
Crawling the Hidden Web

Sriram Raghavan, Hector Garcia-Molina

Computer Science Department, Stanford University

Stanford, CA 94305, USA

frsram, hectorg@cs.stanford.edu

Abstract

Current-day crawlers retrieve content only from the publicly indexable Web, i.e., the set of web pages reachable

purely by following hypertext links, ignoring search forms and pages that require authorization or prior regis-

tration. In particular, they ignore the tremendous amount of high quality content “hidden” behind search forms,

in large searchable electronic databases. In this paper, we provide a framework for addressing the problem of

extracting content from this hidden Web. At Stanford, we have built a task-specific hidden Web crawler called

the Hidden Web Exposer (HiWE). We describe the architecture of HiWE and present a number of novel tech-

niques that went into its design and implementation. We also present results from experiments we conducted to

test and validate our techniques.

Keywords: Crawling, Hidden Web, Content extraction, HTML Forms

1 Introduction

A number of recent studies [4, 19, 20] have noted that a tremendous amount of content on the Web isdynamic.

This dynamism takes a number of different forms (see Section 2). For instance, web pages can be dynamically

generated, i.e., a server-side program creates a pageafter the request for the page is received from a client. Simi-

larly, pages can be dynamic because they include code that executes on the client machine to retrieve content from

remote servers (e.g., a page with an embedded applet that retrieves and displays the latest stock information).

Based on studies conducted in 1997, Lawrence and Giles [19] estimated that close to 80% of the content on the

Web is dynamically generated, and that this number is continuing to increase. As major software vendors come up

with new technologies [2, 17, 26] to make such dynamic page generation simpler and more efficient, this trend is

likely to continue.

However, little of this dynamic content is being crawled and indexed. Current-day search and categorization

services cover only a portion of the Web called thepublicly indexable Web[19]. This refers to the set of web pages

reachable purely by following hypertext links, ignoring search forms and pages that require authorization or prior

registration.

In this paper, we address the problem of crawling a subset of the currently uncrawled dynamic Web content.

In particular, we concentrate on extracting content from the portion of the Web that is hidden behind search forms

in large searchable databases (the so calledHidden Web1 [11]). The hidden Web is particularly important, as

organizations with large amounts ofhigh-quality information (e.g., the Census Bureau, Patents and Trademarks
1The termDeep Webhas been used in reference [4] to refer to the same portion of the Web.

1

Office, News media companies) are placing their content online. This is typically achieved by building a Web

query front-end to the database using standard HTML form elements [12]. As a result, the content from these

databases is accessible only through dynamically generated pages, delivered in response to user queries.

Crawling the hidden Web is a very challenging problem for two fundamental reasons. First is the issue of scale;

a recent study [4] estimates that the size of the content available through such searchable online databases is about

400 to 500 times larger than the size of the “static Web.” As a result, it does not seem to be prudent to attempt

comprehensivecoverage of the hidden Web. Second, access to these databases is provided only through restricted

search interfaces, intended for use by humans. Hence, “training” a crawler to use this restricted interface to extract

relevant content, is a non-trivial problem.

To address these challenges, we propose atask-specific, human-assistedapproach to crawling the hidden Web.

Specifically, we aim to selectively crawl portions of the hidden Web, extracting content based on the requirements

of a particular application, domain, or user profiles. In addition, we provide a framework that allows the human

expert to customize and assist the crawler in its activity.

Task-specificity helps us counter the issue of scale. For example, a marketing analyst may be interested in

news articles and press releases pertaining to the semiconductor industry. Similarly, a military analyst may be

interested in political information about certain countries. The analysts can use existing search services to obtain

URLs for sites likely to contain relevant information, and can then instruct the crawler to focus on those sites. In

this paper we do not directly address this resource discovery problem per se; see Section 7 for citations to relevant

work. Rather, our work addresses the issue of how best to automate content retrieval, given the location of potential

sources.

Human-assistance is critical to enable the crawler to submit queries on the hidden Web that are relevant to

the application/task. For example, the marketing analyst may provide lists of products and companies that are of

interest, so that when the crawler encounters a form requiring that a “company” or a “product” be filled-in, the

crawler can automatically fill in many such forms. Of course, the analyst could have filled out the forms manually,

but this process would be very laborious. By encoding the analyst’s knowledge for the crawler, we can speed up

the process dramatically. Furthermore, as we will see, our crawler will be able to “learn” about other potential

company and product names as it visits pages, so what the analyst provides is simply an initial seed set.

As the crawler submits forms and collects “hidden pages,” it saves them in a repository (together with the

queries that generated the pages). The repository also holds static pages crawled in a conventional fashion. An

index can then be built on these pages. Searches on this index can now reveal both hidden and static content, at

least for the targeted application. The repository can also be used as a cache. This use is especially important

in military or intelligence applications, where direct Web access may not be desirable or possible. For instance,

during a crisis we may want to hide our interest in a particular set of pages. Similarly, copies of the cache could be

placed at sites that have intermittent net access, e.g., a submerged submarine. Thus, an analyst on the submarine

could still access important “hidden” pages while access is cut off, without a need to submit queries to the original

sources.

At Stanford, we have built a prototype hidden Web crawler calledHiWE (HiddenWebExposer). Using our

experience in designing and implementing HiWE, we make the following contributions in this paper:

2

� We first present a systematic classification of dynamic content along two dimensions that are most relevant

to crawling; thetype of dynamismand thegenerative mechanism. This helps place our work in the overall

context of crawling the Web. (Section 2)

� We propose model of forms and form fill-outs that succinctly captures the actions that the crawler must

perform, to successfully extract content. This helps cast the content extraction problem as one of identifying

thedomainsof form elements and gathering suitablevaluesfor these domains. (Section 3)

� We describe the architecture of the HiWE crawler and describe various strategies for building(domain, list

of values)pairs. We also propose novel techniques to handle the actual mechanics of crawling the hidden

Web (such as analyzing forms and deducing the domains of form elements). (Sections 4 and 5)

� Finally, we present proof-of-concept experiments to demonstrate the effectiveness of our approach and tech-

niques. (Section 6)

Note that crawling dynamic pages from a database becomes significantly easier if the site hosting the database is

cooperative. For instance, a crawler might be used by an organization to gather and index pages and databases

on it’s local intranet. In this case, the web servers running on the internal network can be configured to recognize

requests from the crawler and in response, export the entire database in some predefined format. This approach is

already employed by some e-commerce sites, which recognize requests from the crawlers of major search engine

companies and in response, export their entire catalog/database for indexing.

In this paper, we consider the more general case of a crawler visiting sites on the public Internet where such

cooperation does not exist. The big advantage is that no special agreements with visited sites are required. This

advantage is especially important when a “competitor’s” or a “unfriendly country’s” sites are being studied. Of

course, the drawback is that that the crawling process isinherently imprecise. That is, an automatic crawler may

miss some pages or may fill our some forms incorrectly (as we will discuss). But in many cases, it will be better to

index or cache a useful subset of hidden pages, rather than having nothing.

