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What is a Spatial Pattern ?

•What is not a pattern?

• Random

• Without definite direction, trend, rule, method

• Accidental - outside regular course of things

• Casual - relatively unimportant

•What is a Pattern?

• A frequent arrangement or regularity

• A rule or law

• A major direction, trend, prediction
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Examples of Spatial Patterns 

Historic Example

1855 Asiatic Cholera in London : 

A water pump identified as the source
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What is Spatial Data Mining?

Search for Interesting, useful and unexpected spatial 
patterns 

Non-trivial search
Ex. Asiatic cholera : causes - water, food, air, insects, …; water delivery 
mechanisms - numerous pumps, rivers, wells, pipes, ...

Interesting

Useful in certain application domain

Ex. Shutting off identified Water pump => saved human life

Unexpected

Pattern is not common knowledge

May provide a new understanding of the world

Ex. Connection between Water pump - Cholera
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Questions from Epidemiology  (Shekhar 2003)

What is the overall pattern of colorectal cancer

Is there clustering of high colorectal cancer incidence anywhere in the study area

Where is colorectal cancer risk significantly elevated

Where are zones of rapid change in colorectal cancer incidence

Example of Application Domains
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Modern Examples (Shekhar 2003)

Global Influence of El Nino during
the Northern Hemisphere Winter
(D: Dry, W: Warm, R: Rainfall)

Average Monthly Temperature
(Courtesy: NASA, Prof. V. Kumar)

Unusual warming of Pacific ocean (El Nino) affects weather
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What is �OT Spatial Data Mining?

Simple Querying of Spatial Data 
Find neighbors of Florianopolis given names and boundaries of all cities

Find shortest path from SC to SP 

Uninteresting or obvious patterns in spatial data 
Heavy rainfall in Florianopolis downtown is correlated with heavy rainfall 
in downtown São José, given that both cities are less than 20 Kilometers 
apart 

Common knowledge: Nearby places have similar rainfall

Mining of non-spatial data

Diaper and beer sales are correlated in evenings
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Motivation for Spatial Data Mining

Answer Critical questions:
Ex. How is the health of planet Earth? 

Ex. Characterize or predict effects of human activity on the environment

Ex. Predict effect of El Nino on weather and economy

....

Spatial data is growing too fast to analyze manually

Satellite imagery, GPS tracks, sensors on highways, cell phones …
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Families of Spatial Patterns

Common families of spatial patterns

Co-location

Outliers

Classification / Location Prediction

Spatial Association Rules

Clustering

..

Other families of spatial patterns may be defined

SDM is a growing field, which should accommodate new pattern families

General Overview of Spatial Data Mining

Literature

Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008) 11

Transaction x Geometry DM

Quantitative Spatial DM (Geometry-based)
Techniques: Co-location, clustering
Algorithms (SHEKHAR 2001, 2002) (HUANG 2004) (YOO 2005) (ZHANG2004)

Distance spatial relationships

Most use point spatial representation

Not implemented in toolkits  

Single-granularity

Qualitative Spatial DM  (Transaction-based)
Techniques: Spatial Association Rules, Classification, Clustering, Outlier
detection
Algorithms (APPICE 2003) (SHEKHAR, 2001a) (HAN, 2001) (BOGORNY 2006, 2008)

DMQL (LU, 1993) (KOPERSKI, 1995) (BIGOLIN 2003) (MALERBA, 2002) (BOGORNY 2008)

New operations to compute spatial relationships (ESTER 1997, 2000) 

Semantic-based data mining (Bogorny 2006, 2007, 2008)
Any spatial relationship

Any spatial representation

Some tools

Multiple-Granularity

Co-Location
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Answers:  

find patterns from the following sample dataset

Co-location (Shekhar 2003)
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Co-Location Patterns (Huang 2004, Yoo 2005)

Input: 

Spatial dataset

Distance threshold

Minimum participation index

Method

Find neighbors

Find co-location candidates

Find frequent co-location sets

Extract co-location rules 
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Co-location Mining

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

A, B, C: Spatial Feature Types

Edges: neighbor

B1 Spatial Dataset

A1, A2... Spatial Feature Instances
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Co-location Mining

Set of Spatial Feature Types {A, B, C}

Candidates of size k=1

A    B    C

1 1    1
2 2    2
3 3    3
4 4   

5 

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   3    4  1
3 4               5  3

