
Tool Support for Helping the Use of Frameworks

Ricardo Pereira e Silva Eng., M.Sc.
Universidade Federal de Santa Catarina - Depto. de Informática e de Estatística

Florianópolis - SC - Brazil (Ph.D. Student at Universidade Federal do Rio Grande do Sul - Instituto de
Informática), e-mail: ricardo@inf.ufsc.br

Roberto Tom Price Eng., M.Sc., D.Phil.
Universidade Federal do Rio Grande do Sul - Instituto de Informática

Porto Alegre - RS - Brazil, e-mail: tomprice@inf.ufrgs.br

Abstract
Frameworks promote design and code reuse, at a

higher level of granularity. The use of frameworks is a
hard task though, because usually they lack
documentation and instructions on how to use them, thus
being, in general, very difficult to understand. This paper
addresses some mechanisms to help framework usage. It
presents SEA-Preceptor, a hyperdocument based tool that
sets up the possible paths to be followed by framework
users to construct applications. SEA-Preceptor
hyperdocuments also allow navigating through design or
code of frameworks (or applications), as a way of helping
on framework understanding. Frameworks and
applications are specified in SEA environment (that hosts
SEA-Preceptor and other tools) as sets of diagrammatic
models that are views of a semantically checked
metamodel repository, which is semi-automatically
translated into source code.

1. Introduction

An object-oriented framework is a structure of
interrelated classes, that is an incomplete implementation
of a set of domain-applications. This class structure must
be adapted to generate specific applications [9].

Design reuse is the main benefit in using frameworks: a
framework has defined the control flow of the applications
that can be generated from it. Besides that, there is also
code reuse: a set of framework classes is included in
applications, and framework users need to know only part
of them. So, framework promotes reuse of code and design
[20].

Frameworks must present the features of generality,
flexibility and extensibility. The main feature is generality,

because a framework must be a general abstraction of a
domain. Flexibility regards the possibility of changing the
framework functionalities, according to the needs of
specific applications. Framework evolution can occur at
any time of its life cycle, because the use of a framework
may lead to new needs and new abstractions of its domain.
So, to construct an extensible framework, a developer must
foresee its future uses, as well as the possibility of
extending the limits of the treated domain.

The framework approach has two kinds of
disadvantages: complexity to develop and complexity to
use. Complexity to develop regards the need of supplying
framework design with the features above mentioned, as
explored in a previous work [18]. Complexity to use regards
the required effort for a user to learn how to develop
applications from a framework.

This paper presents SEA-Preceptor, a tool that aids in
the usage of frameworks to build applications. At first, the
requirements to make someone able to use a framework are
presented. Also approaches to attain this goal, and
existing tools to support framework usage, are discussed.
SEA, a framework development environment that supports
SEA-Preceptor tool, is very briefly discussed. Next, the
SEA-Preceptor tool is described.

SEA-Preceptor drives application development by
means of a hyperdocument, which establishes the steps to
be followed by framework users. Different paths may be
followed, according to the needs of the application in
development. Applications are specified by means of
modelling techniques that describe their static and
dynamic aspects. Resulting design specifications are
translated into programming language. During application
development, SEA-Preceptor allows design specifications
or code to be browsed (specifications and code of
frameworks or existing applications).

2. Considerations on using frameworks

The first requirement for generating an application from
a framework is to discover how to adapt its structure,
according to the application needs.

2.1. Modes of framework using

White-box frameworks are designed to generate
applications by subclassing their abstract classes, through
the specification of the body of their abstract methods or
overriding of their concrete methods. In black-box
frameworks, which present concrete classes, customisation
occurs by means of object composition - different
behaviour of applications are obtained with different
object combinations. White-box frameworks require more
effort to learn how to use them, but they allow for a wider
range of applications. Grey-box frameworks blend the two
approaches, allowing customisation by means of object
composition, and by means of subclassing [20].

2.2. What a user must know to use a framework

The users need to know the framework structure to
handle either white-box or grey-box frameworks. To use
these frameworks, the following three key-questions must
be answered.

± Question 1 - What classes? : the concrete classes of an
application have two possible origins: new classes created
by the users or framework concrete classes. So, what
classes should be developed to generate an application
and what concrete classes may be reused?

