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ABSTRACT
Because of the large amount of trajectory data produced
by mobile devices, there is an increasing need for mecha-
nisms to extract knowledge from this data. Most existing
works have focused on the geometric properties of trajec-
tories, but recently emerged the concept of semantic tra-
jectories, in which the background geographic information
is integrated to trajectory sample points. In this new con-
cept, trajectories are observed as a set of stops and moves,
where stops are the most important parts of the trajectory.
Stops and moves have been computed by testing the inter-
sections of trajectories with a set of geographic objects given
by the user. In this paper we present an alternative solution
with the capability of finding interesting places that are not
expected by the user. The proposed solution is a spatio-
temporal clustering method, based on speed, to work with
single trajectories. We compare the two different approaches
with experiments on real data and show that the computa-
tion of stops using the concept of speed can be interesting
for several applications.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Spatial Databases and
GIS]

Keywords
Spatio-temporal clustering, moving objects, data mining, se-
mantic trajectory annotation, trajectories

1. INTRODUCTION
In the last few years there has been an explosion of mov-

ing object data produced by mobile devices, emerging the
necessity of efficient analysis of these data in different appli-
cation domains. The trajectories left behind moving objects
have been considered as the path followed by a moving ob-
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ject in space and time. Each point in a trajectory represents
a position in space in a certain instant of time.

Existing approaches for trajectory data mining and knowl-
edge discovery have focused on the geometrical properties of
trajectories, without considering the background geographic
information. For many application domains, however, useful
information may only be extracted from trajectory data if
their semantics and the background geographic information
is considered [2]. Several works for trajectory data anal-
ysis have been developed specifically considering the road
network as the background geographic information [6],[10],
[12], [18].

Recently [17] has introduced a new model for reasoning
over trajectories, which allows powerful semantic analysis,
called stops and moves. A stop is a semantically important
part of a trajectory that is relevant for an application, and
where the object has stayed for a minimal amount of time.
For instance, in a tourism application, a stop could be a
touristic place, a hotel, an airport, etc. In a traffic man-
agement application, important places can be traffic lights,
roundabouts, parking places, etc. According to the applica-
tion, the minimal stop duration can vary significantly.

In [2], an algorithm named SMoT (Stops and Moves of
Trajectories) has been provided to extract stops and moves
from trajectory sample points, and an evaluation is pre-
sented to show how simple trajectory data analysis becomes
by using this semantic model. In [1] moving patterns are
extracted from stops and moves, and such patterns are mod-
eled in the geographic conceptual schema in order to visu-
alize trajectory patterns in the geographic space.

In all approaches that follow the model of stops and moves
the user has to specify the places of interest, since stops and
moves are defined from an application point of view. The
main drawback of this assumption is that important places
that may lead to the discovery of interesting patterns can
be missed if they are not known by the user.

Figure 1(1) shows an example of a trajectory where the
user has specified the places of interested A, B, and C. Ob-
serving Figure 1(1) we may see two dense parts in the tra-
jectory that seem to be a stop: before A, and between B
and C; but which were not specified as important places by
the user.

In this paper we present an alternative to the algorithm
SMoT, presented in [2] to compute stops and moves. While
SMoT searches for intersections among trajectories and the
relevant geographic objects, we propose a speed-based spatio-
temporal clustering approach to find important places of



Figure 1: single raw trajectory and single semantic
trajectory

trajectories. An example of our approach is shown in Fig-
ure 1(2). Considering that a minimal stop duration is 30
minutes, besides A, B, and C, our method would also find
X and Y , that are not captured by SMoT. Our approach
is generic enough to be applied in many different scenarios,
not being exclusive to one single application.

The remainder of this paper is structured in the follow-
ing way: in the next section we introduce the concept of
stops and moves. In Section 3 we present the new clustering
method. In Section 4 we show experiments with real data to
compare SMoT and our approach. In section 5 we present
the related works and in Section 6 we conclude the paper
and suggest some directions of future research.

2. STOPS AND MOVES
In this section we present the definitions of trajectory,

stops, and moves, based on the definitions provided in [2],
that will be used in the remaining of this paper.

Definition 1. Trajectory Sample: A trajectory sample is
a list of space-time points {p0 = (x0, y0, t0), p1 = (x1, y1, t1),
. . . , pN = (xN , yN , tN )}, where xi, yi ∈ <, ti ∈ <+ for i =
0, 1, . . . , N , and t0 < t1 < t2 < · · · < tN .

Stops represent the important places of a trajectory where
the moving object has stayed for a minimal amount of time.
The important places are defined according to an applica-
tion, and correspond to different spatial feature types [14]
defined in a geographic database. For each relevant spatial
feature type a minimal amount of time is defined, such that
a trajectory should continuously intersect this feature in or-
der to be considered a stop. We call this pair as a candidate
stop.

Definition 2. Candidate Stop: A candidate stop C is a
tuple (Rc,∆c), where Rc is a topologically closed polygon in
<2 and ∆c is a strictly positive real number. The set Rc

is called geometry of the candidate stop and ∆c is called its
minimum duration. The candidate stops are dependent of
specific applications. An application is a finite set {C1 =
(Rc1,∆c1), C2 = (Rc2, ∆c2), . . . , CN = (RcN ,∆cN )} of
candidate stops with non-overlapping geometries Rc1, Rc2,
. . . , RcN .

Definition 3. Stop: A stop of a trajectory T with respect
to an application A is a tuple (Rk, tj , tj+n) such that a maxi-
mal subtrajectory of T {(xi, yi, ti) | (xi, yi) intersects Rk} =
{(xj , yj , tj), (xj+1, yj+1, tj+1), . . . , (xj+n, yj+n, tj+n)}, where
Rk is the geometry of Ck and |tj+n − tj | ≥ ∆k.

Definition 4. Move: A move of a trajectory T with re-
spect to an application A is: (i) a maximal contiguous sub-
trajectory of T in between two temporally consecutive stops
of T ; OR (ii) a maximal contiguous subtrajectory of T in

between the starting point of T and the first stop of T ; OR
(iii) a maximal contiguous subtrajectory of T in between the
last stop of T and the last point of T ; OR (iv) the trajectory
T itself, if T has no stops.

In other words, every point of a trajectory that is not in a
stop is in a move. A move has no minimal time duration, and
may either intersect or not a candidate stop. If it does, the
intersection time interval must be less than the candidate
stop minimal duration.

It is important to note that the minimal stop duration
should be specified taking into account the average period-
icity of the trajectory time points, in order to warrant that
there will be sufficient points to characterize a stop.

The algorithm SMoT, presented in [2] to extract stops
and moves, searches for intersections between the trajec-
tory sample points and the candidate stops. In the fol-
lowing section we present a clustering-based algorithm to
identify stops and moves of trajectories, called CB-SMoT
(Clustering-Based SMoT).

3. THE METHOD CB-SMOT
The intuition of our method is that the parts of a tra-

jectory in which the speed is lower than in other parts of
the same trajectory, correspond to interesting places. In
a tourism application, for instance, let us suppose that a
tourist is visiting a new city. His trajectory would be some-
thing like: visit an important monument, visit a museum,
go to his hotel, go to a night-club, and return to the ho-
tel. Probably his trajectory has a lower speed around these
places than it has in other parts of the trajectory where he
was moving from one place to another. In a traffic manage-
ment application, for instance, the speed of car trajectories
will be lower in traffic jams, traffic lights, roundabouts, and
electronic velocity controllers.

Following this reasoning, we propose a clustering-based
algorithm to find low speed regions.

3.1 Definitions
DBSCAN [7] is a well known density-based clustering al-

gorithm. In DBSCAN, the neighborhood is defined as an
area around points (in 2-dimensional space). Because we
are specially interested in finding clusters in a single trajec-
tory and also consider time, we have changed some concepts
of DBSCAN. The first one is the notion of neighborhood,
that should contain only points in the considered trajectory.
Besides, it should consider the distance over the trajectory
and not the direct distance between two points. Therefore,
we define the Eps-linear-neighborhood of a point pk as the
set of points before and after pk in the trajectory whose
distance from pk is less or equal to Eps.

Definition 5. Eps-linear-neighborhood of a point: Let
{p0, p1, ..., pk, pk+1, . . . , pN} be a trajectory, where p = (x, y, t).
The Eps linear neighborhood of a point pk, denoted by
LNEps(pk), is the maximal set of points pi, such that:

(

k−1∑
i=m

dist(pi, pi+1)) ≤ Eps ∪ (

n∑
i=k+1

dist(pi−1, pi)) ≤ Eps

where t0 ≤ tm < tk < tn ≤ tN
Eps is a positive number that represents the maximum

distance between a point p and its neighbors on the tra-



jectory. Instead of considering a minimal number of points
for a region to be dense, we will use the notion of minimal
time. In the following definitions we keep the same name of
the definitions presented in [7], but considering the notion
of time.

Definition 6. Core point: A point p = (xp, yp, tp) of
a trajectory is called core point with respect to Eps and
MinTime if |tn− tm| ≥MinTime, where n is the last point
of LNEps(p), and m is the first one (the neighborhood is
ordered by time).

Definition 6 corresponds to the maximum speed condition.
The ratio Eps/MinT ime gives the maximum average speed
(speed limit) of the respective neighborhood. By increasing
the MinTime parameter the related speed decreases. Be-
sides, using time instead of number of points will also avoid
problems like the absence of points because of some equip-
ment failure and the time differences in the sample rate.

Definition 7. Directly density-reachable: A point q is
directly density-reachable to a point p if q ∈ LNEps(p) and
p is a core point with respect to Eps and MinTime.

Definition 8. Density-reachable: A point q0 is density-
reachable from a point p with respect to Eps and MinTime
if there exists a chain q0, q1, q2, . . . , qN where qN = p and qk

is directly density-reachable to qk+1.

Definition 9. Density-connected: Two points p and q
are density-connected with respect to Eps and MinTime if
there exists a point o and both p and q are density-reachable
from o.

A non-core point can be density-connected to another
non-core point if both have a common core point. Hav-
ing these definitions, a trajectory cluster can be defined as
follows.

Definition 10. Trajectory cluster: A cluster G of a tra-
jectory T with respect to Eps and MinTime is a non-empty
subtrajectory of T formed by a set of contiguous time-space
points such that:

1. ∀p, q ∈ T : if p ∈ G and q is density-reachable from p
with respect to Eps and MinTime, then q ∈ G.

2. ∀p, q ∈ G : p is density-connected to q with respect to
Eps and MinTime.

There are three main modifications in the DBSCAN algo-
rithm for clustering single trajectories: (i) instead of search-
ing for a minimal amount of points inside the neighborhood,
we search for a minimal duration; (ii) we replace the origi-
nal function that returns the neighborhood of a point by an
algorithm that follows Definition 5; (iii) we use the quantile
function to calculate the Eps, as will be explained in the
following section.

3.2 The Eps Parameter
The Eps parameter indicates the absolute distance used

to calculate the neighborhood of a point. However, it is
difficult to the user to specify a good value for this parameter
without knowing well the characteristics of each trajectory,
since it is an absolute value. Considering this, we elaborate
an alternative to the user in order to adjust this parameter.

A trajectory T can be viewed as a list of distances di

between two consecutive points pi and pi+1. These dis-
tances have an arithmetic mean µ and a standard devia-
tion σ. With these two parameters it is possible to plot
the appropriate Gaussian curve. This curve represents some
properties about the trajectory and it is useful as a kind of
scaling tool. Therefore, we can exploit this feature in order
to avoid the knowledge about the trajectory domain, using
the quantile function. It is the inverse of the cumulative dis-
tribution function, where quantile function : [0, 1] → <.
The quantile function is defined as:

F−1(p, µ, σ) = µ+ σ
√

2erf−1(2p− 1)

and

erf−1(x) =

∞∑
k=0

ck
2k + 1

(

√
π

2
x)2k+1

where, µ is the mean, σ is the standard deviation, c0 = 1
and ck is:

ck =

k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1)

The objective is to have a relative parameter, related to
the mean and the standard deviation, instead of the user
defined absolute Eps value. The user needs to known ap-
proximately the proportion of points that generate potential
stops in relation to the total amount of points in the trajec-
tory. So, as an input, we use a parameter called area, with
value between 0 and 1, and from this value, the Eps param-
eter is computed.

3.3 The CB-SMoT algorithm
We propose a two-step algorithm to extract stops and

moves, called CB-SMoT, which is shown in pseudo-code in
Listing 1. In the first step the slower parts of a trajectory,
that we call potential stops, are identified using the variation
of the DBSCAN algorithm that considers one-dimensional
line (trajectories) and speed, explained in Section 3.1. In
the second step, the algorithm identifies where these po-
tential stops (clusters) found in the first step are located,
considering the geography behind the trajectories.

CB-SMoT takes each potential stop (clusters) and tests
both intersection and minimal stop duration with the can-
didate stops. In case that a potential stop does not intersect
any of the candidate stops, it still can be an interesting place.
Then, in order to provide this information to the user, the
algorithm labels such places as unknown stops.

Definition 11. Unknown stop: An unknown stop of a
trajectory T with respect to an application A, Eps, and
MinTime, is a cluster Gk of T which does not intersect any
Rj of A for at least ∆j, where Cj = (Rj ,∆j) is a candidate
stop.

Figure 2 illustrates this concept. The trajectory T =
{p0, p1, . . . , pn} represented in Figure 2 has 4 potential
stops, the clusters G1, G2, G3 and G4. In this example the
user has specified 4 candidate stops, identified by the ellip-
sis RC1, RC2, RC3 and RC4. The cluster G1 intersects the
candidate stop RC1 for a time greater than ∆c1, then the
first stop of the trajectory is RC1. The same occurs with
the cluster G2, considering RC3, which is the second stop of



Figure 2: Example of a trajectory with 2 stops and
2 unknown stops

the trajectory. The clusters, G3 and G4 do not intersect any
candidate stop. Therefore, G3 and G4 are unknown stops.

Every unknown stop receives an identifier. In case two or
more unknown stops intersect each other, they will receive
the same identification. Figure 3 shows an example in which
trajectory T1 has a cluster G1 that does not intersect any
candidate stop. Similarly, trajectory T2 has a cluster G2

that does not intersect any candidate stop. As G1 intersects
G2, both are located in the same region, and therefore they
will receive the same identification.

Listing 1: CB-SMoT algorithm
Input: T // set of trajectories

A // application
a // area for the quantile function
minTime // minimun time for clustering

Output: S // set of stops
M // set of moves

Method:
for each trajectory t in T do
// compute the clusters

set clusters as empty
Eps = quantile(µ(t),σ(t),a)
for each unprocessed point p in t do
neighbors = linear_neighborhood(p,Eps)
i f p is a core point wrt minTime,Eps

for each neighbor n in neighbors do
add to neighbors every unprocessed point

in linear_neighborhood(n,Eps)
set neighbors as a cluster in clusters
set all points in neighbors as processed

endfor
endfor

// find stops and moves
for each cluster in clusters do

for each intersection with a different Rc

with duration time t ≥ ∆C do
generate a stop in S

endfor
for each subtrajectory that is not stop do

if duration ≥ minTime
generate an unknown stop in S

endfor
endfor
for each subtrajectory which is not a stop do

generate a move in M
endfor

endfor

Figure 3: Two trajectories with the same unknown
stop

Table 1: Trajectories X Buildings (minTime=120s)
Algorithm Stops Unknown Stops Time (s)

SMoT 6 - 189
CB-SMoT (area = 0.3) 1 69 160
CB-SMoT (area = 0.35) 1 105 196
CB-SMoT (area = 0.4) 1 182 274

4. EXPERIMENTS AND EVALUATION
In order to accomplish experiments with both trajectory

and geographic data in real applications, we have extended
the tool Weka-GDPM [5] to support both geographic data
and trajectories. Weka-GDPM is an extension of Weka [8],
which is a data mining toolkit that implements several al-
gorithms for association rule mining, clustering, and classi-
fication. We have implemented both SMoT and CB-SMoT
algorithms in this tool, and their output (stops and moves)
is stored in the geographic database. Therefore, any of the
classical data mining methods available in the tool can be
directly applied over stops and moves.

We have used trajectory data collected in the city of Am-
sterdam to perform some preliminary experiments. These
trajectories correspond to an educational game [16], and
contain around 125.000 points of 487 different trajectories
of students.

The first experiment was performed considering a set of
buildings as the candidate stops, with parameter MinTime
as 120 seconds. The clustering algorithm was applied three
times, with area as 0.3, 0.35, and 0.4. The algorithm SMoT
found 6 stops, as shown in Table 1. For all different values of
the area parameter, almost all clusters found by CB-SMoT
were unknown stops. This large amount of unknown stops
is understandable by visualizing the data shown in Figure
4, where the candidate stops are only a few buildings (small
polygons in black). The buildings dataset has around 42
thousand buildings, but in the region where the trajectories
were collected there are only a few. This is one of the reasons
why SMoT found only a few stops and CB-SMoT found
several unknown stops.

Another observation in this experiment is that CB-SMoT
has found only 1 known stop, while SMoT found 6. This
occurs because CB-SMoT is based on speed, and the velocity
of the trajectories in the stops found by SMoT was not lower
enough to be considered as a stop (cluster) by CB-SMoT.

A second experiment, shown in Table 2, was performed
with geographic data corresponding to areas that cover most
places where the trajectories are located. Considering min-
imal time as 300s, the SMoT algorithm found 357 stops,
while CB-SMoT found much less stops for the different val-
ues of the area parameter. In this experiment we have the



Figure 4: Trajectory samples and buildings

Table 2: Trajectories X Area and minTime=300s
Algorithm Stops Unknown Stops Time (s)

SMoT 357 - 485
CB-SMoT (area = 0.3) 37 0 259
CB-SMoT (area = 0.35) 51 0 388
CB-SMoT (area = 0.4) 69 0 476
CB-SMoT (area = 0.45) 143 0 537

opposite scenario in relation to the previous one. The can-
didate stops are dense and cover the complete region, as can
be visualized in Figure 5 (polygons). Because all trajectory
points are located in one of the polygons that cover the com-
plete area, no unknown stops were identified by CB-SMoT.

In a scenario like experiment 2, where the complete area is
covered by candidate stops (dense), SMoT finds much more
stops because each polygon of the background area that the
trajectory has crossed for the minimal amount of time will
be considered as a stop. On the contrary, CB-SMoT will
find stops only in the polygons in which the speed is low
enough for the minimal stop duration.

In many applications as, for instance, traffic management
and tourism, the algorithm CB-SMoT can find several in-
teresting places that are previously unknown by the user.
In a traffic management application, CB-SMoT would find
roundabouts, traffic lights, and velocity controllers even if
they are not given as candidate stops by the user. In a
tourism application, CB-SMoT could find several unexpected

Figure 5: Trajectory samples and areas

locations (touristic or not) that attract tourists.
Although SMoT may only discover stops related to in-

teresting places defined by the user, it may be better than
CB-SMoT in applications where the speed is not relevant.

An important remark about CB-SMoT is that it is able
to generate clusters in parts of the trajectory where some
points are missing. This is very common inside buildings,
where the GPS signal may be lost. Usually, in this case, the
trajectory sample points are discontinued at the moment
the moving object enters in a building, and restart when
the object leaves the building. Pure density-based cluster-
ing algorithms are not able to directly find clusters in such
regions. Our approach, on the contrary, will discover such
places because the average speed between the two points
(entrance and exit of a building) is very low.

5. RELATED WORKS
There are only a few works in the literature that consider

semantic properties of trajectories. In [2], an intersection-
based approach is presented to integrate trajectory sam-
ple points with geographic information, with the algorithm
SMoT.

Ashbrook and Starner [3] use the well-know clustering al-
gorithm K-means to find important places in trajectories.
The problem of K-means is that the number of clusters
must be given a priori, what in our problem is unknown.
Zhou [19] uses information obtained from GPS to classify
personal gazetteers. The gazetteers correspond to the most
important places of a person, such as home, work, supermar-
ket, etc. A set of trajectories is processed by the DJ-Cluster
algorithm in order to find the baseline places. DJ-Cluster is
a density-based algorithm similar to DBSCAN that works
on the notion of connectivity between neighborhoods. How-
ever, DJ-Cluster does not consider the temporal dimension.

GDBSCAN [15] is another extension of DBSCAN, devel-
oped for clustering non-spatial attributes. ST-DBSCAN [4]
was developed to consider both spatial and temporal as-
pects, but it treats them separately in the evaluation func-
tion. In our case we use the spatio-temporal data together,
in order to consider the speed.

Several works for trajectory clustering have been devel-
oped to find similar subtrajectories or dense regions as [9],
[11], [13]. While these works look for clusters in a set of tra-
jectories, we look for clusters in a single trajectory, in order
to discover potential stops.

6. CONCLUSION AND FUTURE WORKS
The increasing amount of location based data, specifically

trajectory data, emerged the necessity of intelligent analy-
sis and knowledge discovery from these data. The analysis
of trajectory sample points is very limited for several appli-
cations. Recently, a new approach based on the notion of
interesting places of trajectories (stops) has emerged as a
promising way for more meaningful analysis on trajectories.

In this paper we have introduced a new approach to dis-
cover interesting places in trajectories. It is a speed-based
method to find clusters in single trajectories. In general, the
main contributions of this paper include:

• a new spatio-temporal clustering algorithm, which is
a variation of DBSCAN, where the distance between
points is calculated along over the trajectory, instead
of the traditional euclidean distance. We consider the



notion of minimal time instead of minimal number of
points for a region to be considered dense. Addition-
ally, we introduced the quantile function as a way to
automatically estimate the value of the Eps parameter;

• the discovery of interesting places which are not known
a priory by the user (unknown stops);

• the generation of stops only in regions where the speed
of the trajectory is low;

• the discovery of clusters in regions where sample points
are missing, as for instance, when the moving object
enters in a building.

Additionally to the new method presented in this paper
for extracting interesting places from trajectories, we imple-
mented both methods SMoT and CB-SMoT in Weka, with
a friendly GUI for trajectory data analysis and knowledge
discovery.

In future works, we will evaluate the discovered unknown
stops with the user of the application. We will perform
experiments with other kind of background geographic in-
formation of the city of Amsterdam. Indeed, we will apply
the proposed method over car trajectories, in the context of
a traffic management application.
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