x�

�cond ��atom x�

�list
bqquote
 x��

��eq �car x� backquote�

�bqprocess �bqcompletelyprocess �cadr x����

BACKQUOTE ����

��eq �car x�
comma
� �cadr x��

��eq �car x�
commaatsign
�

�error ��# S after � �cadr x���

��eq �car x�
commadot
�

�error ��� S after � �cadr x���

�t �do ��p x �cdr p��

�q �� �cons �bracket �car p�� q���

��atom p�

�cons
bqappend

�nreconc q �list �list
bqquote
 p�����

�when �eq �car p�
comma
�

�unless �null �cddr p�� �error �Malformed � S� p��

�return �cons
bqappend

�nreconc q �list �cadr p������

�when �eq �car p�
commaatsign
�

�error �Dotted �# S� p��

�when �eq �car p�
commadot
�

�error �Dotted �� S� p������

��� This implements the bracket operator of the formal rules�

�defun bracket �x�

�cond ��atom x�

�list
bqlist
 �bqprocess x���

��eq �car x�
comma
�

�list
bqlist
 �cadr x���

��eq �car x�
commaatsign
�

�cadr x��

��eq �car x�
commadot
�

�list
bqclobberable
 �cadr x���

�t �list
bqlist
 �bqprocess x�����

��� This auxiliary function is like MAPCAR but has two extra

��� purposes� �
� it handles dotted lists� ��� it tries to make

��� the result share with the argument x as much as possible�

�defun maptree �fn x�

�if �atom x�

�funcall fn x�

�let ��a �funcall fn �car x���

�d �maptree fn �cdr x����

���� COMMON LISP

�if �and �eql a �car x�� �eql d �cdr x���

x

�cons a d�����

��� This predicate is true of a form that when read looked

��� like "#foo or "�foo�

�defun bqsplicingfrob �x�

�and �consp x�

�or �eq �car x�
commaatsign
�

�eq �car x�
commadot
����

��� This predicate is true of a form that when read

��� looked like "#foo or "�foo or just plain "foo�

�defun bqfrob �x�

�and �consp x�

�or �eq �car x�
comma
�

�eq �car x�
commaatsign
�

�eq �car x�
commadot
����

��� The simplifier essentially looks for calls to ����BQAPPEND and

��� tries to simplify them� The arguments to ����BQAPPEND are

��� processed from right to left� building up a replacement form�

��� At each step a number of special cases are handled that�

��� loosely speaking� look like this�

���

��� �APPEND �LIST a b c� foo� � �LIST
 a b c foo�

��� provided a� b� c are not splicing frobs

��� �APPEND �LIST
 a b c� foo� � �LIST
 a b �APPEND c foo��

��� provided a� b� c are not splicing frobs

��� �APPEND �QUOTE �x�� foo� � �LIST
 �QUOTE x� foo�

��� �APPEND �CLOBBERABLE x� foo� � �NCONC x foo�

�defun bqsimplify �x�

�if �atom x�

x

�let ��x �if �eq �car x�
bqquote
�

x

�maptree ��� bqsimplify x����

BACKQUOTE ����

�if �not �eq �car x�
bqappend
��

x

�bqsimplifyargs x�����

�defun bqsimplifyargs �x�

�do ��args �reverse �cdr x�� �cdr args��

�result

nil

�cond ��atom �car args��

�bqattachappend
bqappend
 �car args� result��

��and �eq �caar args�
bqlist
�

�notany ��� bqsplicingfrob �cdar args���

�bqattachconses �cdar args� result��

��and �eq �caar args�
bqlist

�

�notany ��� bqsplicingfrob �cdar args���

�bqattachconses

�reverse �cdr �reverse �cdar args����

�bqattachappend
bqappend

�car �last �car args���

result���

��and �eq �caar args�
bqquote
�

�consp �cadar args��

�not �bqfrob �cadar args���

�null �cddar args���

�bqattachconses �list �list
bqquote

�caadar args���

result��

��eq �caar args�
bqclobberable
�

�bqattachappend
bqnconc
 �cadar args� result��

�t �bqattachappend
bqappend

�car args�

result�����

��null args� result���

�defun nullorquoted �x�

�or �null x� �and �consp x� �eq �car x�
bqquote
����

��� When BQATTACHAPPEND is called� the OP should be ����BQAPPEND

��� or ����BQNCONC� This produces a form �op item result� but

��� some simplifications are done on the fly�

���

���� COMMON LISP

��� �op �a b c� �d e f g�� � �a b c d e f g�

��� �op item nil� � item� provided item is not a splicable frob

��� �op item nil� � �op item�� if item is a splicable frob

��� �op item �op a b c�� � �op item a b c�

�defun bqattachappend �op item result�

�cond ��and �nullorquoted item� �nullorquoted result��

�list
bqquote
 �append �cadr item� �cadr result����

��or �null result� �equal result
bqquotenil
��

�if �bqsplicingfrob item� �list op item� item��

��and �consp result� �eq �car result� op��

�list
 �car result� item �cdr result���

�t �list op item result����

��� The effect of BQATTACHCONSES is to produce a form as if by

��� �LIST
 �#items �result� but some simplifications are done

��� on the fly�

���

��� �LIST
 a b c d� � �a b c � d�

��� �LIST
 a b c nil� � �LIST a b c�

��� �LIST
 a b c �LIST
 d e f g�� � �LIST
 a b c d e f g�

��� �LIST
 a b c �LIST d e f g�� � �LIST a b c d e f g�

�defun bqattachconses �items result�

�cond ��and �every ��� nullorquoted items�

�nullorquoted result��

�list
bqquote

�append �mapcar ��� cadr items� �cadr result����

��or �null result� �equal result
bqquotenil
��

�cons
bqlist
 items��

��and �consp result�

�or �eq �car result�
bqlist
�

�eq �car result�
bqlist

���

�cons �car result� �append items �cdr result����

�t �cons
bqlist

 �append items �list result������

��� Removes funny tokens and changes �����BQLIST
 a b� into

��� �CONS a b� instead of �LIST
 a b�� purely for readability�

�defun bqremovetokens �x�

�cond ��eq x
bqlist
� list�

��eq x
bqappend
� append�

BACKQUOTE ����

��eq x
bqnconc
� nconc�

��eq x
bqlist

� list
�

��eq x
bqquote
� quote�

��atom x� x�

��eq �car x�
bqclobberable
�

�bqremovetokens �cadr x���

��and �eq �car x�
bqlist

�

�consp �cddr x��

�null �cdddr x���

�cons cons �maptree ��� bqremovetokens �cdr x����

�t �maptree ��� bqremovetokens x����

Suppose that we �rst make the following de�nitions�

�setq q �r s��

�defun r �x� �reduce ���
 x��

�setq r �� ���

�setq s �� ���

Without simpli�cation� the notation !!�""q�
which stands for ���q��

is read as the expression

�APPEND �LIST APPEND� �LIST �APPEND �LIST LIST� �LIST Q����

The value of this expression is

�APPEND �LIST �R S���

and the value of this value is ����� We conclude that the net e	ect of twice�

evaluating ���q� is to take the value �� of the value �r s� of q and plug

it into the template � � to produce �����

With simpli�cation� the notation !!�""q� is read as the expression

�LIST LIST Q�

The value of this expression is

�LIST �R S��

and the value of this value is ����� Thus the two ways of reading !!�""q�

do not produce the same expression!this we expected!but the values of the

two ways are di	erent as well� Only the values of the values are the same� In

general� Common Lisp guarantees the result of an expression with backquotes

���� COMMON LISP

nested to depth k only after k successive evaluations have been performed� the

results after fewer than k evaluations are implementation�dependent�

Note that in the expression %�foo ��process %�bar �x��� the back�

quotes are not doubly nested� The inner backquoted expression occurs within

the textual scope of a comma belonging to the outer backquote� The correct
way to determine the backquote nesting level of any subexpression is to start

a count at zero and proceed up the S�expression tree� adding one for each

backquote and subtracting one for each comma� This is similar to the rule for

determining nesting level with respect to parentheses by scanning a character
string linearly� adding or subtracting one as parentheses are passed��

It is convenient to extend the ��� notation to handle multiple evaluation�

x �� y means that the expressions x and y may have di	erent results but

they have the same results when twice evaluated� Similarly� x ��� y means

that the values of the values of the values of x and y are the same� and so on�
We can illustrate the di	erences between non�splicing and splicing back�

quote inclusions quite concisely�

!!�""q� �
�APPEND �LIST APPEND� �LIST �APPEND �LIST LIST� �LIST Q����

�� �LIST LIST Q� � �LIST �R S�� � ����

!!�"#"q� �
�APPEND �LIST APPEND� �LIST Q��

�� Q � �R S� � ��

!!�""#q� �
�APPEND �LIST APPEND� �LIST �APPEND �LIST LIST� Q���

�� �CONS LIST Q� � �LIST R S� � ��� �� �� ���

!!�"#"#q� �
�APPEND �LIST APPEND� Q�

�� �CONS APPEND Q� � �APPEND R S� � �� � � ��

In each case I have shown both the unsimpli�ed and simpli�ed forms and then

traced the intermediate evaluations of the simpli�ed form�
Actually� the

unsimpli�ed forms do contain one simpli�cation without which they would

be unreadable� the nil that terminates each list has been systematically
suppressed� so that one sees �append x y� rather than �append x y nil���

The following driver function is useful for tracing the behavior of nested

backquote syntax through multiple evaluations� The argument ls is a list of

strings� each string will be processed by the reader
readfromstring�� The

argument n is the number of evaluations desired�

BACKQUOTE ���	

�defun try �ls �optional �n ���

�dolist �x ls�

�format t � � A�

�substitute ���� ����! �substitute ����� ����" x���

�do ��form �macroexpand �readfromstring x�� �eval form��

�str � � � " � ��

�j � �� j
���

��� j n�

�format t str�

�write form �pretty t��

�format t str�

�write form �pretty t���

�format t � ����

This driver routine makes it easdy to explore a large number of cases sys�
tematically� Here is a list of examples that illustrate not only the di	erences

between � and �# but also their interaction with �

�setq fools� �

�!!�foo ""p��

�!!�foo ""#q��

�!!�foo " "r��

�!!�foo " "#s��

�!!�foo "#"p��

�!!�foo "#"#q��

�!!�foo "# "r��

�!!�foo "# "#s��

��

Consider this set of sample values�

�setq p �union x y��

�setq q ��union x y� �list sqrt ����

�setq r �union x y��

�setq s ��union x y���

Here is what happened when I executed �try fools� �� with a non�nil

value for the variable
bqsimplify

to see simpli�ed forms�� I have interpo�

lated some remarks�

���
 COMMON LISP

�foo ��p� �LIST LIST FOO P�

� �LIST FOO �UNION X Y��

� �FOO �A B C��

So ��p means �the value of p is a form� use the value of the value of p��

�foo ��#q� �LIST
 LIST FOO Q�

� �LIST FOO �UNION X Y� �LIST SQRT ���

� �FOO �A B C� �SQRT ���

So ��#q means �the value of q is a list of forms� splice the list of values of the

elements of the value of q��

�foo � �r� �LIST LIST FOO �LIST QUOTE R��

� �LIST FOO �UNION X Y��

� �FOO �UNION X Y��

So � �r means �the value of r may be any object� use the value of r that

is available at the time of �rst evaluation� that is� when the outer backquote

is evaluated��
To use the value of r that is available at the time of second

evaluation� that is� when the inner backquote is evaluated� just use �r��

�foo � �#s� �LIST LIST FOO �CONS QUOTE S��

� �LIST FOO �UNION X Y��

� �FOO �UNION X Y��

So � �#s means �the value of s must be a singleton list of any object� use the
element of the value of s that is available at the time of �rst evaluation� that

is� when the outer backquote is evaluated�� Note that s must be a singleton

list because it will be spliced into a form �quote �� and the quote special form

requires exactly one subform to appear� this is generally true of the sequence

�#�
To use the value of s that is available at the time of second evaluation�
that is� when the inner backquote is evaluated� just use �#s�in which case the