± Question 2 - What methods? : A method of an abstract
class can be classified as: abstract, template or base [8].
When a template method is executed, the call of at least
one hook method occurs, and the hook method can be an
abstract, template or base method [13]. Thus, when
producing applications:
• abstract methods must have their body specified (that

is, their implementation in concrete classes);
• template methods may have their behaviour defined.

This can be done by means of the redefinition of the
called hook methods. The evaluation of the need or
convenience of producing methods should be
extended to the hook methods.

• base methods can be overridden, but carefully.
According to framework design, they do not need be
overridden.

So, for creating a concrete class for an application, what
methods must be created and what inherited methods may
be reused?

± Question 3 - What do the methods do?: the methods
that must be created will produce the particular behaviour
of specific applications. A framework user must
understand the semantics of these methods, that is, what
are their responsibilities, in what running situations do act
these methods, and how do these methods implement
collaboration between different objects?

3. Related work

Different ways of describing a framework will require
more or less effort to learn how to use it. There are some
proposals of framework description formats and tools that
use them, aimed for reducing the required effort to use a
framework, as the following described.

3.1. Ways of learning how to use a framework

The answer to the three questions above may be
searched in the framework description. During the
framework design the classes and methods that must be
built by the users have been defined, with their intended
semantics. Information sources to understand it, may be
documentation and source code. Documentation provided
to understand a framework could be classified in two
different types: description of the framework design (how a
framework works) and description of how to use a
framework.

Source code analysis
The simplest way of helping the framework users on

understanding a framework is to make its source code
available. It can be its complete code, only the code of
some of its classes or code of framework based
applications. The tasks of a framework user when
developing applications includes code analysis. It leads to
understanding the framework design and therefore, to
discover what must be developed to construct an
application. This corresponds to a Reverse Engineering
activity, by witch a framework user must recover the
framework design, because at the beginning of the code
analysis there are no descriptions at a high-level of
abstraction, but just code. That activity in some cases
requires a lot of effort, which makes infeasible the use of a
framework.

Understanding framework design by means of code
analysis is the only possible way when framework
documentation is not available. No one of the three key-
questions above mentioned is answered without some
effort in code analysis. In most cases, source code
analysis is the hardest way of learning how to use a
framework.

Design framework documentation
Current approaches of expressing framework design

structures are originated from framework development
methodologies that do not use modelling techniques like
that used by traditional OOAD methodologies. And so,
design documentation is mainly based on textual
description, references to source code and use of devices
for describing discrete aspects of framework design -
nearly always to emphasize flexibility on framework
structure, as the highlight of design patterns [6].

Pree proposes the highlight of metapatterns used in a
framework, by means of a diagram similar to object model
of OOAD methodologies. That notation includes the
classes that take part in metapattern and an iconic
representation of this metapattern, showing the hook and
template methods (see figure 1, that presents the use of
metapattern based notation to describe
Publisher/Subscriber design pattern) [13]. The advantage
of this approach is its capacity of highlighting the points
in design structure that framework developer kept flexible,
that is, where should start the search of the key-question
answers. This description way otherwise, does not
describe the entire framework structure nor instructs how
to use the framework to generate applications. It needs be
complemented with some other description technique.

Figure 1 - Publisher/Subscriber design pattern using
metapattern based notation

Contracts [7] describe collaboration between groups of
objects, by means of a formal language which represents:
• the participants - instances or sets of instances that
take part in the contract;
• the contractual obligations - responsibilities of the
participants in their interactions.

Contracts can describe discrete collaboration aspects
from a framework design. It has the advantages of

modelling object interaction in a formal manner, and, as
contracts can be reused as basis or part of others, they
have the capacity of describing complex behaviour as
composition of simpler ones. Contracts can be used to
highlight the flexible parts of a framework structure,
similarly to metapatterns. The main disadvantage of
contracts is that it corresponds to an extensive and very
low-level of abstraction description (classes, methods,
attributes). It makes difficult to understand a framework
design described by means of contracts [13].

"How to use" framework documentation
Documentation aimed at teaching how to use a

framework explains the steps that must be followed by a
framework user, to generate applications. This kind of
documentation gives little emphasis on design aspects. Its
main goal is to describe shortly as possible, how to
produce applications. It presents textual format and often
includes some other way of description, like examples
using source code.