2 Classifying Dynamic Web Content

Before attempting to classify dynamic content, it is important to have a well-defined notion of a dynamic page. We

shall adopt the following definition in this paper:

A pageP is said to be dynamic if some or all of its content is generated at run-time (i.e.,after the

request forP is received at the server) by a program executing either on the server or on the client.

This is in contrast to a static pageP 0, where the entire content ofP 0 already exists on the server, ready

to be transmitted to the client whenever a request is received.

Since our aim is to crawl and index dynamic content, our definition only encompasses dynamism in content, not

dynamism in appearance or user interaction. For example, a page with static content, but containingclient-side

scripts and DHTML tags that dynamically modify the appearance and visibility of objects on the page, does not

3

satisfy our definition. Below, we categorize dynamic Web content along two important dimensions: the type of

dynamism, and the mechanism used to implement the dynamism.

2.1 Categorization based on type of dynamism

There are three common reasons for making Web content dynamic: time-sensitive information, user customization,

and user input. This in turn, leads to the following three types of dynamism:

Temporal dynamism: A page containing time-sensitive dynamic content exhibits temporal dynamism. For

example, a page displaying stock tickers or a list of the latest world news headlines might fall under this category.

By definition, requests for a temporally dynamic page at two different points in time may return different content.2

Current-day crawlers do crawl temporally dynamic pages. The key issue in crawling such pages isfreshness

[7], i.e., a measure of how up to date the crawled collection is, when compared with the latest content on the web

sites. The analyses and crawling strategies presented by Cho et. al. [6, 7], to maximize freshness, are applicable in

this context.

Client-based dynamism: A page containing content that is custom generated for a particular client (or user)

exhibits client-based dynamism. The most common use of client-based dynamism is forpersonalization. Web

sites customize their pages (in terms of look, feel, behavior, and content) to suit a particular user or community

of users. This entails generating pages on the fly, using information from client-side cookies or explicit logins, to

identify a particular user.

Since pages with client-based dynamism have customized content, crawling such pages may not be useful for

applications that target a heterogeneous user population (e.g., a crawler used by a generic Web search engine).

However, for certain applications, arestricted crawler3 can be equipped with the necessary cookies or login infor-

mation (i.e., usernames and passwords) to allow it to crawl a fixed set of sites.

Input dynamism: Pages whose content depends on the input received from the user exhibit input dynamism.

The prototypical example of such pages are the responses generated by a web server in response to form sub-

missions. For example, a query on an online searchable database through a form generates one or more pages

containing the search results. All these result pages fall under the category of input dynamism. In general, all

pages in thehidden Webexhibit input dynamism. In this paper, our focus will be on crawling such pages.

Note that many dynamic pages exhibit a combination of the above three classes of dynamism. For instance,

the welcome page on the Amazon web site [1] exhibits both client-based (e.g., book recommendations based on

the user profile and interests) and temporal dynamism (e.g., latest bestseller list).

In addition, there are other miscellaneous sources of dynamism that do not fall into any of the above categories.

For example, tools for web site creation and maintenance [10, 22] often allow the content to be stored on the server
2Note that simply modifying the content of a static page on the web server does not constitute temporal dynamism since our definition

requires that a dynamic page be generated by a program at run-time.
3We use the term restricted crawler to refer to a crawler that limits it’s crawling activity to a specific set of sites.

4

Figure 1: Classifying Web content based on impact on crawlers

in native databases and text files. These tools provide programs to generate HTML-formatted pages at run-time

from the raw content, allowing for clean separation between content and presentation. In this scenario, even though

pages are dynamically generated, the content is intrinsically static.

2.2 Categorization based on generative mechanism

There are a number of mechanisms and technologies that assist in the creation of dynamic Web content. These

mechanisms can be divided into the following three categories:

� Server-side programs:In this technique, a program executes on the server to generate a complete HTML

page which is then transmitted to the client. This is the oldest and most commonly used method for generat-

ing web pages on the fly. A variety of specifications are available (e.g., Common Gateway Interface (CGI),

Java servlets [26]) to control the interactions between the web server and the program generating the page.

Such server-side programs are most often used to process and generate responses to form submissions (i.e.,

to implement input dynamism).

� Embedded code with server-side execution:In this technique, dynamic web pages on the server contain

both static HTML text and embedded code snippets. When a request for this page is received, the code

snippets execute on the server and generate output that replaces the actual code in the page. Unlike server-

side programs which produce a complete HTML page as output, these code snippets generate only portions

of the page. Different scripting languages can be used to implement the code snippets [2, 17, 25].

� Embedded code with client-side execution:As in the previous case, web pages contain both HTML text and

embedded code (or references to wherever the code is available). However, the code is now downloaded and

executed on the client machine, typically in a controlled environment provided by the browser. Java applets

and ActiveX controls are examples of technologies that support this mechanism.

5

Figure 2: Sample labeled form

Pages that employ server-side programs or embedded code with server-side execution do not pose any special

challenges to a crawler, once the page has been received. In both cases, the crawler merely receives HTML pages

that it can process in the same way that it processes static content. However, pages that use client-side execution

to pull in content from the server, require special environments (e.g., a Java virtual machine) in which to execute

the embedded code. Equipping a crawler with the necessary environment(s) greatly complicates it’s design and

implementation. Since pages in the hidden Web are usually generated using the first two techniques, we do not

address the third technique any further in this paper.

Figure 1 summarizes the classification that we have presented in this section. The vertical axis lists the different

generative mechanisms and the horizontal axis, the different types of content. Various portions of the Web (and

their corresponding crawlers) have been represented as regions in this 2-dimensional grid.

3 Modeling Forms and Form Submissions

The fundamental difference between the actions of a hidden Web crawler, such as HiWE, and a traditional crawler

is in the way they treat pages containing forms. In this section, we describe how we model forms and form

submissions. Later sections will describe how HiWE uses this model to extract hidden content.

3.1 Modeling Forms

A form, F , is modeled as a set of(element; domain) pairs;F = f(E1;D1), (E2;D2), : : : (En;Dn)g where the

Ei’s are the elements and theDi’s are the domains. A form element can be any one of the standard input objects:

selection lists, text boxes, text areas, checkboxes, or radio buttons.4 The domain of an element is the set of values

which can be associated with the corresponding form element. Some elements havefinite domains, where the set of

valid values are already embedded in the page. For example, ifEj is a selection list (indicated by the<SELECT>

HTML element), thenDj is the corresponding set of values that are contained in the list. Other elements such as
4Note that submit and reset buttons are not included, as they are only used to manipulate forms, not provide input.