Co-location

instances

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset
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Co-location Mining

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   1    4  1
3 4               5  3

Co-location

instances

Candidates of size k=1

A    B    C

1 1    1
2 2    2
3 3    3
4 4   

5 
3/4   2/5    

2/4  2/3  

3/5  2/3    Participation
ratio

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset
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Co-location Mining

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   3    4  1
3 4               5  3

Co-location

instances

2/5    

2/4   

3/5     
Participation Index (Lowest index)
(If participIndex>minPartIndex) 

���� frequent set

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset
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Co-location Mining

Candidates of size k=3

A    B     C     

3    4      1

Co-location

instances

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset

1/4   1/5  1/3 Participation index
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Co-Location Mining (Zhang 2004)

Divide the space in cells (with size at least 2d) 

Buffer on each object,

object belongs to all cells that the buffer intersects (most 4 cells)

All objects in a cell should fit in memory (are stored in a bucket)

For each cell, objects are co-located if they are close

B1

C2

A1
C1

A4

A2 A3

B2

B4
B3

C3

B5

B1

Spatial Dataset
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Cropland with Roads
Roads with Bridges

Cropland
Roads
Bridges

Co-location Example (Shekhar 2003)

Outliers?

Outliers
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Outliers

What is an outlier?
Observations inconsistent with the rest of the dataset

What is a spatial outlier?
Observations inconsistent with their neighborhoods

A local instability or discontinuity
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Outliers (Shekhar 2001, 2003)

Global outliers are observations of data inconsistent with the rest of the data 
in the database  

has a number of practical applications in areas such as credit card fraud, athlete 
performance analysis, voting irregularity, and severe weather prediction

A spatial outlier is a spatially referenced object whose non-spatial attribute 
values are significantly different from those of other spatially referenced 
objects in its spatial neighborhood. 

For example, a new house in an old neighborhood is a spatial outlier based on the 
non-spatial attribute house age

Tests to detect spatial outliers separate the spatial attributes from the non-
spatial attributes. 

Spatial attributes are used to characterize location, neighborhood, and distance. 

Non-spatial attributes are used to compare a spatial referenced object to its 
neighbors.
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Outliers – Examples (Shekhar 2003)

Map Production

Error identification

E.g., spatial object violation

River
Road
Bridge

Road leading into water
Or missing bridge

Bridge location
error

Spatial Association Rules
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Tid Itemset

1 A, C, D,T, W 

2 C, D, W 

3 A, D, T, W 

4 A, C, D, W 

5 A, C, D, T, W 

6 C, D, T 

Association rule is an implication of form

X � Y (support) (confidence)

Support : #(X∪Y) / #, where # is the number of rows in the dataset
Confidence : suport(X∪Y) / suport(X)  

Set k Frequent itemsets with minsup 50%

k=3
{A,C,D}, {A,C,W}, {A,D,T}, {A,D,W}, 
{A,T,W}, {C,D,T}, {C,D,W}, {D,T,W}

k=4 {A,C,D,W}, {A,D,T,W}

Extract association rules2

Generate frequent itemsets
1

k=1 {A}, {C}, {D}, {T}, {W}

{C,T}, {C,W}, {D,T}, {D,W}, {T,W} k=2
{A,C}, {A,D}, {A,T}, {A,W}, {C,D}, 

Confidence A����C = 3/4  (75%)

Support {AC} = 3/6  (50%)

Association Rules (Agrawal 1993)
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Association Rules

Main Problem: Generate hundreds or thousands of rules

Frequent Itemsets: generate all possible frequent itemsets

Apriori-like (generate candidates) (Agrawal, 1994)

Pattern-growth (without candidate generation) (Han, 2000)

Closed frequent itemsets: generate non-redundant frequent itemsets

Apriori-like (generate candidates) (Pasquier, 1999) (Zaki, 2000)

Pattern-growth (without candidate generation) (Han, 2001) (Zaki 2002)……..
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Redundant Rules

Tid Itemset

1 A, C, D,T, W 

2 C, D, W 

3 A, D, T, W 

4 A, C, D, W 

5 A, C, D, T, W 

6 C, D, T 

Frequent itemsets withminsup 50%

A���� DW (suport = 4/6)

(confidence = 4/4)
A����W    (suport= 4/6)

(confidence = 4/4)