Cookbooks, as used for framework MVC [12], are sets
of textual recipes that describe how to use a framework to
solve problems in application development. Its main
advantage is the capacity to answer the key-questions
directly, and reduce the time spent to produce
applications. The main disadvantage of the cookbook
approach is that it covers a very limited range of
application categories: they let users helpless when their
needs do not match the cookbook contents. Another
problem with cookbook approach is that nearly always the
process of learning about a framework includes low level
activities: once answered the key-questions (what to do),
the user often needs to do code analysis to learn "how to
do".

Documentation patterns proposed by Johnson and
used by him to describe how to use the framework
HotDraw [9], constitute an alternative to cookbook format.
Its documentation patterns are structured recipes that
describe how to do something using the framework
resources, and that contain pointers to other
documentation patterns, like links in a hyperdocument. Its
main advantage in relation to conventional cookbooks is
that the link between documentation patterns makes easy
to browse the documentation through a path defined
according to the framework user needs.

3.2. Cookbook tools for helping framework
usage

The frameworks MVC [12] and ET++ [13] have tools,
that supply on-line access to the contents of their
cookbooks. MVC cookbook includes textual description
and short examples in Smalltalk. ET++ cookbook is based

on the hyperdocument approach, what allows to define the
navigation sequence according to the user needs.
Moreover, ET++ cookbook includes parts of design
specification using the metapattern notation [13], besides
textual description and examples in C++ code. These tools
present the advantage of the cookbook approach: direct
indication of sequence steps to be followed, to solve a
design problem. Unfortunately, they also present the
cookbook disadvantages.

Meusel [11] produced a cookbook for HotDraw, joining
the documentation pattern [9] and hyperdocument
approaches. Besides documentation patterns, the tool
includes tutorials and design patterns, to describe some
punctual aspects of the framework design. Relative to the
common cookbook approach, Meusel's cookbook
contributes mainly with the use of hyperdocument. The
adoption of the documentation pattern approach produced
recipes in a structured form.

The active cookbook approach, proposed by Pree and
by him implemented in a prototype [14], establishes that a
cookbook tool, besides describing the steps to be
followed, automatically carries out implementation actions.
So, according to this approach, an active cookbook tool
can also produce part of the application code.

Nautilus is a tool for producing active cookbooks that
describe the steps to produce applications by means of the
use of a framework, allowing the inclusion of automatic
actions for the creation of application source code (in
Smalltalk) [21]. Nautilus is coupled with MetaExplorer [3],
which is a tool for dynamic analysis of applications.
MetaExplorer produces a description of application
dynamic behaviour, by means of metaobjects, which
observe message flow between application objects. The
main advantage of Nautilus is that its integration with
MetaExplorer contributes to framework learning process,
supplying some help in code analysis. Reverse
Engineering tools (as code browsers or cross-reference
tools) can help the code analysis activity. Dynamic
analysis should use tools, like MetaExplorer.

The mentioned cookbook tools have common features.
They must be constructed by someone that knows the
framework design; they describe the steps to develop
applications based on frameworks; and they rely on code
analysis for further understanding of the framework
design. Except for Nautilus, none of the mentioned tools
help on code analysis. They do not manipulate design
specifications. They only hand two types of information:
cookbook contents (textual description, which in some
cases includes source code examples and diagrams to
describe specific design aspects) and source code.

4. SEA, an environment for the development
and the use of frameworks

SEA is an environment that supports the development
and the use of frameworks. SEA-Preceptor, the tool for
helping application development, is part of SEA
environment.

4.1. Framework environment requirements

SEA environment is being developed, considering the
following requirements.

Support for editing graphical models
Nearly all framework development methodologies, as

well as tools based on them, ignore graphical OOAD
methodology notations, aiming directly at code in
programming language. To make the obtained framework
useful to many people, the use of auxiliary devices, like
cookbooks and the highlight of design patterns is
recommend [13].

On the other hand, current OOAD methodologies and
their supporting tools are directed chiefly for application
development. Notations of OOAD methodologies do not
represent completely some concepts required for
framework design, like essential classes and redefinable
classes [17]. For example, the Unified Modelling Language,
UML [15], that is going to be a de facto standard notation
for OOAD [4], does not adequately represent framework
constructs [1] as its basic features. However, through the
use of stereotypes one may extend UML to support the
representation of most framework concepts.

The use of graphical modelling techniques can increase
the comprehensibility of framework (and application)
descriptions [5], helping to make the development and use
of frameworks a comfortable activity. In the SEA
environment, frameworks and applications are specified as
sets of graphical models with textual complements. These
specifications are translated into Smalltalk.