6

<H3>Search News Archive</H3>
<FORM method="POST" action="http://my.webserver.com/cgi-bin/form-process.pl">
<TABLE>

<TR>
<TD align="right" width="150">Document Type: </TD>
<TD><SELECT NAME=what>

<OPTION VALUE=art SELECTED>Articles
<OPTION VALUE=rel>Press Releases
<OPTION VALUE=rep>Reports

</SELECT>
</TD>

</TR>
<TR><TD>

</TD></TR>
<TR>

<TD align="right">Company Name: </TD>
<TD><INPUT NAME=name size=45 maxlength=200 VALUE=""></TD>

</TR>
<TR><TD>

</TD></TR>
<TR>

<TD align="right">Sector: </TD>
<TD>

<INPUT TYPE="radio" NAME="sector" VALUE="ent">Entertainment

<INPUT TYPE="radio" NAME="sector" VALUE="it">Information Technology

<INPUT TYPE="radio" NAME="sector" VALUE="au">Automobile

<INPUT TYPE="radio" NAME="sector" VALUE="constr">Construction

</TD>
</TR>

</TABLE>
</FORM>

Figure 3: HTML markup for the sample form of Figure 2

text boxes haveinfinite domains(e.g., set of all text strings) from which their values can be chosen. In addition,

many form elements are usually associated with some descriptive text to help the user understand the semantics

of the element. We shall refer to such descriptive information aslabels, and shall uselabel(Ei) to denote the

label associated with theith form element. Figure 2 shows a form with three elements and the corresponding

representation using our notation. Figure 3 is the piece of HTML markup that was used to generate this form.

We wish to emphasize that our notion of labels and domain values is quite distinct from the internal labels5 and

values6 used within the form. For instance, referring to Figures 2 and 3, note thatlabel(E1) is “Document Type”,

and not the internal label (“what”) of the<SELECT>element. Similarly,D1 is the setfArticles, PressArticles,

Reportsg and not the set of internal identifiersfart, rel, repg. These internal identifiers are used only during form

submission. They are not visible when the form is displayed. As such, they are not meant for human consumption

and are often very cryptic with very little indication of their true semantic meaning.

3.2 Modeling Value Sets

A user “fills out” a form by associating a value or piece of text with each element of the form. A crawler must

perform a similarvalue assignmentby selecting suitable values from the domain of each form element. The choice

of a “suitable value” is dependent on the semantics of the form element, as well as on the application/task being

performed by the crawler. For elements with small finite domains, one can potentially try one value after another

exhaustively. For example, since domainD1 in Figure 2 has only three elements, the crawler can first retrieve

all relevant articles, then all relevant press releases, and finally all relevant reports. However, for infinite domain

elements, the crawler must decide what values from the domain would be semantically meaningful and relevant to

the particular application. For example, to fill out elementE2 in Figure 2, the crawler must somehow have access

to a list of company names.

In general, we assume that each application/task requires the crawler to have access to a finite set of concepts or
5Specified using theNAMEattribute of the<INPUT> or <SELECT>elements
6Specified using the<VALUE>attribute of the<INPUT> element

7

categories, with their associated values. In Section 5.5, we describe various data sources (including humans) from

which the crawler can obtain such values. In addition, we also show how the crawler can use its own crawling

experience to add to these lists of values. However, not all data sources are equallyreliable. For instance, the

crawler has more confidence in the usefulness of human-supplied values than it has, in the values it gathers based

on it’s crawling experience.

To model values and their confidence, inputs from all these sources are organized in a table called theLabel

Value Set (LVS)table. Each entry (or row) in the LVS table is of the form(L; V), whereL is a label andV = fv1,

v2, : : : vng is a fuzzy/graded set[14] of values belonging to that label. Fuzzy setV has an associatedmembership

functionMV that assigns weights/grades, in the range[0; 1], to each member of the set. Intuitively, eachvi

represents a value that could potentially be assigned to an elementE if label(E) “matches”L. MV (vi) represents

the crawler’s estimate of how useful/correct, the assignment ofvi toE, is likely to be.

The LVS table also supports the notion oflabel aliasing, i.e., two or more labels are allowed to share the same

fuzzy value set. This helps us handle aliases and synonyms representing the same concept (e.g., “Company” and

“Organization”).

3.3 Generating Value Assignments

Given a formF = f(E1;D1), (E2;D2), : : : (En;Dn)g, the crawler generates value assignments by textually

matching element labels with labels in the LVS table. Specifically, for eachEi, we generate a fuzzy set of values

Vi as follows:

� If Ei is an infinite domain element and(L; V) denotes the LVS entry whose labelL most closely matches

label(Ei) (see Section 5.3 for details),7 thenVi = V andMVi = MV .

� If Ei is a finite domain element, thenVi = Di andMVi(x) = 1; 8x � Vi.

Then,V alAssign(F;LV S) = V1�V2� : : : Vn denotes the set of all possible value assignments for formF , given

the current content of the LVS table.

Let Smax denote the maximum number of times a crawler is allowed to submit a given form.8 By imposing

an upper bound on the number of submissions per form, we ensure that the crawler does not spend all it’s time

at a single form and instead, extracts the most relevant content from all the databases that it visits. In particular,

the crawler chooses the “best”minfSmax; jV1j � : : : jVnjg value assignments to generate form submissions. The

notion of the “best” value assignment is based on ranking all the value assignments inV alAssign(F;LV S).

We experimented with three different ranking functions (below,� represents the ranking function andfE1

v1; : : : ; En vng denotes a value assignment that associates valuevi�Vi with elementEi):

Fuzzy Conjunction: The rank of a value assignment is the minimum of the weight/grade of each of the constituent

values. This is equivalent to treating the value assignment as a standard Boolean conjunction of the individual

fuzzy sets [14].
7With approximate matching, each element label could be matched with a set of labels in the LVS table. For now, we assume that only

the “best” match is used.
8This value is a parameter that we pass to the crawler at startup.

8

Figure 4: Comparing the basic execution loop of a traditional crawler and HiWE

�fuz(fE1 v1; : : : ; En vng) = min
i=1:::n

MVi(vi)

Average: The rank of a value assignment is the average of the weights of the constituent values.

�avgfE1 v1; : : : ; En vng) =
1

n

X

i=1:::n

MVi(vi)

Probabilistic: This ranking function treats weights as probabilities. HenceMVi(vi) is the likelihood that the

choice ofvi is useful and1 � MVi(vi) is the likelihood that it is not. Then, the likelihood of a value

assignment being useful is computed as:

�prob(fE1 v1; : : : ; En vng) = 1�
Y

i=1:::n

(1�MVi(vi))

Note that�fuz is very conservative in assigning ranks. It assigns a high rank for a value assignment only if each

individual weight is high. The average is less conservative, always assigning a rank which is at least as great as the

rank of the fuzzy conjunction for the same value assignment. In contrast, the�prob is more aggressive and assigns

a low rank to a value assignment only if all individual weights are very low. Section 6 presents more detailed

experiments comparing these ranking functions.

4 HiWE: Hidden Web Exposer

The basic actions of a hidden Web crawler, such as HiWE, are similar to those of other traditional crawlers [5, 8].

