
 

 

Abstract – Many spatial association rule mining algor ithms 

have been developed to extract interesting patterns from large 

geographic databases. However , a large amount of knowledge 

explicitly represented in geographic database schemas has not 

been used to reduce the number  of association rules. A 

significant number  of well known dependences, explicitly 

represented by the database designer , are unnecessar ily 

extracted by association rule mining algor ithms. The result is 

the generation of hundreds or  thousands of well known spatial 

association rules. This paper  presents an approach for  mining 

spatial association rules where both database and schema are 

considered. We propose the APRIORI-KC (Apr ior i 

Knowledge Constraints) algor ithm to eliminate all 

associations explicitly represented in geographic database 

schemas. Exper iments show a very significant reduction of the 

number  of rules and the elimination of well known rules. 

 
Index Terms - Geographic databases, geographic domain 

knowledge, spatial association rules, spatial data mining. 

I. INTRODUCTION 

The association rule mining technique emerged with the 

objective to find novel, useful, and interesting associations, 

hidden among itemsets [1] and spatial predicate sets [2]. An 

enormous amount of algorithms with different thresholds 

for reducing the number of rules has been proposed. 

However, only the data by themselves have been 

considered, while the database schema, which is a rich 

knowledge resource, has not been used as prior knowledge 

to eliminate well known patterns. 

In traditional association rule mining the schema might 

not be useful, since items and transactions can be stored in 

a single relation. In geographic databases, however, the 

number of object types to be considered for mining is large. 

Every different object type is normally stored in a different 

relation, since most geographic databases follow the 
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relational approach [3]. Fig. 1 shows an example of how 

geographic data are stored in relational databases. There is 

a different relation/table for every different object type [3] 

(street, water resource, gas station, and island). 

  (a) Street 

Gid Name Length Shape 

1 BR-101 632056.03 Multiline [(x1,y1),(x2,y2),..] 

2 RS-226 255365.88 Multiline [(x1,y1),(x2,y2),..] 
 

 (b) WaterResource 

Gid Name Length Shape 

1 Jacui 3214328.71 Multiline [(x1,y1),(x2,y2),..] 

2 Guaiba 283434.23 Multiline [(x1,y1),(x2,y2),..] 

3 Uruguai 4523333.12 Multiline [(x1,y1),(x2,y2),..] 
  

(c) GasStation 

Gid Name Vol_Diesel Vol_Gas Shape 

1 Posto do Beto 20000 85000 Point[(x1,y1)] 

2 Posto da Silva 30000 95000 Point[(x1,y1)] 

3 Posto Ipiranga 25000 120000 Point[(x1,y1)] 
 

(d) Island 

Gid Name Population Sanitary_Condition Shape 

1 Flores 5000 Yes Point[(x1,y1)] 

2 Pintada 20000 Partial Point[(x1,y1)] 

3 Da Luz 15000 No Point[(x1,y1)] 

 
 

Fig. 1.  Examples of geographic data storage in relational 

databases 

From the database design point of view, the objective of 

data modeling is to bring together all relevant object types 

of the application, their associations/relationships, and their 

constraints [3]-[4]. Many geographic object types have 

mandatory associations, represented in the schema by one-

one and one-many cardinality constraints, which the 

database designer has the responsibility to warrant when 

the schema is conceived [4]. The representation is usually 

in the third normal form [4], intending to reduce anomalies 

and warrant integrity. 

In contrast to database schema modeling, where 

associations between data are explicitly represented, 

association rule mining algorithms should find implicit and 

novel associations. While the former represents the data 

into the third normal form, the latter usually denormalizes 

the data in one single table or one single file. This 

transformation brings the associations explicitly 

represented in the database schema to the dataset to be 

mined, and by consequence, many well known associations 

specified in the schema, are extracted by association rule 

mining algorithms.  