Support for semantic edition
Code generation demand that an environment assures

the semantic consistency of the specification, instead of
acting simply as graphical editor. The MVC approach is
adequate for separating conceptual elements from their
views and it was adopted to allow semantic treatment at
conceptual level. SEA adopts the following ways of
supplying semantic consistency for design specifications:
• there is a metamodel that establishes the

Figure 2 - SEA environment classes that define part of the specification structure, detaching as example, part of the classes of
a scenario (Drawing, DrawingEditor and Figure are HotDraw classes)

 specification elements (models and their
 components) and the semantic relationship between
 these elements. The metamodel is implemented in
 the environment class structure defining the
 specification repository;

• environment editors are driven by the metamodel
constraints;

Support for reusing software artefacts
It is possible to increase the development productivity

by means of software reuse in different levels, through
facilities and tools to promote: Reverse Engineering; to
import external software artefacts, like components [19]; to
access and modify libraries of existing software
specifications and libraries of design pattern structures.

Flexibility
Flexibility is required to allow the evolution of an

environment, that is, to include new tools and new
functionalities, with less effort as possible, and without
unexpected side-effects over the environment structure.
To produce a framework for environments, instead a single
environment, is an adequate approach to obtain flexibility.
SEA environment presents flexibility in many aspects, for
instance:
• modify the model types that define a specification

(change the metamodel);
• include or change tools that access specifications;
• use different storage devices (DBMS, files etc.);
• change the permissions of accessing specifications.

4.2. SEA, structure and functionalities

To obtain an environment that supports the above
requirements, SEA is being built by means of a framework
architecture. SEA reuses the frameworks MVC [12] and
HotDraw [2].

Figure 2 presents part of the specification repository
structure of the SEA environment and some tools that
handle it. All components (instances of Concept
subclasses) referred by specification models (instances of
ConceptualModel subclasses) are kept by a single storage
(instance of ConcepStorage). A class that appears
simultaneously in more than one object model diagram, or
in others diagrams, for example, is a same specification
component. Specification models have a drawing that
corresponds to their visual presentation. Similarly, the
specification components are associated with figures,
present in the model drawings. Figure 2 left side classes
refer to conceptual elements and right side classes, to
visual elements, according to the MVC approach. This
figure highlights (with arrows) some of the classes of the
scenario model, the message concept, used in scenarios,
and the respective editors.

Figure 3 shows the overall structure of the SEA
environment framework, which includes the above
described specification structure. It is based on the toaster
approach [16]. Independent tools, accessed through the
environment manager window, share the same
specification repository. So, due to the low

Figure 3 - The architecture of the framework environment, based on the toaster approach

Figure 4 - Scenario and object model editors, from the SEA environment

coupling between tools, it is possible to modify, include or
exclude a tool, without affecting the behaviour of other
tools. Moreover, flexible aspects are untied: different
specification structures can use the same storage device,
or the same specification structure can be used with
different access restriction devices, for example. Figure 4
presents some SEA editors.

A software specification (of framework or application) is
produced in SEA environment by means of the building of
graphical diagrams that describe static and dynamic
features [17]. Static description is based mainly on object
model diagrams. Different diagrams allow to describe the
dynamic behaviour: the overall software behaviour, by
means of description of its transactions (use cases), the
refinement of this behaviour by means of scenario and
state diagrams; and the description of the body of the
class methods. The description of the methods is based on
a logical structuring notation (similar to action diagrams
[10]). Skeletons of method specifications, generated by the
analysis of other dynamic diagrams, can be extended by
the users with statements in the programming language
syntax.

SEA environment offers functionalities for framework
development, as the following:
• refactoring actions - for example, moving attributes

and methods from a class to another, merging classes,
changing the order, the origin or the target of
messages etc.;

• semantic edition - the removal of a class from a
specification, for example, produces (among other
effects) disconnecting the instances of this class from
the scenario diagrams, automatically;

• design pattern usage - it is possible to search design
pattern structures in a library (the contents of which
can be expanded) and use them in a specification.

5. SEA-Preceptor tool

SEA-Preceptor tool is aimed to driving and monitoring
the actions of the framework users, when they use a
framework to generate applications. Furthermore, SEA-
Preceptor helps to understand a framework design by
means of aiding the browsing of framework design
specifications.

