

Weka-GDPM – Integrating Classical Data Mining Toolkit
to Geographic Information Systems

Vania Bogorny, Andrey Tietbohl Palma, Paulo Martins Engel, Luis Otavio Alvares

 Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brasil
{vbogorny,andrey,engel,alvares}@inf.ufrgs.br

Abstract. Geographic data preprocessing is the most effort and time consuming step
in spatial data mining. In order to facilitate geographic data preprocessing and
increase the practice of spatial data mining, this paper presents Weka-GDPM, an
interoperable module that supports automatic geographic data preprocessing for
spatial data mining. GDPM is implemented into Weka, which is a free and open
source classical data mining toolkit that has been widely used in academic
institutions. GDPM follows the Open GIS specifications to support interoperability
with Geographic Information Systems. It automatically generates data at two
granularity levels without using prior knowledge and provides support for both
distance and topological spatial relationships.

1. Introduction
Large amounts of geographic data have been used more and more in many areas in different
application domains such as urban planning, transportation, telecommunication, marketing, etc.
These data are stored under Geographic Database Management Systems (GDBMS), and
manipulated by Geographic Information Systems (GIS). The latter is the technology which
provides a set of operations and functions for geographic data analysis. However, within the
large amount of data stored in geographic databases there is implicit, non-trivial, and previously
unknown knowledge that cannot be discovered by GIS. Specific techniques are necessary to
find such knowledge, which is the objective of Knowledge Discovery in Databases (KDD).
 KDD is an interactive process which according to [Fayyad 1996] consists of five main
steps: selection, preprocessing, transformation, data mining and evaluation/interpretation.
Selection, preprocessing and transformation are data preparation steps in which data are
rearranged to the format required by data mining algorithms. For non-spatial databases it is
stated that between 60 and 80 percent of the time and effort in the whole KDD process is
required for data preparation [Addrians 1996]. For geographic databases this problem increases
significantly because of the complexity of geographic data that must be considered. We have
addressed this problem in [Bogorny 2005a] proposing an interoperable framework for
geographic data preprocessing. In [Bogorny 2006a] we extended this framework using semantic
knowledge to improve data preprocessing steps.
 Different solutions for general knowledge discovery in geographic databases have been
proposed in the literature, but only a few addressed aspects of data preparation. Most
approaches propose data mining query languages or new spatial data mining algorithms. Han,
for example, proposed a geo-mining query language named GMQL, implemented in the
GeoMiner software prototype [Han 1997]. Malerba (2000) proposed an object-oriented data
mining query language named SDMOQL, implemented in the INGENS software prototype.
Ester (2000) defined a set of new operations to compute geographic neighbors. In these
approaches it is expected that the GDBMS will implement the proposed languages and
operations. However, most GDBMS follow the Structured Query Language (SQL), which

became the standard language to manipulate databases, and do neither implement data mining
languages nor operations to either automate or semi-automate geographic data preprocessing.
 Existing spatial data mining software prototypes such as GeoMiner [Han 1997] and
INGENS [Malerba, 2000] are no longer available for practical purposes either inside or outside
academic institutions. Other prototypes, such as Ares [Appice 2005], implement a spatial feature
extractor, but compute all spatial relationships among all spatial feature types. This is a problem
for mining real databases, since the spatial join computation performs a cartesian product among
spatial feature types to compute spatial relationships. Indeed, Ares implements only the Spada
algorithm for mining spatial association rules.
 Aiming to make a contribution for the spatial data mining field and facilitate the
practice of knowledge discovery in geographic databases, we propose GDPM (Geographic Data
Preprocessing Module), which integrates geographic databases and the classical data mining
toolkit Weka [Witten 2005]. Weka is a free and open source classical data mining toolkit which
provides friendly graphical user interfaces to perform the whole KDD process, implements a
variety of data mining algorithms, and has been largely used for mining non-spatial databases.
The objective of GDPM is to automate geographic data preprocessing.
 The main contribution of this work is for the data mining user, since no background
knowledge is required to manipulate GDPM. Additional contributions include:
• Interoperability with any GDBMS constructed under OpenGIS Simple Features

Implementation Specification [OGC 1999a].
• Different classical data mining algorithms can be applied in the data mining step.
• The user can easily define the relevant spatial feature types, the target feature type, different

spatial relationships, as well as different granularity levels.
• The feature’s spatial representation is independent of geometric type. While most spatial

data mining algorithms are restricted to only points, our framework supports any geometric
primitive.

 The remaining of this paper is organized as follows: Section 2 presents background
knowledge about geographic databases. Section 3 details the main aspects as well as the
problems to be solved in geographic data preprocessing. Section 4 presents Weka-GDPM, and
Section 5 concludes the paper and suggests directions of future works.