In geographic databases, the number of associations 

specified in the schema reflects a large number of well 

known geographic dependences. Fig. 2 shows two layers of 
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information of the same geographic region. On the left 

there is a well known pattern, i.e., a geographic dependence 

where gas stations do always intersect streets. If considered 

in association rule mining, such dependence will produce 

high confidence rules (e.g. is_a(GasStation)å 

intersect(Street) (100%)). On the right, however, there is no 

explicit pattern among gas stations and water resources 

which may produce well known rules. Relationships such 

as the example shown in Fig. 2 (right) may be interesting 

for association rule mining. 

  
Fig. 2.  Explicit well known geographic domain associations 

(left) and implicit spatial associations (right) 

Users of some domains may not be interested in strong 

geographic domain rules such as is_a(GasStation)å 

intersect(Street) (100%), but in non-obvious rules such as 

is_a(GasStation) and intersect(WaterResource) å 

pollution=high (70%).  

In geographic databases, most mined rules are strongly 

related to geographic dependences which represent strong 

regularities, but do not contribute to the discovery of novel 

and useful knowledge. The result is the mixed presentation 

of thousands of interesting and uninteresting associations 

that can discourage users from interpreting them all in 

order to find interesting patterns.   

We claim that well known associations, explicitly 

represented in geographic database schemas, should be 

eliminated in association rule mining to avoid their 

extraction and presentation to the user. Although well know 

associations can be reduced in geographic data 

preprocessing steps [5], most dependences can only be 

eliminated into the data mining algorithm. Aiming to 

reduce the amount of well known patterns in spatial 

association rule mining, this paper proposes the APRIORI-

KC algorithm. APRIORI-KC uses geographic database 

schemas as prior knowledge to eliminate all association 

rules which reproduce obvious geographic dependences. 

The remainder of the paper is organized as follows: 

Section 2 introduces geographic database schemas and how 

dependences can be extracted. Section 3 describes the 

problem of mining spatial association rules with well 

known geographic dependences and presents the 

APRIORI-KC algorithm. Section 4 evaluates the algorithm, 

Section 5 presents the related works, and Section 6 

concludes the paper and gives some directions of future 

work.  

II. GEOGRAPHIC DATABASE SCHEMAS 

Geographic database schemas are normally extended 

relational or object-oriented schemas [3]. There is an 

emerging trend toward extending both Entity Relationship 

(ER) and Object-Oriented (OO) diagrams with pictograms 

to provide special treatment to spatial data types [3]. [6] 

and [7] are approaches which extend ER and OO diagrams 

for geographic applications. In both ER and OO 

approaches, relationships among entities are represented 

through associations with cardinality constraints. In 

geographic database schemas, these associations may either 

represent a spatial relationship or a single association, 

aggregation, etc. 

Mandatory associations are represented by cardinality 

constraints one-one and one-many [3]-[4]. Geographic data 

with these association constraints, under rare exceptions, 

produce well known rules with a 100% confidence.  

Fig. 3 shows an example of part of a conceptual 

geographic database schema, represented in a UML class 

diagram [8], and part of its respective logical schema for 

relational and OO databases. The schema in Fig. 3 

represents part of the data shown in Fig. 2. Notice that there 

are many mandatory associations (e.g. gas station and 

street, street and county, water resource and county, and 

island and water resource). These dependences, explicitly 

represented in the schema, produce well known patterns 

when considered in spatial association rule mining (see in 

Fig. 2(left) that every gas station intersects one or more 

streets).  

Associations which are not represented as well known 

dependences in the schema (e.g. gas stations and water 

resources) may not produce well known patterns. Observe 

in Fig. 2(right) that there is no well known pattern between 

gas stations and water resources. 

 In the logical level, mandatory relationships expressed 

by cardinalities one-one and one-many normally result in 

foreign-keys in relational geographic databases, and in 

pointers to classes, in object-oriented geographic databases 

[3]-[4]. 