25 frequent itemsets / 9 closed frequent itemsets

Frequent Itemsets

A Redundant rule has same support and confidence of another rule generated
from the same set of transactions
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Spatial Association Rules

Spatial association rule is an implication of the form

X � Y (support)(confidence)

at least one element in X or Y is a spatial predicate 

is_a(island) � within(river)

closeTo(slum) � criminalityRate=High
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Street

Gid Name Shape

1 Ijui Multiline [(x1,y1),(x2,y2),..]

2 Lavras Multiline [(x1,y1),(x2,y2),..]

WaterResource

Gid Name Shape

1 Jacui Multiline [(x1,y1),(x2,y2),..]

2 Guaiba Multiline [(x1,y1),(x2,y2),..]

3 Uruguai Multiline [(x1,y1),(x2,y2),..]

GasStation

Gid Name     VolDiesel VolGas Shape 

1       BR 20000      85000   Point[(x1,y1)]

2       IPF 30000      95000 Point[(x1,y1)]

3       Esso 25000      120000 Point[(x1,y1)]

Different Spatial Objects are Stored in Different Relations

Most Spatial Association Rule Mining algorithms
have a single table/file INPUT format
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Different Relations (tables) need to be Spatially Joined

Preprocessed Geographic Data for Transaction-Based Data Mining

Target feature

Relevant features
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Spatial Association Rules

Are computed in 3 main steps:

Data preprocessing: compute spatial relationships (spatial joins). 
Most expensive step

Compute frequent itemsets

Generate association rules
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contains(Hospital), contains(TreatedWaterNet),  contains(Factory)6

contains(Port), contains(Hospital), contains(TreatedWaterNet),  contains(Factory), crosses(WaterBody)5

contains(Port),  contains(Hospital), contains(TreatedWaterNet),                                crosses(WaterBody)4

contains(Port),                                 contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)3

contains(Hospital), contains(TreatedWaterNet),                                 crosses(WaterBody)2

contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)1

Spatial PredicatesTuple   

(city)

contains(Hospital), contains(TreatedWaterNet),  contains(Factory)6

contains(Port), contains(Hospital), contains(TreatedWaterNet),  contains(Factory), crosses(WaterBody)5

contains(Port),  contains(Hospital), contains(TreatedWaterNet),                                crosses(WaterBody)4

contains(Port),                                 contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)3

contains(Hospital), contains(TreatedWaterNet),                                 crosses(WaterBody)2

contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)1

Spatial PredicatesTuple   

(city)

beer, bread, chocolate3

cereal, meet, milk4

milk, beer, nuts, orange, cereal5

milk, bread2

milk, bread, butter, cereal1

ItemsTransaction

� rows are transactions

Transactional Dataset

Spatial Dataset

� attributes are items, supposed to be 

independent 

� attributes are predicates

� spatial predicates are

spatial relationships between 

the target feature type and 

relevant feature types

Transaction Dataset X Preprocessed Spatial Dataset

� rows are instances of the 

target feature type
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Spatial Predicate Computation (Preprocessing)

Given: D,  //geographic database 

e.g. [river, bridge, city, district, waterBody, island, road, cellularAntenna, 

gasStation, hospital, school, treatedWater�etwork, port, industry]

T = {t1, t2,…,tn}, // target feature type 
e.g. [city]  

S = { O1, Oi,…, Om}, // set of relevant feature types 
e.g. [river, road, waterBody, hospital, school, gasStation, industry, port]

R //spatial relationships  

e.g. [topological]

Find: a spatial dataset Ψ for mining SAR;

T = {t1, t2,…,tn}

S = { O1, Oi,…, Om}, where Oi = { o1, oj,…, ok}, 

Spatial Join - bottleneck
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Some Spatial Association Rule Mining Algorithms

Koperski 1995

Spada (Appice 2003)

Clementini (2003)

Apriori-KC (Bogorny 2006)

Max-FGP (Bogorny 2006ª)

...

Preprocess geographic data and apply classical DM algorithms
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(Koperski 1995)

In a first step spatial approximations are calculated (distance),

In a second step, more precise spatial relationships are computed to the 
result of the first step (touches, contains, crosses, etc)

Minimum support is used to extract only frequent spatial relationships. 

Multiple-granularity approach
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Spada (Appice 2003)

Inductive Logic Programming (ILP) approach
compute all spatial relationships in preprocessing steps

transform the result into a  deductive relational database (set of predicates)

Compute frequent itemsets (as in Apriori)

Generate association rules

Filter association rules with declarative bias a posteriori
Pattern_constraint (AtomList, Min_occur),
Example: pattern_constraint (crossesRiver, 5)

A large amount of background knowledge is required from the data
mining user, which has to define all possible frequent patterns to be 
eliminated.

Semantic-based Spatial Association Rule Mining
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Semantic-based SAR Mining - Motivation

Existing approaches for spatial data mining, in general, do not make 
use of background knowledge 

Use syntactic constraints for frequent set and rule prunning
Only the data is considered, not the schema

Result
Same associations explicitly represented in the schema (database 
designer) are extracted by SAR mining algoritms

Bogorny (2006) and Bogorny (2007, 2008)  introduced the idea of 
using background knowledge 

in data preprocessing, to reduce spatial joins 

in spatial association rule mining, to eliminate well known patterns
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Spatial Relationships

Mandatory (Spatial constraints) Dependences:
<island> <inside> <1><1> <Water Body> 

Prohibited: 
<River> <contains> <0><0> <Road>

Possible: Normally undefined

Road crosses River

For data mining and knowledge discovery, 

only POSSIBLE/PROHIBITED RELATIONSHIPS are interesting!!!!

Mandatory relationships are well known.

Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008) 42

Well Known Geographic Dependences

Non-obvious spatial relationships Well known dependences 

Is_a(gasStation) � intersects(street)  (100%)
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Well Known relationships X Association Rules

Bridge &Viaducts

Roads

Vegetation

Bus Stop

Street  

intersects(busStop) � intersects(Street)  (100%)

Contains(viaduct) � contains(road) (100%)
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Country

name

geometry

Water 

Resource

name

extension

geometry

State

name

geometry
1..n1 1..n1

Factory

name

mainActivity

impactDegree

County

name

population

geometry1..n1 1..n1 1 0..n1 0..n

Island

geometry

1 0..n1 0..n

0..n

1

0..n

1

{State, Country}

{Factory, County}

{Island, WaterBody}

5.

Well Known Associations – Conceptual Schemas
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1

SandBank 
(from Relief) 

 

FloodingTerrain 
(from Relief) 

Estirancio 

Reef 
(from Relief) 

WetLandVegetation 
(from Vegetation) 

ShoreLine 

Coastal 
Continental 

Drain 

WaterCoarse 

DrainageLine DrainageSurface 

Drainage 

Slope 

Ditch 
(from Obra) 

Lake 

Name : String 
CommonName : String 
MeanDepht : Double 

Idt : String 

Idt: String 

Traicing: String 

Rapid 

Type: String 
Idt : String 
Cause : String
Type : String 

 WaterFall 

Idt : String 
hight : Double 

Extension: float 

Idt : String 
Type : String 
WaterQuality : String 

Type : String 
Purpose : String 
Tracing : String 

Tracing : String 

Type : String 
Purpose: String 

Navigable : Boolean 

Canal 
(from Obra) 

0..2 

1 

0..1 

1

1
1

1

0..* 
0..* 

0..* 

0..* 

0..* 

0..* 

0..* 

0..* 

11

0..* 

1

1

10..1 

1

0..* 

0..* 

0..* 

1

0..* 

0..1 

0..1 

0..* 

1..* 

0..* 

0..* 

1

Name : String 

1..* 

Ford 
(from Transportation) 

Elevation 
(from Obra) 

1..*
0..* 

0..* 

 

1..* 

Ocean 

CoastalLine 

DefinitionDate : String 
Organization : String 

HidrographicCoastal 

Type : String 

Well Known Associations – Conceptual Schemas

Fonte: 1ª Divisão de Levantamento do Exército Brasileiro
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Well Known Associations – Conceptual Schemas
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Well Known Associations – Geo-Ontologies
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Well known dependences X Spatial Association Rules (SAR)

Well knonw dependences affect the 3 main steps in the process of
mining SAR:

Spatial predicate computation: compute unnecessary relationshiops

Frequent set generation: generate frequent itemsets with well known
patterns

Association rule extraction: produce a high number of rules with well
known dependences



How do Well Known Dependences appear in 

SAR Mining?
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Problem I - Geographic Dependences between the Target Feature and Relevant 

Features

Minconf=70%

Dependence = City and Street

100% de support

contains(Hospital)�contains(Street)
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Problem II - Dependences among Relevant Feature Types

Minsup=50%

25 frequent sets(6 contain the dependence)

9 closed frequent sets (3 have the dependence)

Dependence = {Port, WaterBody}

contains(PortPort)����crosses(WaterBodyWaterBody)
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Problem III - Redundant Frequent Itemsets

9 closed frequent itemsets

- For MinSup 50% we have:

- 25 frequent sets

- 9 closed frequent sets (3 contain the dependence) 

- 16 redundant frequent sets

Dependence {A,W}

Tid (city) Predicate  Set

1 A, C, D,T, W 

2 C, D, W 

3 A, D, T, W 

4 A, C, D, W 

5 A, C, D, T, W 

6 C, D, T 

Dataset

c) predicates

A = contains(Port)

C = contains(Hospital)

W = crosses(WaterBody)

D = contains(Street) 

T = contains(Factory)

(MinSup=50%)

Pruning Methods using Background Knowledge
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Frequent Set Pruning (Apriori-KC) (Bogorny, 2006a)

Given: φφφφ,        // set of knowledge constraints

ΨΨΨΨ,        // dataset generated with spatial_predicate_extraction

minsup, // minimum support

L
1
= {large 1-predicate sets};

For ( k = 2; L
k-1

!= ∅; k++ ) do begin

C
k
= apriori_gen(L

k-1
); // Generates  new  candidates                

If (k=2) 

// remove pairs with dependences 
(step 1) Delete from C2 all pairs with a dependence in φφφφ ;

Forall rows w ∈ Ψ do begin

C
w
= subset(C

k
, w); // Candidates contained in w

Forall candidates c ∈ C
w
do

c.count++;

End;

L
k
= {c ∈ C

k
| c.count ≥ minsup};

End;

Answer = ∪
k
L
k

{Island,water}
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Given: L;L; // frequent sets without dependences (Apriori-KC)

Ψ; // dataset generated with spatial_predicate_extraction

Find: Maximal M

// find maximal generalized predicate sets

M = L;M = L;

For ( k = 2; Mk != ∅; k++ ) do  begin

For ( j = k+1;  Mj!=0;  j++ ) do  begin

If  (tidSet (Mk) = tidSet (Mj))

If (Mk ⊂ Mj)   // Mj is more general than Mk

Delete Mk from M; 

End;

End;

Answer = M;

Max-FGP (Bogorny 2006c)
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Summary

Well known dependences exist in several non-spatial 
application domains

Biology/Bioinformatics

Pregnant � Female (confidence=100%)

Breast_cancer � Female (confidence 100%)

...

Almost no data mining approaches consider background 
knowledge or domain knowledge

Spatial Classification
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Classification

Given a set of instances, the role of classification is to 
discover the classes of the instances

Spatial objects may be characterized (classified) by 
different types of information (Koperski 1998): 

non-spatial attributes (e.g. population);

spatially related attributes with non-spatial values (e.g. total 
population living within 100 meters from cellular antennas); 
spatial predicates (e.g. closeTo_beach);
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Ester (1997, 2001)

Proposed a graph-based approach for spatial neighbourhood
computation

Idea is to integrate data mining into database systems, with new
database primitives for the computation of spatial relationships

and explicitly represent spatial relationships that are normally implicit
in spatial databases
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Ester (1997, 2001)

A neighborhood graph for a relation “neighbor” in a geographic database is a 
graph G(N,E), where

N are nodes
E are edges

Each node N is an object in the database connected via some edge to another 
node if the neighbor holds.

Two objects are neighbors if any spatial relationship (topological, distance or 
order) holds
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Ester (1997, 2001)

Guaiba River

Poto Alegre_City Canoas_City

crosses touches
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Ester (1997, 2001)

Operations

Get_nGraph(db, rel): computes all relationships

Get_neighborhood(graph, o, pred): retrieves all objects o directly
connected via some edge in the graph satisfying a condition in pred

Create_nPaths (objects, graph, pred, i): creates a set of all paths 
from one object following the edges of the neighborhood graph with
length<i

the influence of neighboring objects and their attributes decreases with 

increasing distance

the length of the relevant neighborhood paths are limited by an input 

parameter max-length. 
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Ester (1997, 2001)

closeTo_water

closeTo_Park

Yes

salary=MEDIUMsalary=HIGH

Yes No

No

closeTo_ShoppingCenter

salary=LOWsalary=HIGH

Yes No

Class is a non-spatial attribute = salary

Class values: high, medium, low

Clustering
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Clustering (cluster analysis)

Clustering is a process of partitioning a set of data into a set of 
groups called clusters

A cluster is a set of data (objects) with 
similar characteristics 

that can be collectively treated as one group

Clustering is an unsupervised method
no predefined classes
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Clustering Analysis (Kumar 2005)

How many clusters?

Four ClustersTwo Clusters

Six Clusters

Different ways of clustering the same set of points
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Main Clustering Approaches

Partitioning
A division of data objects into non-overlapping subsets (clusters) such that each  
object is in exactly one subset

Hierarchical
A set of nested clusters organized as a hierarchical tree

Density-based
Find clusters based on density of regions

Grid-based
Find clusters based on the number of points in each cell
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K-means

A drawback of the k-means is that the number of 
clusters k is an input parameter. 

Partitional clustering approach 

Each cluster is associated with a centroid

Each point is assigned to the cluster with the closest 
centroid
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K-means

1 2

3 4
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K-medoid methods

Instead of means, use representative objects called medoids

PAM (Partitioning Around Medoids, 1987) - starts from an initial set of medoids
and iteratively replaces one of the medoids by one of the non-medoids if it 
improves the total distance of the resulting clustering

CLARA (Clustering Large Applications, 1990) – It draws multiple samples of the 
data set, applies PAM on each sample, and gives the best clustering as the output

CLARANS (NG 2002) - is an improved k-medoid method 
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Hierarchical Clustering

Two main types: Agglomerative and Divisive

Agglomerative

Start with all objects as individual clusters

At each step, merge the two most similar clusters

Until rests one cluster (or k clusters)

1

2

3

4

5

6

1
2

3

4

5

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

objects
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Hierarchical Clustering

Divisive

Start with one cluster (with all objects)

At each step, split a cluster in two

Until each cluster contains only one object (or k clusters)

Similarity can be euclidean distance or any other measure
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DBSCA� (Ester 1996)

• DBSCAN is a density-based algorithm

– Density = number of points within a specified radius (Eps)

– A point is a core point if it has more than a specified number of 

points (MinPts) within Eps

– A border point has less than MinPts within Eps, but it is in the 

neighborhood of a core point

– A noise point is any point that is not a core point or a border 
point. 
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Core and border points

p
Eps

q
Eps

DBSCA� (Ester 1996)

r
Eps

minPts= 5

Eps= 1

Core point

Border point

noise
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DBSCA� example
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Identifying core, border and noise points

Core point

Border point

noise
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Computing distance

Core point

Border point

noise
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Final Clusters
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OPTICS - Ordering Points to Identify the Clustering Structure (Ankerst
1999)

Produces a special order of the database with respect to its density-

based clustering structure  

EPS variation for the same minPoints
Eps
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GDBSCA� (Generalized DBSCA�) (Sander 1998)

Generalized version of DBSCAN

Clusters are formed based on spatial or non-spatial attributes

Any spatial relationshiop is used to compute neighbors, and spatial
objects may have any representation

NPred : “neighbor”, 

wCard: cardinality>=MinCard, (generalizes the condition NEps(o)>= MinPts)

MinWeight(N): aggr (non-spatial values) >= threshold OR MinPts

ExampleI: NPred: distance <= Eps, wCard: sum of areas, MinWeight : >= MinPts

ExampleII: NPred: “intersects” or “touches”, MinWeight(N): sum of areas >= 
MinArea,
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GDBSCA� (Generalized DBSCA�) (Sander 1998)

Example I: Two cities can be close if they have similar non-spatial 
attributes 

Using non-spatial attributes as a weight for objects one can “induce”
different densities, even if the objects are equally distributed in the 
space of the spatial attributes.
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Tools

GeoMiner (Han 1997)

INGENS (Malerba 2001)

Ares (Appice 2005)

Weka-GDPM (Bogorny 2006d)
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Weka GUI Explorer (Frank 2005)
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Weka-GDPM
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Weka-GDPM

Relevant Object Types

Granularity Level

Spatial Relationships

Reference Object Type

Distance Threshold
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