
A Framework for Trajectory Data Preprocessing for Data Mining

Luis Otavio Alvares, Gabriel Oliveira, Vania Bogorny

Instituto de Informatica – Universidade Federal do Rio Grande do Sul
Porto Alegre – Brazil

{alvares,gpaoliveira,vbogorny,}@inf.ufrgs.br

Abstract

Trajectory data play a fundamental role to an increasing
number of applications, such as traffic control, transporta-
tion management, animal migration, and tourism. These
data are normally available as sample points. However, for
many applications, meaningful patterns cannot be extracted
from sample points without considering the background ge-
ographic information. In this paper we present a framework
to preprocess trajectories for semantic data analysis and
data mining. This framework provides two different meth-
ods to add semantic geographic information to the impor-
tant parts of trajectories from an application point of view.

1. Introduction

The increasing use of GPS devices to capture the posi-
tion of moving objects demands tools for the efficient anal-
ysis of large amounts of data referenced in space and time.
Current analysis over trajectories of moving objects have
basically to be performed manually. Another problem is
that most techniques for the analysis of this kind of data
and more sophisticated approaches as data mining algo-
rithms consider only the raw trajectories, that are generated
as pure (x,y,t) coordinates. In the last years, some works
have been developed for trajectory data analysis, such as
[5], in particular for discovering dense regions or similar
trajectories. However, these approaches consider only the
geometric properties of trajectories, what is very limited for
many real applications.

GPS and other electronic devices that capture moving
object trajectories do not collect the background geographic
information. We claim that for several real applications
there is a need to preprocess trajectories to add additional
information that gives to trajectories more meaningful char-
acteristics. Indeed, this should be the first step, before any
trajectory data analysis. We claim that the first additional in-
formation to be considered, is the geographic context where
trajectories are captured.

Figure 1 shows an example where we can observe the

necessity of extra information to understand trajectories.
Figure 1 (left) shows an example of a geometric trajectory,
in which the objects move to the same region at a certain
time. Considering a pure geometric approach where only
the trajectory points themselves are used for mining it could
only be discovered that the four trajectories meet in a certain
region, or the trajectories are dense in this region at a cer-
tain time. In Figure 1 (right), considering the background
geographic knowledge, the moving objects go from differ-
ent hotels (H) to meet the Eiffel Tower at a certain time.
From these trajectories with some semantics, the moving
pattern from Hotel to Eiffel Tower could be discovered. In
this example, it is clear that the origin of the trajectories is in
sparse locations that have the same semantics (it is a hotel).
A pure geometric trajectory data mining algorithm would
not be able to discover such semantic pattern.

In [2] we presented a spatial framework to automatically
preprocess geographic data for data mining. In this paper
we present an intelligent spatio-temporal framework to pre-
process trajectories, in order to transform trajectory sample
points in a higher level of abstraction, adding geographic
semantics to trajectories.

The main contribution of this work is a framework to al-
low a user to both analyze and mine trajectories in a high
level of abstraction, considering the needs of the applica-
tion. This framework implements two different methods to
add semantics to raw trajectories: one is based on the inter-
section of trajectories with places relevant to the application
and the other is based on the speed of the trajectory. Fur-
thermore, different classical data mining algorithms can be
applied in the data mining step.

The remaining of this paper is structured as follows: Sec-
tion 2 introduces some concepts of semantic trajectories,
Section 3 presents the proposed framework for trajectory
data analysis and mining, Section 4 presents an implemen-
tation of the framework and some experiments, and Sec-
tion 5 concludes the paper and suggests directions of future
works.

2. Basic Concepts

Recently Spaccapietra [8] introduced the first conceptual
model for trajectory data, with two key concepts: stops and

1

Figure 1. (left) Geometric (raw) trajectories and (right)
semantic trajectories

moves. Stops are important places of the trajectory from
an application point of view, where the moving object has
stayed for a minimal amount of time. Moves are subtrajec-
tories between two consecutive stops.

To better understand what stops and moves are, we
present one formal model where geographic object types
are defined a priori by the user as the important places of
the trajectory. This model has been introduced in [1] for
querying trajectories, but it is not the only way to formally
define stops and moves. It will be briefly presented in the
following subsections.

