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Mobile devices are becoming very popular in the recent years, and large amounts of trajectory data are
generated by these devices. Trajectories left behind cars, humans, birds or other objects are a new kind of
data which can be very useful in decision making process in several application domains. These data, how-
ever, are normally available as sample points, and therefore have very little or no semantics. The analysis
and knowledge extraction from trajectory sample points is very difficult from the user’s point of view, and
there is an emerging need for new data models, manipulation techniques, and tools to extract meaningful
patterns from these data. In this paper we propose a new methodology for knowledge discovery from
trajectories. We propose through a semantic trajectory data mining query language several functionalities
to select, preprocess, and transform trajectory sample points into semantic trajectories, at higher abstrac-
tion levels, in order to allow the user to extract meaningful, understandable, and useful patterns from
trajectories. We claim that meaningful patterns can only be extracted from trajectories if the background
geographic information is considered, and therefore we build the proposed methodology considering both
moving object data and geographic information. The proposed language has been implemented in a toolkit
in order to provide a first software prototype for trajectory knowledge discovery.
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1 Introduction

Moving object data have become very common in the last few years. Huge amounts of raw trajectory data
are available from many sources, and there is an increasing necessity of new methods and tools to extract
knowledge from these data in different application domains (Brakatsoulas et al. 2004).

Trajectory data are normally available as sample points (x,y,t), which have very little or no semantics.
The electronic devices that capture these data do not collect the background geographic information which
is relevant for the application. This makes the analysis and knowledge extraction from trajectory sample
points very complex, since the integration with semantic geographical information is an essential step
towards trajectory knowledge discovery (Alvares et al. 2007a) (Alvares et al. 2007b) (Alvares et al. 2007c).

Recently, several algorithms have been developed for mining trajectory sample points (Tsoukatos and
Gunopulos 2001, Laube et al. 2005, Verhein and Chawla 2006, Cao et al. 2006, Gudmundsson and van
Kreveld 2006, Giannotti et al. 2007, Lee et al. 2007), in particular for discovering similar trajectories or
dense regions. These approaches, however, suffer from some general problems that are essentially important
for trajectory knowledge discovery: (i) focus on the mining step itself, basically considering the geometric
properties of trajectory sample points, without taking into account the semantics of the data; (ii) do not
cover the whole trajectory knowledge discovery process, which requires complex data preprocessing and
post-processing tasks in order to generate meaningful patterns understandable by humans; (iii) do not
consider the geography behind trajectories, which is the basic information to understand patterns in most
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application domains; and (iv) do not provide preprocessing/transformation mechanisms to manipulate the
data at different granularities (e.g. morning/afternoon, rush hours, weekday/weekend), which can be of
fundamental importance in the knowledge discovery process (Han 1995).

In the following sections we show the complexity of querying and mining trajectory sample points and
how these process can be simplified considering semantics of trajectories.

1.1 Querying Trajectories

Trajectory queries can be tremendously simplified and optimized in both computational and formulation
complexity by integrating trajectories and semantic geographic information a priori, in one single prepro-
cessing step (Alvares et al. 2007b). To understand such simplification, let us consider a query example.

Q1: Which are the places that a moving object A has passed during his trajectory, assuming that each
object has only one trajectory in the database, given hotels and touristic places as the relevant geographic
places?

Let us consider that the moving object A has the trajectory (1) shown in Figure 1, that has no semantic
geographic information, and is represented as a set of (x,y,t). In this scenario, a query to answer question
Q1 will contain two spatial joins, and is similar to the following:

SELECT h.name
FROM trajectory t, hotel h
WHERE t.id=’A’ AND

intersects(t.movingpoint.geometry,h.geometry)
UNION
SELECT p.name
FROM trajectory t, touristicPlace p
WHERE t.id=’A’ AND

intersects(t.movingpoint.geometry,p.geometry)

This query is very simple, and considering a trajectory as a set of sample points, the intersection
operation will be tested until the first point of the trajectory intersects the given geographic places hotel
and touristic place. The query can become more complex when a time constraint is specified, like which
are the places that an object A has passed and has stayed for more than 3 hours. In this example both
formulation and time complexity of the query increases, because the search cannot stop when the first
point of the trajectory intersects a given place. All points in the trajectory that intersect the place have
to be tested until either (a) the moving object leaves the place or (b) until the time constraint is satisfied.
In this query the search space increases in relation to the previous one.

Now let us consider that object A has the semantic trajectory (2), shown in Figure 1, where the aggre-
gation of semantic geographic information with the trajectory has been performed in a preprocessing step,
where the user has defined all geographic places that are relevant to the application. In this scenario, the
answer to question Q1 will be something like:

SELECT place
FROM semanticTrajectory
WHERE id=’A’

A semantic trajectory, as shown in Figure 1 (2), aggregates the geographic information that is necessary
for the analysis of the trajectory, and this information can be reused in any query. For trajectory samples
without semantic annotations, as the example shown in Figure 1(1), the relationships/intersection of the
trajectory with the relevant geographic object types have to be recomputed for each different query, either
for the same or different geographic object types.

Considering trajectories with semantic annotations, not only the querying process is simplified, but the
data mining and knowledge discovery process is significantly facilitated from the user’s perspective, as will
be explained in the following section.
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Figure 1. single raw trajectory and single semantic trajectory

Figure 2. (left) Convergence geometric pattern and (right) semantic trajectories

1.2 Mining Trajectories

For data mining and knowledge discovery the integration of geographic information to trajectories a priori
plays an essential role towards the discovery of semantic trajectory patterns. Because knowledge discovery
is an interactive and repetitive process (Fayyad et al. 1996), the a priori integration of trajectories and
semantic information tremendously simplifies the data mining and post-processing steps.

Existing spatio-temporal data mining algorithms have focused on the geometrical properties of trajecto-
ries, and therefore tend to discover geometric patterns. Geometric patterns are normally extracted based
on the concept of dense regions or trajectory similarity. Semantic patterns, however, are independently
of x, y coordinates, and can be located in sparse regions and have no similarity. Figure 2 (left) shows
an example of a geometric trajectory pattern, called convergence pattern (Laube et al. 2005), in which
the objects move to the same place, at a certain time, which therefore becomes the dense region C. In
Figure 2 (right), the moving objects go from different Schools (S) to meet at the same place C at a certain
time. Let us consider C as a semantically important place, like for instance, a cinema with special price
tickets for students on Wednesday afternoon. From these semantic trajectories, the moving pattern from
Schools to Cinema could be discovered. In this example it is clear that the origin of the trajectories is in
sparse locations, and a density-based trajectory data mining algorithm would not be able to discover such
semantic pattern.

Figure 3 shows another example of a geometrical pattern in which the objects cross the same spatial
location B. Considering the semantics of the trajectories, such as in Figure 3 (right), two semantic patterns
could be discovered: (i) a move from Hotel (H) to Restaurant (R) passing by region B; and (ii) a move to
Cinema (C), passing by region B.

Considering the examples of geometrical and semantic patterns we can clearly notice the important role
that semantics plays in the trajectory knowledge discovery process. Even more important is to observe
that the a priori integration of trajectories with semantic information is vital for the discovery of semantic
patterns. Semantic patterns cannot be obtained in post-processing steps, after the pattens have been
generated, because information is lost if the mining algorithm relies only on the geometrical properties of
trajectories.

Trajectory data mining algorithms which are based on density or trajectory similarity, in the above
examples would discover that several trajectories converge to region C or cross region B. From the se-
mantical point of view, these patterns would only be interesting if C and B are important places which
are relevant for the application. If semantically C and B are not important for the application, then these
patterns will be useless and uninteresting for the user.
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Figure 3. Recurrence geometric pattern X semantic trajectories

So far we have seen the important role of semantics for both querying and mining trajectory data. Com-
plex data preprocessing and data transformation functions are necessary to add semantics to trajectories
in order to facilitate their analysis and knowledge extraction from the user’s point of view.

Another problem in trajectory knowledge discovery is that as far as we know there are no available
toolkits with friendly and graphical user interfaces to help the user to perform the whole knowledge
discovery process (Fayyad et al. 1996).

Concerning the needs of the user for knowledge discovery from trajectories in real applications, we claim
that a new methodology has to be developed to extract meaningful, useful, and understandable patterns
from trajectories. Therefore, in this paper we propose a data mining query language for moving object
data, focusing on the semantic properties of trajectories. Through a semantic trajectory data mining query
language (STDMQL) we introduce a new methodology to cover the whole cycle of the trajectory knowledge
discovery process.

1.3 Scope and Outline

In this paper we propose a STDMQL that is an extension of spatial SQL (Egenhofer 1994). In a data
preprocessing step we integrate trajectories with the geographic information that is relevant to the appli-
cation. For this purpose, we adopt the trajectory data model proposed by (Spaccapietra et al. 2007), in
which the user has the vision of trajectories as a set of stops and moves.

It is important to emphasize that the novelty and the main objective of this paper relies on the method-
ology for trajectory knowledge discovery that is defined in terms of a data mining query language. The
development of new trajectory data mining algorithms is out of the scope of this work.

This paper is organized as follows: in Section 2 we present the related works. In Section 3 we introduce
the basic concepts to enrich trajectories with semantic geographical information. The overall methodology,
the primitives, and the prototype of the proposed trajectory data mining query language are presented in
Section 4. In Section 5 we conclude the paper and present some directions of future work.

2 Related Works

Our work is motivated by (Boulicaut and Masson 2005) and (Han et al. 1996), which claim that a data
mining query language should provide enough mechanisms to perform the whole knowledge discovery
process, specially:

• mechanisms for data selection and data preprocessing where the data miner should be able to specify
the portion of data he is interested in. This specification may require a subtask to first retrieve a subset
of the data before the mining.

• allow the user to specify the patterns to be mined, like association rules, frequent patterns, sequential
patterns, clusters, etc.

• integrate background knowledge, like concept hierarchies, for extracting knowledge at several granularity
levels.
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• define the constraints of the desired patterns, where the user can define thresholds to extract more
interesting patterns or to filter out less interesting ones.

• provide mechanisms for postprocessing the discovered patterns.

According to Boulicaut (Boulicaut and Masson 2005), the first major limitation of existing data mining
query languages is the poor support to data preprocessing, because they are essentially designed around
the mining step itself, and mainly provide primitives for rule extraction. It has been shown that data
preprocessing for knowledge discovery are tedious phases for which the use of integrated tools and operators
is needed, and in general existing data mining query languages do not reduce this problem (Boulicaut and
Masson 2005). This is specially true for trajectories, which are in general more complex than conventional
and spatial data, and require mechanisms to be semantically enriched in order to lead to the discovery of
understandable and useful patterns.

Several data mining query languages have been proposed in the last decade for traditional data. Meo has
proposed MINE RULE, which basically consists of an extension of SQL for mining association rules (Meo
et al. 1996). Another approach has been proposed by (Han et al. 1996) for mining characteristic, discrim-
inant, classification, and association rules, named DMQL. This language allows the extraction of rules at
different granularity levels, using concept hierarchies (Han 1995) as background knowledge. In (Imieliński
and Virmani 1999) a data mining language named MSQL has been proposed for mining association rules,
with the main objective to query and filter association patterns after the rule generation. This work points
out the importance of storying the patterns for later query and filter these patterns in post-processing.
This idea of pattern storage has been recently adopted in several works like (Calders et al. 2006a), (Calders
et al. 2006b), and is also supported by our language for mining and querying both trajectory data and
trajectory patterns.

Atlas (Wang and Zaniolo 2003) and LDL (Arni et al. 2003) are languages that provide the ability of
user defined aggregates (UDAs). Atlas was build on the principles of relational databases and is basically a
programing language based on SQL, which therefore becomes very complex from the user’s point of view.

A few data mining query languages have been proposed for spatial data, like GMQL (Han et al. 1997)
and SDMOQL (Malerba et al. 2004). GMQL is an extension of DMQL to support spatial data mining,
while SDMOQL is an object data mining query language. Both approaches make use of concept hierarchies
for mining geographic data at different granularity levels. In SDMOQL the user needs complex knowledge
about the environment in order to be able to use the language. Complex data preprocessing tasks are
necessary to transform a spatial database into an inductive database, for then formulate the queries,
which is quite complex in real applications.

A temporal data mining query language has been proposed by (Chen and Petrounias 1998), which is an
SQL-like approach for mining temporal patterns. Although existing languages may deal with traditional,
temporal, or spatial data, to the best of our knowledge no data mining query language has been proposed
so far for trajectories, supporting both space and time. Because in general existing data mining query
languages do not cover the whole knowledge discovery process and have been designed around the mining
task only (Boulicaut and Masson 2005), it is difficult to extend such languages for trajectories. This new
domain requires several data preprocessing, data transformation, and data discretization operations that
cannot be easily plugged into existing languages. Therefore, we propose an extension of spatial SQL (Egen-
hofer 1994) without changing the semantics of SQL, in order to be very user friendly and facilitate its
usage.

Another problem which is well known is that data mining techniques like frequent patterns and associa-
tion rules tend to generate hundreds or thousands of patterns that the user has to analyze in order to find
novel and useful knowledge (Bogorny et al. 2007). Therefore, we store the discovered patterns to apply
constraints (Bonchi and Lucchese 2007). Besides, by storing the discovered patterns in the database we
allow the user not only to constraint the patterns in post-processing, but also to join data with patterns
for further analysis.
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3 The Semantic Trajectory Data Model

In order to provide data preprocessing functions and the extraction of more meaningful patterns, the first
step toward a STDMQL is to aggregate semantic geographic information to trajectories, according to
the needs of the application. We aggregate geographic information using the concept of stops and moves
introduced by (Spaccapietra et al. 2007), and that has been adopted in several works like (Alvares et al.
2007b) (Alvares et al. 2007a) (Alvares et al. 2007c). Stops are important places of the trajectory from the
application point of view, where the moving object has stayed for a minimal amount of time. Moves are
subtrajectories between two consecutive stops.

The aggregation of trajectory sample points into stops and moves allows more sophisticated analysis over
trajectories, and without sacrificing the user with this task. This aggregation is performed a priori and only
once, and therefore can be reused as many times as necessary in the discovery process. As a consequence,
the output of the data mining step will be semantic patterns, which will facilitate their interpretation by
the user in the post-processing phase.

To better understand what stops and moves are, in this section we present one formal model where
geographic object types are defined a priori by the user as the important places of the trajectory. This
model has been introduced in (Alvares et al. 2007b) for querying trajectories, but it is not the only way
to define stops and moves, because stops are application dependent.

3.1 Trajectory Samples and Candidate Stops

Trajectory data are normally available as sample points.

Definition 3.1 A sample trajectory is a list of space-time points 〈(x0, y0, t0), (x1, y1, t1), . . . , (xN , yN , tN )〉,
where xi, yi, ti ∈ R for i = 0, . . . , N and t0 < t1 < · · · < tN .

To transform trajectory sample points in stops and moves, it is necessary to provide the important places
of the trajectory which are relevant for the application. The important places correspond to different spatial
feature types (OGC 1999), specified in a geographic database. For each relevant spatial feature type that
is important for the application, a minimal amount of time is specified by the user, such that a trajectory
should continuously intersect this feature in order to be considered a stop. This pair is called candidate
stop.

Definition 3.2 A candidate stop C is a tuple (RC , ∆C), where RC is a (topologically closed) polygon in
R2 and ∆C is a strictly positive real number. The set RC is called the geometry of the candidate stop and
∆C is called its minimum time duration.

An application A is a finite set {C1 = (RC1 , ∆C1), . . . , CN = (RCN
, ∆CN

)} of candidate stops with
mutually non-overlapping geometries RC1 , . . . , RCN

.

In case that a candidate stop is a point or a polyline, a polygonal buffer is generated around this object,
and thus represent it as a polygon in the application, in order to overcome spatial uncertainty.

3.2 Stops and Moves

Definition 3.3 Let T be a trajectory and let

A = ({C1 = (RC1 , ∆C1), . . . , CN = (RCN
, ∆CN

)})

be an application.
Suppose we have a subtrajectory 〈(xi, yi, ti), (xi+1, yi+1, ti+1), . . . , (xi+`, yi+`, ti+`)〉 of T , where there is

a (RCk
, ∆Ck

) in A such that ∀j ∈ [i, i + `] : (xj , yj) ∈ RCk
and |ti+` − ti| ≥ ∆Ck

, and this subtrajectory is
maximal (with respect to these two conditions), then we define the tuple (RCk

, ti, ti+`) as a stop of T with
respect to A.

A move of T with respect to A is one of the following cases:
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Figure 4. Example of application with three candidate stops

• a maximal contiguous subtrajectory of T in between two temporally consecutive stops of T ;
• a maximal contiguous subtrajectory of T in between the initial point of T and the first stop of T ;
• a maximal contiguous subtrajectory of T in between the last stop of T and the last point of T ;
• the trajectory T itself, if T has no stops.

When a move starts in a stop, it starts in the last point of the subtrajectory that intersects the stop.
Analogously, if a move ends in a stop, it ends in the first point of the subtrajectory that intersects the
stop.

Figure 4 illustrates these concepts. In this example, there are three candidate stops with geometries
RC1 , RC2 , and RC3 . Let us imagine that the spatial projection of the trajectory T is run through from
left to right and t0, . . . , t18 are the time points of T . First, T is outside any candidate stop, so we start
with a move. Then T enters RC1 at time point t1. Since the duration of staying inside RC1 is long enough,
(RC1 , t1, t6) is the first stop of T . Next, T enters RC2 , but for a time interval shorter than ∆C2 , so this is
not a stop. We therefore have a move until T enters RC3 , which fulfills the requests to be a stop, and so
(RC3 , t13, t17) is the second stop of T . The trajectory T ends with a move.

It is important to notice that the place where a stop occurs is a spatial feature (or relevant geographic
object type) which is intersected by a trajectory for the minimal amount of time. This spatial feature will
enrich the trajectory with its spatial and non-spatial information. For instance, if a hotel is a stop, its
geometry and the non-spatial attributes (e.g. name, stars, price) is information that can be further used
for both querying and mining trajectories.

Based on the concept of stops and moves, in the following section we present the STDMQL.

4 A Spatio-Temporal Data Mining Query Language

In Figure 5 we present a general overview of the framework for the STDMQL. In this framework the user
can do both querying and mining. The STDMQL will provide preprocessing operators to easily integrate
trajectories with geographic information in order to generate semantic trajectories. These data can then
be mined and the extracted patterns will be stored in order to be queried and filtered in post-processing
steps.

To provide support for the whole knowledge discovery process we propose a semantic trajectory data
mining query language with support to three main functionalities: data preprocessing, data mining, and
pattern storage for post-processing. The data preprocessing functions integrate trajectory samples with
the relevant geographic information, in order to generate trajectories in a higher abstraction level. These
functions generate stops and moves, which are stored as two relations in the database, as described in
Section 4.1. Additionally, discretization functions are presented to transform the granularity of the space
and time dimensions.

The data mining tasks supported by the STDMQL are frequent trajectory patterns, association rules,
and sequential patterns. These tasks are explained in Section 4.2.

The patterns generated by the data mining operations are automatically stored in the database in a
pattern relation, in order to allow both querying and filtering the discovered patterns in post-processing
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Figure 5. STDMQL framework

steps. These facility is explained in Section 4.3.

4.1 Preprocessing and Data Transformation Functions

Several data preprocessing and data transformation functions are common to the different data mining
tasks supported by the STDMQL.

4.1.1 Generating Stops and Moves. The first general function to obtain semantic trajectories is called
generateSM. Through this function the user can select a subset of data he is interested in, and provide the
geographic information that is relevant for the discovery process.

The operation generateSM has as input the following parameters: the method to compute stops and
moves, the candidate stops, and the buffer area around candidate stops represented by points or lines. The
output of this function is a relation of stops and a relation of moves.

The general query structure to extract stops and moves from trajectory samples is given as follows:

SELECT generateSM (method, candidateStops, buffer)
FROM trajectory

The parameter method specifies how stops and moves are computed. So far, two methods have been
developed: SMoT (Alvares et al. 2007b) and CB-SMoT (Palma et al. 2008). The former is an intersection-
based method, and the later is a clustering approach based on speed, as will be explained further in this
section.

The candidateStops are the set of relevant spatial feature types with respective minimal stop duration.
Different relevant feature types may be a stop with large differences on the minimal stop duration. For
instance, in a specific application a gas station can be considered as a stop if the object has stayed for 5
minutes, and a shopping center may be a stop if the object has stayed for at least 30 minutes. Therefore, a
minimal stop duration has to be provided for each candidate stop. The parameters of candidateStops are:

• relevantFeatureType: each relevant spatial feature type is a place of interest for the application. It is a
geographic object type that has spatial and non-spatial properties. By adding a relevant spatial feature
as a stop in a trajectory, all semantic properties of this object will characterize one part of this trajectory.

• minimalStopDuration: is the minimal time interval that a trajectory must intersect the geometry of a
relevant feature for this feature be considered a stop. This value is an integer and is defined in the same
time unit as the time dimension in the trajectory dataset.

The parameter buffer is the radius (size) of the zone around relevant features represented by points or
lines, to overcome problems of geometrical accuracy.

We define the syntax of the function to extract stops and moves from trajectory sample points using
BNF. In general words, according to the method specified to compute stops and moves, different parameters
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are defined. For the method SMoT the user provides all candidate stops and the buffer area. For the CB-
SMoT method the user provides the same parameters and one extra value, the Eps parameter (Palma
et al. 2008), which is necessary to find clusters in single trajectories.

<generateSM> ::= generateSM <left_par> <GS_parameters> <right_par>

<left_par> ::= (
<GS_parameters> ::= <SMoT_parameters> | <CBSMoT_parameters>

<right_par> ::= )

<SMoT_parameters> ::= <SMoT> <coma> <left_bracket> <candidate_stops_set>
<right_bracket> <coma> <buffer>

<SMoT> ::= I-SMOT
<coma> ::= ,

<left_bracket> ::= [
<candidate_stops_set> ::= <candidate_stop> [{candidate_stop}...]

<candidate_stop> ::= <relevant_feature_type> <coma> <min_stop_duration>
<relevant_feature_type> ::= string

<min_stop_duration> ::= integer
<right_bracket> ::= ]

<buffer> ::= real

CBSMoT_parameters> ::= <CBSMoT> <coma> <left_bracket> <candidate_stops_set>
<right_bracket> <coma> <buffer><coma><Eps_parameter>

<CBSMoT> ::= CB-SMOT
<Eps_parameter> ::= real

To better understand the syntax of the function to extract stops and moves let us consider a few query
examples:

SELECT generateSM (I-SMOT,[Hotel,60,TouristicPlace,15,ShoppingCenter,30], 5)
FROM trajectory

In this query the candidate stops are the feature types Hotel, TouristicPlace, and ShoppingCenter, and
the respective minimum stop duration is 60, 15, and 30. The last parameter indicates that 5 meters will
be the radius of the buffer around point and line candidate stops. In this query the method I-SMOT is
used to generate stops and moves.

Any constraint to filter the trajectory dataset can be specified on the where clause. This clause is used
to select a subset of trajectories to be considered in the mining process. For example, suppose that the
user is interested only in trajectories that intersect the Bela Vista district. Such query can be expressed
as follows:

SELECT generateSM (CB-SMOT,[Hotel,60,TouristicPlace,15,ShoppingCenter,30], 5, 20)
FROM trajectory t, district d
WHERE d.name=’Bela Vista’ and intersects(t.movingpoint.geometry, d.geometry)

The output of the query is a relation of stops and a relation of moves. The schema of the stop table has
the following attributes:

STOP (Tid integer, Sid integer, SFTname varchar, SFid integer,
startT timestamp, endT timestamp)

where:

• Tid : is the trajectory identifier.
• Sid: is the stop identifier. It is an integer value starting from 1, in the same order as the stops occur in

the trajectory. This attribute represents the sequence as stops occur in the trajectory.
• SFTname: is the name of the relevant spatial feature type (geographic database relation) where the

moving object has stayed for the minimal amount of time.
• SFid : is the identification of the instance (e.g. gid - Ibis) of the spatial feature type (e.g. Hotel) in which
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the moving object has stopped.
• startT : is the time in which the stop has started, i.e., the time that the object enters in a stop.
• endT : is the time in which the moving object leaves the stop.

In a relational model the attributes SFTname and SFid is a foreign key to a geographic relation.
Therefore, the stop relation significantly facilitates querying trajectories from a semantic point of view.
Queries can be performed considering both spatial and non-spatial attributes of any spatial object that
represents a stop, as the example shown bellow.

SELECT distinct s.Tid
FROM stops s, hotel h, trainStation r
WHERE s.SFTname=’hotel’ and s.SFid=h.gid and h.stars=2 and

distance(h.the_geom,r.the_geom) < 200

This query retrieves all trajectories that have a stop at two-stars hotels which are less than 200 meters
from a train station.

A move in a trajectory is characterized by the stops where it respectively starts and finishes, the start
and end time, and the moving points that correspond to the move. The relation of moves has the following
schema:

MOVE (Tid integer, Mid integer, SFT1name varchar, SF1id integer, SFT2name varchar,
SF2id integer, startT timestamp, endT timestamp, the_move movingpoint )

where:

• Tid : is the trajectory identifier.
• Mid : is the identifier of the move in the trajectory. It starts with 1, in the same order as the moves occur

in the trajectory.
• SFT1name : is the name of the spatial feature type in which the move starts.
• SF1id : is the identifier (feature instance) where the move starts.
• SFT2name : is the name of the spatial feature type in which the move finishes.
• SF2id : is the identifier (feature instance) of the of the stop where the move ends.
• startT : is the timestamp of the begining of the move.
• endT : is the timestamp of the end of the move.
• the move: is the subtrajectory between the start and end of the move.

The attributes SFT1name and SF1id correspond to the stop in which a move starts and the attributes
SFT2name and SF2id represent the stop where the move finishes. We adopted this structure instead of
the sequential identifier of the stop (Sid) in order to allow the mining task directly over the move relation.
Besides, following this representation the moves can be directly queried without the necessity of a join
operation with the stops every time the user executes a query over the moves. Additionally, the user can
easily perform either non-spatial, spatial, or spatio-temporal queries because we keep the spatio-temporal
properties (the move) of the move.

4.1.2 The Methods SMoT and CB-SMoT. Two algorithms to generate stops and moves have been
developed so far. The first one, called SMoT, is described in (Alvares et al. 2007b). It considers the
intersection of a trajectory with the user-specified relevant feature types for a minimal time duration
(candidate stops).

The second algorithm, called CB-SMoT and described in (Palma et al. 2008), is a clustering method
based on the variation of the speed of the trajectory. The intuition of this method is that the parts of a
trajectory in which the speed is lower than in other parts of the same trajectory, correspond to interesting
places. CB-SMoT is a two-step algorithm. In the first step the slower parts of a trajectory that form
clusters are identified using a variation of the DBSCAN (Ester et al. 1996) algorithm that considers one
dimensional line (trajectories) and speed. In the second step the algorithm identifies where these potential
stops (clusters) found in the previous step are located, considering the candidate stops. In case that a
potential stop does not intersect any of the existing geographic objects, it still can be an interesting place.
Then, in order to provide this information to the user, the algorithm labels such places as unknown stops.
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Unknown stops are interesting because although they may not intersect any relevant spatial feature type
given by the user, a pattern can be generated for unknown stops if several trajectories stay for a minimal
amount of time at the same unknown stop. In this case the user may need further investigation about such
pattern.

The two methods cover a relevant set of applications. SMoT is interesting in applications where the
speed is not important, like tourism and urban planning. For traffic management, for instance, CB-SMoT,
which is based on speed, would be more appropriate.

Stops are always extracted at the lowest granularity level (feature instance), by both methods. The stop
duration is recorded when the moving object enters and leaves the stop. If a trajectory stops at the Eiffel
tower, for instance, this will be the name of the stop. Starting from this low granularity level, the mining
task can then transform the stop into a higher granularity, like touristic place. Analogously for the time
dimension.

The granularity transformation of both stop (place) and time is specified by the operations timeG and
stopG, explained in the following sections.

4.1.3 Time Granularity. The time granularity is defined by the function timeG. This function general-
izes a time stamp into different granularities, according to the user’s interest. More specifically, it converts a
time stamp into a semantic discretized label. For example, an interval between [07:00-09:00] can be labeled
as ”rushHour”.

The function timeG is very powerful because it allows the user to discretize the time dimension in several
granularities, and this is necessary in any trajectory data mining task.

The syntax of the function timeG is given as follows:

<timeG> ::= <pre_defined_TG> | <user_defined_TG>
<pre_defined_TG> ::= WEEKEND-WEEKDAY | YEAR | MONTH | SEASON | DAY-OF-THE-WEEK
<user-defined_TG> ::= <left-bracket><startTime><hifen><endTime> [AS <label>]

[{<startTime><hifen><endTime> [AS <label>]}...]
[OTHER]<right-bracket>

<startTime> ::= <Time>
<endTime> ::= <Time>

<Time> ::= <hour> :<minute> [ :<second>]
<hour> ::= 01 | 02 | 03 | ... | 23 | 24

<minute> ::= 01 | 02 | 03 | ... | 59 | 60
<second> ::= 01 | 02 | 03 | ... | 59 | 60
<label> ::= string
<hifen> ::= -

We provide some pre-defined time granularities in our language, which are: WEEKEND-WEEKDAY,
YEAR, MONTH, SEASON, and DAY-OF-THE-WEEK. For these granularities the user can use the
parameter pre defined TG for the function timeG. This will automatically transform the time dimension
of either stops or moves in the specified granularity.

If the user is interested in specific time intervals, then he can decide for the parameter user defined TG,
where he can specify a given time interval and choose the label, like for instance, 14:00-18:00 as afternoon.

4.1.4 Stop Granularity. It is well known that for data mining and knowledge discovery the user may
need to perform the discovery process several times, and therefore to transform the data at different
granularity levels (Han 1995). The granularity of a stop is managed by the function stopG. Two granularity
levels can be automatically generated, without the need of any specification of background knowledge like
concept hierarchies or ontologies. These granularities are called feature instance (e.g. Centrum Hotel) and
feature type (e.g. Hotel).

It is important to notice that the granularity of the stops also defines the granularity of the moves,
because a move is formed by two consecutive stops (e.g. hotel-touristicPlace, IbisHotel-LouvreMuseum).

The function stopG is even more powerful than timeG, because it allows the user to specify stops at
different granularities in the same mining process. The user can, for instance, set as default the granularity
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Figure 6. Example of concept hierarchy

type or instance, and specify intermediate granularity levels defined in a concept hierarchy for some specific
feature types. To better understand the stopG function let us observe the BNF syntax specified for stopG.

<stopG> ::= <single_level> | <multiple_level>
<single_level> ::= TYPE | INSTANCE

<multiple_level> ::= <left_bracket> <default_level> <coma> <specific_level>
[{<coma> <specific_level>}... ]<right_bracket>

<default_level> ::= TYPE | INSTANCE
<specific_level> ::= <relevant_feature_type_hierarchy> <equal> <hierarchy_level>

<hierarchy_level> ::= integer

In the syntax the granularity of a stop may be at single level or multiple level. In the former case, the
granularity of the stop can be either type or instance. In the case of multiple level the user can define a
default granularity for most stops, and for some exceptions specify the granularity level using a concept
hierarchy. This is specifically practical when only a few types of stops have their granularity based on
concept hierarchies.

We consider that in a concept hierarchy the highest level starts with 0 and ends with n, top-down, where
n is the lowest level in the hierarchy. In Figure 6, the level 0 corresponds to the feature type granularity
(road), and n always represents the lowest level, i.e., the feature instance (e.g. 13 ErieST). For illustration
we show the feature instance level (n) in the concept hierarchy, which in reality corresponds to the instances
of a relation in the database.

Let us consider some examples. The function stopG = instance expresses that all stops will be represented
at the feature instance granularity level. stopG = [type, roadH=1, hotelH=2] expresses that the feature
types road and hotel will respectively use the associated concept hierarchy roadH at level 1 and hotelH at
level 2. All other stops will be considered at feature type granularity level.

4.2 Data Mining Functions

The data preprocessing functions explained in the previous section basically add semantic information
to trajectory samples, generating trajectories as an ordered set of stops and moves. In this sense we can
notice that this model generates trajectories at a higher level of abstraction, in which the mining task will
be applied over semantic trajectories and not over trajectory samples.

The proposed STDMQL supports three data mining functions to extract knowledge from semantic
trajectories, which in some preliminary analysis have demonstrated to be the most appropriate for mining
trajectories represented as stops and moves. These mining tasks are frequent patterns (Agrawal et al.
1993), association rules (Agrawal and Srikant 1994), and sequential patterns (Agrawal and Srikant 1995),
and we assume that the reader is familiar with these concepts. These data mining tasks will generate the
following patterns from trajectories: frequent stops and frequent moves; sequential stops and sequential
moves; and association stops and association moves.

We define the mining operations in a general way, such that any/several of the algorithms proposed in
the literature can be implemented to perform these mining tasks. In other words, the operations are not
limited to one specific algorithm, and therefore different input parameters can be provided.

A BNF to specify the data mining tasks is given as follows:
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<mining_function> ::= <pattern_type> <left_par> <mining_parameters> <right_par>
<pattern_type> ::= FREQUENTSTOPS | FREQUENTMOVES | ASSOCIATESTOPS | ASSOCIATEMOVES |

SEQUENTIALSTOPS | SEQUENTIALMOVES
<left_par> ::= (

<mining_parameters> ::= <item> [<coma> <timeG>] <coma> <stopG> <coma> <minSup>
[{<coma> <other_parameter>}...]

<coma> ::= ,
<item> ::= ITEM <equal> <item_def>

<item_def> ::= NAME | NAMESTART | NAMEEND | NAMESTARTEND
<minSup> ::= MINSUP <equal> real

<other_parameter> ::= <parameter_name> <equal> <parameter_value>
<parameter_name> ::= string

<parameter_value> ::= string | real | integer
<right_par> ::= )

Two basic parameters for the three mining tasks are necessary: item and minsup. The parameter item is
the attribute that will be considered in the mining step, i.e., is an element that will compose the pattern.
We call this attribute item because this term is well known in the data mining literature. In the context
of trajectories an item represents a set of information. On the contrary to transactional data mining in
which an item is a single attribute like milk or bread, a trajectory item contains information about space
and time. In summary, a trajectory item is build according to one of the following types, which can be
defined at different granularities:

• Name: is the name of the stop or the move, according to the relation to be mined. For mining stops,
it is the name of the spatial feature type (e.g. Hotel) or instance (e.g IbisHotel) in which a stop has
occurred. For moves, it will be the name of the two stops which define the move (e.g. Airport-Hotel,
SchipholAirport-IbisHotel).

• NameStart : is the name of the stop/move with the time period in which a stop or move has started (e.g.
Hotel[morning], LouvreMuseum[weekend], Airport[10:00-12:00]).

• NameEnd : is the name of a stop or move with the time period in which a stop/move finishes (e.g.
Hotel[afternoon], Museum[10:00-12:00], IbisHotel[afternoon], Hotel-Museum[afternoon]).

• NameStartEnd : is the name of a stop or move with the time period in which the stop/move has respec-
tively stated and finished (e.g. Hotel[08:00-12:00][12:01-18:00], Museum[morning][afternoon], Airport-
Hotel[afternoon][afternoon]).

The granularity in which both the name of the stop/move and the time is represented will be specified
by stopG and timeG, respectivelly. In the following sections we provide query examples to illustrate the
extraction of different kinds of patterns.

The parameter minsup in the mining operation specifies the minimal support of a set of items in order
to be considered a pattern. Concerning trajectories, the support of an item is defined as the fraction of
trajectories that contain this item. minSup is a real number between 0 and 1, inclusive.

4.2.1 Mining Frequent Trajectory Patterns. Frequent trajectory patterns can be extracted from both
stops and moves. Frequent stops are combinations of stops that have support higher than minSup. To
understand frequent trajectory patterns let us consider a few query examples in the context of a tourism
application. Let us suppose that the user wants to answer the following question: which are the types of
places most frequently visited by tourists on weekdays and weekend? This question can be answered by
the following simple query:

SELECT frequentStops (item=NameStart, timeG=WEEKEND-WEEKDAY,
stopG=[type,touristicPlaceH=1], minsup=0.2)

FROM stop

In this query, the item that composes the pattern will contain the name of the stop and the time in
which the stop started. This is expressed by the parameter item=NameStart. The time granularity (timeG)
is weekday and weekend, while the granularity of the stop will be at the feature type level for all stops,
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except for those that occur at touristic places. For touristic places a concept hierarchy touristicPlaceH is
used at the granularity level 1, and therefore touristic stops will be aggregated by types like, for instance,
religious, museum, and monument. The query will generate patterns over stops that appear in at least
20% of the trajectories, and the output of this query will be frequent patterns as shown bellow.

{Hotel[weekday]} (s=0.45)
{Museum[weekday]} (s=0.15)

{Religious[weekend], Restaurant[weekend]} (s=0.07)

The first pattern expresses that 45% of the trajectories have a stop at hotels during the week. In the
second pattern, 15% of the trajectories stop at museums during the week, and in the last example 7% of
the trajectories stop at both religious places and restaurants on the weekends.

The function frequentMoves generates combinations of moves that have support higher than minimum
support in the move dataset. For example, one single move, in which the time is not relevant, can be a
pattern like {Hotel-Airport (s=0.30)}, which expresses a single move from Hotel to Airport, in this order,
in 30% of the trajectories. A longer moving pattern like, for instance, {Hotel-Museum, ShoppingCenter-
Hotel (s=0.25)}, expresses that 25% of the trajectories have the movements from Hotel to Museum and
from Shopping Center to Hotel. In a frequent moving pattern with more than one move, the order as the
moves appear in the pattern does not represent the order as the moves occur in the trajectories. In the
second example, for instance, the move from Shopping Center to Hotel can occur before the move from
Hotel to Museum. When the order as the moves occur in the trajectories is important, then the sequential
pattern mining method should be used, as will be explained later in this section.

To extract frequent moves the user can also specify the granularity of the item with the functions timeG
and stopG. For example, suppose one is interested in movements that occur with a frequency of at least
5%, aggregating these movements in morning and afternoon, and considering the exact places in which
the moves occur. By exact places we mean the instances of the stops given by the funcion stopG=instance.
Such query can be expressed as follows:

SELECT frequentMoves (item=NameStart, timeG=[08:00-12:00,14:00-18:00,other],
stopG=instance, minsup=0.05)

FROM move

The item in the pattern will contain the name of the stops with the time period in which the moves
started. This is defined by the parameter item=NameStart. The granularity of the item is specified by
stopG. In this query example, three time intervals have been defined: from 8AM to 12AM, from 2PM to
6PM, and any other starting time is represented by ’other’. From this query, patterns like the following
will be extracted.

{Lido-ParisienHotel[other]} (s=0.06)
{TriumphArc-LouvreMuseum[08:00-12:00],IbisHotel-TriumphArc[08:00-12:00]} (s=0.07)

In the first example the move goes from Lido to ParisienHotel at any time different from the intervals
[8:00 to 12:00] and [14:00 and 18:00]. This move is frequent in 6% of the trajectories. In the second example,
a frequent move goes from TriumphArc to LouvreMuseum, starting in between 8 and 12 in the morning,
and another move in the same trajectories goes from IbisHotel to TriumphArc, also starting in between
8:00 and 12:00. This moving pattern is frequent in 7% of the trajectories.

4.2.2 Mining Sequential Patterns from Trajectories. The sequential pattern mining technique differs
from the frequent pattern mining in the order as either stops or moves occur in a trajectory. In sequen-
tial pattern mining the order as the items occur plays the essential role. It corresponds to the relative
order between items, but not necessarily the absolute order of the items. Let us consider the following
example: {Hotel, Museum, ShoppingCenter} (s=0.35%). This sequential pattern expresses that 35% of the
trajectories stop at Hotel, Museum, and Shopping Center, in this relative order.

Sequential moving patterns are sequences of movements that have support higher than minimum support.
For instance, the pattern {Hotel-Museum, ShoppingCenter-Hotel} (s=0.25%) expresses that 25% of the
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trajectories have the moves from Hotel to Museum and after from Shopping Center to Hotel.
Now let us suppose that the user has the following question: which are the sequences of moves that occur

most frequently in the morning and in the evening? This question can be answered by the following query:

SELECT seqentialMoves (item=NameEnd,timeG=[8:00-12:00 AS morning, 18:00-23:00 AS evening],
stopG=instance, minsup=0.03)

FROM move

In this query a move has to occur in at least 3% of the trajectories in order to generate a pattern. The
pattern will contain the name of the move and the time that the move finishes, and time will be aggregated
in morning and evening. In this data mining query there is no aggregation on the name of the stop, i.e., the
patterns will contain the places where the moves happened. A sequential pattern that will be generated
by this query may be similar to the following:

{IbisHotel-NotreDame[morning], EiffelTower-IbisHotel[evening]} (s=0.04)

In this example, the moves from Ibis Hotel to Notre Dame in the morning, and from Eiffel Tower to Ibis
Hotel in the evening, occur in 4% of the trajectories, in this relative order.

4.2.3 Mining Trajectory Association Rules. An association rule consists of an implication of the form
X ⇒ Y (s) (c), where X and Y are disjoint sets of items, which in the context of our approach correspond
to sets of stops or moves. The support s of the rule X ⇒ Y is given as s(X ∪Y ). The confidence c is given
as s(X ∪ Y )/s(X).

Trajectory association rules represent associations among either stops or moves. A query to extract
this kind of pattern is similar to a query for computing frequent patterns, with at least one additional
parameter, the minimum confidence. Different parameters can be provided to filter the rules, according
to the algorithm implemented in the operations associateStops and associateMoves. An association rule
extracted from stops could be for instance,

Airport[morning] → Hotel[morning] (s=0.20) (c=0.70)

This rule is generated from a combination of two stops, and expresses that in 20% of the trajectories
the moving object has stoped at Airport and Hotel in the morning. Among the trajectories that stop at
Airport in the morning, 70% also stop at Hotel in the morning.