In Figure 4, the flowchart on the left indicates the typical crawler loop, consisting of URL selection, page retrieval,

and page processing to extract links. Note that traditional crawlers do not distinguish between pages with and

9

Figure 5: HiWE Architecture

without forms. However, as shown in the flowchart on the right, HiWE’s execution sequence contains additional

steps for pages on which forms are detected. Specifically, HiWE performs the following sequence of actions for

each form on a page:

1. Form Analysis:Parse and process the form to build an internal representation, based on the model outlined

in Section 3.1.

2. Value assignment and submission:Generate the best (untried) value assignment and submit a completed

from using that assignment.

3. Response Analysis:Analyze the response page to check if the submission yielded valid search results or if

there were no matches. This feedback could be used to tune the value assignments in step 2.

4. Response Navigation:If the response page contains hypertext links, these are followed immediately (except

for links that have already been visited or added to the queue) and recursively, to some pre-specified depth.

Note that we could as well have added the links in the response page to the URL queue. However, for ease

of implementation, in HiWE, we chose to navigate the response pages immediately, and that too, only upto

a depth of1.

Steps 2, 3, and 4 are executed repeatedly, using different value assignments during each iteration. The sequence of

value assignments are generated using the model described in Section 3.3.

4.1 HiWE Architecture

Figure 5 illustrates the complete architecture of the HiWE crawler. It includes six basic functional modules and

two internal crawler data structures. The basic crawler data structure is theURL List. It contains all the URLs that

the crawler has discovered so far. When starting up the crawler, theURL List is initialized to a seed set of URLs.

The Crawl Managercontrols the entire crawling process. It decides which link to visit next, and makes the

network connection to retrieve the page from the Web. In our implementation, the crawler was configured to stay

10

Figure 6: Actions of the Form Analysis Module

within a pre-determined set of target sites (provided to the Crawl Manager at startup), not following links that

pointed to other sites.

The Crawl Manager hands the downloaded page over to theParsermodule. In turn, the Parser extracts hyper-

text links from the page and adds them to the URL List structure. This sequence of operations is repeated until

some termination condition (typically, after some number of hours have elapsed) is satisfied. We refer the reader

to existing crawling literature [6, 8] for more details on the design of the Crawl Manager module.

To process forms and extract hidden content, HiWE employs four additional modules and theLVS Table. The

Form Analyzer, Form Processor, andResponse Analyzermodules, together implement the iterative sequence of

steps outlined in the previous section.9

TheLVS Manageris responsible for managing additions and accesses to the LVS table. It provides an interface

for various application-specific data sources to supply new entries to the table. We shall discuss how this happens

in Section 5.5.

5 Design Issues and Techniques

5.1 Form Analysis

HiWE’s representation of a form includes the following information:

� A list of all the elements (e.g., selection lists, text boxes) in the form

� A label for each element

� For every element with a finite domain, a list of all the values that constitute that domain

� Submission information (such as the submission method (GET or POST) and the submission URL) to be

used when submitting completed forms

To collect all this information, the Form Analyzer executes the sequence of steps indicated in Figure 6. It begins

by constructing a logical tree representation of the structure of the HTML page, based on the Document Object

Model (DOM) specification [9]. Next, it uses the DOM API to obtain the list of form elements as well as the

necessary submission information. We refer the reader to the DOM specification [9] for details on how this can
9The Form Processor is responsible for the Response Navigation step.

11

be done. Then, the Form Analyzer uses the technique described in the remainder of this section to extract labels

and domain values. Finally, it normalizes the extracted information (see Section 5.2) and integrates it with the

information from the DOM API to produce the internal form representation.

Label and Domain value extraction: Accurately extracting labels and domain values proves to be a hard prob-

lem, since their nesting relationships with respect to the form elements is not fixed. For instance, in Figure 3, as is

commonly the case, the entire form is laid out within a table. The pieces of text representing the labels (e.g., the

word “Sector”), the domain values (e.g., the word “Automobile”), and the form control elements (e.g., the<IN-

PUT>and<SELECT>elements) are interleaved arbitrarily with the tags used in the table markup. In this particular

example, the layout is such that each label occurs in the first column and the actual form element widget appears

in the second column of the table. However, for different forms, the nature and type of the layout markup will be

different. In some cases, instead of tables, explicit spaces and line breaks may be used to control the alignment of

labels and form widgets. As a result, the structural representation based on the DOM does not directly yield the

labels and domain values.10

To address this problem, we adopted apartial page layouttechnique. The key to this technique is to realize

that the only restriction on the relative locations of the labels, domain values, and form elements, is that when

rendered by the browser, the relationships between these various entities must be obvious to the user. In other

words, irrespective of how they are formatted, the phrase “Company Name” in Figure 2 must bevisually adjacent

to the textbox widget. Similarly, the word “Automobile” must be visually adjacent to the corresponding radio

button widget.

Thus, we first lay out the form and it’s associated labels, similar to the way a browser would lay out the page

prior to physical rendering. Then, we use the following heuristic for identifying the label of a given form element

(an analogous heuristic is used for domain values):

� Identify the pieces of text, if any, that are visually adjacent to the form element, in the horizontal and vertical

directions. For this, based on the layout, we compute actual pixel distances between the centers of the form

widgets and the centers of the text pieces. This step yields a list of at most four possible candidates.11

� If there are candidates to the left and/or above the element, then the candidates to the right and below are

dropped.12

� If there are still two candidates remaining, ties are broken in favor of the one rendered in bold or using a

larger font size.

� If the tie is still not resolved, then one of the two candidates is picked at random.

10Note that for selection lists alone, extracting domain values is straightforward, since these values have to be directly nested within the

<SELECT>element.
11Note that text pieces containing more than a few words (6 in our default crawler configuration) are ignored, as most labels are either

short words or short phrases.
12We observed that most forms place labels either to the left or above the form widget.

12

Figure 7: Pruning before partial layout

Note that to calculate visual adjacency, it is not necessary to completely layout the page. The location of

the form with respect to the rest of the page is not relevant. Hence, we first prune the original page and isolate

only those elements that directly influence the layout of the form elements and the labels. For instance, consider

Figure 7, which shows the tree-structured representation of two different pages, one in which the FORM is directly

embedded in the main body and another in which it is embedded within a table. The pruned tree is constructed

by using only the subtree below the FORM element and the nodes on the path from the FORM to the root. In

addition, the layout need not be ‘perfect’; in fact, our implementation uses a simple custom layout engine that

discards images, ignores font sizes, uses a default font, ignores styling information such as bold or italics (except

to break up ties as mentioned above), and ignores any associated style sheets.

Our experiments in Section 6 indicate that visual adjacency is a very robust and effective strategy for extracting

labels and domain values. Incidentally, in [18] we study and evaluate other techniques for matching labels to input

elements. The techniques of [18] were developed in a different context than ours, for displaying forms on small

hand-held devices.

5.2 Normalization

When generating a value assignment, pieces of text (i.e., the labels and domain values) extracted from a HTML

page must be matched with other pieces of text stored in the LVS table. To ensure that spurious differences do not

result in missed matches, all these text pieces are subjected to a normalization process. The Form Analyzer normal-

izes the extracted labels and values whereas the LVS manager normalizes entries in the LVS table. Normalization

consists of the following sequence of steps:

� To counter possible errors during extraction, the extracted pieces of text are searched for HTML tags and

HTML entity references. Any such tags and entity references are removed.