2. Background
Geographic databases (GDB) store real world entities, also called spatial features, located in a
specific region [OGC 1999b]. Spatial features (e.g. Canada, France) belong to a feature type
(e.g. country), and have both non-spatial attributes (e.g. name, population) and spatial attributes
(geographic coordinates x,y). In GDB every different feature type is usually stored in a different
relation, because most geographic databases follow the relational [Shekhar 2003] or object-
relational approach. Figure 1 shows an example of geographic data stored in relational
databases, where the spatial feature types street, water resource, and gas station are different
relations with spatial (shape) and non-spatial attributes.
 The spatial attributes of geographic object types, represented by shape in Figure 1, have
intrinsic spatial relationships (e.g. close, far, contains, intersects). Because of these relationships
real world entities can affect the behavior of other features in the neighborhood. This makes
spatial relationships be the main characteristic of geographic data to be considered for data
mining and knowledge discovery [Ester 2000]. It is also the main characteristic which differs
geographic/spatial data mining from non-spatial data mining.
 Spatial relationships are usually not explicitly stored in geographic databases, so they
have to be computed with spatial operations. There are basically 3 spatial relationships to
consider [Gutting 1994]: distance, order, and topological. Distance relationships are based on
the Euclidean distance between two spatial features. Direction relationships deal with the order

as spatial features are located in space. Topological relationships characterize the type of
intersection between two spatial features and can be classified in Equal, Disjoint, Touches,
Within, Overlaps, Crosses, Contains, Covers, and CoveredBy. Mainly topological and distance
relationships have been used in spatial data mining, and they will be the focus in this paper.
(a) Street

Gid Name Shape
1 Azenha Multiline [(x1,y1),(x2,y2),..]
2 Lajeado Multiline [(x3,y3),(x4,y4),..]

 (b) WaterResource

Gid Name Shape
1 Jacui Multiline [(x5,y5),(x2,y2),..]
2 Guaiba Multiline [(x6,y6),(x2,y2),..]
3 Uruguai Multiline [(x5,y5),(x7,y7),..]

 (c) GasStation

Gid Name VolDiesel VolGas Shape
1 BR 20000 85000 Point[(x8,y8)]
2 IPF 30000 95000 Point[(x9,y9)]
3 Elf 25000 120000 Point[(x3,y3)]

 (d) GEOMETRY_COLUMNS

f_table_schema f_table_name f_geometry_column type SRID
Public Street Shape Multiline -1
Public WaterResource Shape Multiline -1
Public GasStation Shape Point -1

Figure 1 – Geographic data storage structure in OGC based GDBMS

 GIS implement specific functions to manipulate geographic data. The OGC (Open GIS
Consortium) is an organization dedicated to develop standards for geographic operations and
geographic data integration, aiming to provide interoperability for GIS. Among many
specifications established by the OGC, two are of fundamental importance for this work:
operations to compute spatial relationships and the database schema metadata. Topological
relationships are computed according to Egenhofer´s (1995) and Clementini´s (1993) approach.
 The database schema metadata are stored in a database table named
GEOMETRY_COLUMNS, which is automatically created in a GDBMS that follows OGC
specifications. An example is illustrated in Figure 1 (d). This table consists of a row for each
feature type in the geographic database with spatial attributes. It is instantiated automatically
when geographic data are loaded to the database the first time, and stores all database
characteristics, including the database schema name, all geographic table names (f_table_name),
the name of the geometry column (f_geometry_column), and its type (type).
 For automatic geographic data preprocessing the database table
GEOMETRY_COLUMNS can be used to retrieve all spatial feature types stored in a GDB, as
will be explained in the following section.

3. Geographic Data Preprocessing in GDPM
To prepare geographic databases for data mining the main steps include the definition of a target
feature type on which discovery will be performed, a set of relevant feature types that may have
an influence over the target feature type because of spatial relationships, the granularity level in
which data will be represented and the spatial relationships to be computed. The target feature
type and every relevant feature type are different database tables in a geographic database. The
resultant single file that the data preparation step must generate contains one row for each
instance (e.g. Porto Alegre) of the target feature type (e.g. city), and columns are predicates. The
predicates are non-spatial attributes (e.g. population) of the target feature type and spatial
relationships with the relevant feature types (e.g. contains_river).