list s is not restricted to be singleton� or ��car s���

�foo �#�p� �LIST CONS FOO P�

� �CONS FOO �UNION X Y��

� �FOO A B C�

So �#�p means �the value of p is a form� splice in the value of the value of p��

�foo �#�#q� �LIST CONS FOO �CONS APPEND Q��

� �CONS FOO �APPEND �UNION X Y� �LIST SQRT ����

� �FOO A B C SQRT ��

BACKQUOTE ����

So �#�#q means �the value of q is a list of forms� splice each of the values of

the elements of the value of q� so that many splicings occur��

�foo �# �r� �LIST CONS FOO �LIST QUOTE R��

� �CONS FOO �UNION X Y��

� �FOO UNION X Y�

So �# �r means �the value of r must be a list� splice in the value of r that
is available at the time of �rst evaluation� that is� when the outer backquote

is evaluated��
To splice the value of r that is available at the time of second

evaluation� that is� when the inner backquote is evaluated� just use �#r��

�foo �# �#s� �LIST CONS FOO �CONS QUOTE S��

� �CONS FOO �UNION X Y��

� �FOO UNION X Y�

So �# �#s means �the value of s must be a singleton list whose element is

a list� splice in the list that is the element of the value of s that is available

at the time of �rst evaluation� that is� when the outer backquote is evalu�

ated��
To splice the element of the value of s that is available at the time

of second evaluation� that is� when the inner backquote is evaluated� just use
�#�car s���

I leave it to the reader to explore the possibilities of triply nested back�

quotes�

�setq fools� �

�!!!�foo """p�� �!!!�foo """#q��

�!!!�foo "" "r�� �!!!�foo "" "#s��

�!!!�foo ""#"p�� �!!!�foo ""#"#q��

�!!!�foo ""# "r�� �!!!�foo ""# "#s��

�!!!�foo " ""p�� �!!!�foo " ""#q��

�!!!�foo " " "r�� �!!!�foo " " "#s��

�!!!�foo " "#"p�� �!!!�foo " "#"#q��

�!!!�foo " "# "r�� �!!!�foo " "# "#s��

�!!!�foo "#""p�� �!!!�foo "#""#q��

�!!!�foo "#" "r�� �!!!�foo "#" "#s��

�!!!�foo "#"#"p�� �!!!�foo "#"#"#q��

�!!!�foo "#"# "r�� �!!!�foo "#"# "#s��

�!!!�foo "# ""p�� �!!!�foo "# ""#q��

�!!!�foo "# " "r�� �!!!�foo "# " "#s��

���� COMMON LISP

�!!!�foo "# "#"p�� �!!!�foo "# "#"#q��

�!!!�foo "# "# "r�� �!!!�foo "# "# "#s��

��

It is a pleasant exercise to construct values for p� q� r� and s that will allow

execution of �try fools� �� without error�

References

��� Adobe Systems Incorporated� PostScript Language Reference Manual�
Addison
Wesley �Reading� Massachusetts� ������

��� Alberga� Cyril N�� Bosman
Clark� Chris� Mikelsons� Martin� Van Deusen�
Mary S�� and Padget� Julian� Experience with an uncommon Lisp� In
Proc� �	�
 ACM Conference on Lisp and Functional Programming� ACM
SIGPLAN�SIGACT�SIGART �Cambridge� Massachusetts� August ���	��
��#���

��� American National Standard Programming Language FORTRAN� ANSI
X���
���� edition� American National Standards Institute� Inc� �New York�
������

��� Bates� Raymond L�� Dyer� David� and Feber� Mark� Recent developments
in ISI
Interlisp� In Proc� �	�� ACM Symposium on Lisp and Functional
Programming� ACM SIGPLAN�SIGACT�SIGART �Austin� Texas� August
������ ���#����

��� Bobrow� Daniel G�� DiMichiel� Linda G�� Gabriel� Richard P�� Keene�
Sonya E�� Kiczales� Gregor� and Moon� David A� Common Lisp Object Sys

tem Speci�cation� X�J�� Document ��

�R� SIGPLAN Notices �� �Septem

ber ������

�	� Bobrow� Daniel G�� DiMichiel� Linda G�� Gabriel� Richard P�� Keene�
Sonya E�� Kiczales� Gregor� and Moon� David A� Common Lisp Object Sys

tem speci�cation� �� Programmer interface concepts� Lisp and Symbolic
Computation �� ��� �January ������ ���#����

��� Bobrow� Daniel G�� DiMichiel� Linda G�� Gabriel� Richard P�� Keene�
Sonya E�� Kiczales� Gregor� and Moon� David A� Common Lisp Object Sys

tem speci�cation� �� Functions in the programmer interface� Lisp and Sym�
bolic Computation �� ��� �January ������ ���#����

��� Bobrow� Daniel G�� and Kiczales� Gregor� The Common Lisp Object Sys

tem metaobject kernel� A status report� In Proc� �	�� ACM Conference
on Lisp and Functional Programming� ACM SIGPLAN�SIGACT�SIGART
�Snowbird� Utah� July ������ �
�#����

����

��	� REFERENCES

��� Brooks� Rodney A�� and Gabriel� Richard P� A critique of Common Lisp� In
Proc� �	�� ACM Symposium on Lisp and Functional Programming� ACM
SIGPLAN�SIGACT�SIGART �Austin� Texas� August ������ �#��

��
� Brooks� Rodney A�� Gabriel� Richard P�� and Steele� Guy L�� Jr� S
� Common
Lisp implementation� In Proc� �	�� ACM Symposium on Lisp and Functional
Programming� ACM SIGPLAN�SIGACT�SIGART �Pittsburgh� Pennsylva

nia� August ������ �
�#����

���� Brooks� Rodney A�� Gabriel� Richard P�� and Steele� Guy L�� Jr� An optimiz

ing compiler for lexically scoped lisp� In Proc� �	�� Symposium on Compiler
Construction� ACM SIGPLAN �Boston� June ������ �	�#���� Proceedings
published as ACM SIGPLAN Notices ��� 	 �June ������

���� Clinger� William �ed�� The Revised Revised Report on Scheme
 or� An Un�
common Lisp� AI Memo ���� MIT Arti�cial Intelligence Laboratory �Cam

bridge� Massachusetts� August ������

���� Clinger� William �ed�� The Revised Revised Report on Scheme
 or� An Un�
common Lisp� Computer Science Department Technical Report ���� Indiana
University �Bloomington� Indiana� June ������

���� Cody� William J�� Jr�� and Waite� William� Software Manual for the Elemen�
tary Functions� Prentice
Hall �Englewood Cli�s� New Jersey� ���
��

���� Committee� ANSI X�J�� Draft proposed American National Standard For

tran� ACM SIGPLAN Notices ��� � �March ���	��

��	� Coonen� Jerome T� Errata for �An implementation guide to a proposed stan

dard for �oating
point arithmetic�� Computer ��� � �March ������ 	�� These
are errata for �����

���� Coonen� Jerome T� An implementation guide to a proposed standard for
�oating
point arithmetic� Computer ��� � �January ���
�� 	�#��� Errata for
this paper appeared as ��	��

���� DiMichiel� Linda G� Overview� The Common Lisp Object System� Lisp and
Symbolic Computation �� ��� �January ������ ���#����

���� Fateman� Richard J� Reply to an editorial� ACM SIGSAM Bulletin �� �March
������ �#���

��
� Goldberg� Adele� and Robson� David� Smalltalk���� The Language and Its
Implementation� Addison
Wesley �Reading� Massachusetts� ������

���� Griss� Martin L�� Benson� Eric� and Hearn� Anthony C� Current status of a
portable LISP compiler� In Proc� �	�� Symposium on Compiler Construction�
ACM SIGPLAN �Boston� June ������ ��	#���� Proceedings published as
ACM SIGPLAN Notices ��� 	 �June ������

���� Harrenstien� Kenneth L� Time Server� Request for Comments �RFC� ���
�NIC ������� ARPANETNetworkWorking Group �October ������ Available
from the ARPANET Network Information Center�

���� IEEE Computer Society Standard Committee� Floating
Point Work

ing Group� Microprocessor Standards Subcommittee� A proposed standard
for binary �oating
point arithmetic� Computer ��� � �March ������ ��#	��

REFERENCES ��	�

���� ISO� Information Processing�Coded Character Sets for Text Communica�
tion� Part �� Latin Alphabetic and Non�alphabetic Graphic Characters� ISO
�������

���� Kahan� W� Branch cuts for complex elementary functions� or� Much ado
about nothing�s sign bit� In Iserles� A�� and Powell� M� �eds��� The State of
the Art in Numerical Analysis� Clarendon Press ������� �	�#����

��	� Keene� Sonya E� Object�Oriented Programming in Common Lisp� A Pro�
grammer�s Guide to CLOS� Addison
Wesley �Reading� Massachusetts� ������

���� Knuth� Donald E� Seminumerical Algorithms� Volume � of The Art of Com�
puter Programming� Addison
Wesley �Reading� Massachusetts� ��	���

���� Knuth� Donald E� The TEXbook� Volume A of Computers and Typesetting�
Addison
Wesley �Reading� Massachusetts� ���	��

���� Knuth� Donald E� TEX� The Program� Volume B of Computers and Type�
setting� Addison
Wesley �Reading� Massachusetts� ���	��

��
� Lamport� Leslie� LATEX� A Document Preparation System� Addison
Wesley
�Reading� Massachusetts� ���	��

���� Marti� J�� Hearn� A� C�� Griss� M� L�� and Griss� C� Standard Lisp report�
ACM SIGPLAN Notices ��� �
 �October ������ ��#	��

���� McDonnell� E� E� The story of �� APL Quote Quad �� � �December ������
��#���

���� Moon� David� MacLISP Reference Manual� Revision �� MIT Project MAC
�Cambridge� Massachusetts� April ������

���� Moon� David� Stallman� Richard� and Weinreb� Daniel� LISP Machine Man�
ual� Fifth Edition� MIT Arti�cial Intelligence Laboratory �Cambridge� Mas

sachusetts� January ������

���� Padget� Julian� et al� Desiderata for the standardisation of Lisp� In
Proc� �	�
 ACM Conference on Lisp and Functional Programming� ACM
SIGPLAN�SIGACT�SIGART �Cambridge� Massachusetts� August ���	��
��#		�

��	� Pen�eld� Paul� Jr� Principal values and branch cuts in complex APL� In APL
�� Conference Proceedings� ACM SIGAPL �San Francisco� September ������
���#��	� Proceedings published as APL Quote Quad ��� � �September ������

���� Pitman� Kent M� The Revised MacLISP Manual� MIT�LCS�TR ���� MIT
Laboratory for Computer Science �Cambridge� Massachusetts� May ������

���� Pitman� Kent M� Exceptional Situations in Lisp� Working paper �	�� MIT
Arti�cial Intelligence Laboratory �Cambridge� Massachusetts��

���� Queinnec� Christian� and Cointe� Pierre� An open
ended data representation
model for EU LISP� In Proc� �	�� ACM Conference on Lisp and Functional
Programming� ACM SIGPLAN�SIGACT�SIGART �Snowbird� Utah� July
������ ���#�
��

��
� Rees� Jonathan� Clinger� William� et al� Revised� report on the algorithmic
language Scheme� ACM SIGPLAN Notices ��� �� �December ���	�� ��#���

���� Reiser� John F� Analysis of Additive Random Number Generators� Technical
Report STAN
CS
��
	
�� Stanford University Computer Science Department
�Palo Alto� California� March ������

��	� REFERENCES

���� Roylance� Gerald� Expressing mathematical subroutines constructively� In
Proc� �	�� ACM Conference on Lisp and Functional Programming� ACM
SIGPLAN�SIGACT�SIGART �Snowbird� Utah� July ������ �#���

���� Steele� Guy L�� Jr� An overview of Common Lisp� In Proc� �	�� ACM Sym�
posium on Lisp and Functional Programming� ACM SIGPLAN�SIGACT�
SIGART �Pittsburgh� Pennsylvania� August ������ ��#�
��

���� Steele� Guy L�� Jr�� and Hillis� W� Daniel� Connection Machine Lisp� Fine

grained parallel symbolic processing� In Proc� �	�
 ACM Conference on Lisp
and Functional Programming� ACM SIGPLAN�SIGACT�SIGART �Cam

bridge� Massachusetts� August ���	�� ���#����

���� Steele� Guy Lewis� Jr� RABBIT� A Compiler for SCHEME �A Study in
Compiler Optimization�� Technical Report ���� MIT Arti�cial Intelligence
Laboratory �Cambridge� Massachusetts� May ������

��	� Steele� Guy Lewis� Jr�� and Sussman� Gerald Jay� The Revised Report on
SCHEME� A Dialect of LISP� AI Memo ���� MIT Arti�cial Intelligence
Laboratory �Cambridge� Massachusetts� January ������

���� Suzuki� Norihisa� Analysis of pointer �rotation�� Communications of the
ACM ��� � �May ������ ��
#����

���� Swanson� Mark� Kessler� Robert� and Lindstrom� Gary� An implementation
of Portable Standard Lisp on the BBN Butter�y� In Proc� �	�� ACM Con�
ference on Lisp and Functional Programming� ACM SIGPLAN�SIGACT�
SIGART �Snowbird� Utah� July ������ ���#����

���� Symbolics� Inc� Signalling and Handling Conditions� �Cambridge� Mas

sachusetts� ������

��
� Teitelman� Warren� et al� InterLISP Reference Manual� Xerox Palo Alto
Research Center �Palo Alto� California� ������ Third revision�

���� The Utah Symbolic Computation Group� The Portable Standard LISP Users
Manual� Technical Report TR
�
� Department of Computer Science� Uni

versity of Utah �Salt Lake City� Utah� January ������

���� Waters� Richard C� Optimization of Series Expressions� Part I� User�s Man�
ual for the Series Macro Package� AI Memo �
��� MIT Arti�cial Intelligence
Laboratory �Cambridge� Massachusetts� January ������

���� Waters� Richard C� Optimization of Series Expressions� Part II� Overview of
the Theory and Implementation� AI Memo �
��� MIT Arti�cial Intelligence
Laboratory �Cambridge� Massachusetts� January ������

���� Waters� Richard C� XP� A Common Lisp Pretty Printing System� AI
Memo ��
�� MIT Arti�cial Intelligence Laboratory �Cambridge� Mas

sachusetts� March ������

���� Weinreb� Daniel� and Moon� David� LISP Machine Manual� Fourth Edi�
tion� MIT Arti�cial Intelligence Laboratory �Cambridge� Massachusetts� July
������

��	� Wholey� Skef� and Fahlman� Scott E� The design of an instruction set for Com

mon Lisp� In Proc� �	�� ACM Symposium on Lisp and Functional Program�
ming� ACM SIGPLAN�SIGACT�SIGART �Austin� Texas� August ������
��
#����

REFERENCES ��	�

���� Wholey� Skef� and Steele� Guy L�� Jr� Connection Machine Lisp� A dialect
of Common Lisp for data parallel programming� In Kartashev� Lana P��
and Kartashev� Steven I� �eds��� Proc� Second International Conference on
Supercomputing� Volume III� International Supercomputing Institute �Santa
Clara� California� May ������ ��#���

Index of X�J�� Votes

This is an index of issues voted upon by X�J��� For the bene�t of those

readers who may wish to cross�reference to the X�J�� working documents

or to the minutes of the X�J�� meetings� each vote is identi�ed below by

the
sometimes whimsical� descriptive label used in X�J�� discussions� Each

label consists of the name of an issue and the name of the solution that was
approved
many issues had more than one proposed solution� separated by a

