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Abstract. Geographic data preprocessing is the most effort and time consuming step 
in spatial data mining. In order to facilitate geographic data preprocessing and 
increase the practice of spatial data mining, this paper presents Weka-GDPM, an 
interoperable module that supports automatic geographic data preprocessing for 
spatial data mining. GDPM is implemented into Weka, which is a free and open 
source classical data mining toolkit that has been widely used in academic 
institutions. GDPM follows the Open GIS specifications to support interoperability 
with Geographic Information Systems. It automatically generates data at two 
granularity levels without using prior knowledge and provides support for both 
distance and topological spatial relationships.   

1. Introduction 
Large amounts of geographic data have been used more and more in many areas in different 
application domains such as urban planning, transportation, telecommunication, marketing, etc. 
These data are stored under Geographic Database Management Systems (GDBMS), and 
manipulated by Geographic Information Systems (GIS). The latter is the technology which 
provides a set of operations and functions for geographic data analysis. However, within the 
large amount of data stored in geographic databases there is implicit, non-trivial, and previously 
unknown knowledge that cannot be discovered by GIS. Specific techniques are necessary to 
find such knowledge, which is the objective of Knowledge Discovery in Databases (KDD).  
 KDD is an interactive process which according to [Fayyad 1996] consists of five main 
steps: selection, preprocessing, transformation, data mining and evaluation/interpretation. 
Selection, preprocessing and transformation are data preparation steps in which data are 
rearranged to the format required by data mining algorithms. For non-spatial databases it is 
stated that between 60 and 80 percent of the time and effort in the whole KDD process is 
required for data preparation [Addrians 1996]. For geographic databases this problem increases 
significantly because of the complexity of geographic data that must be considered. We have 
addressed this problem in [Bogorny 2005a] proposing an interoperable framework for 
geographic data preprocessing. In [Bogorny 2006a] we extended this framework using semantic 
knowledge to improve data preprocessing steps. 
  Different solutions for general knowledge discovery in geographic databases have been 
proposed in the literature, but only a few addressed aspects of data preparation. Most 
approaches propose data mining query languages or new spatial data mining algorithms. Han, 
for example, proposed a geo-mining query language named GMQL, implemented in the 
GeoMiner software prototype [Han 1997]. Malerba (2000) proposed an object-oriented data 
mining query language named SDMOQL, implemented in the INGENS software prototype. 
Ester (2000) defined a set of new operations to compute geographic neighbors. In these 
approaches it is expected that the GDBMS will implement the proposed languages and 
operations. However, most GDBMS follow the Structured Query Language (SQL), which 



 
 

became the standard language to manipulate databases, and do neither implement data mining 
languages nor operations to either automate or semi-automate geographic data preprocessing.  
 Existing spatial data mining software prototypes such as GeoMiner [Han 1997] and 
INGENS [Malerba, 2000] are no longer available for practical purposes either inside or outside 
academic institutions. Other prototypes, such as Ares [Appice 2005], implement a spatial feature 
extractor, but compute all spatial relationships among all spatial feature types. This is a problem 
for mining real databases, since the spatial join computation performs a cartesian product among 
spatial feature types to compute spatial relationships. Indeed, Ares implements only the Spada 
algorithm for mining spatial association rules. 
 Aiming to make a contribution for the spatial data mining field and facilitate the 
practice of knowledge discovery in geographic databases, we propose GDPM (Geographic Data 
Preprocessing Module), which integrates geographic databases and the classical data mining 
toolkit Weka [Witten 2005]. Weka is a free and open source classical data mining toolkit which 
provides friendly graphical user interfaces to perform the whole KDD process, implements a 
variety of data mining algorithms, and has been largely used for mining non-spatial databases. 
The objective of GDPM is to automate geographic data preprocessing.   
 The main contribution of this work is for the data mining user, since no background 
knowledge is required to manipulate GDPM. Additional contributions include: 
• Interoperability with any GDBMS constructed under OpenGIS Simple Features 

Implementation Specification [OGC 1999a]. 
• Different classical data mining algorithms can be applied in the data mining step.  
• The user can easily define the relevant spatial feature types, the target feature type, different 

spatial relationships, as well as different granularity levels. 
• The feature’s spatial representation is independent of geometric type. While most spatial 

data mining algorithms are restricted to only points, our framework supports any geometric 
primitive. 

 The remaining of this paper is organized as follows: Section 2 presents background 
knowledge about geographic databases. Section 3 details the main aspects as well as the 
problems to be solved in geographic data preprocessing. Section 4 presents Weka-GDPM, and 
Section 5 concludes the paper and suggests directions of future works. 

2. Background 
Geographic databases (GDB) store real world entities, also called spatial features, located in a 
specific region [OGC 1999b]. Spatial features (e.g. Canada, France) belong to a feature type 
(e.g. country), and have both non-spatial attributes (e.g. name, population) and spatial attributes 
(geographic coordinates x,y).  In GDB every different feature type is usually stored in a different 
relation, because most geographic databases follow the relational [Shekhar 2003] or object-
relational approach. Figure 1 shows an example of geographic data stored in relational 
databases, where the spatial feature types street, water resource, and gas station are different 
relations with spatial (shape) and non-spatial attributes. 
 The spatial attributes of geographic object types, represented by shape in Figure 1, have 
intrinsic spatial relationships (e.g. close, far, contains, intersects). Because of these relationships 
real world entities can affect the behavior of other features in the neighborhood. This makes 
spatial relationships be the main characteristic of geographic data to be considered for data 
mining and knowledge discovery [Ester 2000]. It is also the main characteristic which differs 
geographic/spatial data mining from non-spatial data mining.   
 Spatial relationships are usually not explicitly stored in geographic databases, so they 
have to be computed with spatial operations. There are basically 3 spatial relationships to 
consider [Gutting 1994]: distance, order, and topological. Distance relationships are based on 
the Euclidean distance between two spatial features.  Direction relationships deal with the order 



 
 

as spatial features are located in space. Topological relationships characterize the type of 
intersection between two spatial features and can be classified in Equal, Disjoint, Touches, 
Within, Overlaps, Crosses, Contains, Covers, and CoveredBy. Mainly topological and distance 
relationships have been used in spatial data mining, and they will be the focus in this paper. 
(a) Street 

Gid Name Shape 
1 Azenha Multiline [(x1,y1),(x2,y2),..] 
2 Lajeado Multiline [(x3,y3),(x4,y4),..] 

  
 (b) WaterResource 

Gid Name Shape 
1 Jacui Multiline [(x5,y5),(x2,y2),..] 
2 Guaiba Multiline [(x6,y6),(x2,y2),..] 
3 Uruguai Multiline [(x5,y5),(x7,y7),..] 

 
 (c) GasStation 

Gid Name VolDiesel VolGas Shape  
1 BR 20000 85000 Point[(x8,y8)] 
2 IPF 30000 95000 Point[(x9,y9)] 
3 Elf 25000 120000 Point[(x3,y3)] 

 
 (d) GEOMETRY_COLUMNS 

f_table_schema f_table_name f_geometry_column type SRID 
Public Street Shape Multiline  -1 
Public WaterResource Shape Multiline -1 
Public  GasStation Shape  Point -1 

Figure 1 – Geographic data storage structure in OGC based GDBMS 

   GIS implement specific functions to manipulate geographic data. The OGC (Open GIS 
Consortium) is an organization dedicated to develop standards for geographic operations and 
geographic data integration, aiming to provide interoperability for GIS. Among many 
specifications established by the OGC, two are of fundamental importance for this work: 
operations to compute spatial relationships and the database schema metadata. Topological 
relationships are computed according to Egenhofer´s (1995) and Clementini´s (1993) approach.  
 The database schema metadata are stored in a database table named 
GEOMETRY_COLUMNS, which is automatically created in a GDBMS that follows OGC 
specifications. An example is illustrated in Figure 1 (d). This table consists of a row for each 
feature type in the geographic database with spatial attributes. It is instantiated automatically 
when geographic data are loaded to the database the first time, and stores all database 
characteristics, including the database schema name, all geographic table names (f_table_name), 
the name of the geometry column (f_geometry_column), and its type (type).  
 For automatic geographic data preprocessing the database table 
GEOMETRY_COLUMNS can be used to retrieve all spatial feature types stored in a GDB, as 
will be explained in the following section.  