 

Fig 3.  Conceptual and logical geographic database schema 



 

 Well known geographic dependences can be either 

specified by the user or automatically retrieved with 

processes of reverse engineering [9] if the schema is not 

available. Many different approaches to extract 

dependences from relational databases using reverse 

engineering are available in the literature. For data mining 

and knowledge discovery in non-geographic databases 

reverse engineering has been used to understand the data 

model [10] in legacy systems, or to automatically extract 

SQL queries [11], but not as prior knowledge to reduce 

well known patterns.   

When provided by the user, a larger set of dependences 

can be specified; not only associations explicitly 

represented in the schema, but other geographic domain 

dependences which produce well known patterns.   

Fig. 4 shows an example of a data preprocessing 

algorithm to extract mandatory one-one and one-many 

associations from geographic database schemas. If the 

database is relational, then the algorithm searches for all 

foreign keys. For each foreign key, the name of the table 

which it references is retrieved, as well as the name of the 

table where the foreign key is specified. The name of both 

relations is stored in a set of knowledge constraints h. If the 

database is object-oriented, then the same steps are 

performed, but searching for classes with attributes which 

refer to other classes.  

 

  
Fig. 4.  Algorithm to extract mandatory relationships 

In order to evaluate the amount of mandatory 

associations in real geographic database schemas we 

analyzed the object-oriented geographic database schema 

developed by the Brazilian Army. As the terrain model has 

a large number of object types, common to different 

schemas, the database schema developed by the Brazilian 

Army includes most geographic objects abstracted from the 

real world as well as their associations. 

On account of the large number of entities and 

relationships to be represented, geographic data conceptual 

schemas are usually designed in different layers of 

information. The geographic database schema developed 

by the Brazilian Army is composed of 8 layers 

(subschemas): edification, infra-structure, hydrography, 

vegetation, administrative regions, referential, relief, and 

toponymy. The layer infra-structure, for example, is 

divided in six sub-schemas, including information about 

transportation, energy, economy, communication, etc. The 

hydrography layer, for example, represents geographic 

objects such as rivers, oceans, lakes, etc.  

Information of different layers may be extracted for data 

mining, and the number of one-one and one-many 

relationships varies from layer to layer. For example, the 

hydrography layer, which is shown in Fig. 5, has a total of 

24 geographic objects (16 from its own layer and 8 from 

other layers) which share 2 one-many relationships and 16 

one-one relationships if super classes are concrete, and 

more that 20 if super classes are abstract.  

 
Fig. 5.  Conceptual object oriented schema of the Brazilian 

Geographic Territory (MCOO of EBG - Brazilian Army – STI – 

DSG - 1flDL) 

The infra-structure level, for example, not shown 

because of space limitations, has 73 geographic objects in 

its own layer and has relationships with 88 objects in other 

layers. Among the 88 relationships, 70 are mandatory one-

one dependences. 

The analysis showed that a large number of mandatory 

well known geographic dependences are explicitly 

specified in the schema, and if used as prior knowledge to 

avoid their extraction in association rule mining, a large 

amount of irrelevant patterns would be eliminated. 

III. MINING SPATIAL ASSOCIATION RULES WITH 

KNOWLEDGE CONSTRAINTS 

We illustrate the problem of mining spatial association 

rules without removing explicit geographic domain 

dependences through an example. Considering a set of 

elements [ = {A,B,C,D}, all possible combinations of 

these elements produce the sets: {AB}, {AC}, {AD}, {BC}, 

{BD}, {CD}, {ABC}, {ABD}, {ACD}, {BCD}, and 

{ABCD}. Without considering any threshold, the number 

of possible subsets is 11, and the maximum number of rules 

produced with these subsets is 50, as shown in Table I.  