colon� A few solutions had no explicit name� Page numbers indicate where

each issue is cited in the text� a following number in parentheses indicates

that the issue is cited that many times on the page�

h�i ADJUST�ARRAY�DISPLACEMENT�RULES ���

h�i ADJUST�ARRAY�FILL�POINTER�MINIMAL ���

h�i ADJUST�ARRAY�NOT�ADJUSTABLE�IMPLICIT�COPY �	� ���� ���� ��	� ���� ��

h�i ALLOW�LOCAL�INLINE�INLINE�NOTINLINE 	��

h�i APPLYHOOK�ENVIROMENT�REMOVE�ENV ��
� ���

h	i AREF�	D�ROW�MAJOR�AREF
	�� ���

h�i ARGUMENTS�UNDERSPECIFIED�SPECIFY
		� ���� ���� �
�� ��
� ���� ��
� ����

��

h�i ARRAY�TYPE�ELEMENT�TYPE�SEMANTICS�UNIFY�UPGRADING ��� ��� �
� �
� ���

��� ���

h�i ASSOC�RASSOC�IF�KEY�YES ��	� ���

h�
i BREAK�ON�WARNINGS�OBSOLETE�REMOVE ���� ���� ���

h��i CHARACTER�PROPOSAL 	�� 	��	�� ��� ��� ���	�� ��� ���	�� ��� �
� ���	��
	��	��

��� 	��� 	��� 	��� �

� �
�� �
��	�� �
�� �
�� ��
� ��	���� ���� ����	�� ���� ����

��
�	�� ���� ��	� ���� ��
� ���� ���� �
�� ���� ���� ���

h��i CLOS
�� �
�
��
���
��� 	
�� �
	� ����

�� �	

h��i CLOS�MACRO�COMPILATION�MINIMAL ���

h��i CLOSE�CONSTRUCTED�STREAM�ARGUMENT�STREAM�ONLY ���

h��i CLOSED�STREAM�OPERATIONS�ALLOW�INQUIRY ���� ���� ���� ���� ��
� ����

���� ���� ���� ���

h�	i COLON�NUMBER�UNDEFINED �	
� �		

h��i COMMON�TYPE�REMOVE
	� �
� ��� ��� �
�
��

��	�

REFERENCES ��		

h��i COMPILE�ARGUMENT�PROBLEMS�CLARIFY �

h��i COMPILE�ENVIRONMENT�CONSISTENCY�CLARIFY ���

h�
i COMPILE�FILE�HANDLING�OF�TOP�LEVEL�FORMS�CLARIFY ��

h��i COMPILE�FILE�PACKAGE�REBIND 	�	� �
�

h��i COMPILE�FILE�SYMBOL�HANDLING�NEW�REQUIRE�CONSISTENCY �
�� ��	

h��i COMPILED�FUNCTION�REQUIREMENTS�TIGHTEN ���

h��i COMPILER�DIAGNOSTICS�USE�HANDLER �

� �
�� ���

h��i COMPILER�LET�CONFUSION�ELIMINATE
��
�

h�	i COMPILER�VERBOSITY�LIKE�LOAD ��
� ���� �
�� ����	�

h��i COMPILER�WARNING�STREAM�ERROR�OUTPUT ���

h��i COMPLEX�ATAN�BRANCH�CUT�TWEAK ��
� ���� �
	

h��i COMPLEX�RATIONAL�RESULT�EXTEND 	��� ���

h�
i CONDITION�SYSTEM
�� ���� ���� ��
� ���� �
�� �

� �
	� �
�� �
����� ���

h��i CONDITION�RESTARTS�PERMIT�ASSOCIATION 	
�� ���� �
�

h��i CONSTANT�CIRCULAR�COMPILATION�YES

�� ���

h��i CONSTANT�COLLAPSING�GENERALIZE ���

h��i CONSTANT�COMPILABLE�TYPES�SPECIFY

�� ��

h��i CONSTANT�FUNCTION�COMPILATION�NO ���

h�	i CONSTANT�MODIFICATION�DISALLOW
��

�� ���

h��i CONTAGION�ON�NUMERICAL�COMPARISONS�TRANSITIVE
��� 	��� ��

h��i COPY�SYMBOL�COPY�PLIST�COPY�LIST 	��

h��i COPY�SYMBOL�PRINT�NAME�EQUAL 	��

h�
i DATA�IO�ADD�SUPPORT 	
�� �	�� ���� ���� ��
� ��	� ����	�� ����	�� ����

����	�� ��
�	�� ���� �

� �
�� ���� ��

h��i DATA�TYPES�HIERARCHY�UNDERSPECIFIED�DISJOINT ��� �
� �
��
�	�
��

h��i DECLARATION�SCOPE�NO�HOISTING 	
�

h��i DECLARE�ARRAY�TYPE�ELEMENT�REFERENCES�RESTRICTIVE ��

h��i DECLARE�FUNCTION�AMBIGUITY�DELETE�FTYPE�ABBREVIATION 		�

h��i DECLARE�MACROS�FLUSH 	

h�	i DECLARE�TYPE�FREE�LEXICAL 	
�� 			� 		�

h��i DECODE�UNIVERSAL�TIME�DAYLIGHT�LIKE�ENCODE
��

h��i DEFCONSTANT�SPECIAL�DOESNT�MATTER �

h��i DEFINE�COMPILER�MACRO�NEW�FACILITY
	�� 	��� 	��

h�
i DEFINING�MACROS�NON�TOP�LEVEL�ALLOW ��� ���	��
���
���
���
��� 	�
�

�
	

h��i DEFMACRO�LAMBDA�LIST�TIGHTEN�DESCRIPTION
�

h��i DEFPACKAGE�ADDITION 	��� 	��

h��i DEFSTRUCT�CONSTRUCTOR�KEY�MIXTURE�ALLOW�KEY ���

h��i DEFSTRUCT�DEFAULT�VALUE�EVALUATION�IFF�NEEDED �
	� �
�

h��i DEFSTRUCT�PRINT�FUNCTION�INHERITANCE�YES ���

h�	i DEFSTRUCT�REDEFINITION�ERROR �
�

h��i DEFSTRUCT�SLOTS�CONSTRAINTS�NAME�DUPLICATES�ERROR �
	

h��i DEFSTRUCT�SLOTS�CONSTRAINTS�NUMBER�ALLOW�ZERO �

h��i DEFVAR�DOCUMENTATION�UNEVALUATED �

h	
i DEFVAR�INIT�TIME�NOT�DELAYED ��

��	
 REFERENCES

h	�i DEFVAR�INITIALIZATION�CONSERVATIVE ��

h	�i DESCRIBE�INTERACTIVE�EXPLICITLY�VAGUE ��

h	�i DESCRIBE�UNDERSPECIFIED�DESCRIBE�OBJECT ��
� ���� �

� ���

h	�i DESTRUCTURING�BIND�NEW�MACRO 	��� 	�

h	�i DISASSEMBLE�SIDE�EFFECT�DO�NOT�INSTALL ��	

h		i DO�SYMBOLS�DUPLICATES�ALLOWED 	
�

h	�i DOTTED�MACRO�FORMS�ALLOW
�

h	�i DRIBBLE�TECHNIQUE�MAKE�EXPLICITLY�VAGUE
��

h	�i DYNAMIC�EXTENT�NEW�DECLARATION 	�	

h�
i DYNAMIC�EXTENT�FUNCTION�EXTEND 	�	

h��i EQUAL�STRUCTURE�MAYBE�STATUS�QUO
�
�
��

h��i EVAL�OTHER�SELF�EVALUATE
�

h��i EVAL�WHEN�NON�TOP�LEVEL�GENERALIZE�EVAL�NEW�KEYWORDS ��� 	�

h��i EXIT�EXTENT�MINIMAL
��

h��i EXPT�RATIO�P��		 ��

h�	i FIXNUM�NON�PORTABLE�TIGHTEN�DEFINITION
�� ��� ���� ���

h��i FLET�DECLARATIONS�ALLOW
��

h��i FLET�IMPLICIT�BLOCK�YES ���
���
���
���
��� 	��

h��i FLOAT�UNDERFLOW�ADD�CONTROLS 	��� ����	�

h�
i FORMAT�ATSIGN�COLON�OK ��	

h��i FORMAT�COLON�UPARROW�SCOPE�TEST�FOR�REMAINING�SUBLISTS ���

h��i FORMAT�COMMA�INTERVAL�YES ���

h��i FORMAT�E�EXPONENT�SIGN�FORCE�SIGN ��	

h��i FORMAT�OP�C�WRITE�CHAR ���

h��i FORMAT�PRETTY�PRINT�YES ���� ����	�� ����	�� ������� ���� ���� ��	� ���� ���

h�	i FUNCTION�CALL�EVALUATION�ORDER�UNSPECIFIED
�

h��i FUNCTION�COMPOSITION�JAN���X�J	� ��

h��i FUNCTION�DEFINITION�JAN���X�J	� ��	

h��i FUNCTION�NAME�SMALL ���

��

��
	��	��
	��
	��	��
	��	��
	
�
	�����

��� 		
� 	���	�� �

� ��	� ���� ���� ���� �	
� ��	

h�
i FUNCTION�TYPE�X�J	��MARCH���
�� ��� ��� ��� ���
�	�

��

��
	��
���

���

�� 	��� ���� ��
� ��	� ���� ���

h��i FUNCTION�TYPE�ARGUMENT�TYPE�SEMANTICS�RESTRICTIVE ��� 		
� 		�

h��i FUNCTION�TYPE�KEY�NAME�SPECIFY�KEYWORD �

h��i FUNCTION�TYPE�REST�LIST�ELEMENT�USE�ACTUAL�ARGUMENT�TYPE �

h��i GENSYM�NAME�STICKINESS�LIKE�TEFLON 	��� 	��

h��i GET�MACRO�CHARACTER�READTABLE�NIL�STANDARD ��	� ���

h�	i GET�SETF�METHOD�ENVIRONMENT�ADD�ARG
�
�
�	�
���
���	�

h��i HASH�TABLE�ACCESS�X�J	��MAR��� ���

h��i HASH�TABLE�PACKAGE�GENERATORS�ADD�WITH�WRAPPER 	
�� ���

h��i HASH�TABLE�SIZE�INTENDED�ENTRIES ���� ��
�	�

h�

i HASH�TABLE�TESTS�ADD�EQUALP ��

h�
�i IEEE�ATAN�BRANCH�CUT�SPLIT ��	�	�� ���� ���� ���� �
��	�� �

h�
�i IMPORT�SETF�SYMBOL�PACKAGE�YES 	��

h�
�i IN�PACKAGE�FUNCTIONALITY�MAR���X�J	� 	�
� 	��� ���

REFERENCES ��	�

h�
�i IN�SYNTAX�MINIMAL ���� �
�

h�
�i KEYWORD�ARGUMENT�NAME�PACKAGE�ANY
��
�

h�
	i LAST�N�ALLOW�OPTIONAL�ARGUMENT �
�

h�
�i LCM�NO�ARGUMENTS�	 	��

h�
�i LISP�PACKAGE�NAME�COMMON�LISP 	��� 	�	� 	���	�� 	
�� 	��

h�
�i LISP�SYMBOL�REDEFINITION�MAR���X�J	� 	��

h��
i LOAD�OBJECTS�MAKE�LOAD�FORM ���� ���

h���i LOAD�TIME�EVAL�R����NEW�SPECIAL�FORM
�� ���

h���i LOAD�TRUENAME�NEW�PATHNAME�VARIABLES ����	�� ���� ������

h���i LOCALLY�TOP�LEVEL�SPECIAL�FORM
�� ��� 		

h���i LOOP�AND�DISCREPANCY�NO�REITERATION

�

h���i LOOP�FACILITY
���
��

h��	i MACRO�CACHING�DISALLOW 	��

h���i MACRO�ENVIRONMENT�EXTENT�DYNAMIC
�
� 	��� 	��

h���i MACRO�FUNCTION�ENVIRONMENT�YES
��

h���i MAKE�PACKAGE�USE�DEFAULT�IMPLEMENTATION�DEPENDENT 	��� 	

h��
i MAP�INTO�ADD�FUNCTION ���

h���i MAPPING�DESTRUCTIVE�INTERACTION�EXPLICITLY�VAGUE
���

��

��

	
����� 	

� ���� ��
� ���� ���� ��
� ��	� ���� ����	�� ���� ��
���� ���� �
�� �
��

�	��	�� �	����� �	
� �	��	�� ���� ��
�	�� ���� ���� ����	�� ��

h���i MORE�CHARACTER�PROPOSAL �
��	�� �
�� ��	� ���� ���� ���� ��
� ��
� ���

h���i NTH�VALUE�ADD
��

h���i OPTIMIZE�DEBUG�INFO�NEW�QUALITY 	�

h���i PACKAGE�CLUTTER�REDUCE 	��

h��	i PACKAGE�DELETION�NEW�FUNCTION 	��� 	��

h���i PACKAGE�FUNCTION�CONSISTENCY�MORE�PERMISSIVE 	��� 	������ 	������

	�
���� 	������ 	������ 	
�� 	
��	�

h���i PATHNAME�COMPONENT�CASE�KEYWORD�ARGUMENT �

� �	�� ��
� ���� ���

h���i PATHNAME�COMPONENT�VALUE�SPECIFY �
�� �	�

h��
i PATHNAME�LOGICAL�ADD �	�� ���� ���� ��
� ���� ��	� ���� ����	�� ����	�� ����

���� �
�� ����	�

h���i PATHNAME�PRINT�READ�SHARPSIGN�P ��
� ��
� ���

h���i PATHNAME�STREAM�FILES�OR�SYNONYM 	
�� ����	�� ���� ���� ��
� ���� ����

���� ��
� ����	�� ���� ����	�� ���� ���� �
�

h���i PATHNAME�SUBDIRECTORY�LIST�NEW�REPRESENTATION �
�� �

� �	�� ���

h���i PATHNAME�SYMBOL�NO 	
�� ��
� ���� ���� ���� ��
� ���� ���

h���i PATHNAME�SYNTAX�ERROR�TIME�PATHNAME�CREATION ��	� ���� ���

h��	i PATHNAME�UNSPECIFIC�COMPONENT�NEW�TOKEN �
�

h���i PATHNAME�WILD�NEW�FUNCTIONS �	�� ���� ���� ��	� ���� ����	�� ����	�� ����

�
�

h���i PEEK�CHAR�READ�CHAR�ECHO�FIRST�READ�CHAR ��
� �
�� �

� �
��	�� �
�

h���i PRETTY�PRINT�INTERFACE�XP 	�� ���� ���� �

� �
�� �
�� ���� ���� ���� ��
�

��

h��
i PRINC�CHARACTER�WRITE�CHAR �
�

��	� REFERENCES

h���i PRINT�CASE�PRINT�ESCAPE�INTERACTION�VERTICAL�BAR�RULE�NO�

UPCASE ��	�

���

h���i PRINT�CIRCLE�SHARED�RESPECT�PRINT�CIRCLE ���

h���i PRINT�CIRCLE�STRUCTURE�USER�FUNCTIONS�WORK ���� ���

h���i PROCLAIM�ETC�IN�COMPILE�FILE�NEW�MACRO 	
�� 		�� 	�	� ���

h���i PROCLAIM�INLINE�WHERE�BEFORE 		�

h��	i PUSH�EVALUATION�ORDER�ITEM�FIRST
�	� 	�	�	�� 	�
� �	�� �	
� �		� �

�

�
	� �
��	�

h���i QUOTE�SEMANTICS�NO�COPYING
���

�

h���i RANGE�OF�COUNT�KEYWORD�NIL�OR�INTEGER ����	�� ���

h���i RANGE�OF�START�AND�END�PARAMETERS�INTEGER�AND�INTEGER�NIL ���

h��
i READ�CASE�SENSITIVITY�READTABLE�KEYWORDS

� 	�� �
��	�� �
�� ���� ��	�

��

h���i REAL�NUMBER�TYPE�X�J	��MAR���
�� ��� ��� ��� �
�
�

h���i REDUCE�ARGUMENT�EXTRACTION�KEY ���

h���i REMF�DESTRUCTION�UNSPECIFIED�X�J	��MAR��� 	�
�	�� 	�	�	�� ���� ��
�

��	� ���� �
�� �	�� �	��	�� ��

h���i REQUIRE�PATHNAME�DEFAULTS�ELIMINATE 	

� 	��� ��

h���i REST�LIST�ALLOCATION�MAY�SHARE

h��	i RETURN�VALUES�UNSPECIFIED�SPECIFY 		
� 	��� 	��� 	
�� ��	� ���� ���

h���i ROOM�DEFAULT�ARGUMENT�NEW�VALUE ���

h���i SEQUENCE�TYPE�LENGTH�MUST�MATCH ��� ���� ����	�� �
�

h���i SETF�MULTIPLE�STORE�VARIABLES�ALLOW
	��	��
�
�	�� �
	

h�	
i SETF�SUB�METHODS�DELAYED�ACCESS�STORES
��

h�	�i SHADOW�ALREADY�PRESENT�WORKS 	��

h�	�i SHARP�COMMA�CONFUSION�REMOVE �	�� ���� ���� �
�

h�	�i SHARPSIGN�PLUS�MINUS�PACKAGE�KEYWORD ����
�

h�	�i SPECIAL�TYPE�SHADOWING�CLARIFY 			

h�	�i STANDARD�INPUT�INITIAL�BINDING�DEFINED�CONTRACTS ���

h�		i STEP�ENVIRONMENT�CURRENT ���� ��

h�	�i STREAM�ACCESS�ADD�TYPES�ACCESSORS ��� �
� ����	�� ��
���� ��	�	�� ����

���� ���� ��
� ��
� ���

h�	�i STREAM�CAPABILITIES�INTERACTIVE�STREAM�P ��

h�	�i STRING�COERCION�MAKE�CONSISTENT ��	�	�� ����	�� ���� ���� ��

h��
i SUBSEQ�OUT�OF�BOUNDS�IS�AN�ERROR ���

h���i SUBTYPEP�TOO�VAGUE�CLARIFY�MORE �

h���i SYMBOL�MACROLET�DECLARE�ALLOW
��� 	
�� ��
� ���

h���i SYMBOL�MACROLET�SEMANTICS�SPECIAL�FORM
	
�
		�
	��
���
���
���

	��� ��
� ���

h���i SYNTACTIC�ENVIRONMENT�ACCESS�SMALL 	�

h���i TAILP�NIL�T �	

h��	i TEST�NOT�IF�NOT�FLUSH�ALL ��

h���i THE�AMBIGUITY�FOR�DECLARATION 	�

h���i TIME�ZONE�NON�INTEGER�ALLOW
��

REFERENCES ��	�

h���i TYPE�OF�UNDERCONSTRAINED�ADD�CONSTRAINTS ��

h��
i UNDEFINED�VARIABLES�AND�FUNCTIONS�COMPROMISE

h���i UNREAD�CHAR�AFTER�PEEK�CHAR�DONT�ALLOW �
�

h���i VARIABLE�LIST�ASYMMETRY�SYMMETRIZE
���
�
�
��

h���i WITH�COMPILATION�UNIT�NEW�MACRO ���

h���i WITH�OPEN�FILE�DOES�NOT�EXIST�STREAM�IS�NIL ��	

h���i WITH�OUTPUT�TO�STRING�APPEND�STYLE�VECTOR�PUSH�EXTEND ���

h��	i ZLOS�CONDITIONS�INTEGRATE ���� ���� ���� ���� �
�

Index

��
�

Index of Constants

��
�

Index of Functions

��
�

Index of Generic Functions

Index only generic functions� not primary methods
which are redundant!
there is a generic function for every group of primary methods��

��
�

Index of Loop Clauses

��
�

Index of Macros

��
	

Index of Special Forms

��

Index of Variables

Don�t have a separate index for types or classes�

��
�

Colophon

Camera�ready copy for this book was created by the author
using TEX� LaTEX�
and TEX macros written by the author�� proofed on an Apple LaserWriter II�

and printed on a Linotron ��� at Advanced Computer Graphics� The text

of the �rst edition was converted from Scribe format to TEX format by a

throwaway program written in Common Lisp� The diagrams in chapter ��

were generated automatically as PostScript code
by a program written in
Common Lisp� and integrated into the text by Textures� an implementation

of TEX by Blue Sky Research for the Apple Macintosh computer�

The body type is ���point Times Roman� Chapter titles are in ITC Eras

Demi� running heads and chapter subtitles are in ITC Eras Book� The
monospace typeface used for program code in both displays and running text

is ����point Letter Gothic Bold� somewhat modi�ed by the author through

TEX macros for improved legibility� The accent grave
 �� accent acute
 ��

circum
ex
 �� and tilde
 � characters are in ���point Letter Gothic Bold

and adjusted vertically to match the height of the ����point characters� The
hyphen
�� was replaced by an en dash
�� The equals sign
'� was replaced

by a construction of two em dashes
�� one raised and one lowered� the better

to match the other relational characters� The sharp sign
�� is overstruck with

two hyphens� one raised and one lowered� to eliminate the vertical gap
�����
Special mathematical characters such as square�root signs are in Computer

Modern Math� The typefaces used in this book were digitized by Adobe Sys�

tems Incorporated� except for Computer Modern Math� which was designed

by Donald E� Knuth�

��
�

