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What is a Spatial Pattern ?

*What is not a pattern?
* Random
* Without definite direction, trend, rule, method
* Accidental - outside regular course of things
* Casual - relatively unimportant

*What is a Pattern?
* A frequent arrangement or regularity
* Arule or law
A major direction, trend, prediction
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Examples of Spatial Patterns

B Historic Example
# 1855 Asiatic Cholera in London :
A water pump identified as the source
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What is Spatial Data Mining?

E Search for Interesting, useful and unexpected spatial
patterns

E Non-trivial search

+ Ex. Asiatic cholera : causes - water, food, air, insects, ...; water delivery
mechanisms - numerous pumps, rivers, wells, pipes, ...

= Interesting

+ Useful in certain application domain

4 Ex. Shutting off identified Water pump => saved human life
E Unexpected

+ Pattern is not common knowledge

4 May provide a new understanding of the world

4 Ex. Connection between Water pump - Cholera
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Example of Application Domains

E  Questions from Epidemiology (Shekhar 2003)

What is the overall pattern of colorectal cancer

Is there clustering of high colorectal cancer incidence anywhere in the study area
Where is colorectal cancer risk significantly elevated

Where are zones of rapid change in colorectal cancer incidence

yr

R IR

Outiier inmale colarectal cancer flow SMR)
Significant male colorectal cancer Local Moran chisters

20 o 20 a0 60 Miles
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Modern Examples (shekhar 2003)

Unusual warming of Pacific ocean (EI Nino) affects weather

Average Monthly Temperature Global Influence of El Nino during
(Courtesy: NASA, Prof. V. Kumar) the Northern Hemisphere Winter
(D: Dry, W: Warm, R: Rainfall)
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What is NOT Spatial Data Mining?

Motivation for Spatial Data Mining

£ Simple Querying of Spatial Data
4 Find neighbors of Florianopolis given names and boundaries of all cities
+ Find shortest path from SC to SP

£ Uninteresting or obvious patterns in spatial data
4 Heavy rainfall in Florianopolis downtown is correlated with heavy rainfall
in downtown S&o José, given that both cities are less than 20 Kilometers
apart
+ Common knowledge: Nearby places have similar rainfall

B Mining of non-spatial data
+ Diaper and beer sales are correlated in evenings

£ Answer Critical questions:

4 Ex. How is the health of planet Earth?

+ Ex. Characterize or predict effects of human activity on the environment
4 Ex. Predict effect of El Nino on weather and economy
&

= Spatial data is growing too fast to analyze manually
4 Satellite imagery, GPS tracks, sensors on highways, cell phones ...
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Families of Spatial Patterns

B Common families of spatial patterns
+ Co-location

Outliers

Classification / Location Prediction

Spatial Association Rules

Clustering

¢ & & @

B Other families of spatial patterns may be defined
4 SDM is a growing field, which should accommodate new pattern families

General Overview of Spatial Data Mining
Literature
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Transaction x Geometry DM

B Quantitative Spatial DM (Geometry-based)
# Techniques. Co-location, clustering
4 Algorithms (SHEKHAR 2001, 2002) (HUANG 2004) (YOO 2005) (ZHANG2004)
® Distance spatial relationships
© Most use point spatial representation
® Not implemented in toolkits
® Single-granularity

B Qualitative Spatial DM (Transaction-based)
# Techniques. Spatial Association Rules, Classification, Clustering, Outlier
detection
4 Algorithms (APPICE 2003) (SHEKHAR, 2001a) (HAN, 2001) (BOGORNY 2006, 2008)
4 DMQL (LU, 1993) (KOPERSKI, 1995) (BIGOLIN 2003) (MALERBA, 2002) (BOGORNY 2008)
+ New operations to compute spatial relationships (ESTER 1997, 2000)
# Semantic-based data mining (Bogorny 2006, 2007, 2008)
® Any spatial relationship
® Any spatial representation
© Some tools
® Multiple-Granularity

Co-Location

Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008)




Co-location (Shekhar 2003)

Answers:

Yoo

find patterns from the following sample dataset
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Co-location Mining
G
G I By
& 5,
By Spatial Dataset
A, B, C: Spatial Feature Types
Al, A2... Spatial Feature Instances
Edges: neighbor
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Co-location Mining
G
G I By
NS 8,
B, Spatial Dataset

Candidates of size k=2

Co-location

1) 1)1 221 | .
2/(\¢jl3 1|41 instances
3 \4)2/4 2/3|5 3

3/5 2/3—Pa

ratio

jpation
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Co-Location Patterns (Huang 2004, Yoo 2005)