2.1. Trajectory Samples and Candidate Stops

Trajectory data are normally available as sample points.

Definition 1 A sample trajectory is a list of space-time
points 〈p0, p1, . . . , pN 〉, where pi = (xi, yi, ti) and xi, yi,
ti ∈ R for i = 0, . . . , N and t0 < t1 < · · · < tN .

To transform trajectory sample points into stops and
moves it is necessary to provide the important places of
the trajectory which are relevant for the application. These
places correspond to different spatial feature types (spatial
object types). For each relevant spatial feature type that is
important for the application, a minimal amount of time is
necessary, such that a trajectory should continuously inter-
sect this feature in order to be considered a stop. This pair
is called candidate stop.

Definition 2 A candidate stop C is a tuple (RC , ∆C),
where RC is a polygon in R2 and ∆C is a strictly posi-
tive real number. The set RC is called the geometry of the
candidate stop and ∆C is called its minimum time duration.

An application A is a finite set {C1 = (RC1 , ∆C1), . . . ,
CN = (RCN

, ∆CN
)} of candidate stops with mutually non-

overlapping geometries RC1 , . . . , RCN
.

In case that a candidate stop is a point or a polyline, a polyg-
onal buffer is generated around this object, and thus it is
represented as a polygon in the application, in order to over-
come spatial uncertainty.

2.2. Stops and Moves

Definition 3 Let T be a trajectory and let

A = {C1 = (RC1 , ∆C1), . . . , CN = (RCN
, ∆CN

)}

be an application. Suppose we have a subtrajectory 〈(xi, yi,
ti), (xi+1, yi+1, ti+1), . . . , (xi+`, yi+`, ti+`)〉 of T , where
there is a (RCk

, ∆Ck
) in A such that ∀j ∈ [i, i + `] :

(xj , yj) ∈ RCk
and |ti+` − ti| ≥ ∆Ck

, and this subtra-
jectory is maximal (with respect to these two conditions),
then we define the tuple (RCk

, ti, ti+`) as a stop of T with
respect to A.

A move of T with respect to A is one of the following
cases: (i) a maximal contiguous subtrajectory of T in be-
tween two temporally consecutive stops of T ; (ii) a maximal
contiguous subtrajectory of T in between the initial point of
T and the first stop of T ; (iii) a maximal contiguous subtra-
jectory of T in between the last stop of T and the last point
of T ; (iv) the trajectory T itself, if T has no stops.

When a move starts in a stop, it starts in the last point
of the subtrajectory that intersects the stop. Analogously,
if a move ends in a stop, it ends in the first point of the
subtrajectory that intersects the stop.

It is important to notice that the place where a stop oc-
curs is a spatial feature (relevant geographic object) which is
intersected by a trajectory for the minimal amount of time.
This spatial feature will enrich the trajectory with its spa-
tial and non-spatial information. For instance, if a hotel is a
stop, its geometry and the non-spatial attributes (e.g. name,
stars, price) is information that can be further used for both
querying and mining trajectories.

Definition 4 A Semantic Trajectory S is a finite sequence
{I1, I2, ..., In} where IK is a stop or a move.

3. The proposed framework

Figure 2 shows an interoperable framework with support
to the whole discovery process. It is composed of three ab-
straction levels: data repository, data preparation, and data
mining.

At the bottom are the geographic data repositories, stored
in GDBMS (geographic database management systems),
constructed under OGC [6] specifications. On the top are
the data mining toolkits or algorithms. In the center is the
trajectory data preparation level which adds semantics to
trajectories according to the application domain. In this
level the data repositories are accessed through JDBC con-
nections and data are retrieved, preprocessed, and trans-
formed into the format required by the mining tool/algo-
rithm.

There are three main modules to implement the tasks of
trajectory data preparation for mining: Clean Trajectories,
Add Semantics, and Transformation, which are described in
the sequence.

2

Figure 2. The Semantic Trajectory Mining Framework

3.1. Clean trajectories

The Clean Trajectories module performs many verifica-
tions over the trajectory dataset in order to eliminate noise,
what is very common in this kind of data, and assure that
the trajectory dataset is in the format required by the Add
Semantics module.

Some of the verifications include: i) the calculated speed
between two consecutive points should not be greater than
a specified threshold; ii) the trajectory points should be in
a temporal order; iii) the trajectories should not have more
than one point with the same timestamp; iv) each trajectory
should have a given minimum number of points.

3.2. Add Semantics

To prepare trajectory data to data mining, the main step
is to add semantics to these trajectories. We do that by using
the concepts of stops and moves. Two algorithms have been
developed so far. The first one, introduced in [1], considers
the intersection of a trajectory with the user-specified rel-
evant feature types for a minimal time duration (candidate
stops), which we call IB-SMoT (Intersection-Based Stops
and Moves of Trajectories).

In general words, the algorithm verifies for each point
of a trajectory T if it intersects the geometry of a candidate
stop RC . In affirmative case, the algorithm looks if the du-
ration of the intersection is at least equal to a given threshold
∆C . If this is the case, the intersected candidate stop is con-
sidered as a stop, and this stop is recorded. If a point does
not belong to a subtrajectory that intersects a candidate stop
for ∆C it will bee part of a move.

Figure 3 illustrates this method. In the example, there
are four candidate stops with geometries RC1 , RC2 , RC3 ,
and RC4 . Let us consider a trajectory T represented by the
space-time points sequence 〈p0, . . . , p15〉 and t0, . . . , t15
are the time points of T . First, T is outside any candi-
date stop, so we start with a move. Then T enters RC1

at point p3. Since the duration of staying inside RC1 is long
enough, (RC1 , t3, t5) is the first stop of T , and 〈p0, . . . , p3〉

Figure 3. Example of a trajectory with four candidate
stops and two stops

is its first move. Next, T enters RC2 , but for a time interval
shorter than ∆C2 , so this is not a stop. We therefore have
a move until T enters RC3 , which fulfills the requests to
be a stop, and so (RC3 , t13, t15) is the second stop of T and
〈p5, . . . , p13〉 is its second move.

The second algorithm is called CB-SMoT [7], and is a
clustering method based on the variation of the speed of the
trajectory. The intuition of this method is that the parts of a
trajectory in which the speed is lower than in other parts of
the same trajectory, correspond to interesting places. CB-
SMoT is a two-step algorithm. In the first step, the slower
parts of one single trajectory are identified, using a spatio-
temporal clustering method that is a variation of the DB-
SCAN [3] algorithm considering one-dimensional line (tra-
jectories) and speed. In the second step, the algorithm iden-
tifies where these potential stops (clusters) are located, con-
sidering the candidate stops. In case that a potential stop
does not intersect any of the given candidates, it still can be
an interesting place. In order to provide this information to
the user, the algorithm labels such places as unknown stops.
Unknown stops are interesting because although they may
not intersect any relevant spatial feature type given by the
user, a pattern can be generated for unknown stops if sev-
eral trajectories stay for a minimal amount of time at the
same unknown stop. In this case, the user may investigate
what this unknown stop is.

Figure 4 illustrates the method CB-SMoT. Considering
the trajectory T = 〈p0, p1, . . . , pn〉 represented in Fig-
ure 4, the first step is to compute the clusters. Suppose
that T has 4 potential stops, the clusters G1, G2, G3 and
G4, represented by ellipsis. In this example the user has
specified 4 candidate stops, identified by the rectangles
RC1, RC2, RC3 and RC4. The cluster G1 intersects the
candidate stop RC1 for a time greater than ∆c1, then the
first stop of the trajectory is RC1. The same occurs with the
cluster G2, considering RC3, which is the second stop of
the trajectory. The clusters, G3 and G4 do not intersect any
candidate stop. Therefore, G3 and G4 are unknown stops.

The two methods cover a relevant set of applications. IB-
SMoT is interesting in applications where the speed is not
important, like tourism and urban planning. In this kind of
application, the presence or the absence of the moving ob-
ject in relevant places is more important. However, in other

3

Figure 4. Example of a trajectory with 2 stops and 2 un-
known stops

applications like traffic management, CB-SMoT, which is
based on speed, would be more appropriate.

The output of the Add Semantics module are relations of
stops and moves in the database. The schema of the stop
relation has the following attributes:

STOP (Tid integer, Sid integer, SFTname varchar,
SFid integer, startT timestamp,
endT timestamp)

where:

• Tid: is the trajectory identifier.

• Sid: is the stop identifier. It is an integer value starting
from 1, in the same order as the stops occur in the tra-
jectory. This attribute represents the sequence as stops
occur in the trajectory.

• SFTname: is the name of the relevant spatial feature
type (geographic database relation) where the moving
object has stayed for the minimal amount of time.

• SFid: is the identification of the instance (e.g. Ibis)
of the spatial feature type (e.g. Hotel) in which the
moving object has stopped.

• startT: is the time in which the stop has started, i.e.,
the time that the object enters in a stop.

• endT: is the time in which the moving object leaves the
stop.

In a relational model, the attributes SFTname and SFid are
a foreign key to a geographic relation. Therefore, the stop
relation significantly facilitates querying trajectories from a
semantic point of view. Queries can be performed consid-
ering both spatial and non-spatial attributes of any spatial
object that represents a stop.The relation of moves has the
following schema, with four attributes more than the stop
relation:

MOVE (Tid integer, Mid integer, SFT1name varchar,
SF1id integer, SFT2name varchar,
SF2id integer, startT timestamp,
endT timestamp, the_move multiline)

where:

• Mid: is the identifier of the move in the trajectory. It
starts with 1, in the same order as the moves occur in
the trajectory.

• SFT1name and SFT2name : are the names of the spa-
tial feature type in which the move respectively starts
and finishes.

• SF1id and SF2id: are the identifier (feature instance)
of the start and end stop of the move.

• the move: is the set of points that corresponds to the
spatial properties of a move.

3.3. Transformation

The Transformation module uses as input the tables of
stops and moves in the database, generated by the Add Se-
mantics module and generates an output file in the format
required by a specific mining algorithm or tool. Although
each tool can use a specific format, there are two main for-
mat types. One, the most used, can be seen as an horizon-
tal type, where each line corresponds to one trajectory and
each column corresponds to one stop or move. The other
type is a vertical one, where each line corresponds to a stop
or move of a trajectory. This second type is mostly used for
sequential pattern mining.

Another key issue performed by the Transformation
module is to generate the output file in the granularity level
specified by the user. In fact, the stop and move table is
generated in the lowest granularity level (instances of ob-
jects for the spatial dimension and timestamp for the time
dimension). However, it is almost impossible to find pat-
terns at this granularity level. It is very difficult to some
events occur in the same second, for instance several tra-
jectories arriving at home at exactly the same moment. To
overcome this problem, in our framework the user can spec-
ify different granularity levels, for instance to consider in-
tervals of one hour. This means that one event that occurs at
18:10PM will be considered at the same case as another oc-
curred at 18:20PM. Depending on the application, the time
granularity can be year, month, week, day, hour, etc. Anal-
ogously, the space granularity can change, including even
the semantics of the object. For instance, in the example of
Figure 1 the space granularity was the class of the object
(Hotel), what will allow that a pattern from Hotel to Eiffel
Tower could be discovered. In this case, Hotel is at the fea-
ture type granularity level and the Eiffel Tower at instance
granularity level. If both were at feature type granularity
level, the discovered pattern could be from Hotel to Touris-
tic Place.

Furthermore, the user can specify what will be consid-
ered in the mining step: (i) only the space dimension; (ii)
the space and the time of the beginning of the stop or move;
(iii) the space and the time of the end of the stop or move;
or (iv) the space and the time of beginning and ending of
the stop or move.

4

4. Validation and experiments

The proposed framework was implemented in the java
programming language in a module called STPM (Semantic
Trajectory Preprocessing Module) and tested using Weka as
data mining tool and PostGIS as data repository. Weka[4] is
a free and open source non-spatial data mining toolkit with
several data mining algorithms.

With the information specified by the user, the STPM
module connects to the database through JDBC and can ex-
ecute different tasks. Usually, the first one is to clean the tra-
jectory dataset and put it in the format required by STPM.
After that, the user can generate semantic trajectories. To
do this, he should supply some information to the program
like the method (IB SMoT or CB SMoT), the spatial fea-
ture types of interest (candidate stops) with the respective
minimum time duration in order to be considered a stop,
etc. Before mining, the last step is to generate an .arff file
(the native Weka input format), which can be either in the
horizontal or vertical type.