Association rules over moves contain at least one pair of stops in the antecedent and another pair in the
consequent of the rule, where each pair characterizes a move. For example,

Hotel-Museum[morning] → Monument-Restaurant[noon] (s= 0.15) (c=0.30)

This rule expresses that 15% of the trajectories that go from Hotel to Museum in the morning do also
go from Monument to Restaurant at lunch time.

The parameters minSup, item, timeG, and stopG have the same syntax and meaning as in the trajectory
frequent patterns. The parameter minConf is needed to filter the rules. It is a real number in the interval
[0..1].

Trajectory association rules can be interesting for finding relationships among either stops or moves.
Let us now consider a traffic management application where in general the user may be interested in the
discovery of patterns related to traffic jams. For this application, the first task would be to compute stops
with the method CB-SMoT (Palma et al. 2008), which is based on speed, and therefore would find traffic
jams and very low speed regions as stops. The important places for this application (candidate stops) are
the streets. The granularity of the time dimension is defined in a lower resolution, like for instance, every
hour in the period of rush hours. Having computed stops and moves taking the above characteristics into
account, the user may ask a question like: which are the relationships among low speed regions in a city
at different time periods during rush hours? This question may be answered by the following query:
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SELECT associateStops (item=NameStart, stopG=instance,
timeG=[07:00-08:00, 08:01-09:00, 16:00-17:00,
17:01-18:00, 18:01-19:00], minsup=0.01, minconf=0.40)

FROM stop

This query will generate association rules that have at least 1% support and at least 40% confidence.
Each item in the rule, either in the antecedent or the consequent, will contain the name of the stop and the
time period in which the stop starts. The stop granularity will be at the feature instance level for all stops,
and the time are specific hours within the rush hours. From this query the user may obtain association
rules like, for instance:

AvGrandArmee[07:00-08:00] → AvChampsElisees[08:01-09:00] (s=0.06) (c=0.40)

This rule expresses that if there is a traffic jam at Av. Grand Armee between 7 and 8 in the morning,
there is a probability of 40% to also be a traffic jam between 8 and 9 in the morning at Av. Champs
Elisees.

In this section we have seen that different kinds of patterns can be easily extracted from trajectories
using the proposed STDMQL, which provides powerful functionalities that transform raw trajectories into
a higher level of abstraction, to meet the context of the application according to the user’s needs. From
this higher abstraction level (stops and moves) the user can transform the granularities of space and time,
and therefore extract multiple-level semantic trajectory patterns.

In the following section we show how the semantic patterns are stored and can be filtered in post-
processing steps.

4.3 Storing and Querying Patterns

Since the objective of the proposed STDMQL is to extend spatial SQL with the minimal changes, we
opted to apply pattern constraints in post-processing steps. Therefore, each data mining function will
automatically store the extracted patterns in a database pattern relation. Having the patterns stored in
the database, the user does not need to analyze all the extracted patterns in order to find interesting
ones, but SQL queries can be executed to get specific patterns, as we will explain in the remaining of this
section.

4.3.1 Storing Patterns. Frequent patterns and sequential patterns are stored in the same format. The
difference relies on the meaning of the attribute pattern. While in sequential patterns the order of the items
is crucial, in frequent patterns it is not. The relation to store frequent patterns and sequential patterns
has the following structure:

frequentPattern/sequentialPattern (Pid integer, size integer,
pattern itemSetType, support real)

The attributes are respectively the identifier of the pattern, which is a sequential number, the number
of elements in each pattern (e.g. 2-itemset, 3-itemset), the pattern itself, which we represent and store as
a nested relation (Abiteboul et al. 1989), and the support of the pattern.

Because the pattern attribute is a complex object, or in other words, a set of items, it has to be
represented in a way to be easily queried. Representing a pattern as a nested relation we store the pattern
as data, what allows the user to do simple queries and join patterns with data. The type itemsettype, which
represents a nested relation, is defined by the following structure:

itemsettype (SFT1name varchar, SF1id integer, SFT2name varchar,
SF2id integer, startT varchar, endT varchar)

The pattern schema is similar to the structure of the move relation, which is used to store patterns
extracted from either stops or moves. Although the pattern structure is similar to the move relation, the
instances of a pattern represent a summarization of data, i.e., it is an aggregation of data transformed into
higher granularities. This is specially true for the time dimension, which will rarely generate a pattern if
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the original time stamp of either stops or moves has not been aggregated. The attributes of the relation
itemsettype have the following semantics:

• SFT1name: is the name of the spatial feature type for a stop pattern or the first stop in a move pattern.
• SF1id: is the identifier of the instance of the spatial feature in a stop pattern or the instance of the

first stop in a move pattern. This value will be NULL if the granularity level is different from feature
instance.

• SFT2name: corresponds to the name of the spatial feature type of the second stop in a move pattern.
The value of this attribute will be NULL if it represents a stop pattern;

• SF2id: is the identifier of the spatial feature of the second stop in a move pattern when the instance
granularity level was considered, or NULL otherwise.

• startT: represents the time period in which stops or moves have started, but only if NameStart or
NameStartEnd have been used to specify the item in the mining query. In case no time has been
considered, this attribute will be NULL.

• endT: is the time period in which stops or moves have ended, and when NameEnd or NameStartEnd
were specified in the mining task. In case no time has been considered, the value of this attribute will
be set as NULL.

Concerning trajectory association rules, the association pattern relation has the following structure:

associationPattern (Pid integer, antecedent itemsettype,
consequent itemsettype, support real,
confidence real)

The attributes are respectively the identifier of the rule, the antecedent of the rule, the consequent, the
support, and the confidence. In this type of pattern both antecedent and consequent are stored as nested
relations, and therefore both have the structure of the itemsettype.

4.3.2 Querying Patterns. Since the patterns are stored as database relations, any query which can be
performed over the data can also be executed over the patterns. Any filter or constraint may be applied
directly over the patterns. For instance, let us suppose that the user is interested only in association rules
that have Hotel in the consequent. This patterns can be retrieved by the following query:

SELECT *
FROM associationPattern
WHERE consequent.SFT1name=’Hotel’

Now let us suppose that the user is interested in association patterns which have weekend as the time di-
mension in the antecedent of the rule. A query like the following can be performed to obtain the constrained
rules:

SELECT *
FROM associationPattern
WHERE antecedent.startT=’weekend’ or antecedent.endT=’weekend’

Another kind of constraint that is common and useful to filter patterns is through the number of items
that compose the pattern. For instance, the user may want to know which are the frequent patterns
that contain touristic place and have more than 3 items. This pattern constraint can be specified by the
following query.