 Spatial relationships are computed with SQL queries which spatially join all instances t
(e.g. Porto Alegre) of the target feature type T (e.g. city) and all instances o (e.g. Guaiba River)
of every relevant feature type O (e.g. river) in a set of relevant feature types S (e.g. street,
gasStation, river) that have any spatial relationship (e.g. touches, contains, close) with T. Being
T a set of instances T={t1, t2,…,tn}, S = { O1, Oi,…, Om}, and Oi = { o1, o2,…, oq}, the extraction
of spatial relationships implies the comparison of every instance of T with every instance of O,
for all O in S.
 According to the objective of the discovery, data can be represented at different
granularity levels [Han 1995]. For example, having some regions in a metropolitan area high
pollution incidence, it might be interesting to consider spatial predicates of factories in a more
generalized level such as contains(factory). In some specific cases, it might be interesting to
consider spatial predicates of the different types of factories such as contains(chemical_factory),
contains(metalurgical_factory). In very specific cases, it might be interesting to consider the
instances of factories, such as contains(chemical_factory_x), contains(metallurgical_factory_y).
 In this paper we consider two granularity levels detailed in [Bogorny 2005a]: feature
instance and feature type. The former is a very low granularity in which the type of spatial
features and their instance identifier is considered (e.g. river_1). The latter is a more generalized
granularity level where only the feature type is considered (e.g. river). These two granularities
can be automatically generated without using prior knowledge and without requiring
background knowledge from the data mining user. In the following we explain how these
granularity levels are generated for topological and distance relationships.

3.1 Topological Relationships
Topological relationships are mutually exclusive such that only one topological relationship
holds between two spatial feature instances (e.g. Porto Alegre city and Canoas city). At the
feature instance granularity level every instance of the target feature type may have only one
topological relationship with an instance of a relevant feature type. Table 1 (left) illustrates an
example of the spatial join computation where city 1 has the relationship contains with River_1,
crosses with River_2, and contains with Slum_1. At the feature instance granularity level,
when transforming the spatial join output (Table 1 left) into the Weka input format (Table 1
right), the relevant feature type name with the respective instance is transformed in an attribute
name. The value of this attribute will be the respective topological relationship. For the relevant
feature instances that have no relationship with an instance of the target feature (e.g. River_3
and city_1, River_1 and city_3), the attribute value is filled with “?”, which is the symbol used
by Weka to represent the absence of an attribute.

Table 1 - Feature Instance Granularity Level for topological relationships
TargetF_i

d (city)
RelevantF
Instance

Relationship

1 River_1 Contains
1 River_2 Crosses
2 River_3 Contains
2 River_4 Crosses
3 River_2 Crosses
1 Slum_1 Contains
2 Slum_2 Contains

 At the feature type granularity level, as shown in Table 2 (left), the relevant feature
instance is not stored in the spatial join output. For example, city 1 has two topological
relationships with the relevant feature type River, contains and crosses (with different rivers).
At this granularity level, to preserve the type (semantic) of the topological relationship, we need
to create a different attribute name (e.g. contains_river, crosses_river) for every relevant feature
type with a different topological relationship with the target feature. Indeed, it is difficult to
specify dominance between topological relationships in order to define the strongest. As this

TargetF_id
(city)

River_1 River_2 River_3 River_4 Slum_1 …

1 Contains Crosses ? ? Contains

2 ? ? Contains Crosses ?
3 ? Crosses ? ? ?

problem has not been addressed in the literature so far, we propose to preserve the relationship
type by concatenating it to the feature type, while the attribute value receives the string “yes”
when the relationship holds and “ ?” if there is no topological relationship, as shown in Table
2(right).

 Table 2 - Feature Type Granularity Level for topological relationships
TargetF_id

(city)
RelevantF

Type
Relationship

1 River Contains
1 River Crosses
2 River Contains
2 River Crosses
3 River Crosses
1 Slum Contains
2 Slum Contains

 According to the objective of the discovery, the use of topological relationships can lose
interesting information. To understand this problem, let us consider the geographic map shown
in Figure 2, where the small polygons are slums, large polygons are districts, and black lines are
water bodies of the city of Porto Alegre. Let us suppose that district is the target feature type
and slums and water bodies are the relevant feature types.