Now consider that the elements C and D have a 

mandatory association. Notice that there are four subsets in 



 

which C and D appear together ({CD}, {ACD}, {BCD} 

and {ABCD}). These four subsets will produce 28 rules, 

and in every rule, C and D will appear. The result is that 

56% of the whole amount of rules is created with the 

dependence between C and D.   
TABLE I 

 MAXIMUM  NUMBER OF COMBINATION SETS AND MAXIMUM  NUMBER OF  

ASSOCIATION RULES  

Sets Possible Rules Number 

of Rules 

{AB} AåB;  BåA 2 

{AC} AåC;  CåA 2 

{AD} AåD;  DåA 2 

{BC} BåC;  CåB 2 

{BD} BåD;  DåB 2 

{CD} CåD;  DåC 2 

{ABC} AåBC; BåAC; CåAB; BCåA; ACåB; ABåC 6 

{ABD} AåBD; BåAD; DåAB; BDåA; ADåB; ABåD 6 

{ACD} AåDC; DåAC; CåAD; DCåA; ACåD; ADåC 6 

DåBC; BåDC; CåDB; BCåD; DCåB; DBåC {BCD} 

{ABCD} AåBCD; BåACD; CåABD; DåABC; ABåCD; 

ACåBD; ADåBC; BCåAD; BDåAC; CDåAB; 

BCDåA; ACDåB; ABDåC; ABCåD; 

6 

14 

 

It is important to observe that we cannot just remove C 

and D from [, because either C or D may have an 

interesting association with A or B. However, we can avoid 

the combination of C and D in the same set. This eliminates 

the possibility of generating rules including both C and D. 

In the next sections we describe the formal problem of 

mining association rules and how APRIORI-KC removes 

combinations of dependent objects. 

A. Spatial Association Rules 

An association rule consists of an implication of the form 

X å Y, where X and Y are sets of items co-occurring in a 

given tuple [1]. Spatial association rules are defined in 

terms of spatial predicates, where at least one element in X 

or Y is a spatial predicate [2]. Spatial predicates represent 

materialized spatial relationships between geographic 

elements, such as close, far, contains, within, touches, etc. 

For example, is_a(x,slum) ® far_from(x,water_network) 

›"disease(hepatitis) (70%) is a spatial association rule 

with 70% confidence. In [12] we presented an intelligent 

framework to automatically extract spatial predicates from 

large geographic databases. 

The formal problem statement for defining association 

rules can be specified as follows: Let F = {f1, f2, …,fk, ..., 

fn} be a set of non-spatial attributes and spatial objects. Let 

[ (dataset) be a set of reference objects T, where each T is 

a set of predicates (tuple) such that T Ø F. Each T is 

represented as a binary vector, with an element t[k] = 1, if T 

contains the attribute fk, and t[k] = 0, otherwise. There is 

exactly one tuple in the dataset to be mined for each 

reference object. Considering X as a subset of F, T contains 

X if, for all fk in X, t[k] = 1. Similarly, being Y a subset of F, 

T contains Y if, for all fk in Y, t[k] = 1. 

In a rule X › Y, X Ł F, Y Ł F and X ̨ Y =̋. The 

support s of a predicate set X is the number of tuples in 

which the predicate set X occurs as a subset. The support of 

the rule X › Y is given as s(X̌Y). 

The rule X › Y is satisfied in [  with confidence factor 

0 ~ c ~ 1, if at least c% of the instances in [  that satisfy X 

also satisfy Y. The notation X › Y | c specifies that the rule 

X › Y has confidence factor of c. More precisely, the 

confidence factor is given as s(X̌Y)/s(X). 

The problem of mining association rules can be 

decomposed in two steps: find all large sets of predicates - 

a set of predicates is large if the support is above a certain 

threshold, and generate high confidence rules - support is 

higher than  the minimum support and the confidence is 

higher than a certain threshold. 

Asser tion 1. If a predicate set Z  is large, then every 

subset of Z will also be large. If the set Z is not large, then 

every set that contains Z is not large too. All rules derived 

from Z satisfy the support constraints if Z satisfies the 

support constraints. 

Considering Assertion1, we propose a third class of 

constraints, called knowledge constraints (h). These 

constraints will be used to avoid the generation of sets 

which contain the pairs of dependences specified in h.  