SELECT *
FROM frequentPattern
WHERE pattern.SFT1name=’touristic place’ AND size > 3

When mining data at the feature instance granularity level (e.g. IbisHotel, OakStreet) more sophisticated
queries can be performed. The user can join patterns and data. The items in a pattern correspond to
a geographic object, and therefore any pattern can be constrained by either the spatial or non-spatial
attributes of the geographic object. For example, suppose the user is interested only in sequential patterns
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over stops which pass at 2-star hotels in the morning. This pattern constraint can be expressed by the
following query:

SELECT *
FROM frequentPattern f, Hotel h
WHERE f.pattern.SFT1name=’Hotel’ AND

f.pattern.SF1id=h.id AND h.stars=2 AND
(f.pattern.startT=’morning’ OR f.pattern.endT=’morning’)

The power of storing the discovered patterns for further analysis allows even more complex queries,
where the geometry of either stops or moves can be used to filter the patterns. For instance, suppose the
user is interested in how many moves that cross the bridge Pont Neuf are contained in sequential patterns.
This query will join three relations: sequential patterns, moves, and bridge, as shown bellow.

SELECT count(m.*)
FROM sequentialPattern s, bridge b, move m
WHERE s.pattern.SFT1name=m.SFT1name AND

s.pattern.SF1id=m.SF1id AND
s.pattern.SFT2name=m.SFT2name AND
s.pattern.SF2id=m.SF2id AND
b.name=’Pont Neuf’ AND
intersects(m.the_move.geometry,b.geometry)

With a few query examples, we have seen in this section the usefulness of storing patterns for post-
processing. By storing the patterns as nested relations we provide to the user a simple way to execute
queries over the patterns, since patterns are stored as data. In the following section we give an overview
of the implementation of the proposed STDMQL.

4.4 A prototype for the STDMQL

The proposed data mining query language for trajectories can be implemented in several ways, like for
instance an extension of a spatial or spatio-temporal DBMS (database management system) or in a toolkit
with a friendly and graphical user interface. As a first prototype of our approach we have decided to
develop a tool for mining and querying trajectories, in order to not restrict the user to one specific
database management system. The proposed methodology involves spatio-temporal data (trajectories) and
geographic information, and to transform and export/import this kind of data among different DBMSs is
not a trivial task.

The prototype is an evolution of Weka-GDPM (Bogorny et al. 2006), which was specifically developed to
support automatic geographic data preprocessing for spatial data mining. Within Weka-GDPM the user is
able to connect to several DBMS through JDBC, like for instance Oracle, Postgres/PostGIS, and MySQL.
Weka-GDPM follows OGC standards, and therefore becomes interoperable with several spatial and spatio-
temporal DBMS, such as Hermes (Pelekis et al. 2006), which is a spatio-temporal DBMS developed on
the top of Oracle Spatial.

Figure 7 presents an overview of the framework T-Miner, which we have specially developed for mining
trajectories with the proposed STDMQL. On the bottom of the framework are the data, the patterns,
and the background knowledge. In the center are the data preprocessing and data mining modules, which
contain the components of the STDMQL. On the top of these modules we developed a graphical GUI to
provide to the user several facilities for querying and mining both data and patterns.

Most functionalities of the proposed STDMQL have been implemented in the prototype in order to
evaluate the methodology for trajectory knowledge discovery. The system connects to the user specified
spatial or spatio-temporal DBMS that should contain trajectories and all geographic object types (database
relations) that are relevant for the application. From the set of objects the user can choose the trajectory
dataset and all geographic object types that will be considered as the candidate stops. Having selected the
trajectory dataset and the candidate stops, the module generateSM will generate semantic trajectories,
and create and instantiate in the database, a relation of stops and a relation of moves. According to the
application, the user can choose among the methods I-SMoT and CB-SMoT to compute stops and moves,
which are respectively based on intersection and speed.
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Figure 7. T-Miner - a Framework for Trajectory Querying and Mining

Stops and moves are stored in the database at the lowest granularity level, i.e., at the feature instance
granularity. Before mining the user can transform the granularity of the space and time dimension, using
the respective stopG and timeG functions. For the granularity transformation these functions may use
background knowledge as concept hierarchies and pre-defined time granularities, which are stored in the
knowledge base.

After the generalization, the user can apply the data mining algorithms to compute frequent stops/
moves, sequential stops/moves and association stops/moves. The output of these modules are the patterns,
which are stored in the database.

At any time, from the graphical GUI the user can directly query the raw trajectories, the spatial and
non-spatial data, the semantic trajectories and the patterns.

So far we have tested the prototype with real data stored in a Postgresql/Postgis database, using the
sequential pattern mining method.

5 Conclusions and Future Work

Trajectory data are normally available as sample points, what makes their analysis in different application
domains expensive from a computational point of view and quite complex from a user’s perspective.
Although several works have been developed so far for both querying and mining trajectories of moving
objects, these works have focused on the geometric properties of trajectories and, therefore, deal with
trajectory sample points. Indeed, most of these works focus on trajectory similarity and dense regions.

In this paper we addressed the problem of querying and mining trajectories from a semantic point of view.
We have considered trajectories from a higher abstraction level, and have focused on the semantic properties
of trajectories, therefore providing mechanisms to extract more meaningful and human understandable
patterns. More specifically, we have presented through a data mining query language for trajectories a
new methodology for extracting multiple-level patterns from moving object data. We introduced powerful
data preprocessing operations which allow the user to transform trajectory sample points into higher levels
of abstraction, in order to extract semantic and comprehensive patterns from trajectories. To accomplish
this goal we adopted the model of stops and moves, where the user can specify the important parts of
trajectories that are specially relevant for the application.
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In summary, we make the following contributions:

• We extend spatial SQL with operations for semantic trajectory knowledge discovery. The aim is to
facilitate the process to the user, which may use spatial SQL without having to learn a new language;

• We provide a data preprocessing strategy to add semantic geographic information to trajectories, before
applying data mining techniques. This strategy tremendously simplifies and optimizes the data mining
step. More specifically, we provide two different methods to automatically integrate trajectory samples
and geographic information into a higher abstraction level, where the user can define the important
parts of trajectories. This aggregation is of fundamental importance for the discovery of patterns in real
application of different domains;

• We provide powerful data discretization functions for space and time, which allows the user to extract
patterns at several granularity levels;

• The output of the proposed language are semantic trajectory patterns, which are stored in the database
for further querying. By generating semantic patterns, which are at a higher level of abstraction, we
significantly reduce the complexity of pattern interpretation in post-processing, which is still a human-
dependent task in the discovery process;

• The language is simple and can be implemented in several spatial or spatio-temporal database manage-
ment systems, or in a toolkit with friendly and graphical user interfaces. We have implemented a first
prototype of the language in a tool, in order to not restrict the user to one specific DBMS.

By adopting the model of stops and moves of trajectories we provide to the user aggregated information
about space and time. Therefore, we facilitate not only trajectory mining, but also trajectory querying. Any
information about trajectories can be directly obtained with queries over stops and moves. The generation
of stops and moves in a preprocessing step tremendously simplifies and optimizes trajectory queries. It
reduces the query complexity in both formulation and computational time (Alvares et al. 2007b).

As future work we will extend the proposed language to support trajectory classification, and investigate
the use of ontologies to infer new knowledge in the trajectory knowledge discovery process. We will also
evaluate the possibility to implement the proposed STDMQL as an extension of a spatio-temporal DBMS.
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