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ABSTRACT
The collection of moving object data is becoming more and
more common, and therefore there is an increasing need
for the efficient analysis and knowledge extraction of these
data in different application domains. Trajectory data are
normally available as sample points, and do not carry se-
mantic information, which is of fundamental importance for
the comprehension of these data. Therefore, the analysis
of trajectory data becomes expensive from a computational
point of view and complex from a user’s perspective. En-
riching trajectories with semantic geographical information
may simplify queries, analysis, and mining of moving ob-
ject data. In this paper we propose a data preprocessing
model to add semantic information to trajectories in order
to facilitate trajectory data analysis in different application
domains. The model is generic enough to represent the im-
portant parts of trajectories that are relevant to the appli-
cation, not being restricted to one specific application. We
present an algorithm to compute the important parts and
show that the query complexity for the semantic analysis of
trajectories will be significantly reduced with the proposed
model.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS

General Terms
Design, Algorithms, Theory
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1. INTRODUCTION
The collection of moving object data has become common

in the recent years, and therefore there is an increasing ne-
cessity to provide mechanisms for the efficient analysis and
knowledge extraction from these data.

Moving object data are normally available as sample points
in the form (tid, x, y, t), where tid is an object identifier and
x, y and t are respectively spatial coordinates and a time
stamp. The integration of trajectory data with semantic ge-
ographical information is the main step for trajectory data
analysis in real applications.

Several data models have been proposed for efficiently
querying trajectory sample points, such as [6, 8, 10, 19].
A few prototypes of spatio-temporal database management
systems have been developed [5, 14] to provide the opera-
tions to manipulate spatio-temporal data, but the integra-
tion of trajectories with the relevant geographic information
is still user dependent, and has to be performed on the fly
for each query, as shown in Figure 1.

Trajectories and geographic data overlap in space, and
therefore their integration is the first step toward trajectory
data analysis. According to Brakatsoulas et al. [3], the anal-
ysis of trajectory data consists of the integration of spatial,
non-spatial, and trajectory data. This integration is applica-
tion dependent, where the user specifies the spatial feature
types (e.g., hotels, touristic places) that are relevant to the
analysis of trajectories. It is well known that the spatial join
is the bottleneck in spatial data analysis, but it is the basis
to answer any spatio-temporal query, as we will explain in
more detail in Section 1.1.

Another problem is a lack of semantic analysis for which
more complex queries are necessary. To answer such queries
normally more sophisticated methods like data mining al-
gorithms may be necessary. For example, (i) which are the
places most frequently visited by people attending a confer-
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Figure 1: Current framework for trajectory data
analysis

ence in a touristic city?; (ii) which are the main sequences of
places visited in the morning?; (iii) which are the places that
moving objects pass through and stay for a certain amount
of time? Several queries about moving behavior can only
be answered by considering trajectories as well as their se-
mantics [1], as we will explain in more detail in Section 1.2.

1.1 The Problem of Query Formulation and
Time Complexity

We introduce the problem of spatial joins in trajectory
data analysis by a simple query example.

Q1: Which are the places that moving object A has passed
during its trajectory, assuming that each object has only
one trajectory in the database and that the interesting geo-
graphic places are hotels and touristic places?

Let us consider that the moving object A has the tra-
jectory (1), shown in Figure 2, which has no semantic geo-
graphic information, and is represented as a set (x,y,t). In
this scenario, Q1 will be similar to the query bellow, where
two spatial joins are necessary to answer this query:

SELECT h.name

FROM trajectory t, hotel h

WHERE t.id=’A’ AND

intersects(t.movingpoint.geometry,h.geometry)

UNION

SELECT p.name

FROM trajectory t, touristicPlace p

WHERE t.id=’A’ AND

intersects(t.movingpoint.geomtetry,p.geometry)

This query is quite simple, and considering a trajectory as
a set of sample points, the intersection operation would be
tested until the first point in the trajectory intersects the
given places (hotel and/or touristic place). The complexity
increases when the query includes time. For instance, which
are the places that an object A has stayed for more than three
hours? In spatio-temporal queries the complexity increases
in both formulation and computational time, because the
search cannot stop when the first point of the trajectory
intersects a given place. All points in the trajectory that
intersect the place have to be tested until the moving object
leaves the place, or until the time constraint is satisfied.

Now let us consider that object A has the semantic tra-
jectory (2), shown in Figure 2, where the integration of the
geographic information with the trajectory was performed
in a preprocessing step, and the user has defined all geo-
graphic places that are relevant to the application. In this
scenario, Q1 will be something like:

2

1

} } }

Airport Eiffel

}

Louvre[08:00–08:30] [09:00–12:00] Tour
[13:00–15:00]

Museum
[16:00–18:00]

Ibis Hotel

Figure 2: (1) Single raw trajectory and (2) single
semantic trajectory
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Figure 3: (left) Set of trajectory sample points and
(right) set of semantic trajectories

SELECT t.place

FROM semanticTrajectory t

WHERE t.id=’A’

On the one hand, the semantic trajectory shown in Fig-
ure 2 (2), aggregates the semantic geographic information
that is necessary for the analysis of the trajectory, and this
information can be reused in any query. On the other hand,
in the trajectory without semantics shown in Figure 2(1), the
relationships of the trajectory with the relevant geographic
objects have to be recomputed in every different query, either
for the same or different geographic object types.

Besides the problem of spatial joins, there is a lack of
semantic analysis at both representation and data manip-
ulation levels that requires an a priori integration of these
data [12], as will be explained in the following section.

1.2 The Problem of Trajectory Data Analysis
The a priori integration of trajectory data with the back-

ground geographic information may lead to the discovery of
semantic trajectory patterns that many data mining tech-
niques [4, 9, 11, 14, 16] that consider trajectories as sample
points (tid, x, y, t) may not be able to discover. An example
is shown in Figure 3. On the left side a set of trajecto-
ries is represented in the form of sample points, without
semantics. On the right side, the geographic information
is integrated to trajectories. While over the sample points
no patterns can be visualized, over the semantic trajectories
shown in Figure 3 (right) three semantic patterns can be
inferred among the four trajectories. (1) Three trajectories
have a move from Hotel (H) to Touristic Place (TP); (2) The
three trajectories return from Touristic Place to the Hotel
from where they go to the Conference Center (CC); and (3)
all four trajectories move from Hotel to the same Conference
Center.

Notice in Figure 3 (right) that semantic patterns or se-
mantic relationships are independent of (x,y) coordinates.
These patterns are sparse in space, and would not be identi-
fied by considering only the geometric properties of the tra-
jectories. The hotels and touristic places, for instance, are
not located in dense regions, which is the measure adopted
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Figure 4: Framework for semantic trajectories

in most spatio-temporal data mining algorithms to compute
trajectory patterns. This example shows that semantics
plays an essential role in trajectory data analysis and knowl-
edge extraction.

1.3 Scope and Outline
In this paper we propose a trajectory data preprocess-

ing method to integrate, off-line, trajectories with the geo-
graphic information that is relevant to the application. For
this purpose, we adopt the trajectory data model proposed
by [15], in which the user has the vision on trajectories as a
set of stops and moves. Stops are the important places of the
trajectory where the object has stayed for a minimal amount
of time. Following this model we will generate a semantic
trajectory dataset, extracted from trajectory sample points,
as shown in the framework in Figure 4. As a consequence,
the user will perform the queries over semantic trajectories.

The scope of this paper is limited to the formal definition
of semantic trajectories, the presentation of an algorithm
to create a semantic trajectory dataset, and an empirical
analysis to compare semantic trajectories and trajectories
represented as sample points.

The remainder of the paper is organized as follows: In Sec-
tion 2, we present the formal model to represent trajectories
with semantic geographic information as well an algorithm
to implement the model. In Section 3, we present an em-
pirical analysis to show the application and usability of our
approach. In Section 4, the related works and our contri-
butions are presented. Section 5 concludes the paper and
present directions of future work.

2. THE SEMANTIC DATA MODEL
In this section we present a formal model to represent

semantic trajectories, using stops and moves to integrate
geographic information to trajectory sample points.

2.1 Trajectories and Trajectory Samples
Let R denote the set of real numbers. We restrict our-

selves to movement in the real plane R2. Space-time space
will be denoted R2×R, where the first two dimensions rep-
resent space and the latter represents time. Typically, we
will use x, y as variables that range over spatial coordinates
and t as a variable that ranges over time points.

Definition 1. A sample trajectory is a list of space-time
points 〈(x0, y0, t0), (x1, y1, t1), . . . , (xN , yN , tN )〉, where xi, yi,
ti ∈ R for i = 0, . . . , N and t0 < t1 < · · · < tN .

For the sake of finite representability, we may assume that
the space-time points (xi, yi, ti), have rational coordinates.
This will be the case in practice, since these points are typ-
ically the result of observations.

2.2 Stops and Moves
In the remainder of this work, if we talk about (raw) tra-

jectories, we assume they are given as a sample trajectory
as described in Definition 1.

In this section, we define what the stops and moves of a
trajectory are. This definition is dependent on the particular
application one is interested in. First, we define the notions
of candidate stops and application.

2.2.1 Candidate stops

Definition 2. A candidate stop C is a tuple (RC , ∆C),
where RC is a (topologically closed) polygon in R2 and ∆C is
a strictly positive real number. The set RC is called the ge-
ometry of the candidate stop and ∆C is called its minimum
time duration.

An application A is a finite set {C1 = (RC1 , ∆C1), . . . ,
CN = (RCN , ∆CN )} of candidate stops with mutually non-
overlapping geometries RC1 , . . . , RCN

In case that a candidate stop is a point or a polyline, we will
generate a polygonal buffer around this object, and thus rep-
resent it as a polygon in the application, in order to overcome
spatial uncertainty.

2.2.2 Stops and Moves of a Trajectory

Definition 3. Let T be a trajectory and let

A = ({C1 = (RC1 , ∆C1), . . . , CN = (RCN , ∆CN )})

be an application.
Suppose we have a subtrajectory 〈(xi, yi, ti), (xi+1, yi+1,

ti+1), . . . , (xi+`, yi+`, ti+`)〉 of T , where there is a (RCk , ∆Ck )
in A such that ∀j ∈ [i, i+`] : (xj , yj) ∈ RCk and |ti+`−ti| ≥
∆Ck , and this subtrajectory is maximal (with respect to these
two conditions), then we define the tuple (RCk , ti, ti+`) as a
stop of T with respect to A. A move of T with respect to
A is one of the following cases:

• a maximal contiguous subtrajectory of T in between
two temporally consecutive stops of T ;

• a maximal contiguous subtrajectory of T in between the
initial point of T and the first stop of T ;

• a maximal contiguous subtrajectory of T in between the
last stop of T and the last point of T ;

• the trajectory T itself, if T has no stops.

When a move starts in a stop, it starts in the last point of the
subtrajectory that intersects the stop. Analogously, if a move
ends in a stop, it ends in the first point of the subtrajectory
that intersects the stop.
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Figure 5: Example of application with three candi-
date stops

Figure 5 illustrates these concepts. In this example, there
are three candidate stops with geometries RC1 , RC2 , and
RC3 . Let us imagine that the spatial projection of the tra-
jectory T is run through from left to right and t0, . . . , t18 are
the time points of T . First, T is outside any candidate stop,
so we start with a move. Then T enters RC1 at time point
t1. Since the duration of staying inside RC1 is long enough,
(RC1 , t1, t6) is the first stop of T . Next, T enters RC2 , but
for a time interval shorter than ∆C2 , so this is not a stop.
We therefore have a move until T enters RC3 , which fulfills
the requests to be a stop, and so (RC3 , t13, t17) is the second
stop of T . The trajectory T ends with a move.

In our definitions, stops are interesting spatial locations,
also called spatial features, specified according to the appli-
cation. For instance, traffic lights may be considered as stops
in a transportation management application, but probably
not in a tourism application. Spatial features are normally
stored in different files (e.g. shape files) or in different rela-
tions (e.g., hotel, airport) in geographic databases. There-
fore, it is possible to join trajectory sample points with im-
portant spatial features, in order to find stops and moves,
as will be explained in the following section.

2.3 An Algorithm to Extract Stops and Moves
According to the formalisms defined in the previous sec-

tion, we describe in Listing 1, in pseudo code, an algorithm
to find stops and moves, which we call SMoT (Stops and
Moves of Trajectories).

In general words, the algorithm verifies for each point of
a trajectory T if it intersects the geometry of a candidate
stop RC (line 12 and line 13). In affirmative case, the al-
gorithm looks if the duration of the intersection is at least
equal to a given threshold ∆C (line 22). If this is the case,
the intersected candidate stop is considered as a stop, and
this stop is recorded. Note that when we use T or RC as
parameter (e.g., in line 23), we use and assign in reality an
identifier (foreign key), and not the whole data structure.
We do not need to store the geometry of the stop because
we store the instance and the type of the spatial feature in
which the stop occurs.

Table 1(b) shows an example of a stop dataset where the
attribute Tid corresponds to the trajectory identifier, Sid
is the stop identifier, SFTid corresponds to the instance of
the spatial feature type, SFTname represents the type of
the spatial feature where the stop occurs (e.g. airport, ho-
tel), and Sbegint and Sendt represent the duration time of
the stop. The pair SFTid and SFTname corresponds to the
name of the stop, and is the pointer to the relevant feature
in which the stop occurs. Notice that having access to the

spatial feature type in which the stop occurs allows the user
to perform several semantic queries on the non-spatial at-
tributes over the spatial feature that corresponds to a stop.

Listing 1: SMoT pseudo-code
1 Input: T // set of trajectories
2 A // application
3
4 Output: S // set of stops
5 M // set of moves
6
7 Method:
8 S=new Stops (); M=new Moves ();
9 for each trajectory T ∈ T do

10 i=0; previousStop = null;
11 while(i ≤ size(T)) do
12 i f (∃(RC , ∆C) ∈ A |
13 geometry(T[i]) intersects RC )
14 // using spatial index
15 enterTime = time(T[i]); i++;
16 while (intersects(T[i],RC )) do
17 i++;
18 endwhile
19 //Go one step back (went outside RC )
20 i--;
21 leaveTime = time(T[i]);
22 i f (leavetime -entertime >= ∆C )
23 stop = (T,RC ,enterTime ,leaveTime );
24 S.add(stop);
25 move=(T,previousStop ,stop ,
26 previousStop.leaveTime ,enterTime)
27 M.add(move);
28 previousStop = stop;
29 endif
30 endif
31 i++;
32 j=1;
33 while((i+j ≤ size(T))
34 and (T[i+j]-T[i]<min∆C

(A))) do
35 j++;
36 endwhile
37 i f (@((RC , ∆C) ∈ A |
38 geometry(T[i+j-1]) intersects RC )
39 i=i+j;
40 endif
41 endwhile
42 i f (T[i-1] not ∈ previousStop)
43 //T do not end with a stop
44 move=(T,previousStop ,null ,
45 previousStop.leaveTime ,time(T[i-1]))
46 M.add(move);
47 endif
48 endfor

A move is recorded between the previous stop and the lat-
est one. This previous stop can be null, if the latest stop is
the first stop of the trajectory. When a move m is inserted
into the set of moves M (line 27), its space-time character-
istics are also added. While the stops are inside a spatial
feature type that has a geometry, the intersection of the
geometry of a move is not tested with any spatial feature
type because moves are not considered as important parts
of the trajectory. However, for some applications, it might
be interesting to know the spatial features that a move has
crossed, and therefore we keep the geometry and the time
stamp of the move for further spatial analysis, which are out
of the scope of this work.

Table 1(c) shows an example of a move dataset, where Tid
is the trajectory identifier, Mid is the move identifier, S1id
and S2id are respectively the two stops in which the move



occurs, and geometry and timest correspond to the moving
point of the move.

In our algorithm, we exploit the functionalities of the spa-
tial database by using the available spatial index to check if
there exists a candidate stop that intersects with a vertex of
the trajectory (line 12 and line 13). We also take advantage
(line 32–40) of the fact that the minimum stop duration has
to be ∆C (see definition 2). If we are in point pi ∈ T with
time point ti, and pi is located on a move or at the beginning
of a candidate stop, we can take a look at point pj ∈ T with
time point tj such that tj − ti < min∆C (A). If that pj is
not located inside a candidate stop we do not have to check
the points between pi and pj on T because they can never
be part of a stop.

In summary, the output of SMoT is a semantic trajectory
dataset, and therefore different semantic trajectory analysis
may be performed. In the next section we present some
empirical analysis over semantic trajectories and trajectory
sample points.

3. ANALYSIS
The a priori integration of trajectories with semantic ge-

ographic information that characterizes the most important
parts (places) of a trajectory according to the application
does significantly reduce the complexity of the query and
facilitates trajectory data analysis.

The stops and moves are computed only once, in a pre-
processing step, and therefore, the spatial search space and
spatial joins in the query formulation are minimized, in re-
lation to the model of sample points. The decomposition of
trajectories into stops and moves provides direct access to
the semantic trajectory information. As can be observed in
the example shown in Table 1(b), stops become a relational
model with a foreign key to the instance of the relevant spa-
tial feature type, represented in Table 1(d) and Table 1(e).
Similarly, the moves in Table 1(c) have a foreign key to the
stop where each move starts (S1id) and finishes(S2id).

In our examples shown in Table 1 we have considered
a spatial database, in which the algorithm is being imple-
mented and evaluated. Therefore the moving points of tra-
jectory samples (Table 1(a)) and moves (Table 1(c)) are rep-
resented in two different attributes (geometry and timest).

In this section we will analyze some query examples us-
ing the semantic trajectory model presented in the previous
section, and make a comparison with the model of sample
points, in a tourism application. For this analysis we will
consider the tables shown in Table 1, and that the rele-
vant spatial feature types for the application are Hotels and
Touristic Places, shown in Table 1(d) and Table 1(e).

Q2: How many trajectories go from a hotel to at least one
touristic place?

In this question there is a sequence of movements that has
to be taken into account, where hotel is before a touristic
place, so the time has to be considered in the query. Con-
sidering trajectories as sample points, a query similar to the
following would be performed.

SELECT distinct count(t.Tid)

FROM trajectory t, trajectory u,

hotel h, touristicPlace p

WHERE intersects (t.geometry, h.geometry) AND

intersects (u.geometry, p.geometry) AND

t.Tid=u.Tid AND u.timest>t.timest

Table 1: Example Datasets
(a) trajectory sample point

Tid geometry timest

1 48.890018 2.246100 08:25
1 48.890018 2.246100 08:26
... ... ...
1 48.890020 2.246102 08:40
1 48.888880 2.248208 08:41
1 48.885732 2.255031 08:42
... ... ...
1 48.858434 2.336105 09:04
1 48.853611 2.349190 09:05
... ... ...
1 48.853610 2.349205 09:40
1 48.860515 2.349018 09:41
... ... ...
1 48.861112 2.334167 10:00
1 48.861531 2.336018 10:01
1 48.861530 2.336020 10:02
... ... ...
2 ... ...

(b) Stop
Tid Sid SFTid SFTname Sbegint Sendt

1 1 1 Hotel 08:25 08:40
1 2 1 TouristicPlace 09:05 09:30
1 3 3 TouristicPlace 10:01 14:20
... ... ... ... ... ...

(c) Move
Tid Mid S1id S2id geometry timest

1 1 1 2 48.888880 2.246102 08:41
1 1 1 2 48.885732 2.255031 08:42
... ... ... ... ... ...
1 1 1 2 48.860021 2.336105 09:04
1 2 2 3 48.860515 2.349018 09:41
... ... ... ... ... ...
1 2 2 3 48.861112 2.334167 10:00
... ... ... ... ... ...

(d) Hotel
Id Name Stars geometry

1 Ibis Nanterre 2 48.890015 2.246100, ...
2 Meridien 5 48.880005 2.283889, ...
... ... ... ...

(e) Touristic Place
Id Name Type geometry

1 Notre Dame Church 48.853611 2.349167, 48.853612 2.350556,..
2 Eiffel Tower Monument 48.858330 2.294333, 48.858055 2.289444,..
3 Louvre Museum 48.862220 2.335556, 48.860833 2.339722,..
. ... ... ...

In this model, two spatial joins are necessary to test the
intersection of the trajectories with both hotels and touristic
places. The time has to be tested in order to validate the
sequence of the movement.

Following the model of stops and moves to answer this
query neither spatial join nor time verification is necessary.
The sequence (order) of stops is represented by the Stop
identifier, and the test a.Sid < b.Sid in the query using our
model will give the order of the stops in time.

SELECT distinct count(a.Tid)

FROM stop a, stop b

WHERE a.SFTname=’Hotel’ AND

b.SFTname=’Touristic Place’ AND a.Tid=b.Tid

AND a.Sid < b.Sid

Q3: How many trajectories visit the Notre Dame church
and then visit the Pompidou Center crossing the Arcole
bridge?

Using the trajectory sample points, to answer this ques-
tion at least three spatial joins are necessary, and the order
as the intersections occur has to be Notre Dame, Arcole
bridge, and Pompidou Center, in this order. All trajecto-
ries have to be spatially tested with the geographic object



types specified in the query, as well as the time constraint
to check the order of the move. The query will be similar to
the following.

SELECT distinct count(t.Tid)

FROM trajectory t, trajectory u, trajectory v,

touristicPlace p, touristicPlace q, bridge b

WHERE intersects (t.geometry, p.geometry) AND

p.Name=’Notre Dame’ AND

intersects (u.geometry, q.geometry) AND

q.Name=’Pompidou Center’ AND

intersects(v.geometry, b.geometry) AND

b.Name=’Arcole’ AND

t.Tid=u.Tid AND t.Tid=v.Tid AND

t.timest < v.timest AND v.timest < u.timest

Using the model of stops and moves, only one spatial join
operation is necessary, and for one specific move (from stop
Notre Dame to stop Pompidou Center). It is the geometry
of the move that will be used to test the intersection with
Arcole bridge, which in our application is not a stop because
bridges were not defined as an interesting place. The search
space on which the join will be applied is significantly re-
duced, since the moves are filtered by the stop constraint,
i.e., only the moves between the two specific stops Notre
Dame and Pompidou Center will be tested, as shows the
following query.

An important remark is that when testing the moves, the
order of the move is given by the attributes S1id and S2id.
This avoids the necessity to check the time constraint in-
side a move. This query example should not be usual, i.e.,
where the geometry of the move will be used, since the most
important parts of a trajectory are the stops. However, it il-
lustrates that any further analysis over moves is still possible
because moves contain the spatio-temporal characteristics of
the trajectory.

SELECT distinct count(m.Tid)

FROM move m, touristicPlace p,

touristicPlace q, bridge b

WHERE m.S1id=p.Id AND p.Name=’Notre Dame’ AND

m.S2id=q.Id AND q.Name=’Pompidou Center’ AND

intersects(m.geometry, b.geometry) AND

b.Name=’Arcole’

Q4: Which are the touristic places that moving objects have
passed and stayed for more than one hour?

To answer question Q4 considering the sample points ap-
proach, a more sophisticated query is necessary, but to sim-
plify it we assume that: (i) the interval between samples
is about one minute and (ii) if one touristic place has been
visited more than once, we count the total amount of time.
This query will be similar to the following:

SELECT temp.name, count(temp.*) AS n_visits

FROM (SELECT t.Tid, p.name

FROM trajectory t, touristicplace p

WHERE intersect(t.geometry,p.geometry)

GROUP BY t.Tid,p.name

HAVING count(*)>60) AS temp

GROUP BY temp.name

Considering our approach, a simplified query can be formu-
lated, such as:

SELECT s.SFTname, count(s.*) AS n_visits

FROM stop s, touristicplace p

WHERE s.SFTid=p.id AND (s.Sendt - s.Sbegint ) > 60

GROUP BY s.SFTname

A question like Q4 is still quite simple to be answered using
the sample points approach, since it refers to only one type of
important place (touristic places). However, a very similar
query like which are all important places that the moving
objects have passed and have stayed for more than one hour
would become more complex, and similar to our algorithm
to extract stops and moves.

As we have seen in only a few examples, the proposed
model of stops and moves may require some time to be com-
puted, but much less time will be required by the user for
the analysis over trajectories.

Besides reducing the search space of the trajectory queries,
the transformation of trajectory sample points into stops
and moves allows the semantic exploration of the non-spatial
attributes of all spatial features that represent a stop. For
instance, select all trajectories that have a stop at a two
stars hotel, or select all trajectories that stop at a two stars
hotel and also stop at touristic museums.

More sophisticated analysis over trajectories may require
data mining methods. Therefore, our model of stops and
moves becomes even more powerful, and may considerably
simplify the use of data mining algorithms. Since trajectory
data mining is out of the scope of this paper, we will illus-
trate the usability of our model for data mining with a very
simple example.

Q5: In relation to moving behavior, which is the most
frequent sequence of two important places followed by the
moving objects?

While for existing trajectory data mining algorithms that
deal with sample points like [4, 14, 11, 16], such a question
may be complex to answer, using the model of stops and
moves a query like the following would answer this question:

SELECT S1id, S2id

FROM move

GROUP BY S1id, S2id

HAVING MAX(COUNT(S1id,S2id)) =

( SELECT MAX(COUNT(S1id, S2id))

FROM move

GROUP BY S1id, S2id)

The model of stops and moves allows the use of traditional
data mining methods like association rules and frequent pat-
tern mining.

In this section we evaluated the proposed model with a few
query examples, focusing on a tourism application. How-
ever, as we have pointed out at the beginning of the paper,
the geographic information to be integrated to trajectories
is application dependent, and therefore, our semantic model
of stops and moves is general enough to support different
applications. In applications like traffic management, for
instance, candidate stops could be traffic lights, bus stops,
train stations, round abouts, etc. In a urban planning ap-
plication, for instance, for cultural and recreational domain,
candidate stops could be parks, lakes, recreational areas,
shopping centers, parking places, bus stops, etc.



4. RELATED WORKS
Moving object data have received significant attention in

the last few years from the database community. Güting [6,
8] has proposed several data types and operations to manip-
ulate moving object data, which have been implemented in
a moving object database prototype [5]. Similarly, [19] has
proposed operations to manipulate moving objects. Based
on these definitions, [14] has developed the HERMES proto-
type, which is a new data cartridge that exploits the spatial
data types available in Oracle.

Main research approaches on moving object databases
have focused on the geometrical and temporal characteris-
tics of trajectory sample points, but little attention has been
devoted for a more semantic representation of trajectories
from an application point of view [15]. The necessity for the
integration of geographic information and trajectories has
been expressed in a few works that focus on the network
application domain [3, 7, 12, 17]. According to Güting [7],
it makes more sense to describe movements relative to the
network rather than unconstrained space, because then it
is much easier to formulate queries between moving objects
and the network.

The conceptual model proposed by [15] integrates geo-
graphic information to trajectories through the stops. Sim-
ilarly, in [3] and [12] the key points of trajectories are ex-
tracted, but specifically for an application where the back-
ground geographic information refers to the road network.
Rigaux [13] has proposed a model where trajectories are rep-
resented as a sequence of moves between regions.

As we have seen in the analysis section, the decomposition
of trajectory sample points into stops and moves reduces
the computational complexity of most queries from a spatial
query to a conjunctive query. From the user’s perspective,
the semantic model may facilitate the formulation of queries
and facilitate trajectory data analysis. In summary, our
approach differs from existing ones in the following aspects:

• We provide a general model, which is application inde-
pendent, to integrate trajectory data and geographic
information in a preprocessing step. In other words,
we propose a model to automatically add semantic in-
formation to trajectories based on the notion of stops
and moves introduced in [15].

• We present the algorithm SMoT to extract stops and
moves.

• Through an empirical analysis we show that the en-
richment of trajectories with semantic information in
a preprocessing step facilitates the query formulation
and more powerful analysis can be performed over tra-
jectories.

5. CONCLUSIONS AND FUTURE WORKS
Trajectory data are normally available in the form of sam-

ple points, what makes their analysis in different application
domains expensive from a computational point of view and
complex from a user’s perspective. For a very simple query
like which is the set of given important places that objects
have passed during a given time interval may require a com-
plex query, with several spatial joins among trajectories and
geographic feature types. In a semantic trajectory dataset a
single query over the table Stops would answer such query.

The proposed method for the analysis of trajectory data
can take some time to add the semantic information (the
extraction of stops and moves), but much less time will be
required from the user for querying and analyzing trajecto-
ries. By computing stops and moves in one preprocessing
step, the complexity of most queries is reduced from a spa-
tial query to a conjunctive query.

The transformation of trajectory sample points into stops
and moves reduces the search space in two main parts: (i)
stops, where a set of sample points is transformed into a
geographic object that has a meaning; (ii) moves, where the
sample points are reduced to a small part of a trajectory
between two stops.

Future ongoing work is the implementation of the model
of stops in moves into Weka [18], which is a free and open
source data mining toolkit that we have extended to sup-
port automatic geographic data preprocessing for spatial
data mining [2].
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