B. The APRIORI-KC Algorithm 

The APRIORI-KC algorithm, shown in Fig. 6, is based 

on Apriori [13], which has been the basis for dozens of 

association rule mining algorithms which generate 

candidate sets, closed sets [14], free sets [15] or any other 

type of frequent sets.  

 
Fig. 6.  Pseudo-code of APRIORI-KC to generate large 

predicate sets without well known dependences 

APRIORI-KC removes from the candidate sets all pairs 

of elements which have geographic dependences. As in 

Apriori, APRIORI-KC performs multiple passes over the 

dataset. In the first pass, the support of the individual 

elements is computed to determine 1-predicate sets. In the 

subsequent passes, given k as the number of the current 

pass, the large sets Lk-1 in the previous pass (k -1) are 

grouped into sets Ck with k elements, which are called 

candidate sets.    

The support of each candidate set is computed, and if it 

is equal or higher than minimum support, then this set is 

considered large. This process continues until the number 

of large sets is zero. 

Similarly to [16], which eliminates in the second pass 

candidate sets that contain both parent and child specified 

in concept hierarchies, we propose a method to eliminate 

all candidate sets which contain geographic dependences, 

independently of any concept hierarchy. 

The dependences are eliminated in an efficient way, in 

one step, in the second pass, when generating candidates 

with 2 elements. Being h a set of pairs of geographic 

objects with dependences, which can be extracted from the 

database schema or provided by the user, when k is 2, all 

Given: h,[, minsup 
L1 = {large 1-predicate sets}; 
For ( k = 2; Lk-1 != ̋; k++ ) do  begin 
    Ck = apriori_gen(Lk-1); // Generates new   
                         // candidates       

    Forall T Œ [ do begin 
       Ct = subset(Ck, T); // Candidates in t 
       forall candidates c Œ Ct do 
            c.count++; 
    End; 
    Lk = {c Œ Ck | c.count ‡ minsup}; 
 
    If k = 2  // in the second pass 
        L2 = L2 – h ; //removes pairs with  
      // dependences 
 
End; 
Answer = ̌kLk 



 

pairs of elements with a dependence in h are removed from 

C2.  

According to Assertion1, this step warrants that the pairs 

of geographic objects in h will neither appear together in 

the frequent sets nor in the spatial association rules. This 

makes our approach effective and independent of any 

threshold such as minimum support, minimum confidence, 

lift, etc.  

APRIORI-KC eliminates each pair of geographic objects 

in h  (e.g. {C,D}), and avoids the generation not only of the 

main rule CåD but of all derived rules (e.g. DåC, 

CåAD) which contain the known dependence. This is the 

characteristic that differs APRIORI-KC from other 

algorithms [17]-[18] which eliminate only redundant rules. 

IV. EVALUATION 

For the data mining user, more important than the 

reduction of the computational time to generate spatial 

association rules is the elimination of well known 

geographic domain rules, which is the main objective of 

this paper. However, as the elimination of the set of pairs 

which have an association is performed only once, in the 

second pass, the computational time to generate the rules 

automatically decreases, since less candidate sets will be 

generated.    

Without considering thresholds of minimum support and 

minimum confidence, we can quantify the maximum 

number of generated rules ),(max dnr  as a function with a 

number n of elements fk in F and the number d of pairs of 

dependences in h. For d = 0, i.e., without dependences, we 

have 
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rules, where C denotes all possible combinations of n in 

sets with size i. For each of the possible candidate sets, 2i-2 

is the maximum number of rules that can be generated. 

By removing one pair of dependences, without 

considering minimum support and minimum confidence, 

the maximum number of generated rules is  
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where the second combination denotes the number of 

candidate sets in which the pair of dependences to be 

eliminated appears.   