E Input:
4 Spatial dataset
+ Distance threshold
+ Minimum participation index

£ Method

Find neighbors

Find co-location candidates
Find frequent co-location sets

&
S
S
+ Extract co-location rules
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Co-location Minin

Spatial Dataset

Candidates of size k=2

- Co-location

1 27121 R
— instances
3 3/|417
53
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Co-location Mining

ls,

& 5,
B, Spatial Dataset

Candidates of size k=2
[a_8][a c][B c L. co-location
1 1)1 21|21 .
2 4|3 3/|4 1+ instances

Participation Index (Lowest index) 3 4 2/4|5 3

(If participIndex>minPartIndex) |—» 2/5 3/5

- frequent set
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Co-location Mining
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Co-location Example (Shekhar 2003)

.

Cropland with Roads
Roads with Bridges

Cropland
— Roads
. Bridges
A | / # )
N Y
Outliers?
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Qutliers
B What is an outlier?
+ Observations inconsistent with the rest of the dataset
B What is a spatial outlier?
# Observations inconsistent with their neighborhoods
# A local instability or discontinuity
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Co-Location Mining (Zhang 2004)

Divide the space in cells (with size at least 2d)
Buffer on each object,

+ object belongs to all cells that the buffer intersects (most 4 cells)
All objects in a cell should fit in memory (are stored in a bucket)
For each cell, objects are co-located if they are close

Spatial Dataset

2 G
.
[N Al A oB;
.
. * e 4
Ay B, G B;
B, *B,
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.
Outliers

Qutliers (Shekhar 2001, 2003)

®  Global outliers are observations of data inconsistent with the rest of the data
in the database

4 has a number of practical applications in areas such as credit card fraud, athlete
performance analysis, voting irregularity, and severe weather prediction

E A spatial outlier is a spatially referenced object whose non-spatial attribute
values are significantly different from those of other spatially referenced
objects in its spatial neighborhood.

4 For example, a new house in an old neighborhood is a spatial outlier based on the
non-spatial attribute house age

B Tests to detect spatial outliers separate the spatial attributes from the non-
spatial attributes.
4 Spatial attributes are used to characterize location, neighborhood, and distance.

+ Non-spatial attributes are used to compare a spatial referenced object to its
neighbors.
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Outliers — Examples (Shekhar 2003)

B Map Production
# Error identification
+ E.g., spatial object violation

River
— Road
@ Bridge
Road leading into water
Or missing bridge
Bridge location
error
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Association Rules (Agrawal 1993)

B Association rule is an implication of form

X 2 Y (support) (confidence)

- Support : #(XOY) / #, where # is the number of rows in the dataset
/" Confidence : suport(XUY) / suport(X)
[

Generate frequent itemsets

Tid | Itemset Set k Frequent itemsets with minsup 50%
] k=1 A} {C), (D}, (T}, {WH
{ACH {AD}, {AT}, {A W}, {CD},
k=2 [{CT}. {CW), (DT}, {D.W}. {T.W}
k=3 {A,C.D}, {A,C,W}, {AD,T}, {AD,W},
- {A,T,W}, {C,D,T}, {C,D,W}, {D,T,W}

k=4 | {ACD.W}, {(AD.T.W}

Support {AC} = 3/6 (50%)
Confidence A>C = 3/4 (75%)

Extract association rules
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Spatial Association Rules

Association Rules

E Main Problem: Generate hundreds or thousands of rules

& Frequent Itemsets: generate all possible frequent itemsets
+ Apriori-like (generate candidates) (Agrawal, 1994)
+ Pattern-growth (without candidate generation) (Han, 2000)

£ Closed frequent itemsets: generate non-redundant frequent itemsets
+ Apriori-like (generate candidates) (Pasquier, 1999) (Zaki, 2000)
+ Pattern-growth (without candidate generation) (Han, 2001) (Zaki 2002)........