Figure 2 - Partial map of the Porto Alegre city representing districts, slums, and water bodies

 In Figure 2 we can observe the different topological relationships that districts may
have with both slums and water bodies. The district Nonoai, for example, “contains” slums (e.g.
159 and 183), “touches” slums (e.g. 180), and “overlaps” slums (e.g. 174). Different
topological relationships may not generate patterns when mining data at the feature instance
granularity level if thresholds such as minimum support, for example, for mining spatial
association rules are not very low. For example, the predicate touches(slum_183) for district
Santa Tereza is different from the predicate contains(slum_183) for the district Nonoai. The
same occurs for slum_180 which is within district Cristal and touched by district Nonoai. When
the objective is to investigate high criminal incidence, for example, and either slum 180 or 183
are responsible for high criminal incidence in districts Nonoai and Cristal, this might not be
discovered by data mining algorithms.
 To solve this kind of problem we suggest to consider general topological relationships
intersects and non-intersects. When different instances of the target feature (e.g. district Cristal
and district Nonoai) have topological relationships with the same instance of a relevant feature

TargetF_id
(city)

Contains_River Crosses_River Contains_Slum …

1 Yes Yes Yes
2 Yes Yes Yes
3 ? Yes ?

 Slums
 Districts
 WaterBody

type (e.g.slum_180) a predicate intersects(slum_180) is generated. Because of space limitations
we do not show an example of this transformation process, but details can be found in
(Bogorny, 2006b).

3.2 Distance Relationships
Distance relationships are computed according to the distance parameters provided by the user.
If only one distance parameter (dist1), is provided neighborhoods are considered very close if
their distance from the target feature is less or equal to dist1. When two distance measures are
informed (dist1 and dist2), than neighborhoods are considered very close if their distance from
the target feature is less or equal to dist1, and close if their distance is between dist1 and dist2,
as shown in the example in Table 3 (left) for the feature instance (above) and feature type
(below) granularity level.

Table 3 – Feature Instance and Feature Type Granularity for distance relationships
TargetF_id

(city)
RelevantF
Instance

Relationship

1 River_1 VeryClose
1 River_2 Close
2 River_3 Close
2 River_4 Close
3 River_2 VeryClose
1 Slum_1 Close
2 Slum_2 VeryClose

TargetF_id

(city)
RelevantF

Type
Relationship

1 River VeryClose
1 River Close
2 River Close
3 River VeryClose
1 Slum Close
2 Slum VeryClose

 The relationship far is not considered because experiments showed the generation of an
enormous amount of non-interesting patterns. For example, the city 1 is very close to river 1 and
close to river 2, but far from all other rivers. For distance relationships we can say that close is
dominant over far, because all spatial objects that are not close, will be far. In case someone
would like to consider things that are far, the value of the distance metric dist2 can be increased
in order to cover far spatial objects.

4. Weka and GDPM
Weka is a free and open source non-spatial data mining toolkit developed in Java. It has a non-
spatial data preprocessing module named weka.Explorer in which it is possible to establish a
database connection, open a web site, or an arff (input text file in the format required by Weka)
file. The module GDPM is fully integrated into Weka in order to automatically access and
preprocess geographic databases. (see Bogorny 2006b for details).
 In order to support GDPM we extended the Weka database connection interface, shown
in Figure 3(left). We added the button GeographicData, which calls the GDPM module, shown
in Figure 3(right). As can be observed in Figure 3(right), the user provides the database schema
and GDPM loads all geographic database tables (from the table geometry_columns) to the box
Target Feature and Relevant Features. This allows the user to choose only the spatial feature
types of interest, and not the whole geographic database. GDPM automatically generates data
at two granularity levels for distance, topological, and high level topological relationships
(intersects), without any concept hierarchy, as have been explained in the previous section.

TargetF_id
(city)

River_1 River_2 River_3 River_4 …

1 VeryClose Close ? ?
2 ? ? Close Close
3 ? VeryClose ? ?

TargetF_id
(city)

VeryClose_River Close_River Close_Slum …

1 Yes Yes Yes
2 ? Yes ?
3 Yes ? ?

Figure 3 – Geographic data preprocessing interface

 The spatial join step is performed among the target feature type and all selected relevant
feature types. This is performed into the geographic database with the spatial operations
implemented by the GDBMS, which follows the OGC approach. The result is stored in a
temporary database table called <target feature type name>_temp (e.g. city_temp). This table
contains the attributes gid_target_feature_type, relevantF (which is the name of the relevant
feature type), and relationship, which were shown in section 3. The attribute gid (geographic
identifier) is also standardized by the OGC and generated for all database tables.
 The transformation retrieves the non-spatial attributes of the target feature type and the
spatial predicates generated by the spatial join step. Transformation is performed in memory and
generates as an output an arff file. As the arff file may contain a large number of attributes,
mainly when mining data at the feature instance granularity level, the transformation step cannot
store the result in a database table, since most GDBMS have a limited maximal number of
columns.
 GDPM has been tested with real GDB stored in PostGIS, which follows the OGC
specifications. Experiments with different data mining techniques including classification and
association rules were performed to evaluate and validate the data preprocessing method.