� Next, all characters other than alphanumeric characters are replaced by a space character.

� Uppercase characters, if any, are converted to their lower case equivalents.

� Stop words [13], if any, are removed.

13

� Finally, each word in the resulting text is stemmed, using the standard Potter suffix-stripping algorithm [13].

5.3 Form Processing

There are two main issues in the design of theForm Processormodule in Figure 5: choosing an algorithm for

matching element labels with labels in the LVS table, and deciding whether or not a form must be processed.

Matching labels: Recall that once a label is found in a form, we must obtain “reasonable” values to fill-in the

corresponding input element, so that we can submit a completed form. For example, if we find a label “Enter

State,” we want to search our LVS table for some domain whose name is ‘similar,’ e.g., “State.” Once we find a

good domain in the LVS table, we can use the values associated with it (e.g., “Arizona”, “California”, etc.) to fill-in

the element labeled “Enter State.”

To match form labels to labels in the LVS table, we employ an approximate string matching algorithm. There

is a large body of work in the design and analysis of such string matching algorithms. Our choice was based on

the ability of the algorithm to account for two things: typing errors and word reorderings. Typing errors can be

captured by the standard string matching notion ofedit distance, which measures the minimum number of inser-

tions, deletions, and character replacements required to transform one string to another (e.g., edit-distance(house,

hose) = 1). However, word reorderings requires a new distance measure so that two labels such as “Company Type”

and “Type of Company” (these become “company type” and “type company” after normalization) are identified as

being very ‘close’ to each other.

Theblock edit modelsproposed in [21], succinctly represent both typing errors and word reorderings. These

models define the concept ofblock edit distance; a generalization of the traditional notion of edit distances to

handle block/word movements. We used one of a family of algorithms from [21] to implement our label matching

system based on the block edit model.

We match a form elementE to an LVS entry by minimizing the block edit distance between their labels, subject

to a threshold. Specifically, letedb(A;B) denote the block edit distance between stringsA andB; let� be a thresh-

old block edit distance beyond which matches are discarded; and letdistmin = min(L;V) �LV S fedb(label(E); L)g

represent the minimum block edit distance. Then,Match(E), the matching LVS entry is computed as follows:

Match(E) = nil, if distmin > �

= (L0; V 0) such thatedb(label(E); L0) = distmin, otherwise.

Ignoring forms: As the crawler processes one page after another, it is likely to encounter forms which are not

directly relevant to the task of extracting content from databases (e.g., a form for local site search). In addition, if

the crawler’s LVS table does not contain matching labels, even relevant forms may have to be ignored. HiWE uses

the following policy to decide whether a form must be ignored or submitted:

14

A form F = f(E1;D1), (E2;D2), : : : (En;Dn)g is submitted iff

(i) n � �, and

(ii) for eachi such thatDi is infinite,Match(Ei) is non-nil (i.e., there is a matching LVS entry).

Here,� is a configurable parameter that represents the smallest form size that the crawler will process. For instance,

if � > 1, the crawler will ignore single element forms (e.g., a form with just a simple search box).

Note that we ignore a form if we are unable to associate a matching LVS entry foreveryinfinite domain element

in the form. However, forms may not always require all inputs to be provided. For example, a form that searches

a ‘book catalog’ may allow the user to enter either an author, a title, or both. We do not consider such partial form

inputs in our model.

5.4 Response Analysis

The aim of response analysis is to automatically distinguish between a response page13 that contains search results

and one that contains an error message, reporting that no matches were found for the submitted query. The idea is

to use this information to tune the crawler’s value assignment strategy.

Response analysis turns out to be a very challenging problem, for a number of reasons:

� The absence of a ‘standard’ or commonly accepted format for reporting such errors means that each web site

is free to use a custom error notification message (e.g., “No matching results,” “0 results found,” etc.).

� Error pages often include a variety of other textual content (such as site maps, titles, headers, footers, code

snippets, etc.) besides the actual error message. Therefore, even if the text of the error message were known,

simply searching the page for matching text could lead to false drops.

� Finally, many forms are often associated with multiple types of error messages, with the web server choosing

between them based on some pre-programmed logic.

To tackle these challenges, HiWE’s response module uses a technique based on identifying the ‘significant portion’

of the response page (i.e., the portion of the page obtained after discarding headers, footers, side bars, site maps,

menus, etc.) To identify the significant portion, we use the heuristic that when the page is laid out, the significant

portion will be visually in the middle of the page. Two cases arise:

� If the response page is formatted using frames, we use information about the frame sizes to layout the page

and identify the center-most frame. Then, we retrieve the center-most frame’s contents, and treat that content

as the significant portion of the response page.

� If the response page does not use frames, we use our custom layout engine (Section 5.1) to first identify the

HTML elementE that is visually laid out at the center of the page. We also parse the page to construct it’s

DOM representation and locate E in the DOM tree. If E is present in the subtree of a<TABLE>element, we

treat the entire table and its contents as the significant portion of the page. IfE is not present within a table,

then we treat the entire page content as being significant.
13Response page is the page received in response to a form submission.

15

Using the significant portion of the response page, HiWE uses two techniques to identify error pages. The

first technique searches the significant portion of the page for occurrences of any one of a pre-defined list of error

messages (e.g., “No results”, “No matches”, etc.). The second technique is based on hashing the contents of the

significant portion. After each form submission, the response analysis module computes the hash of the significant

portion and maintains a list of such hashes for each form. If a particular hash value occurs very often (i.e., more

than a specified threshold), we assume that all future response pages which generate the same hash value are

error pages. Initial experiments using these techniques indicates that the response analysis module is reasonably

successful in distinguishing between pages with search results and pages with error messages.

Tuning value assignment: We are currently investigating possible approaches for modifying the value assign-

ment strategy of the crawler at run-time, based on feedback from the response analysis module. Specifically, if the

response analysis module indicates that an error page was received in response to a particular value assignment,

the crawler attempts to isolate the particular form element(s) whose input(s) were incorrect and therefore led to the

error.

5.5 Populating the LVS Table

The HiWE crawler supports four mechanisms for populating the LVS table:

� Explicit Initialization: HiWE can be supplied with labels and associated value sets at startup time. These

are loaded into the LVS table during crawler initialization. Explicit initialization is particularly useful to

equip the crawler with values for the labels that the crawler is most likely to encounter. For example, when

configuring HiWE for the ‘semiconductor news’ task described in Section 1, we supplied HiWE with a

list of relevant company names and associated that list with labels such as “Company”, “Company Name”,

“Organization”, etc.

� Built-in categories:HiWE has built-in entries in the LVS table for certain commonly used categories, such

as dates, times, names of months, days of the week, etc., which are likely to be useful across applications.

