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What is a Spatial Pattern ?

•What is not a pattern?

• Random

•Without definite direction, trend, rule, method

•Accidental - outside regular course of things

• Casual - relatively unimportant

•What is a Pattern?

• A frequent arrangement or regularity

• A rule or law

•A major direction, trend, prediction
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Examples of Spatial Patterns 

Historic Example

1855 Asiatic Cholera in London : 

A water pump identified as the source
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What is Spatial Data Mining?

Search for Interesting, useful and unexpected spatial 
patterns 

Non-trivial search
Ex. Asiatic cholera : causes - water, food, air, insects, …; water delivery 
mechanisms - numerous pumps, rivers, wells, pipes, ...

Interesting

Useful in certain application domain

Ex. Shutting off identified Water pump => saved human life

Unexpected

Pattern is not common knowledge

May provide a new understanding of the world

Ex. Connection between Water pump - Cholera
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Questions from Epidemiology  (Shekhar 2003)

What is the overall pattern of colorectal cancer

Where is colorectal cancer risk significantly elevated

Where are zones of rapid change in colorectal cancer incidence

Example of Application Domains
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Modern Examples (Shekhar 2003)

Global Influence of El Nino during
the Northern Hemisphere Winter
(D: Dry, W: Warm, R: Rainfall)

Average Monthly Temperature
(Courtesy: NASA, Prof. V. Kumar)

Unusual warming of Pacific ocean (El Nino) affects weather
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Motivation for Spatial Data Mining

Answer Critical questions:

Ex. How is the health of planet Earth? 

Ex. Characterize or predict effects of human activity on the environment

Ex. How is the environment changing, and where

Ex. Predict effect of El Nino on weather and economy

....

Spatial data is growing too fast to analyze manually

Satellite imagery, GPS tracks, sensors on highways, cell phones …
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Main Types of Spatial Patterns

Co-location

Outliers

Classification / Location Prediction

Spatial Association Rules

Clustering

..

Other families of spatial patterns may be defined

SDM is a growing field, which should accommodate new pattern families
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General Overview of Spatial Data Mining 

Literature
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Transaction x Geometry DM

Quantitative Spatial DM (Geometry-based)

Techniques: Co-location, clustering

Algorithms (SHEKHAR 2001, 2002) (HUANG 2004) (YOO 2005) (ZHANG2004)...

Distance spatial relationships

Most use point spatial representation

Not implemented in toolkits  

Single-granularity

Qualitative Spatial DM  (Transaction-based)
Techniques: Spatial Association Rules, Classification, Clustering, Outlier 
detection

Algorithms (APPICE 2003) (SHEKHAR, 2001a) (HAN, 2001) (BOGORNY 2006, 2008)

DMQL (LU, 1993) (KOPERSKI, 1995) (BIGOLIN 2003) (MALERBA, 2002) (BOGORNY 2008)

New operations to compute spatial relationships (ESTER 1997, 2000) 

Semantic-based spatial data mining (Bogorny 2006, 2007, 2008)
Any spatial relationship

Any spatial representation

Some tools

Multiple-Granularity
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Co-Location

15/12/2010 11Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Answers:  

find patterns from the following sample dataset

Co-location (Shekhar 2003)
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Co-Location Patterns (Huang 2004, Yoo 2005)

Input: 

Spatial dataset

Distance threshold

Minimum participation index

Method

Find neighbors

Find co-location candidates

Find frequent co-location sets

Extract co-location rules 
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Co-location Mining

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

A, B, C: Spatial Feature Types

Edges: neighbor

B1 Spatial Dataset

A1, A2... Spatial Feature Instances
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Co-location Mining

Set of Spatial Feature Types {A, B, C}

Candidates of size k=1

A    B    C

1 1    1
2 2    2
3 3    3
4 4   

5 

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   3    4  1
3 4               5  3

Co-location

instances

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset

15/12/2010 15Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Co-location Mining

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   1    4  1
3 4               5  3

Co-location

instances

Candidates of size k=1

A    B    C

1 1    1
2 2    2
3 3    3
4 4   

5 
3/4   2/5    

2/4  2/3  

3/5  2/3    Participation 

ratio

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset
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Co-location Mining

Candidates of size k=2

A    B    A  C    B  C

1 1    1   2    2  1
2 4    3   3    4  1
3 4               5  3

Co-location

instances

2/5    

2/4   

3/5     
Participation Index (Lowest index)

(If participIndex>minPartIndex) 
���� frequent set

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset
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Co-location Mining

Candidates of size k=3

A    B     C     

3    4      1

Co-location

instances

B1

C2

A1
C1

A4

A2
A3

B2

B4
B3

C3

B5

B1 Spatial Dataset

1/4   1/5  1/3 Participation index
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Co-Location Mining (Zhang 2004)