3. Geographic Data Preprocessing in GDPM 
To prepare geographic databases for data mining the main steps include the definition of a target 
feature type on which discovery will be performed, a set of relevant feature types that may have 
an influence over the target feature type because of spatial relationships, the granularity level in 
which data will be represented and the spatial relationships to be computed. The target feature 
type and every relevant feature type are different database tables in a geographic database. The 
resultant single file that the data preparation step must generate contains one row for each 
instance (e.g. Porto Alegre) of the target feature type (e.g. city), and columns are predicates. The 
predicates are non-spatial attributes (e.g. population) of the target feature type and spatial 
relationships with the relevant feature types (e.g. contains_river).  



 
 

 Spatial relationships are computed with SQL queries which spatially join all instances t 
(e.g. Porto Alegre) of the target feature type T (e.g. city) and all instances o (e.g. Guaiba River) 
of every relevant feature type O (e.g. river) in a set of relevant feature types S (e.g. street, 
gasStation, river) that have any spatial relationship (e.g. touches, contains, close) with T. Being 
T a set of instances T={t1, t2,…,tn}, S = { O1, Oi,…, Om}, and Oi = { o1, o2,…, oq}, the extraction 
of spatial relationships implies the comparison of every instance of T with every instance of O, 
for all O in S.  
 According to the objective of the discovery, data can be represented at different 
granularity levels [Han 1995]. For example, having some regions in a metropolitan area high 
pollution incidence, it might be interesting to consider spatial predicates of factories in a more 
generalized level such as contains(factory). In some specific cases, it might be interesting to 
consider spatial predicates of the different types of factories such as contains(chemical_factory), 
contains(metalurgical_factory). In very specific cases, it might be interesting to consider the 
instances of factories, such as contains(chemical_factory_x), contains(metallurgical_factory_y).  
 In this paper we consider two granularity levels detailed in [Bogorny 2005a]: feature 
instance and feature type. The former is a very low granularity in which the type of spatial 
features and their instance identifier is considered (e.g. river_1). The latter is a more generalized 
granularity level where only the feature type is considered (e.g. river). These two granularities 
can be automatically generated without using prior knowledge and without requiring 
background knowledge from the data mining user. In the following we explain how these 
granularity levels are generated for topological and distance relationships. 

3.1 Topological Relationships 
Topological relationships are mutually exclusive such that only one topological relationship 
holds between two spatial feature instances (e.g. Porto Alegre city and Canoas city). At the 
feature instance granularity level every instance of the target feature type may have only one 
topological relationship with an instance of a relevant feature type. Table 1 (left) illustrates an 
example of the spatial join computation where city 1 has the relationship contains with River_1, 
crosses with River_2, and contains with Slum_1. At the feature instance granularity level,  
when transforming the spatial join output (Table 1 left) into the Weka input format (Table 1 
right), the relevant feature type name with the respective instance is transformed in an attribute 
name. The value of this attribute will be the respective topological relationship. For the relevant 
feature instances that have no relationship with an instance of the target feature (e.g. River_3 
and city_1, River_1 and city_3), the attribute value is filled with “?”, which is the symbol used 
by Weka to represent the absence of an attribute. 
 

Table 1 - Feature Instance Granularity Level for topological relationships 
TargetF_i

d (city) 
RelevantF 
Instance 

Relationship  

1 River_1 Contains 
1 River_2 Crosses 
2 River_3 Contains  
2 River_4 Crosses 
3 River_2 Crosses 
1 Slum_1 Contains 
2 Slum_2 Contains 

 At the feature type granularity level, as shown in Table 2 (left), the relevant feature 
instance is not stored in the spatial join output. For example, city 1 has two topological 
relationships with the relevant feature type River, contains and crosses (with different rivers). 
At this granularity level, to preserve the type (semantic) of the topological relationship, we need 
to create a different attribute name (e.g. contains_river, crosses_river) for every relevant feature 
type with a different topological relationship with the target feature. Indeed, it is difficult to 
specify dominance between topological relationships in order to define the strongest. As this 

TargetF_id
(city) 

River_1 River_2 River_3 River_4 Slum_1 … 

1 Contains Crosses ? ? Contains  

2 ? ?  Contains Crosses ?  
3 ? Crosses ? ? ?  



 
 

problem has not been addressed in the literature so far, we propose to preserve the relationship 
type by concatenating it to the feature type, while the attribute value receives the string “yes” 
when the relationship holds and “ ?”  if there is no topological relationship, as shown in Table 
2(right). 
  

 Table 2 - Feature Type Granularity Level for topological relationships 
TargetF_id 

(city) 
RelevantF 

Type 
Relationship 

1 River Contains 
1 River Crosses 
2 River Contains  
2 River Crosses 
3 River Crosses 
1 Slum Contains 
2 Slum Contains 

 According to the objective of the discovery, the use of topological relationships can lose 
interesting information. To understand this problem, let us consider the geographic map shown 
in Figure 2, where the small polygons are slums, large polygons are districts, and black lines are 
water bodies of the city of Porto Alegre. Let us suppose that district is the target feature type 
and slums and water bodies are the relevant feature types. 

 
Figure 2 - Partial map of the Porto Alegre city representing districts, slums, and water bodies 

 In Figure 2 we can observe the different topological relationships that districts may 
have with both slums and water bodies. The district Nonoai, for example, “contains” slums (e.g. 
159 and 183), “touches” slums (e.g. 180), and “overlaps” slums (e.g. 174). Different 
topological relationships may not generate patterns when mining data at the feature instance 
granularity level if thresholds such as minimum support, for example, for mining spatial 
association rules are not very low. For example, the predicate touches(slum_183) for district 
Santa Tereza is different from the predicate contains(slum_183) for the district Nonoai. The 
same occurs for slum_180 which is within district Cristal and touched by district Nonoai. When 
the objective is to investigate high criminal incidence, for example, and either slum 180 or 183 
are responsible for high criminal incidence in districts Nonoai and Cristal, this might not be 
discovered by data mining algorithms.   
 To solve this kind of problem we suggest to consider general topological relationships 
intersects and non-intersects. When different instances of the target feature (e.g. district Cristal 
and district Nonoai) have topological relationships with the same instance of a relevant feature 

TargetF_id 
(city) 

Contains_River Crosses_River Contains_Slum …

1 Yes Yes Yes  
2 Yes Yes Yes  
3 ? Yes ?  

 

  Slums 
          Districts 
         WaterBody



 
 

type (e.g.slum_180) a predicate intersects(slum_180) is generated.  Because of space limitations 
we do not show an example of this transformation process, but details can be found in 
(Bogorny, 2006b).  

3.2 Distance Relationships 
Distance relationships are computed according to the distance parameters provided by the user. 
If only one distance parameter (dist1), is provided neighborhoods are considered very close if 
their distance from the target feature is less or equal to dist1. When two distance measures are 
informed (dist1 and dist2), than neighborhoods are considered very close if their distance from 
the target feature is less or equal to dist1, and close if their distance is between dist1 and dist2, 
as shown in the example in Table 3 (left) for the feature instance (above) and feature type 
(below) granularity level.  
 

Table 3 – Feature Instance and Feature Type Granularity for distance relationships 
TargetF_id  

(city) 
RelevantF   
Instance 

Relationship  

1 River_1 VeryClose 
1 River_2 Close 
2 River_3 Close 
2 River_4 Close 
3 River_2 VeryClose 
1 Slum_1 Close 
2 Slum_2 VeryClose 

 
TargetF_id 

(city) 
RelevantF 

Type 
Relationship  

1 River VeryClose 
1 River Close 
2 River Close  
3 River VeryClose 
1 Slum Close 
2 Slum VeryClose 

 The relationship far is not considered because experiments showed the generation of an 
enormous amount of non-interesting patterns. For example, the city 1 is very close to river 1 and 
close to river 2, but far from all other rivers. For distance relationships we can say that close is 
dominant over far, because all spatial objects that are not close, will be far.  In case someone 
would like to consider things that are far, the value of the distance metric dist2 can be increased 
in order to cover far spatial objects. 

4. Weka and GDPM 
Weka is a free and open source non-spatial data mining toolkit developed in Java. It has a non-
spatial data preprocessing module named weka.Explorer in which it is possible to establish a 
database connection, open a web site, or an arff (input text file in the format required by Weka) 
file. The module GDPM is fully integrated into Weka in order to automatically access and 
preprocess geographic databases. (see Bogorny 2006b for details). 
 In order to support GDPM we extended the Weka database connection interface, shown 
in Figure 3(left). We added the button GeographicData, which calls the GDPM module, shown 
in Figure 3(right). As can be observed in Figure 3(right), the user provides the database schema 
and GDPM loads all geographic database tables (from the table geometry_columns) to the box 
Target Feature and Relevant Features. This allows the user to choose only the spatial feature 
types of interest, and not the whole geographic database.   GDPM automatically generates data 
at two granularity levels for distance, topological, and high level topological relationships 
(intersects), without any concept hierarchy, as have been explained in the previous section.   

TargetF_id 
(city) 

River_1 River_2 River_3 River_4 … 

1 VeryClose Close ? ?  
2 ? ?  Close Close  
3 ? VeryClose ? ?  

 

TargetF_id 
(city) 

VeryClose_River Close_River Close_Slum … 

1 Yes Yes Yes  
2 ? Yes ?  
3 Yes ? ?  

 



 
 

  
Figure 3 – Geographic data preprocessing interface 

 The spatial join step is performed among the target feature type and all selected relevant 
feature types. This is performed into the geographic database with the spatial operations 
implemented by the GDBMS, which follows the OGC approach.  The result is stored in a 
temporary database table called <target feature type name>_temp (e.g. city_temp). This table 
contains the attributes gid_target_feature_type, relevantF (which is the name of the relevant 
feature type), and relationship, which were shown in section 3. The attribute gid (geographic 
identifier) is also standardized by the OGC and generated for all database tables. 
 The transformation retrieves the non-spatial attributes of the target feature type and the 
spatial predicates generated by the spatial join step.  Transformation is performed in memory and 
generates as an output an arff file. As the arff file may contain a large number of attributes, 
mainly when mining data at the feature instance granularity level, the transformation step cannot 
store the result in a database table, since most GDBMS have a limited maximal number of 
columns.  
 GDPM has been tested with real GDB stored in PostGIS, which follows the OGC 
specifications. Experiments with different data mining techniques including classification and 
association rules were performed to evaluate and validate the data preprocessing method. 

5. Conclusions and Future Works 
This paper addressed the problem of geographic data preprocessing for spatial data mining. The 
main contribution of this work is for the data mining user. A free and open source spatial data 
mining toolkit that supports automatic geographic data preprocessing will facilitate and increase 
the practice of spatial data mining, since we are submitting GDPM to the Weka team in order to 
include it in the next Weka release. 
 A problem that is well known is the large amount of patterns generated by many data 
mining techniques. In geographic databases this problem increases because many discovered 
patterns are well known, because of the natural dependences of geographic data. A large number 
of such dependences can be automatically eliminated in geographic data preprocessing steps 
using prior knowledge [Bogorny 2006a]. The future ongoing work is to implement into GDPM 
the definition and automatic elimination of well known geographic dependences between the 
target feature type and relevant feature types. 
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