� Wrapped data sources:The LVS Manager (Figure 5) can communicate and receive entries for the LVS table

by querying various data sources through a well-defined interface.14 This interface includes two kinds of

queries, one or both of which can be supported by a give data source:

– Type 1: Given a label, return a fuzzy value set that can be associated with that label.

– Type 2: Given a value, return other values that belong to the same value set.

In Section 5.5.1, we describe how we built a wrapper program to use the online Yahoo directory [27] as a

data source for the LVS table.

� Crawling experience:Form elements with finite domains are a useful source of(label; value) pairs. When

processing a form, the crawler can glean such pairs from a finite domain element and add them to the LVS
14If necessary, the data sources must be wrapped by programs to export this interface.

16

1 Set of sites to crawl

2 Explicit initialization entries for the LVS table

3 Set of data sources, wrapped if necessary

4 Label matching threshold (�)

5 Maximum number of submissions per form (Smax)

6 Minimum form size (�)

7 Value assignment ranking function to be used

Table 1: Configuring a crawler

table, so that they may be used when visiting a different form.15 This is particularly useful if the same label

is associated with a finite domain element in one form and with an infinite domain element in another. For

example, we noticed that when experimenting with the crawling task described in Section 6, some forms

contained a pre-defined set of subject categories (as a select list) dealing with semiconductor technology.

Other forms had a text box with the label “Categories”, expecting the user to come up with the category

names on their own. By using the above technique, the crawler was able to use values from the first set of

forms to more effectively fill out the second set of forms.

5.5.1 Directories and topic hierarchies as data sources

We discovered that online categorization services, such as the Yahoo directory [27] and the Open Directory Project

[24], which structure their information as directories/topic hierarchies, could be effectively used as data sources to

populate the LVS table. Specifically, these directories were very useful in expanding value sets, given one or more

examples of values belonging to that set.

For example, consider a row in the LVS entry with a value setf“California”, “Nevada”, “Texas”, “Utah”g.

When the LVS manager presents this value set to the wrapper program associated with the Yahoo data source,

the wrapper submits four separate search queries using each of the values in the set. For each query, the Yahoo

directory returns lists of categories (in its hierarchy) pertaining to the query. The wrapper constructs the intersection

of the four category lists and identifiesRegional::US Statesas the name of the Yahoo category common to all four

values.16 Finally, the wrapper retrieves the list of all the entries that Yahoo lists under that particular category,

which in this case, turns out to be a list of US states. If the list of entries in a category turns out to be too large, the

wrapper returns just the top 50 entries.

Thus, starting with a small set of example values, the crawler, in conjunction with the wrapper, is able to use

an existing topic hierarchy to expand the value set.

5.5.2 Integrating new values into the LVS table

Since value sets are modeled as fuzzy sets (Section 3.2), whenever a new value is added to the LVS table, it must

be assigned a suitable weight. Typically, values obtained through explicit initialization and in-built categories have
15Note that we can even use(label; value) pairs extracted from forms that are processed but not submitted (because they failed to satisfy

the criteria listed in Section 5.3).
16If multiple categories result after the intersection, the wrapper chooses one randomly.

17

a weight of1, representing maximum confidence (since these values are directly supplied by a human). Weights

for values received from data sources are computed by the corresponding wrapper. However, the most interesting

case is when computing weights for values gathered by the crawler.

Suppose a crawler encounters a form elementE with an associated finite domainD = fv1; : : : ; vng. Even

thoughD is a (crisp) set, it can be treated as a fuzzy set with membership functionMD, such thatMD(x) = 1 if

x � fv1; : : : ; vng, andMD(x) = 0, otherwise. The following cases arise, when incorporatingD into the LVS table:

� Case 1: If the crawler successfully extractslabel(E) and computesMatch(E) = (L; V), we replace the

(L; V) entry in the LVS table by the entry(L; V 0), whereV 0 = V [D. Here,[is the standard fuzzy set union

operator [14] which defines membership functionMV 0 asMV 0(x) = max(MV (x);MD(x)). Intuitively, D

not only provides new elements to the value set but also ‘boosts’ the weights/confidence of existing elements.

� Case 2:If the crawler successfully extractslabel(E) butMatch(E) is nil, a new row/entry (label(E), D)

is created in the LVS table, with membership functionMD defined byMD(x) = 1 if x � fv1; : : : ; vng, and

MD(x) = 0, otherwise

� Case 3: In the final case, the crawler is unable to extractlabel(E), either because the label is absent, or

because there is a problem in label extraction. Therefore, we identify an entry in the LVS table whose value

set already contains most of the values inD. Once such an entry is located, we shall add the values inD

to the value set of that entry. Formally, for each entry(L; V) in the table, we compute a score,17 defined

by the expression
P

x �D
MV (x)

jDj . Intuitively, the numerator of the score measures how much ofD is already

contained inV and the denominator normalizes the score by the size ofD. Next, we identify the entry with

the maximum score (say(Li; Vi)) and also the value of the maximum score (saysmax). Let fuzzy setD0 be

derived fromD by using the membership functionMD0(x) = smaxMD(x) (note: smax is less than1). We

replace entry(Li; Vi) by the entry(Li; Vi [D0).

5.6 Configuring HiWE

In this section, we described different aspects of HiWE that require explicit customization or tuning to meet the

needs of a particular application. In addition, we also introduced a few configurable parameters that control the

actions of the crawler. Table 1 summarizes all the inputs that the user must provide to the crawler, before initiating

the crawling activity.

6 Experiments

We performed a number of experiments to study and validate the overall architecture as well as the various tech-

niques that we have employed. In this section, we summarize some of the more significant results from these

experiments.
17In fuzzy set terminology, this score is thedegree of subsethoodof D in V , defined byS(D; V) = jD\V j

jDj
.

18

Total number of forms 70

Number of sites from which forms were picked 45

Total number of elements 315

Total number of finite domain elements 140

Average number of elements per form 4.5

Minimum number of elements per form 1

Maximum number of elements per form 12

Table 2: Statistics pertaining to the forms used in testing label and domain value extraction technique

6.1 Testing label and domain value extraction

Recall that as part of form analysis (Section 5.1), the crawler extracts labels (for all elements, whenever one

is available) and domain values (for finite domain elements such as selection lists and checkboxes). Since this

analysis is an important component of our crawling technique, we conducted extraction experiments on a set of

70 randomly chosen forms. Table 2 summarizes the relevant statistics of our test set. We ensured that a variety of

different forms, ranging from the simplest search box to the most complex ones with10 or more elements, were

included in the test set. Each form was manually analyzed to derive the correct label and domain values for each

element. Then, the extraction algorithms were executed on the same set of forms.

We observed that our extraction technique was able to achieve91.5%accuracy18 in extracting labels and almost

98% accuracy in extracting domain values. In manually inspecting the HTML markup for a random sample of

these70 forms, we noticed that the association between domain values and the corresponding form widgets is

not as significantly affected by the complexity of the layout as the association between labels and form widgets.

Therefore, we expect that simpler techniques, based on analyzing the HTML text, might perform reasonably well

for domain value extraction. However, since we use the layout technique to extract labels, there is no overhead in

using layout information for extracting domain values as well.