Divide the space in cells  

Buffer on each object,

object belongs to all cells that the buffer intersects (most 4 cells)

All objects in a cell should fit in memory (are stored in a bucket)

For each cell, objects are co-located if they are close

B1

C2

A1
C1

A4

A2 A3

B2

B4
B3

C3

B5

B1

Spatial Dataset
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Cropland with Roads
Roads with Bridges

Cropland
Roads
Bridges 

Co-location Example (Shekhar 2003)

Outliers?
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Outliers
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Outliers

What is an outlier?
Observations inconsistent with the rest of the dataset

What is a spatial outlier?
Observations inconsistent with their neighborhoods

A local instability or discontinuity
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Outliers (Shekhar 2001, 2003)

Global outliers are observations of data inconsistent with the rest of the 
data in the database  

has a number of practical applications in areas such as credit card fraud, athlete 
performance analysis, voting irregularity, and severe weather prediction

A spatial outlier is a spatially referenced object whose non-spatial attribute 
values are significantly different from those of other spatially referenced 
objects in its spatial neighborhood. 

For example, a new house in an old neighborhood is a spatial outlier based on the 
non-spatial attribute house age

Tests to detect spatial outliers separate the spatial attributes from the non-
spatial attributes. 

Spatial attributes are used to characterize location, neighborhood, and distance. 

Non-spatial attributes are used to compare a spatial referenced object to its 

neighbors.
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Outliers – Examples (Shekhar 2003)

Map Production

Error identification

E.g., spatial object violation

River
Road
Bridge    

Road leading into water

Or missing bridge

Bridge location

error
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Spatial Association Rules
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SpatialAssociation Rules

Spatial association rule is an implication of the form

X � Y (support)(confidence)

at least one element in X or Y is a spatial predicate 

is_a(island) � within(river)

closeTo(slum)� criminalityRate=High
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Street

Gid Name Shape

1 Ijui Multiline [(x1,y1),(x2,y2),..]

2 Lavras Multiline [(x1,y1),(x2,y2),..]

WaterResource

Gid Name Shape

1 Jacui Multiline [(x1,y1),(x2,y2),..]

2 Guaiba Multiline [(x1,y1),(x2,y2),..]

3 Uruguai Multiline [(x1,y1),(x2,y2),..]

GasStation

Gid   Name     VolDiesel VolGas Shape 

1       BR 20000      85000   Point[(x1,y1)]

2       IPF 30000      95000 Point[(x1,y1)]

3       Esso       25000      120000 Point[(x1,y1)]

Different Spatial Objects are Stored in Different Relations

Most Spatial Association Rule Mining algorithms 
have a single table/file INPUT format
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contains(Hospital), contains(TreatedWaterNet),  contains(Factory)6

contains(Port), contains(Hospital), contains(TreatedWaterNet),  contains(Factory), crosses(WaterBody)5

contains(Port),  contains(Hospital), contains(TreatedWaterNet),                                crosses(WaterBody)4

contains(Port),                                 contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)3

contains(Hospital), contains(TreatedWaterNet),                                 crosses(WaterBody)2

contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)1

Spatial PredicatesTuple   

(city)

contains(Hospital), contains(TreatedWaterNet),  contains(Factory)6

contains(Port), contains(Hospital), contains(TreatedWaterNet),  contains(Factory), crosses(WaterBody)5

contains(Port),  contains(Hospital), contains(TreatedWaterNet),                                crosses(WaterBody)4

contains(Port),                                 contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)3

contains(Hospital), contains(TreatedWaterNet),                                 crosses(WaterBody)2

contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory),  crosses(WaterBody)1

Spatial PredicatesTuple   

(city)

Transaction Items

1 milk, bread, butter, cereal

2 milk, bread

3 beer, bread, chocolate

4 cereal, meet, milk

5 milk, beer, nuts, orange, cereal

� rows are transactions

Transactional Dataset

Spatial Dataset

� attributes are items, supposed to be 

independent 

� attributes are predicates

� spatial predicates are

spatial relationships between 

the target feature type and 

relevant feature types

Transaction Dataset X Preprocessed Spatial Dataset

� rows are instances of the 

target feature type
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Spatial Association Rules

Are computed in 3 main steps:

Data preprocessing: compute spatial relationships (spatial joins). 
Most expensive step

Compute frequent itemsets

Generate association rules
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Some Spatial Association Rule Mining Algorithms

Koperski 1995

Spada (Appice 2003)

Clementini (2003)

Apriori-KC (Bogorny 2006)

Max-FGP (Bogorny 2006ª)

...
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Semantic-based Spatial Association Rule Mining
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Spatial Relationships 

Mandatory (Spatial constraints) Dependences:
<island> <inside> <1><1> <Water Body> 

Prohibited: 
<River> <contains> <0><0> <Road>

Possible: Normally undefined

Road crosses River

For data mining and knowledge discovery, 

only POSSIBLE/PROHIBITED RELATIONSHIPS are interesting!!!!