So far, we have tested the prototype with data stored in
a Postgresql/Postgis database. We have performed some
experiments with real trajectory data collected in the city
of Rio de Janeiro. A first experiment was performed con-
sidering the districts of Rio de Janeiro and the trajecto-
ries. We used the IB-SMoT method and frequent pat-
tern mining to find the districts crossed by a large num-
ber of trajectories (minsup=10%) considering time inter-
vals (07:00-09:00, 09:01-12:00, 12:01-17:00, 17:01-20:00,
other). Some frequent patterns found are:

{Barra[07:00-09:00], Joa[07:00-09:00], SaoConrado[07:00-09:00]}
(s= 0.18)

{Joa[17:01-20:00], SaoConrado[17:01-20:00]} (s= 0.2)

The first pattern expresses that 18% of the trajectories
cross the districts Barra, Joa and SaoConrado between 7AM
and 9AM. The second pattern means that 20% of the trajec-
tories cross Joa and SaoConrado in the period between 5PM
and 8PM.

In a second experiment we used the set of streets as back-
ground geographic information, and the CB-SMoT method
to generate stops. We also used more refined time intervals.
The objective was to investigate the streets and periods of
slow traffic. An example of an association rule found in this
experiment is:

ElevadaDasBandeiras[18:01-18:30]→
AvenidaDasAmericas[18:31-19:00] (s= 0.05) (c=0.58)

This rule expresses that 58% of the trajectories with slow
traffic at Elevada das Bandeiras between 6PM and 6:30PM,
also have slow traffic at Avenida das Americas between
6:31PM and 7PM. This pattern of slow traffic occurs in 8%
of the trajectories.

We can observe by the examples above that this frame-
work facilitates the analysis of the obtained results from a
user point of view. The output is in a high abstraction level,
what we call semantic patterns, in opposition of pure geo-
metric patterns generated by other approaches.

5. Conclusions and Future Work

Trajectory data are normally available as sample points,
what makes their analysis in different application domains
expensive from a computational point of view and quite
complex from a user’s perspective. A higher abstraction
level considering semantics is needed.

This paper presented a framework to preprocess sample
point trajectories for semantic trajectory data analysis and
mining. The framework is application and domain indepen-
dent.

As future ongoing work we are extending the framework
in order to consider other methods to add semantics to tra-
jectories.

Acknowledgements

This work was partially supported by the Brazilian agen-
cies CAPES (Prodoc Program) and CNPq. We would like
to thank the Traffic Engineering Company of Rio de Janeiro
for the trajectory data.

References

[1] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo,
B. Moelans, and A. Vaisman. A model for enriching trajec-
tories with semantic geographical information. In ACM-GIS,
pages 162–169, New York, NY, USA, 2007. ACM Press.

[2] V. Bogorny, P. M. Engel, and L. O. Alvares. Geoarm: an
interoperable framework to improve geographic data prepro-
cessing and spatial association rule mining. In K. Zhang,
G. Spanoudakis, and G. Visaggio, editors, SEKE, pages 79–
84, 2006.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In E. Simoudis, J. Han, and U. M. Fayyad, edi-
tors, Second International Conference on Knowledge Discov-
ery and Data Mining, pages 226–231. AAAI Press, 1996.

[4] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer,
I. H. Witten, and L. Trigg. Weka - a machine learning work-
bench for data mining. In O. Maimon and L. Rokach, editors,
The Data Mining and Knowledge Discovery Handbook, pages
1305–1314. Springer, 2005.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajec-
tory pattern mining. In P. Berkhin, R. Caruana, and X. Wu,
editors, KDD, pages 330–339. ACM Press, 2007.

[6] OGC. Opengis standards and specifications. Available at:
http://http://www.opengeospatial.org/standards. Accessed in
August 2008, 2008.

[7] A. T. Palma, V. Bogorny, and L. O. Alvares. A clustering-
based approach for discovering interesting places in trajec-
tories. In ACMSAC, pages 863–868, New York, NY, USA,
2008. ACM Press.

[8] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo,
F. Porto, and C. Vangenot. A conceptual view on trajectories.
Data and Knowledge Engineering, 65(1):126–146, 2008.

5