5. Conclusions and Future Works
This paper addressed the problem of geographic data preprocessing for spatial data mining. The
main contribution of this work is for the data mining user. A free and open source spatial data
mining toolkit that supports automatic geographic data preprocessing will facilitate and increase
the practice of spatial data mining, since we are submitting GDPM to the Weka team in order to
include it in the next Weka release.
 A problem that is well known is the large amount of patterns generated by many data
mining techniques. In geographic databases this problem increases because many discovered
patterns are well known, because of the natural dependences of geographic data. A large number
of such dependences can be automatically eliminated in geographic data preprocessing steps
using prior knowledge [Bogorny 2006a]. The future ongoing work is to implement into GDPM
the definition and automatic elimination of well known geographic dependences between the
target feature type and relevant feature types.

ACKNOWLEDGMENT
Our thanks for both CAPES and CNPQ which partially provided the financial support for this
research.

6. References
Adriaans, P. and Zantinge, D. “Data mining”. Addison Wesley Longman, Harlow, England.1996.
Appice, M., Berardi, M., Ceci, M. and Malerba, D. “Mining and Filtering Multi-level Spatial Association

Rules with ARES”. In: Foundations Of 15th International Symposium Of Intelligent Systems, ISMIS,
3488., 2005, New York, Proceedings… [S.l], Springer LNCS, 2005,pp.342-353.

Bogorny, V., Engel, P.M. and Alvares, L.O. (2005a) “A Reuse-Based Spatial Data Preparation
Framework for Data Mining”. In Proc of the 17 th International Conference on Software Engineering
and Knowledge Engineering, (SEKE'05).Taiwan, China, pp. 649-652.

Bogorny, V., Engel, P. M. and Alvares, L.O (2006a) “GeoARM – an interoperable framework to improve
geographic data preprocessing and spatial association rule mining”. In: Proc of the 18th International
Conference on Software Engineering and Knowledge Engineering (SEKE’2006), San Francisco,
California, pp. 79-84.

Bogorny, V., Palma, A. and Alvares, L.O. (2006b) “Extending the Weka Data Mining Toolkit to support
Geographic Data Preprocessing”. Instituto de Informatica- UFRGS, Porto Alegre, Technical Report –
RP 354.

Clementini, E., Di Felice, P. and Van Ostern, P. (1993). “A small set of formal topological relationships
for end-user interaction”. In: ABEL, D; OOI, B.C. (Eds.). Advances in Spatial Databases. Springer-
Verlag, 1993. pp. 277-295.

Ester, M., Frommelt, A., Kriegel, H.-P., and Sander, J. “Spatial Data Mining: Database Primitives,
Algorithms and Efficient DBMS Support”. Journal of Data Mining And Knowledge Discovery, 4, 2-
3(Jul. 2000), 193-216.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). “From data mining to discovery knowledge in
databases”. AI Magazine, 3(17): 37-54.

Egenhofer, M. and Franzosa, R. (1995). “On the equivalence of topological relations”. International
Journal of Geographical Information Systems, 9(2) 133-152.

Gutting, R. H. (1994). “An Introduction to Spatial Database Systems”. The International Journal on Very
Large Data Bases, V3 (4), (October), pp. 357 - 399.

Han, J. (1995). “Mining Knowledge at Multiple Concept Level”. In: Proceedings of the 4th International
Conference on Information and Knowledge Management (CIKM'95), Baltimore, Maryland, Nov.
1995, pp. 19-24.

Han, J., Koperski, K. and Stefanvic, N. (1997) “GeoMiner: a system prototype for geographic data
mining”. In Proceedings of the ACM-SIGMOD international conference on Management Of Data
(SIGMOD’97) (May 13-15,1997). ACM Press, Tucson, AR, p. 553-556.

Malerba, D. et al. (2000). “Discovering geographic knowledge: the INGENS system”. In Foundations of
Intelligent Systems, 12th International Symposium, (ISMIS), Lecture Notes in Artificial Intelligence,
1932, 40-48, Springer, Berlin, Germany.

OGC (1999a). “OpenGIS simple features specification for SQL”.
http://www.opengeogeographic.org/docs/99-054.pdf, August 2005.

OGC (1999b). “Topic 5, the OpenGIS abstract specification – OpenGIS features – Version 4”.
http://www.OpenGIS.org/techno/specs.htm. August 2005.

Shekhar, S. and Chawla, S. “Spatial databases: a tour”. Prentice Hall, Upper Saddle River, NJ, 2003.
Witten, I. and Frank, E. “Data Mining: Practical machine learning tools and techniques”, 2nd Edition,

Morgan Kaufmann, San Francisco, 2005.

