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ABSTRACT
The increasing abundance of data about the trajectories of
personal movement is opening up new opportunities for an-
alyzing and mining human mobility, but new risks emerge
since it opens new ways of intruding into personal privacy.
Representing the personal movements as sequences of places
visited by a person during her/his movements - semantic
trajectory - poses even greater privacy threats w.r.t. raw
geometric location data. In this paper we propose a pri-
vacy model defining the attack model of semantic trajectory
linking, together with a privacy notion, called c-safety. This
method provides an upper bound to the probability of in-
ferring that a given person, observed in a sequence of non-
sensitive places, has also stopped in any sensitive location.
Coherently with the privacy model, we propose an algorithm
for transforming any dataset of semantic trajectories into a
c-safe one. We report a study on a real-life GPS trajec-
tory dataset to show how our algorithm preserves interesting
quality/utility measures of the original trajectories, such as
sequential pattern mining results.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases; K.4.1
[Public Policy Issues]: Privacy

General Terms
Algorithms
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The increasing abundance of data about the trajectories of
personal movement, obtained through mobile phones, navi-
gation and GPS devices, and so on, is opening up new av-
enues for analyzing and mining human mobility, with appli-
cations in diverse scientific and social domains. Besides new
opportunities, also new risks emerge, as knowing the where-
abouts of people also opens new ways of intruding into their
personal privacy; this observation is at the basis of some re-
cent research works that addressed the problem of protect-
ing privacy while disclosing trajectory data. However, the
progress on mobile device technology, geographic informa-
tion and mobility data analysis and mining are creating en-
tirely new forms of trajectory data, with far richer semantic
information attached to the traces of personal mobility: we
are rapidly moving from raw trajectories, i.e., sequences of
time-stamped generic points sampled during the movement
of a sensed device, to what we call semantic trajectories,
i.e., sequences of stops and moves of a person during her/his
movements, where each location of stop can be attached to
some semantics, or purpose - either by explicit sensing or by
inference.

In this paper, we argue that the new form of data of se-
mantic trajectories poses even greater privacy threats w.r.t.
raw location data, and we propose a privacy model to face
this challenging problem. The first problem introduced by
this form of data is that, from the fact that a person has
stopped in a certain sensitive location, e.g., an oncology
clinic, an attacker can derive private personal information
of the health of such person. So, in this context, a place is
sensitive if it allows to infer personal sensitive information of
an individual. Moreover, it is easy to show that guarantee-
ing the privacy in semantic trajectories is not trivial. In fact,
just hiding a person’s trajectory into a crowd, following the
idea of k-anonymity, is not enough for a robust protection:
when individuals in a crowd of people with similar trajecto-
ries stop in the same sensitive place, we can easly infer the
individual sensitive information.

The problem resembles the discussion about k-anonymity
and l-diversity in relational, tabular data. Here, we essen-
tially devise a similar privacy model for semantic trajec-
tories, with reference to a background knowledge defining
which are the sensitive and non-sensitive locations corre-
sponding to stops. We represent this background knowledge
through a place taxonomy, describing sensitive and non-
sensitive locations at different levels of abstraction (e.g., a
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turistic landmark, a museum, the Louvre museum; a health-
related service, a hospital, the Childrens’ Hospital).

The main contribution of this paper is the definition of
the attack model of semantic trajectory linking, which for-
malizes the mentioned privacy-violating inferences, together
with a privacy notion, called c-safety, which provides an
upper bound c to the probability of inferring that a given
person, observed in a sequence of non-sensitive places, has
also stopped in any sensitive location.

Coherently with the introduced privacy model, we propose
an algorithm for transforming any dataset of semantic tra-
jectories into a c-safe one, which can be safely published un-
der the specified privacy safeguard. Our algorithm is based
on the generalization of places driven by a place taxonomy,
thus providing a way to preserve the semantics of the gen-
eralized trajectories. We conduct a study on a real-life GPS
trajectory dataset, and show how our algorithm preserves
interesting quality/utility measures of the original trajecto-
ries. In particular, we show that sequential pattern mining
results are preserved.

The rest of the paper is organized as follows. Section 2
discusses the relevant related studies on privacy issues in
movement data. In Section 3 some basic definitions and
background information are given. Section 4 introduces the
problem of anonymity in semantic trajectories. In Section 5
we describe the privacy model. Section 6 describes the se-
mantic generalization approach for trajectories. In Section 7
we discuss the experimental results of the application of our
method on the real-world moving object dataset. Finally,
Section 8 concludes the paper.

2. RELATED WORK
Many research studies have focused on the design of tech-

niques for privacy-preserving data mining [2] and for privacy-
preserving data publishing. The basic operation for data
publishing is to replace personal identifiers with pseudonyms.
However, in [19] authors showed that this simple operation is
insufficient to protect privacy. They proposed k-anonymity
to make each record indistinguishable with at least k − 1
other records thus protecting data against the linking attack.
The k-anonymity framework is the most popular method
for the anonymization of spatio-temporal data and, for rela-
tional datasets, is based on the attribute distinction among
quasi identifiers (attributes that could be used for linking
with external information) and sensitive attributes (infor-
mation to be protected) [21]. Although it has been shown
that finding an optimal k-anonymization is NP-hard [12]
and that k-anonymity has some limitations [11, 10], this
framework is still very relevant and it is often used in the
studies on privacy issues in transactional databases [9] and
in location-based services (LBSs) [8, 13, 14], as well as on
the anonymity of trajectories [1, 16, 24, 15].

In [9] authors present a k-anonymization approach for
transactional database. This method is based on a top-down
generalization and presents all the limitation deriving from
the k-anonymity that we solve with our approach.

In [1], the authors propose the notion of (k, δ)-anonymity
for moving object databases, where δ represents the pos-
sible location imprecision. The authors also proposed an
approach, called Never Walk Alone based on trajectory clus-
tering and spatial translation. In [16] Nergiz et al. addressed
privacy issues regarding the identification of individuals in
static trajectory datasets. They provide privacy protection

by first enforcing k-anonymity and then randomly recon-
structing a representation of the original dataset from the
anonymization. In [24] different objects may have different
quasi-identifiers and thus, anonymization groups associated
with different objects may not be disjoint. Therefore, an
innovative notion of k-anonymity based on spatial gener-
alization is provided in order to generate anonymity groups
that satisfy the novel notion of k-anonymity: Extreme Union
and Symmetric Anonymization. In [15] authors present a
method for the anonymization of movement data combin-
ing the notions of spatial generalization and k-anonymity
and show how the results of clustering analysis are faith-
fully preserved.

Another approach based on the concept of k-anonymity is
proposed in [18], where a framework for the k-anonymization
of sequences of regions/locations is presented. The authors
also propose an approach that is an instance of their frame-
work, which enables protected datasets to be published while
preserving the data utility for sequential pattern mining
tasks.

In [4, 22], suppression-based approaches for trajectory
data are suggested. In the first one, the objective is to sani-
tize the input database in such a way that a set of sensitive
patterns is hidden. In the second one, given the head of the
trajectories, reduces the probability of disclosing the tail of
the them. It is based on the assumption that different at-
tackers know different and disjoint portions of the trajecto-
ries and the data publisher knows the attacker’s knowledge.

However, all these approaches deal with the anonymiza-
tion of trajectories from the geometric point of view. So far,
to the best of our knowledge, no approaches face the problem
of anonymizing semantic trajectories. In the context of LBS
the work [6] proposes a solution to protect personal location
information when the adversary is aware of the semantic lo-
cations. The main difference between this work and ours is
that we anonymize a dataset of semantic trajectories for a
safe publication while [6] anonymizes a user’s location dur-
ing the communication with a LBS provider upon a service
request.

Lastly, in [23] Valls et al. consider the problem of privacy
preserving for sequence of events, which has similar charac-
teristic to semantic trajectories data. Their approach finds
clusters of records and then for each cluster constructs a pro-
totype used to substitute the original values in the masked
version of the data of the cluster.

3. BACKGROUND
In this section we briefly recall some basic concepts which

are useful to understand the proposed anonymization frame-
work, namely the notion of semantic trajectory as sequence
of stops and moves and an introduction to ontologies and
taxonomies.

3.1 Semantic trajectories
A trajectory has been defined as the spatio-temporal evo-

lution of the position of a moving entity. A trajectory is
typically represented as a discrete sequence of points. An in-
terpolation function between two consecutive points approx-
imates the movements between two sample points. Recently
a new trajectory concept has been introduced in [20] for rea-
soning over trajectories from a semantic point of view, the
semantic trajectory, based on the notion of stops and moves.
Stops are the important parts of a trajectory where the mov-
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ing object has stayed for a minimal amount of time. Moves
are the sub-trajectories describing the movements between
two consecutive stops. Based on the concept of stops and
moves the user can enrich trajectories with semantic infor-
mation according to the application domain [5]. To illustrate
these concepts let us consider some basic definitions.

Definition 1 (Trajectory Sample). A Trajectory
Sample is a list of space-time points 〈x0, y0, t0〉, . . . , 〈xN , yN ,
tN 〉, where xi, yi ∈ R, ti ∈ R+ for i = 0, 1, . . . , N , and
t0 < t1 < t2 < · · · < tN .

Important parts of a trajectory, i.e., stops, correspond to
the set of x, y, t points of a trajectory sample that are im-
portant from an application point of view. The important
parts correspond to places that can be different types of
geographic locations as hotels, restaurants, museums, etc;
or different instances of geographic places, like Ibis Hotel,
Louvre Museum, and so on. For every type of important
place a minimal amount of time is defined, such that a sub-
trajectory should continuously intersect this place for it to
be considered a stop. A set of important places characterizes
a semantic trajectory.

Definition 2 (Semantic Trajectory). Given a set
of important places I, a Semantic Trajectory T = {p1, p2, . . . ,
pn} with pi ∈ I is a temporally ordered sequence of impor-
tant places, that the moving object has visited.

Figure 1 (2) illustrates the concept of semantic trajectory
for the trajectory sample shown in Figure 1(1). In the se-
mantic trajectory the moving object first was at home (stop
1), then he went to work (stop 2), later he went to a shop-
ping center (stop 3), and finally the moving object went to
the gym (stop 4).

Figure 1: Example of Trajectory Sample and Se-
mantic Trajectory

The important parts of the trajectories (stops) are appli-
cation dependent, and are not known a priori, therefore they
have to be computed. Different methods have been proposed
for computing important parts of trajectories. For instance,
the method SMoT [3] verifies the intersection of the trajec-
tory with a set of user defined geographic places, for a min-
imal amount of time. The method CB-SMoT (Clustering-
based stops and moves of trajectories) [17] is a more sophis-
ticated method that computes important places based on
the variation of the speed of the trajectory. The important
places are those in which the speed is lower than the av-
erage speed of the trajectory. After the low speed clusters
have been computed, the method verifies for each cluster if
it intersects the user defined geographic places, i.e., the pos-
sible places that were visited by the user. In positive case,
this place is added to the sub-trajectory that intersects this
place, building a semantic trajectory. Low speed clusters
which do not intersect any geographic place are labeled as

unknown stops. For the purpose of this paper, the unknown
stops are simply omitted since not associated to any inter-
esting place.

3.2 Domain Ontologies
The definition given by [7] is used to define ontology as

”a technical term denoting an artifact that is designed for a
purpose, which is to enable the modeling of knowledge about
some domain, real or imagined”. Such ontologies determine
what can be represented and what can be inferred about a
given domain, using a specific formalism of concepts. Usu-
ally, the term domain ontology is used to refer to ontologies
describing the main concepts and relations of a given do-
main, i.e. urban or medical. Ontology basic elements are:
concepts (or classes), which describe the common properties
of a collection of individuals; properties are binary relations
between concepts; instances represent the actual individuals
of the domain. We say that a given individual is an instance
of a concept when the individual properties satisfies the con-
cept definition. A special property called is a represents the
kind of , or specialization, relationship between concepts.
An ontology having only is a relationships is called taxon-
omy. Formally, a taxonomy is a 2-tuple Tax := {C,HC},
where C is a set of concepts, HC is a taxonomy or concept-
hierarchy, which defines the is a relations among concepts
(HC(c1, c2) means that c1 is a sub-concept of c2). A taxon-
omy of places of interest represents the geographical places
of interest in a given domain and is used during the general-
ization phase in the anonymization algorithm presented later
in the paper. Here, the set of stop places obtained from the
computation of semantic trajectories are the leaves of Tax,
namely the stops places are semantically organized in a hier-
archy. For example, we have that R1 is a kind of Restaurant
which is a kind of Enternainment, etc. Each concept in the
taxonomy describes the categories of the geographical object
of interest for the application domain. Figure 2 depicts an
example of the taxonomy of places of interest in the urban
used as example thought the paper. Here, the dotted square
identifies the sensitive places, as discussed later.

4. ANONYMITY IN SEMANTIC TRAJEC-
TORIES

Our main idea is to provide a framework to generate an
anonymous semantic trajectory dataset which guarantees that
it will not be possible to infer the identity of a user and the
sensitive places visited by him/her with a probability greater
than a given threshold set by the data owner. To this aim we
propose a method based on the generalization of the places
visited by a user driven by the place taxonomy, allowing to
preserve semantic information in the anonymized dataset.

To avoid the identification of sensitive places visited by a
user first of all we need to specify which places are sensi-
tive and which one are non-sensitive. In relational data the
sensitivity notion is defined on the table attributes where
it is possible to specify the quasi-identifier (public infor-
mation that can be used to discover private information)
and sensitive attributes (information to be protected). In
semantic trajectories, due to the particular format of the
data and the intrinsic geographical nature of data, this dis-
tinction is among the stop places. A place is considered
sensitive when it allows to infer personal information about
the person who has stopped there. This means that some
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Figure 2: The Places taxonomy

places, such as an oncology clinic, in some applications can
be sensitive because an attacker can derive that a person
has stopped there probably has the cancer; whereas others
places (such as parks) can be considered as quasi-identifiers.
We propose here to exploit the taxonomy to establish this
distinction, therefore some taxonomy concept can be tagged
as ”sensitive” and, as a consequence, all the remaining con-
cepts as quasi-identifiers. We assume the labelled taxonomy
is given by the domain expert who tags each concept with
the ”sensitivity” label. To formally introduce the sensitiv-
ity label of a concept we define a privacy place taxonomy as
an extension of the places taxonomy Tax with a function
λ which assigns a concept of C with a label belonging to
the set L = {s, q}, where s means ”sensitive” and q means
”quasi-identifier”. Hence, the taxonomy becomes a triple
PTax := 〈C,HC, λ〉.

Given a dataset of semantic trajectories ST and the pri-
vacy places taxonomy PTax , we define a framework to
anonymize ST by using a method based on the generaliza-
tion of places driven by the taxonomy.

Now, we introduce the notion of quasi-identifier place se-
quence in the context of semantic trajectories. We use Q
and SP to denote the set of quasi-identifiers places and the
set of sensitive places defined in the taxonomy PTax , re-
spectively.

Definition 3 (Quasi-identifier place sequence).
A quasi-identifier sequence SQ = q1, . . . , qn, where n > 0
and qi ∈ Q is a temporally ordered sequence of stop places of
the privacy place taxonomy PTax labelled as quasi-identifier
and that can be joined with external information to re-identify
individual trajectories with sufficient probability.

We assume that quasi-identifier places are known based on
specific knowledge of the domain.

5. PRIVACY MODEL
Let ST denote the original dataset of semantic trajecto-

ries. The dataset owner applies a transformation on ST
to obtain ST ∗. Our privacy scheme is based on general-
ization of all the semantic trajectories driven by a privacy
place taxonomy PTax that describes the categories of the
geographical object of interest for the application domain.

Definition 4 (Generalized Semantic Trajectory).
Let T = {p1, p2, . . . , pn} be a semantic trajectory. A gener-
alized version of T , obtained by the place taxonomy PTax ,
is a sequence of places Tg = g1, g2 . . . , gn where ∀i = 1, . . . , n
we have that HC(pi, gi) holds or gi = pi.

In other words, a place gi of a generalized semantic tra-
jectory can be either an ancestor of the original place pi or
pi itself.

Definition 5. Let Tg = g1, g2 . . . , gn be a generalized se-
mantic trajectory and A = p1, . . . , pm a sequence of places.
We say that A is contained in Tg (A � Tg) if there exist
integers 1 ≤ i1 < . . . < im ≤ n such that ∀1 ≤ j ≤ m we
have gij = pj or the relation HC(pj , gij ) holds.

We refer to the number of generalized semantic trajec-
tories in ST ∗ containing a sequence of places A as sup-
port of A and denote it by suppST∗(A). More formally,
suppST∗(A) = |{Tg ∈ ST ∗|A � Tg}| and suppST∗(A,B) =
|{Tg ∈ ST ∗|A � Tg ∧B � Tg}|.

5.1 Adversary Knowledge
An intruder who gains access to ST ∗ may possess some

background knowledge allowing he/she to conduct attacks
that may allows her/him to make inferences on the dataset.
We generically refer to any of these agents as an attacker.
We adopt a conservative model and in particular we assume
the following adversary knowledge.

Definition 6 (Adversary Knowledge).
The attacker has access to the generalized dataset ST ∗ and
knows: (a) the schema used to anonymize the data, (b) the
privacy place taxonomy PTax , that describes the levels of
abstraction, (c) that a given user is in the dataset and (d) a
quasi-identifier place sequence SQ visited by this user.

5.2 Attack Model
What is the information that has to remain private? In

our model, we keep private all the sensitive places visited
by a given user. Therefore, the attack model considers the
ability to link the released data to other external information
enabling to infer sensitive places visited by a given user.

Definition 7. The attacker, given a published semantic
trajectory dataset ST ∗ where each trajectory is uniquely as-
sociated to a de-identified respondent, tries to identify the
semantic trajectory in ST ∗ associated to a given respondent
U , based on the additional knowledge introduced in Defini-
tion 6. The attacker, given the quasi-identifier sequence SQ

constructs a set of candidate semantic trajectories in ST ∗

containing SQ and tries to infer the sensitive places related
to U . We denote by Prob(SQ, S) the probability that, with
a quasi-identifier place sequence SQ related to a user U , the
attacker infers the sequence of sensitive places S visited by
the user.
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From a data protection perspective, we aim at controlling
the probability Prob(SQ, S). To prevent the attack defined
above we propose to release a c-safe dataset.

Definition 8 (c-Safe Dataset). The dataset ST is
said c-safe with respect to the place set Q if for every quasi-
itentifier place sequence SQ, we have that for each set of
sensitive place S Prob(SQ, S) ≤ c with c ∈ [0, 1].

Given these definitions, we formulate the problem state-
ment as follows:

Problem Statement. Given a dataset ST of semantic
trajectories and a protection probability threshold that we
want to guarantee c ∈ [0, 1], find a c-safe version ST ∗ of ST .

In other words, we want to avoid that an adversary can
use a sequence of quasi-identifier places visited by a user to
correctly infer any sensitive places after accessing ST ∗. The
problem that we want to address is very similar to l-diversity
[11], but the particular nature of the data makes the problem
different and such framework cannot be directly applied to
this case. First of all, the semantic trajectories does not have
fixed length. In particular, given any two semantic trajecto-
ries Si and Sj belonging to the same database, the number
of quasi-identifiers place stops contained in Ti is in general
different from Tj . Moreover, in a semantic trajectory we can
have more than one sensitive place stop, and their number
is not fixed for all trajectories. Note also that it is possible
that a trajectory is composed only by quasi-identifier places
or only sensitive places. In the first case, we don’t need to
protect any sensitive location visited by the user, whereas in
the second case an attacker cannot use any quasi-identifier
place sequence to discover the sensitive places visited by the
user.

There could be different ways to construct a c-safe dataset
of semantic trajectories. In this paper, we propose a method
based on generalization of stops place driven by a privacy
places taxonomy. The main steps of the method are: (a)
generate groups of semantic trajectories; (b) generalize the
quasi-identifiers places within each group, and the sensitive
places when the generalization quasi-identifiers place is not
enough to get a c-safe dataset.

The algorithm, during the anonymization process, checks
if the probability to infer sensitive places is less than c, there-
fore we define how to compute this probability. Given a se-
quence of sensitive places S = s1, . . . , sh (where each si is ei-
ther a leaf or an internal node of the privacy place taxonomy)
and a quasi-identifier sequence SQ the probability to infer S
is the conditional probability, so P (SQ, S) = P (S|SQ) that
in our case is computed as follows:

suppST∗(SQ, S)

suppST∗(SQ) + suppST∗(SQ, S)× (
∏
∀si∈S places(si)− 1)

where places(si) denotes the number of places represented
by si: this number is equal to 1 when si is a leaf of the
privacy place taxonomy; when si is an internal node (a gen-
eralized concept) places(si) is equal to the number of leaves
of the sub-tree with root si.

Our algorithm, described in the next section, guarantees
that for each sensitive place si ∈ S P (si|SQ) ≤ c. It is
straightforward to derive that guaranteeing that ∀si ∈ S
P (si|SQ) ≤ c then we also guarantee that P (S|SQ) ≤ c.

6. CAST ALGORITHM

We now tackle the problem of constructing a c-safe ver-
sion of dataset ST of semantic trajectories. The algorithm
called CAST (C-safe Anonymization of Semantic Trajecto-
ries) should find the best grouping in the dataset which
guarantees the c-safety, but this problem is computationally
hard. For this reason the first implementation of the method
consider an additional parameter m which assert the size of
the groups to be found in which the c-safety must be guar-
antee. The pseudo-code of the algorithm follows:

INPUT <Dataset D, Probability c,

Grouping m, Taxonomy T>

BEGIN

St:= BuildSemanticTrajectories(D,T);

Ordering(St);

minLength = St.minLength;

maxLength = St.maxlength;

R = 0;

For (i:=maxLength; i<=minLength; i--)

CurSt:= ExtractSubset(St, i);

St:= St-CurSt;

While(CurSt.size>m)

G:=FindBestGroup(St,m,c,T);

R:= R + Generalize(G);

CurSt:= CurSt-G;

St:= St+Cut(CurSt);

END;

OUTPUT <Result R>

Ordering(St) is the function which removes from the se-
mantic trajectories the sensitive stops and orders the ob-
tained semantic trajectories by length. ExtractSubset(St, i)
is the function that extracts the semantic trajectories ob-
tained at the previous step having length i. The function
FindBestGroup(St,m, c, T ) finds the groups of semantic
trajectories of the same length which minimize the distance
in the taxonomy between them (this distance measure will
be detailed later in section 7). These three methods im-
plement the step (a) described in previous section. The
Generalize(G) method generalizes the quasi-identifiers of
the semantic trajectories to obtain the identical sequences
(and generalizes the sensible places when needed) to guar-
antee the c-safety, thus realizing the step (b). The following
example shows the generalization step. Consider the tax-
onomy presented in Fig.2 and a group G formed by three
semantic trajectories:

S1, R2, H1, R1, C4, S2

S3, D1, R1, C4, S2

S1, P3, C3, D2, S2

Let us assume c=0.45 thus we want to guarantee 0.45-
safety. First of all, the algorithm generalize the quasi-identifiers
of the semantic trajectories in order to obtain all identical
trajectories. To do this, the algorithm removes temporarily
the sensitive places and finds the minimal ancestor in the
taxonomy of each item of the semantic trajectories in the
corresponding position, thus obtaining:

Station, P lace, Entertainment, S2 (H1, C4)
Station, P lace, Entertainment, S2 (C4)
Station, P lace, Entertainment, S2 (C3)

Therefore, the algorithm computes the probability of crack
defined, in section 5, for each sensible places: P (SQ, H1) =
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1/3, P (SQ, C4) = 2/3 and P (SQ, C3) = 1/3 where SQ is
〈Station, P lace, Entertainment, S2〉. In this example, only
the probability of item C4 is higher then the c-safety thresh-
old, therefore we need to generalize to the higher represen-
tation level in the taxonomy: Clinic. Considering having
only two clinics leaves in the taxonomy, after the general-
ization the probability of C4 become 2/5 which is below our
threshold and so it is safe. Then the algorithm rebuilds the
semantic trajectories restoring the sensitive places in their
original positions:

Station, P lace,H1, Entertainment, Clinic, S2

Station, P lace, Entertainment, Clinic, S2

Station, P lace, Clinic, Entertainment, S2

As a general rule, when an item is generalized, all the
other items having the same parent in the taxonomy are
generalized too. For this reason, C3 is replaced with Clinic:
having both items can give to the attacker the opportunity
to infer that Clinic stand for C4.

7. EXPERIMENTS

7.1 Datasets
We run the CAST algorithm on a trajectories dataset as

illustrated in this section. The dataset adopted for that con-
tains trajectories of 17000 moving cars in Milan, in one week,
collected through GPS devices. This is a sample of data do-
nated by a private company devoted to collect them as a
service for insurance companies and other clients (Fig.3).

Figure 3: Trajectories dataset and the places used
to build the semantic trajectories divided into not-
sensitive and sensible

From this initial dataset we have computed for each tra-
jectory the sequence of stops building the semantic trajec-
tories as described in Section 3. The set of places has been
downloaded from Google Earth and are shown in Fig.3 (bot-
tom). Most of the places are in the city center of Milan
and the places considered sensitive are represented by the
red squares, the others in blue squares. The taxonomy used
in the experiment is in represented in Fig.2, where the red
dotted box represent the subtree considered sensitive. After
the building step of the algorithm we obtain a dataset of
6225 semantic trajectories with an average length equal to
5.2 stops.

7.2 Measuring the quality of the sequential pat-
tern results

Once obtained the c-safe semantic trajectory dataset, we
check the data usefulness after the application of privacy-
preserving framework. In this section we introduce two mea-
sures in order to verify the preserved sequential patterns

among the obtained anonymous dataset. These measures
are the coverage coefficient and the distance coefficient.

Definition 9 (Covered predicate). Given two se-
quences P i = pi

1 . . . p
i
n and P j = pj

1 . . . p
j
m and a taxonomy

PTax := 〈C,HC, λ〉, the predicate is defined as:

covered(P i, P j , PTax) =

(
∣∣P i
∣∣ =

∣∣P j
∣∣) ∧ ∀k=1...n(pi

k = pj
k ∨HC(pi

k, p
j
k))

Definition 10 (Coverage coefficient). The cover-
age coefficient is a [0, 1] value defined on two sets of se-
quences:

coverage(PSorig, PSanon, PTax) =
|CovSet(...)|
|PSorig|

where

CovSet(PSorig, PSanon, PTax) =
{{P i}|P i ∈ PSorig ∧ ∃P j ∈ PSanon, covered(P i, P j , PTax)}

Intuitively, the coverage coefficient measures how many pat-
terns extracted from the original dataset are covered at least
by the patterns extracted in the anonymized dataset with
a certain level of generalization. It’s important to notice
that the coverage does not measures how much the patterns
are generalized, but only if they are covered by a pattern
obtained from the anonymized dataset. This means that a
pattern composed by item generalized to the root of the tax-
onomy (i.e. 〈Place P lace P lace〉) will cover all the pattern
with the same length. To face this problem, we have defined
three levels of coverage:

• Coverage upper bound : Considers all the patterns dis-
covered PSub

anon including all the patterns extracted
from the anonymized dataset.

• Coverage: Considers a subset of the extracted patterns
PSanon which not consider the patterns composed only
by root item (Place).

• Coverage lower bound : Considers only patterns PSlb
anon

which does not contain any root items.

The aim of these three level is to better describe which kind
of generalization is performed and the consequences on the
patterns.

The other measure we will use is the distance coefficient
which represent the distance in terms of steps in the taxon-
omy to transform the patterns from the set extracted on the
original dataset and the one from the anonymized dataset.
The coefficient is normalized on the maximum possible dis-
tance of the two sets.

Definition 11 (Sequence distance). Given two se-
quences P i = pi

1 . . . p
i
n and P j = pj

1 . . . p
j
m and a taxonomy

PTax := 〈C,HC, λ〉, the sequence distance is:

SeqDis =
Hops(P i, P j , PTax)

MaxDeep(PTax) ∗ 2 ∗ Length(P i)

where Hops(...) is the number of steps needed to transform
the pattern P i in the pattern P j on the taxonomy PTax;
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MaxDeep(PTax) is the maximum depth of the taxonomy
tree and Length(P i) is the number of items of the pattern.
The Sequence distance is defined only between patterns of
the same length, in the other cases the distance is 1.

Definition 12 (Distance coefficient). The distance
coefficient is a [0, 1] value defined on two sets of sequences:

Dis(PSorig, PSanon, PTax) =∑
P i∈P Sorig

ArgMin
P j∈P Sanon

(SeqDis(P i,P j ,PTax))

|PSorig|

where PSorig and PSanon are the sets of patterns extracted
from the original dataset and the anonymized dataset.

This measure shows the other aspect of the transforma-
tion applied on the patterns which is not highlighted by the
coverage coefficient. In the next section we study how these
two measures varies with different setting of the problem.

7.3 Experimental results
The experiments are performed on Milan dataset using an

Intel Core 2 Duo T6400 at 2.00 Ghz. In this section we want
to analyze the effects of the anonymization on the sequen-
tial patterns extracted on the datasets using the measures
described above. Fig.4 shows how the coverage coefficient
varies changing the support threshold used in the pattern
mining algorithm. In the top of the figure we depict the
number of pattern extracted both from the original dataset
PSorig and the anonymized one PSub

anon, PSanon, PSlb
anon.

Figure 4: Number of patterns and the coverage mea-
surement changing the support thresholds (m=10,
l=.3)

We can notice that the generalization have a double effect
on the patterns: (i) increases the frequency of generalized
items, (ii) decreases the frequency of leaf items of the tax-
onomy. Therefore with an high support threshold the differ-
ence between the patterns created and the pattern removed
by the generalization is positive (increasing the resulting size
of the patterns set) but after a certain threshold, due to the
smaller number of generalized items, the decreasing of pat-
terns becomes predominant. The decreasing of patterns with
lower support is accentuated by the cutting of semantic tra-
jectories during the process. All this effects are highlighted

by the coverage coefficients which show effectively the con-
sequences of these behaviors.

In Fig.5 we study the coverage coefficient varying the
group size and the c-safety value. In this case we can see
that the variations are not so evident, since only the effect
of the reduction of semantic trajectories change the coeffi-
cient. In other words we can say that the level of coverage
is almost the same not considering the level of generaliza-
tion. In the other hand, the Covlb give us another hint of
how the patterns become: at the beginning, with a group
size between 5 and 20, they are generalized but they don’t
contain root items. When the group size exceeds this limit
the patterns contain at least a root item therefore the lower
bound of the coverage fall.

Figure 5: Coverage measurement changing the
group sizes and c-safety (support threshold = 30)

As the coverage coefficient we can study the distance co-
efficient varying the other parameters. In Fig.6 we can see
that the distance coefficient between the PSorig and PSanon

increase with smaller support.

Figure 6: The distance coefficient changing the sup-
port thresholds (m=10, l.3)

Furthermore in Fig.7, when the group size or c-safety value
increase the distance coefficient decrease. This is a clear
effect of the generalization of the anonymized patterns which
become more distant from the original set of pattern.

8. CONCLUSION AND FUTURE WORKS
In this paper we have investigated the problem of pub-

lishing semantic trajectories datasets while preserving the
privacy of users. Here, the focus is on the semantics of the
places visited distinguishing between sensitive places and
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Figure 7: The distance coefficient changing the
group sizes and c-safety (support threshold = 30)

quasi-identifier places. The introduced method exploits a
places taxonomy to generalize the visited places to obtain
a c-safe dataset. The use of a taxonomy encoding domain
knowledge about the places tends to perform a generaliza-
tion that preserves semantics of the trajectories. Through
a set of experiments on a real-life spatio-temporal dataset,
we have shown that our method, while guaranteeing a good
protection, it also preserves the quality of the sequential pat-
tern analysis. We are currently performing new statistical
analysis on the dataset, in order to understand how the data
properties are preserved after the anonymization. Further
research includes the experimentation of new pattern min-
ing methods on the anonymized trajectories. We will also
investigate improved approaches to generate a c-safe version
of a dataset of semantic trajectories, such as an algorithm
that does not consider only groups of a fixed size. Another
future research direction goes towards the exploitation of
c-safe semantic trajectories dataset for semantic tagging of
trajectories. How does the anonymization step affect the
overall results of a trajectory semantic tagging inference?
We believe that since the taxonomy tends to preserve se-
mantics, the current approach should preserve some degree
of semantics in the trajectory understanding and behavior
classification.
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