6.2 Crawler Performance Metric

Traditional crawlers, which deal with the publicly indexable Web, use metrics such as crawling speed, scalability

[15], page importance [8], and freshness [7], to measure the effectiveness of their crawling activity. However,

none of these metrics captures the fundamental challenge in dealing with the Hidden Web - namely processing and

submitting forms.

We considered a number of options for measuring the performance of HiWE.Coverage, i.e., the ability to

extract as much of the content from the databases as possible, is conceptually appealing but very difficult to

estimate or compute without information about the databases themselves. Similarly,relevancy, i.e., the question of

whether the extracted content is germane to the application/task being performed, is also useful but very difficult

to compute without exhaustive manual inspection. We finally chose to use thesubmission efficiencymetrics that

we define below.

Let Ntotal be the total number of completed forms that the crawler submits, during the course of its crawling
18An extracted label/domain value is accurate if it matches the one obtained manually.

19

activity. LetNsuccess denote the number of submissions which result in a response page containing one or more

search results.19 Then, we definestrict submission efficiency (SEstrict) metric as:

SEstrict =
Nsuccess

Ntotal

Note that this metric is ‘strict’, because it penalizes the crawler even for submissions which are intrinsically ‘correc-

t’ but which did not yield any search results because the content in the database did not match the query parameters.

One could define alenient submission efficiency (SElenient) metric that penalizes a crawler only if a form submis-

sion is semantically incorrect (e.g., submitting a company name as input to a form element that was intended to

receive names of company employees). Specifically, ifNvalid denotes the number of semantically correct form

submissions, then

SElenient =
Nvalid

Ntotal

SElenient is more difficult to evaluate, since each form submission must be comparedmanuallywith the actual

form, to decide whether it is a semantically correct submission. For large experiments involving hundreds of form

submissions, computingSElenient becomes highly cumbersome. Hence, in all our experiments, we usedSEstrict

to measure crawler performance.

Intuitively, the submission efficiency metrics estimate how much useful work a crawler accomplishes, in a

given period of time. In particular, if two crawlers with different submission efficiency ratings are allowed to crawl

for the same amount of time, the crawler with the higher rating is expected to retrieve more ‘useful’ content than

the other.

Parameter Value

Number of sites visited 50

Number of forms processed 218

Number of forms submitted 94

Label matching threshold (�) 0.75

Maximum number of submissions per form (Smax) 100

Minimum form size (�) 3

Value assignment ranking function(�) Fuzzy conjunction

Minimum acceptable rank of a value assignment (�min) 0.6

Table 3: Parameter values for performance experiments

6.3 Proof-of-Concept Experiments

All the experiments we present in this section were based on configuring and executing the crawler for the following

task, namely, looking for online news articles, reports, technical whitepapers, and press releases, pertaining to the

semiconductor industry, released during the last 10 years. Table 3 lists the default values of�, �, andSmax that

we used in our experiments.
19In our experiments, to obtain a precise value forNsuccess, we used manual inspection of the pages, rather than using information from

the crawler’s response analysis module.

20

For the purposes of our experiments, in addition to restricting the number of submissions per form, we also

imposed the condition that a value assignmentX could be used to submit a form only if its rank,�(X), was greater

than or equal to a specified constant�min(set to 0.6 in Table 3). Without this additional restriction, a form for

which the set of possible value assignments is less thanSmax, will always be submitted using the same set of

assignments, irrespective of the ranking function being used. This additional restriction allows us to compare the

three different value assignment ranking functions presented in Section 3.3.

Site Name URL

Semiconductor Research Corporationwww.src.org

The Semiconductor Reference Site www.semiref.com

Hoover Online Business Network www.hoovers.com

Lycos Companies Online companies.lycos.com

Table 4: Sources of information used to initialize the crawler

To configure the crawler, we required a target set of sites as well as some information to initialize the LVS table.

Table 4 lists the online sources we used to generate some of the basic LVS entries required by the crawler. These

entries included partial lists of names of semiconductor manufacturing companies as well as list of sub-sectors (or

areas) within the semiconductor industry. The first two sources listed in Table 4 were (manually) used only once,

to extract information for explicit initialization. The remaining two sources were wrapped by custom wrappers

to interface with the LVS manager and automatically provide values at run-time. The Yahoo directory was also

wrapped, as described in Section 5.5.1, to act as a run-time source of values.

The crawler was provided with a list of50 sites that included both generic and semiconductor industry specific

databases of press releases, reports, product announcements, product reviews, etc. Table 5 presents a sample of

some of the sites that were targeted by the crawler. In all, the crawler encountered and processed220 forms of

which 126 were ignored as they did not satisfy the criteria described in Section 5.3. Most of the discarded forms

were small intra-site search forms containing just a search box and a submit button.

Site Name URL

IEEE Spectrum www.spectrum.ieee.org

Semiconductor Online www.semiconductoronline.com

Semiconductor Business News www.semibiznews.com

Yahoo News news.yahoo.com

Total News www.totalnews.com

Semiconductor International www.semiconductor-intl.com

Solid State Technology International Magazinewww.solid-state.com

CNN Financial News www.cnnfn.com

TMCnet.com Technology News www.tcmnet.com

SemiSeekNews www.semiseeknews.com

Table 5: Sample of the target sites crawled

Effect of Value Assignment ranking function: To study the effect of the value assignment ranking function

(Section 3.3), the crawler was executed three times, with the same parameters, same initialization values, and same

21

Ranking function Ntotal Nsuccess SEstrict

�fuz 3214 2853 88.77

�avg 3760 3126 83.14

�prob 4316 2810 65.11

Table 6: Crawler performance with different ranking functions

Figure 8: Variation of performance with�

set of data sources but using a different ranking function on each occasion. Table 6 shows the result of these

executions. Ranking function�fuz provides the best submission efficiency, but being conservative, causes less

forms to be submitted than�avg. The latter submits more forms but also generates more successful submissions

without significantly compromising crawler efficiency. This indicates that if maximum content extraction, rather

than crawler efficiency, was the primary criterion, at least for our application,�avg might be a better choice. In

comparison, ranking function�prob performs poorly. Even though it submits 35% more forms than�fuz, it achieves

lesser number of successful form submissions, resulting in an overall success ratio of only 65%. This indicates that

the�prob function is not very good at identifying “good” value assignments.

Effect of �: Figure 8 illustrates the effect of changing�, the minimum form size. For each value of�, the

figure indicates the values of bothNtotal andNsuccess. The percentage figure represents the corresponding value

of SEstrict. Note that in general, the crawler performs better on larger forms. Smaller forms tend to have less

descriptive labels, often consisting merely of an unlabeled text box with an associated “Search” button. Expectedly,

the crawler either ignores such forms or is unable to find matches for element labels. On the other hand, larger

and more complicated forms tend to have more descriptive labels as well as a significant number of finite domain

elements, both of which contribute to improved performance.