If two pairs of dependences without overlapping are 

eliminated, then the maximum number of rules to be 

generated for n ‡ 6 elements will be 
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Fig. 7 shows the result of experiments with a different 

number of geographic objects, where zero, one, and two 

pairs of dependences were eliminated from the dataset. The 

reference curve corresponds to the rules mined without 

dependence elimination. Notice that in the three cases, the 

number of rules grows exponentially, but the elimination of 

dependences does considerably reduce the number of rules 

even when the number of elements increases. 

Fig. 7. Maximum number  of rules eliminating zero 

(reference), one, and two pair s of dependences 

The elimination of only a few dependences already 

shows the significance of the method. Notice that the 

higher the number of well known dependences is, the more 

significant will the rule reduction be. 

The percentage reduction of rules produced when zero, 

one, and two pairs of dependences are eliminated is shown 

in Fig. 8. The elimination of one pair generates only 55% 

of the total number of rules, i.e., eliminates well known 

rules in 45%. When two pairs are eliminated, only 30% of 

the rules are created, and the reduction increases to 70%. 

Notice that even if the number of elements increases, these 

values represent saturation points for these curves. 

 
Fig. 8. Percentage reduction of rules considering zero 

(reference), one, and two pairs of dependences  

V. RELATED WORKS 

Existing approaches for mining spatial association rules 

do not make use of prior knowledge to reduce the number 

of well known patterns. Koperski [2] presented a top-down, 

progressive refinement method. In a first step spatial 

approximations are calculated, and in a second step, more 

precise spatial relationships are computed to the result of 

the first step. Minimum support is used in data 

preprocessing to extract only frequent spatial relationships. 

A similar method has been proposed by [19] for mining 

association rules among geographic objects with broad 

boundaries. [20] applied Apriori [13] to geographic data at 

different granularity levels.   



 

In previous work [5] we presented a data preprocessing 

method using prior knowledge to reduce geographic 

dependences between the reference object and the relevant 

objects. However, geographic dependences among relevant 

objects can only be completely eliminated during the data 

mining step, as proposed in this paper with APRIORI-KC. 

In geographic databases, minimum support can eliminate 

information which may lead to novel knowledge, while 

geography domain associations may still remain among the 

resultant set of rules.  

While approaches for non-geographic define different 

ways to reduce the number of rules [16]-[17]-[18] and 

investigate the most appropriate threshold [21] or the 

interestingness [22] of the rules, our approach eliminates 

the exact dependence which produces non-novel rules, 

independently of any threshold. Our method avoids the 

generation of rules known a priori as non-interesting. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a method for mining spatial 

association rules using prior geographic domain 

knowledge. Domain knowledge refers to mandatory 

geographic dependences explicitly represented in 

geographic database schemas or which are well known by 

the user. We showed that explicit mandatory relationships 

produce irrelevant patterns, while the implicit spatial 

relationships may lead to more interesting rules.  

Considering geographic domain dependences as prior 

knowledge, we proposed a frequent set pruning method that 

significantly reduces the number of spatial association 

rules. Besides pruning a large number of rules, all 

associations that would be created with well known 

geographic domain dependences are eliminated. Our 

method eliminates all dependences in one single step, 

before creating the rules. The result is that more interesting 

rules will be generated, independently of values of 

minimum support or confidence. 

Experiments showed that independent of the number of 

elements, one dependence is enough to prune almost half of 

the total number of spatial association rules, and the higher 

the number of the dependences, the larger is the reduction.  

The main contribution of our approach is for the data 

mining user, which does not have to analyze hundreds or 

thousands of rules without novel knowledge.   

Traditional association rule mining algorithms that 

generate frequent sets, closed frequent sets, or free frequent 

sets eliminate redundant and non-interesting rules. They 

may significantly reduce the total number of association 

rules if applied to the geographic domain and the frequent 

sets were generated with APRIORI-KC. 

As future work we will evaluate the problem of mining 

spatial association rules with knowledge constraints when 

pairs of geographic dependences overlap. Furthermore we 

will evaluate the rule reduction and the specification of 

dependences represented by n-ary associations. 
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