Redundant Rules

A Redundant rule has same support and confidence of another rule generated
from the same set of transactions

TidSet | Frequent itemsets with minsup 50%
123456 | (D}

12456 | {C} {C,D}

12345 | (W} {D,W}

1245 {C.W} {C.D.W}

Frequent Itemsets

1335 (A 7
135 | {T). D.T}
145 (AC}. (ACW}, (ACD}. Wy
135 (AT}, (LW}, (ADT}. ATW}. DIW} (ADT.W
156 (C.T}.{CD,T}
N
A-> DW (suport = 4/6)

AW  (suport= 4/6)

(confidence = 4/4) (confidence = 4/4)

25 frequent itemsets / 9 closed frequent itemsets
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Spatial Association Rules
B Spatial association rule is an implication of the form
X > Y (support)(confidence)

B at least one element in Xor Yis a spatial predicate

+ is_a(island) = within(river)

« closeTo(slum) > criminalityRate=High

30
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Different Spatial Objects are Stored in Different Relations

Street

S e
Gid Name  Shape J [ \%;
1 ljui Multiine [y ) (22— Sga 25 ﬁ‘;’ =
2 Lavras  Multiline [(x1,y1).(x2,y2)...]

WaterResource

Gid Name  Shape

1 Jacui Multiline [(x1,y1),(x2,y2),..]

2 Guaiba  Multiline [(x1,y1),(x2,y2),..]

3 Uruguai _Multiline [(x1,y1).(x2,y2),..]

GasStation

Gid Name VolDiesel VolGas Shape

1 BR 20000 85000  Point[(x1,y1)]
2 IPF 30000 95000  Point[(x1,y1)]
3 Esso 25000 120000  Point[(x1,y1)]

Most Spatial Association Rule Mining algorithms
have a single table/file INPUT format
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Different Relations (tables) need to be Spatially Joined

Preprocessed Geographic Data for Transaction-Based Data Minin,

. ——Target feature

Tcuiple patial Predicates

1 |containg(Port) 1 1)| contaigs(Street),| containd(Factory)| crosseg(Water Body)

2 Hospital i t), crosse§(Water Body)

3 |containg(Port) i )JcontaingFactory) Jcrosses| Water Body)

4 |containgPort ins{H I)| contaigs(Street), crosse Water Body)

5 |containg(Port (H 1) contaifs(Street),| containg(Factory)| crosseg(Water Body)

6 contains{Hospital)} contaigs(Street) containf(Factory)
Relevant features
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Spatial Association Rules

B Are computed in 3 main steps:

+ Data preprocessing: compute spatial relationships (spatial joins).
Most expensive step

4 Compute frequent itemsets

4 Generate association rules

Transaction Dataset X Preprocessed Spatial Dataset

Transactional Dataset

Transaction Ttems
1 ik,

, buiter

» rows are transactions

2 mik, bread
3 beer, breaf, chocoiate

4 cereal, meet, milk » attributes are items, supposed to be
5 milk, beer, nuts, orenge, cereal independent

Spatial Dataset

Spatial Predicates

Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008) 33

2 contains(Hospital). contains( TreatedWaterNet), crosses(WaterBody) |
3, | contains(Pory). contains(Treated WaterNet), contains(Factory), crosses(WaterBodv) |
contains(Treated WaterNet), crosses(| = attril are i

5 contains(Port), contains(Hospital), contains(Treated WaterNet), contains(Factory), crosses(\ »  Spatial predicates are

6 | contains( y spatial ionships between
the target feature type and
relevant feature types
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Spatial Predicate Computation (Preprocessing)

Given: D, //geographic database
e.g. [river, bridge, city, district, waterBody, island, road, cellularAntenna,
gasStation, hospital, school, treatedWaterNetwork, port, industry]
T={t), t,...1,}, // target feature type
e.g. [city]
§=1{0, 0,.., 0,},/l set of relevant feature types
e.g. [river, road, waterBody, hospital, school, gasStation, industry, port]
R //spatial relationships
e.g. [topological]
Find: a spatial dataset ¥ for mining SAR;

T={t) tyent,}

§={0, 0,..,, 0,}, where O;= { 0, 0

Spatial Join - bottleneck
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Some Spatial Association Rule Mining Algorithms

Koperski 1995

Spada (Appice 2003)
Clementini (2003)
Apriori-KC (Bogorny 2006)
Max-FGP (Bogorny 20062)

B Preprocess geographic data and apply classical DM algorithms
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(Koperski 1995)

& In afirst step spatial approximations are calculated (distance),

E In a second step, more precise spatial relationships are computed to the
result of the first step (touches, contains, crosses, etc)

B Minimum support is used to extract only frequent spatial relationships.

® Multiple-granularity approach
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Spada (ppice 2003)

£ Inductive Logic Programming (ILP) approach
4 compute all spatial relationships in preprocessing steps
@ transform the result into a deductive relational database (set of predicates)
+ Compute frequent itemsets (as in Apriori)
# Generate association rules
+ Filter association rules with declarative bias a posteriori
@ Pattern_constraint (AtomList, Min_occur),
® Example: pattern_constraint (crossesRiver, 5)

= A large amount of background knowledge is required from the data
mining user, which has to define all possible frequent patterns to be
eliminated.
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Semantic-based Spatial Association Rule Mining

Semantic-based SAR Mining - Motivation

= Existing approaches for spatial data mining, in general, do not make
use of background knowledge
« Use syntactic constraints for frequent set and rule prunning
4 Only the data is considered, not the schema

Result
+ Same associations explicitly represented in the schema (database
designer) are extracted by SAR mining algoritms

E Bogorny (2006) and Bogorny (2007, 2008) introduced the idea of
using background knowledge
+ in data preprocessing, to reduce spatial joins
+ in spatial association rule mining, to eliminate well known patterns
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Spatial Relationships

®  Mandatory (Spatial constraints) Dependences:
<island> <inside> <1><1> <Water Body>

= Prohibited:

<River> <contains> <0><0> <Road>

B Possible: Normally undefined
Road crosses River

For data mining and knowledge discovery,
only POSSIBLE/PROHIBITED RELATIONSHIPS are interesting!!!!

Mandatory relationships are well known.
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Well Known Geographic Dependences

Non-obvious spatial relationships Well known dependence:

=

‘@ G statn

Industis| Rasidues

@ G Staon i
A Regostory o

| — water Bosy

Is_a(gasStation) - intersects(street) (100%)
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Well Known relationships X Association Rules

intersects(busStop) > intersects(Street) (100%)

Contains(viaduct) > contains(road) (100%)

—

Bridge &Viaducts

Roads
L Vegetation
Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008) 43
Well Known Associai — Conceptual Schemas

AN

Sing
Commonam :Sting
MaanDepht Dot

[ —|

o s
Tie
Wt

Fonte: 17 Divisao d

Well Known Associations — Conceptual Schemas

Water 0..n
Resource o o
BSgeometry
{State, Country}
{Factory, County}
{Island, WaterBody}
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Song
cusly: Sy
i
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Well Known Associations — Conceptual Schemas

$oE ag
|capacidade - Doudl ol

O e
T
NG

on i

<stempora> | Res 2 continéncia

AT i)

Manancia
et
lezpacidadie - Double
Jorotuncidads - Double:
[pasze sving
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Well Known Associations — Geo-Ontologies

Sy Busstop GasStation
InsGeomey [ | g [tnstance* [Road | | touches | Instance* | Road
popiation [ aeger mName | sting InsGeomelry | Sting
e | _sting hasGeometry | Sting hasName | String
contains | Instance* | Road

contains*  Jouches* Touches*
Rond

extension | Integer
InsName | String
‘hasGeometry \s:ing

<owl:Restriction>
L:minCardi

inCardinality>

<owl:onProperty>
<owl:ObjectProperty rdf:about
<lowl:onProperty>
<owl:valuesFrom nifrmur
<lowl:Restriction>
<Irdfs:subClassOf>
<rdf:subClassOf
<lowl:Class>

Thing">
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Well known dependences X Spatial Association Rules (SAR)

B Well knonw dependences affect the 3 main steps in the process of
mining SAR:

+ Spatial predicate computation: compute unnecessary relationshiops

+ Frequent set generation: generate frequent itemsets with well known
patterns

# Association rule extraction: produce a high number of rules with well
known dependences

Outubro/2008 Tutorial on Spatial and Spatio-Temporal Data Mining (SBBD-2008)

48




How do Well Known Dependences appear in

SAR Mining

Problem I - Geographic Dependences between the Target Feature and Relevant

Features

|i Dependence = Gity and Street I |::>‘ contains(Hospital) >contains(Street)

—
é:i‘;; Spatial Predicates
1 |contains(Port), {Street), . crosses(Water Body)
2 crosses(Water Body)
3 |contains(Port), { ) crosses(Water Body)
4 |contains(Port), contains(Hospital), | contzins(Street), crosses(Water Body)
5 contains(Port), contains(Hospital), (Street), | contains(Factory), crosses(Water Body)
6 Y
Minconf=70% 100% de support
Min [ o T T Rules with D / /
Sup% /WR@ s Rules wi)hel\i"
20 | [ 317180 [ 130450
50 25796 72 /)24
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Problem II - Dependences among Relevant Feature Types

‘ Dependence = [Port, WaterBody} |

Tuple

(city) Spatial Predicates

1 |contains(Port), bontains(Hospital),

), contains(Factory}| crosses(Waer Body]

contains(Street),

2 contains(Hospital), crosses(Water Bod)

3 |contains{Port, contains(Street), contains(Factory ) ) ] |
4 5{Port}, bontains(Hospital), contains(Street),

5 |contains(Port), bontains(Hospital), contains(Street), contains(Factory.

6 contains(Hospital), contains(Street), contains(Factory)

Minsup=50%
25 frequent seté{(& contain the dependenca)

——>| 9 closed frequent sets {3 have the dependence}

contains(Port) >crosses(WaterBody)
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Problem I1I - Redundant Frequent Itemsets

- For MinSup 50% we have:
- 25 frequent sets

- 9 closed frequent sets (3 contain the dependence)

- 16 redundant frequent sets

Dependence {A,W}

Frequent sets L (MinSup=50%)

)

(€1 ey /

() W]

{CW} l(‘,m\} ‘

(A}, {AD}, (A W)

(T).[D/1) P

(AC}. (ACW}, (ACD}.

{AT} {TW}. {ADT}. {ATW}. {D.T.W} |

(C.T} ¢ }

TidSet
Dataset 123456
Tid (city) | Predicate Set 12456
1 A,C,D.T,W 12345
2 C.D, W 1245
3 AD,T,W e
4 A,C,D,W 1356
3 145
6
135
c) predicates 156
A = contains(Port)
C = contains(Hospital)
W = crosses(WaterBody)
D = contains(Street)
T = contains(Factory)

9 closed frequent itemsets

Pruning Methods using Background Knowledge
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Frequent Set Pruning (Apriori-KC) (Bogorny, 2006a)
. {Island,water}
Given: ¢, // set of knowledge constraints
W,  //dataset generated with spatial_predicate_extraction
minsup, / minimum support
L, = {large 1-predicate sets};
For (k=2;L,  !=@;k++)do begin
" = apriori_gen(L, ); // Generates new candidates
If (k=
/] remove pairs with dependences
(step 1) Delete from C, all pairs with a dependence in ¢ ;
Forall rows w € ¥ do begin
C,, = subset(C,, w); // Candidates contained in w
Forall candidates ¢ € C,, do
c.countt+;
End;
L, = {c € C | c.count > minsup};
End;
Answer = U, L,
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Max-FGP (Bogorny 2006¢c)

Given: L; // frequent sets without dependences (Apriori-KC)
¥ // dataset generated with spatial_predicate_extraction

Find: Maximal M

/I find maximal generalized predicate sets

M

Summary

For (k=2; M, !=; k++ ) do begin

For (j=k+1; M!=0; j++)do begin

If (tidSet (M,) = tidSet (Mj))
If (M, = M) // M;is more general than M,
belete | from M;

End;
End;
Answer = M;
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B Well known dependences exist in several non-spatial
application domains
4 Biology/Bioinformatics
@ Pregnant > Female (confidence=100%)
@ Breast_cancer > Female (confidence 100%)

E Almost no data mining approaches consider background
knowledge or domain knowledge
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Spatial Classification

Classification

E Given a set of instances, the role of classification is to
discover the classes of the instances

E Spatial objects may be characterized (classified) by
different types of information (Koperski 1998):
4 non-spatial attributes (e.g. population);

4 spatially related attributes with non-spatial values (e.g. tota/
population living within 100 meters from cellular antennas);

+ spatial predicates (e.g. closeTo_beach),;
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Ester (1997, 2001)

E Proposed a graph-based approach for spatial neighbourhood
computation

B Idea is to integrate data mining into database systems, with new
database primitives for the computation of spatial relationships

B and explicitly represent spatial relationships that are normally implicit
in spatial databases

Ester (1997, 2001)
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E A neighborhood graph for a relation “neighbor” in a geographic database is a
graph G(N,E), where
# MNare nodes
4 Fare edges

® Each node NVis an object in the database connected via some edge to another
node if the neighbor holds.