Mandatory relationships are well known.
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Well Known relationships X Association Rules

Bridge &Viaducts

Roads

Vegetation

Bus Stop

Street  

intersects(busStop) � intersects(Street)  (100%)

Contains(viaduct) � contains(road) (100%)

15/12/2010 33Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

Country

name

geometry

Water 

Resource

name

extension

geometry

State

name

geometry
1..n1 1..n1

Factory

name

mainActivity

impactDegree

County

name

population

geometry1..n1 1..n1 1 0..n1 0..n

Island

geometry

1 0..n1 0..n

0..n

1

0..n

1

{State, Country}

{Factory, County}

{Island, WaterBody}

!.

Well Known Associations – Conceptual Schemas
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Well known dependences X Spatial Association Rules (SAR)

Well knonw dependences affect the 3 main steps in the process of 
mining SAR:

Spatial predicate computation: compute unnecessary relationshiops

Frequent set generation: generate frequent itemsets with well known 
patterns

Association rule extraction: produce a high number of rules with well 
known dependences
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Spatial Dependences in Spatial Association Rules

Minconf=70%

Dependence = City and Street

100% de support

contains(Hospital)�contains(Street)
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Spatial Dependences in Spatial Association Rules

Minsup=50%

25 frequent sets(6 contain the dependence)

9 closed frequent sets (3 have the dependence)

Dependence = {Port, WaterBody}

contains(PortPort)����crosses(WaterBodyWaterBody)
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Pruning Methods using Semantics
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Some Spatial Association Rule Mining Methods using Semantics

GEOARM+(Bogorny 2008)

MG-FGP (Bogorny 2010)
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Summary

Well known dependences exist in several non-spatial 
application domains

Biology/Bioinformatics

Pregnant � Female (confidence=100%)

uteri_cancer  � Female (confidence 100%)

...  

Almost no data mining approaches consider background 
knowledge, domain knowledge or semantics
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Spatial Classification
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Classification

Given a set of instances, the role of classification is to 
discover the classes of the instances

Spatial objects may be characterized (classified) by 
different types of information (Koperski 1998): 

non-spatial attributes (e.g. population);

spatially related attributes with non-spatial values (e.g. total 
population living within 100 meters from cellular antennas); 

spatial predicates (e.g. closeTo_beach);
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Ester (1997, 2001)

Proposed a graph-based approach for spatial neighbourhood 
computation

Idea is to integrate data mining into database systems, with new 
database primitives for the computation of spatial relationships

and explicitly represent spatial relationships that are normally implicit 
in spatial databases
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Ester (1997, 2001)

closeTo_water

closeTo_Park

Yes

salary=MEDIUMsalary=HIGH

Yes No

No

closeTo_ShoppingCenter

salary=LOWsalary=HIGH

Yes No

Class is a non-spatial attribute = salary

Class values: high, medium, low
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Clustering
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Clustering (cluster analysis)

Clustering is a process of partitioning a set of data into a set of 
groups called clusters

A cluster is a set of data (objects) with 

similar characteristics 

that can be collectively treated as one group

Clustering is an unsupervised method

no predefined classes
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DBSCA< (Ester 1996)

• DBSCAN is a density-based algorithm

– Density = number of points within a specified radius (Eps)

– A point is a core point if it has more than a specified number of 

points (MinPts) within Eps

– A border point has less than MinPts within Eps, but it is in the 
neighborhood of a core point

– A noise point is any point that is not a core point or a border 

point. 
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Core and border points

p
Eps

q
Eps

DBSCA< (Ester 1996)

r
Eps

minPts= 5

Eps= 1

Core point

Border point

noise
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GDBSCA< (Generalized DBSCA<) (Sander 1998)

Generalized version of DBSCAN

Clusters are formed based on spatial or non-spatial attributes

Any spatial relationshiop is used to compute neighbors, and spatial 
objects may have any representation

NPred : “neighbor”, 

wCard: cardinality>=MinCard, (generalizes the condition NEps(o)>= MinPts)

MinWeight(N): aggr (non-spatial values) >= threshold OR MinPts

ExampleII: NPred: “intersects” or “touches”, MinWeight(N): sum of areas >= 

MinArea,
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Tools

GeoMiner (Han 1997)

INGENS (Malerba 2001)

Ares (Appice 2005)

Weka-GDPM (Bogorny 2006d)
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