Effect of crawler input to LVS table: In Section 5.5, we described the process by which a crawler can contribute

entries to the LVS table. Figure 9 studies the effect of this technique on the performance of the crawler. To generate

the data for Figure 9, the crawler was executed twice, once with the crawler contributing LVS entries, and another

22

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

Number of forms processed
N

um
be

r
of

 s
uc

ce
ss

fu
l f

or
m

 s
ub

m
is

si
on

s

Crawler input enabled
Crawler input disabled

Figure 9: Effect of crawler input to LVS on performance

time, with such contributions disabled. Figure 9 shows that in the initial stages of the crawl, the presence or

absence of the crawler contributions do not have a significant impact on performance. However, as more forms are

processed, the crawler encounters a number of different finite domain elements and is able contribute new entries

to the LVS table. In addition, the LVS manager uses these new entries to retrieve additional values from the data

sources (as described in Section 5.5.1). As a result, by the end of the crawl, contributions from the crawler are,

directly or indirectly, responsible for almost a1000 additional successful form submissions.

7 Related Work

In recent years, the growth of the Web has stimulated significant interest in the study of Web crawlers. These

studies have addressed various issues, such as performance, scalability, freshness, extensibility, and parallelism,

in the design and implementation of crawlers [5, 6, 8, 15, 23]. However, all of this work has focused solely on

the publicly indexable portion of the Web (see Figure 1). To the best of our knowledge, there has not been any

previous report (at least, none that is publicly available) on techniques and architectures for crawling the hidden

Web.

Our task-driven approach to crawling is similar to the approach adopted in the work onfocused crawling[5].

Specifically, a focused crawler can be tuned to seek out and retrieve pages relevant to a predefined set of topics.

However, the focused crawling approach presented in [5] is applicable only to pages in the publicly indexable Web.

In [18], we have addressed the issue of matching form elements to descriptive text labels, in the context

of enabling HTML form support on small devices, such as PDAs. In [18], we present a variety of text-based

techniques for extracting labels and conduct extensive performance experiments. The techniques in [18] are based

on a detailed study of the most common ways in which forms are laid out on web pages.

The online service InvisibleWeb.com [16] provides easy access to thousands of online databases, by organiz-

ing pointers to these databases in a searchable topic hierarchy. Their web page indicates that a ‘combination of

automated intelligent agents along with human experts’ are responsible for creating and maintaining this hierarchy.

Similarly, the online service BrightPlanet.com [3] claims to automatically ‘identify, classify, and categorize’ con-

23

tent stored in the hidden Web. In both cases, the techniques are proprietary and details are not publicly available.

8 Conclusion

In this paper, we addressed the problem of crawling and extracting content from the “hidden Web”, the portion

of the Web hidden behind searchable HTML forms. We proposed an application/task specific approach to hidden

Web crawling. We argued that because of the tremendous size of the hidden Web, comprehensive coverage is

very difficult, and possibly less useful, than task-specific crawling. This specificity is also useful in designing a

configurable crawler that can benefit from knowledge of the particular application domain.

We presented a simple model of a search form and the process of filling out forms. Based on this model,

we described an architecture for a task-configurable hidden Web crawler and illustrated how it could be used to

automate content extraction from the hidden Web. We also presented various novel techniques that went into the

design and implementation of our HiWE crawler. Finally, we presented some results from experiments that we

conducted to validate our techniques. Our results show that human-assisted crawling of the hidden Web is feasible,

and that relatively few forms are filled-in incorrectly.

References

[1] Amazon.com web site. http://www.amazon.com.

[2] Active Server Pages Technology. http://msdn.microsoft.com/workshop/server/asp/aspfeat.asp.

[3] BrightPlanet.com. http://www.brightplanet.com.

[4] The Deep Web: Surfacing Hidden Value. http://www.completeplanet.com/Tutorials/DeepWeb/.

[5] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: A new approach to topic-

specific web resource discovery. InProceedings of the Eighth International World-Wide Web Conference,

1999.

[6] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implications for an incremental

crawler. InProceedings of the Twenty-sixth International Conference on Very Large Databases, 2000. Avail-

able at http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-1999-0129.

[7] Junghoo Cho and Hector Garcia-Molina. Synchronizing a database to improve freshness. InProceedings

of the International Conference on Management of Data, 2000. Available at http://www-diglib.stanford.edu/

cgi-bin/get/SIDL-WP-1999-0116.

[8] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through url ordering. InPro-

ceedings of the Seventh International World-Wide Web Conference, 1998. Available at http://www-diglib.

stanford.edu/cgi-bin/WP/get/SIDL-WP-1999-0103.

[9] Document Object Model Level 1 specification. http://www.w3.org/TR/REC-DOM-Level-1/.

24

[10] Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and Dan Suciu. STRUDEL: A web-

site management system. InProceedings of the International Conference on Management of Data, pages

549–552, 1997.

[11] Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database techniques for the world-wide web: A

survey.SIGMOD Record, 27(3):59–74, 1998.

[12] Forms in HTML Documents – W3C HTML 4.01 Recommendation. http://www.w3.org/TR/html401/

interact/forms.html.

[13] W. B. Frakes and R. Baeza-Yates.Information Retrieval Data Structures & Algorithms. Prentice Hall,

Englewood Cliffs, N.J., 1992.

[14] H.-J.Zimmermann.Fuzzy Set Theory. Kluwer Academic Publishers, 1996.

[15] Allan Heydon and Marc Najork. Mercator: A scalable, extensible Web crawler.World Wide Web, 2(4):219–

229, December 1999.

[16] InvisibleWeb.com. http://www.invisibleweb.com.

[17] JavaServer Pages (JSPTM) Technology. http://java.sun.com/products/jsp/.

[18] Oliver Kaljuvee, Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Efficient web form

entry on pdas. InSubmitted for publication, 2000. Available at http://www-diglib.stanford.edu/cgi-bin/get/

SIDL-WP-2000-0145.

[19] Steve Lawrence and C. Lee Giles. Searching the World Wide Web.Science, 280(5360):98, 1998.

[20] Steve Lawrence and C. Lee Giles. Accessibility of information on the web.Nature, 400:107–109, 1999.

[21] Daniel Lopresti and Andrew Tomkins. Block edit models for approximate string matching.Theoretical

Computer Science, 181(1):159–179, July 1997.

[22] Giansalvatore Mecca, Paolo Atzeni, Alessandro Masci, Paolo Merialdo, and Giuseppe Sindoni. The ARA-

NEUS web-base management system. InProceedings of the International Conference on Management of

Data, pages 544–546, 1998.

[23] Robert C. Miller and Krishna Bharat. Sphinx: a framework for creating personal, site-specific web crawlers.

In Proceedings of the Seventh International World-Wide Web Conference, 1998.

[24] Open directory. http://www.dmoz.org.

[25] PHP Hypertext Processor. http://www.php.net.

[26] Java ServletTMTechnology. http://java.sun.com/products/servlet/.

[27] Yahoo incorporated. http://www.yahoo.com.

25