E Two objects are neighbors if any spatial relationship (topological, distance or
order) holds
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Ester (1997, 2001)

Guaiba River

touches

Poto Alegre_City

Ester (1997, 2001
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E Operations

+ Get_nGraph(db, rel): computes all relationships

+ Get_neighborhood(graph, o, pred): retrieves all objects o directly
connected via some edge in the graph satisfying a condition in pred

+ Create_nPaths (objects, graph, pred, i): creates a set of all paths
from one object following the edges of the neighborhood graph with
length<i

@ the influence of neighboring objects and their attributes decreases with
increasing distance

@ the length of the relevant neighborhood paths are limited by an input
parameter max-length.
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Ester (1997, 2001)

Class is a non-spatial attribute = salary
Class values: high, medium, low

closeTo_water

salary=HIGH salary=MEDIUM salary=HIGH salary=LOW
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Clustering

Clustering (cluster analysis)

E Clustering is a process of partitioning a set of data into a set of
groups called clusters

B A cluster is a set of data (objects) with
+ similar characteristics
+ that can be collectively treated as one group

E Clustering is an unsupervised method
+ no predefined classes

Clustering Analysis (Kumar 2005)

Different ways of clustering the same set of points
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LR K AN &
e ., 2o v oa,
o o0 o v o0 O
. oe v 3
How many clusters? Six Clusters
L A A N
] +
L A4 + LR
] u A v + °
L] AA A v 00 O
] 'Yy v o
Two Clusters Four Clusters
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Main Clustering Approaches

E Partitioning

+ A division of data objects into non-overlapping subsets (clusters) such that each
objectis in exactly one subset

E Hierarchical

#+ A set of nested clusters organized as a hierarchical tree

E Density-based

+ Find clusters based on density of regions

E Grid-based

+ Find clusters based on the number of points in each cell

K-means

B Partitional clustering approach
B Each cluster is associated with a centroid

B Each point is assigned to the cluster with the closest
centroid

E A drawback of the k-means is that the number of
clusters kis an input parameter.
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K-medoid methods
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Instead of means, use representative objects called medoids

B PAM (Partitioning Around Medoids, 1987) - starts from an initial set of medoids
and iteratively replaces one of the medoids by one of the non-medoids if it
improves the total distance of the resulting clustering

CLARA (Clustering Large Applications, 1990) — It draws multiple samples of the
data set, applies PAM on each sample, and gives the best clustering as the output

CLARANS (NG 2002) - is an improved -medoid method
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Hierarchical Clustering

Two main types: Agglomerative and Divisive

E Agglomerative
4 Start with all objects as individual clusters
4 At each step, merge the two most similar clusters

# Until rests one cluster (or k clusters)
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E Divisive
4 Start with one cluster (with all objects)
+ At each step, split a cluster in two
+ Until each cluster contains only one object (or k clusters)

Similarity can be euclidean distance or any other measure
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DBSCAN (Ester 1996)

* DBSCAN is a density-based algorithm

—  Density = number of points within a specified radius (Eps)

— Anpointis a core point if it has more than a specified number of
points (MinPts) within Eps

—  Aborder point has less than MinPts within Eps, but it is in the
neighborhood of a core point

— Anoise point is any point that is not a core point or a border
point.

DBSCAN (Ester 1996) T

Core and border points

minPts=5
Eps=1

Core point
Border point
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noise
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Identifying core, border and noise points
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OPTICS - Ordering Points to Identify the Clustering Structure (Ankerst
1999)

Produces a special order of the database with respect to its density-
based clustering structure

EPS variation for the same minPoints

GDBSCAN (Generalized DBSCAN) (Sander 1998)

Generalized version of DBSCAN
B Clusters are formed based on spatial or non-spatial attributes
Any spatial relationshiop is used to compute neighbors, and spatial
objects may have any representation
+ NPred : “neighbor”,
+ wCard: cardinality>=MinCard, (generalizes the condition NEps(0)>= MinPts)
+  MinWeight(N): aggr (non-spatial values) >= threshold OR MinPts

&

Examplel: NPred: distance <= Eps, wCard: sum of areas, MinWeight : >= MinPts
Examplell: NPred: “intersects” or “touches", MinWeight(N): sum of areas >=

»

MinArea,
e v
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Tools
E GeoMiner (Han 1997)
£ INGENS (Malerba 2001)
E Ares (Appice 2005)
= Weka-GDPM (Bogorny 2006d)
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Eps
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GDBSCAN (Generalized DBSCAN) (Sander 1998)
B Example I: Two cities can be close if they have similar non-spatial
attributes
E Using non-spatial attributes as a weight for objects one can “induce”
different densities, even if the objects are equally distributed in the
space of the spatial attributes.
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Weka GUI Explorer (Frank 2005)
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Weka-GDPM

< weka.gui.GenericObjectEditor E]@

weka experiment Instance@uery

databaselRL | [dbepostoresal focslhost 5432/roc
password

query | SELECT * from 7

sparseDeta |False [+]

username | vania Bogorny

Geographic Dat:

oo ] [ saver | [ ok | [ comem
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Weka-GDPM
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