5.1. Requirements for supporting the
development of applications based on
frameworks

As general requirements, a tool that supports the
development of applications based on frameworks must:

•• drive the actions of framework users to produce
applications - the well thought driving of users steps
may reduce the time they spend discovering what
must be done to generate applications. A
hyperdocument is an adequate way of conducting the
user tasks, because it allows different paths of
development, according to the specific application
needs.

•• reduce the effort to understand framework design -
the support tool must allow access to high-level
design descriptions of the used framework, as well as
of existing applications. This is mainly helpful when
the user needs do not match exactly with the
instructions of the driver hyperdocument. In this
situation source code analysis should not be the only
alternative.

•• liberate users of low level activities - mandatory
actions (like creating some specification components)
can be semiautomated. For example, if a framework
design establishes the need of creating a subclass of
one of its classes, the tool should ask the name of the
new class and include it in the application design
specification, instead of waiting for the user to do it
himself. Furthermore, translating specification design
to source code should use specification-translators.
The user fills in specification voids, instead of
producing the full application code.

•• check the satisfaction of the requirements to produce
an application based on a framework - framework
design establishes requirements for applications
developed under it, like the need of producing
subclasses of some of its abstract classes, or the
definition of abstract methods of these classes. A tool
that manages the development of applications must
check the accomplishment of these requirements, as
part of the task of driving user activities.

The established requirements differ of existing
approaches of aiding framework users, chiefly on the
emphasis on high-level specification.

5.2. SEA-Preceptor functionalities

SEA-Preceptor tool carried out the following set of
functionalities.

Framework requirement analysis
SEA-Preceptor searches for classes and methods that

must (or can) be defined. This information is searched in
framework specifications. In the framework requirement
analysis, SEA-Preceptor searches and lists the following
situations, that require user attention:
• subclasses must be created (and their abstract

methods must be defined) for the classes that are

abstract, redefinable, essential, and show no specified
subclasses;

• for the classes that are abstract, redefinable, essential,
and that show at least a subclass in the framework
specification, there is no obligation to create
subclasses, but if a user chooses to create a subclass
of one of these classes, all of their abstract methods
must be defined;

• for the classes that are abstract, redefinable,
inessential, and that may or not show subclasses
specified, there is no obligation to create subclasses,
but if a user chooses to create a subclass of one of
these classes, all of their abstract methods must be
defined;

Each situation above described of creation (mandatory
or not) of classes and methods will originate an action link
in the hyperdocument, that executes the creation action,
besides to load the adequate model editor in SEA
environment workspace.

Hyperdocument edition
It is necessary to support the creation and changing of

a navigation driver hyperdocument. Framework
requirement analysis must supply the relation of the
action links to be included in this hyperdocument.

At the moment of writing, the functionality of
hyperdocument edition is not fully implemented.
VisualWorks is used to build hyperdocuments, while the
inclusion of the action links is done by the user himself.

Application requirements checking
It is the verification if all mandatory specification

elements are included in an application specification
(based on a framework). This verification uses the list of

mandatory and optional specification elements obtained
by means of a framework requirement analysis and it
checks:
• if all the mandatory classes have been created;
• if there are undefined methods in the newly created

concrete classes.
It is als o checked if the created application-specification

differs from the framework specification through the
inclusion of additional elements. For instance, subclasses
of unredefinable classes, or classes without a framework
superclass. SEA-Preceptor only warns the application
users; it does not hinder the creation of these specification
components, because they might be unforeseen
requirements of the application domain.

5.3. SEA-Preceptor usage

SEA-Preceptor provides support for two types of users:
framework developers and framework users. For framework
developers, SEA-Preceptor supports the development of
hyperdocuments that guide the use of frameworks, and for
framework users, it supports the handling of these
hyperdocuments to produce applications.

A framework developer initially do a framework
requirement analysis, to list the specification elements that
must or may be created (each one will correspond to an
action link). Next, he produces an hyperdocument that
must contain all the defined action links. The
hyperdocument must include the definition of the possible
paths, as well as the links to navigate through the
hyperdocument pages, design specifications or code

Figure 5 - FraG hyperdocument page, loaded in SEA environment
of the framework (or of existing applications).

The front-end of SEA-Preceptor to framework users is
the hyperdocument, handled in SEA environment
workspace. A framework user will follow a navigation path
according to his needs. Activation of action links will
cause edition actions. For example, the activation of a link
that creates a class will open an object model editor and a
dialog box to ask the class name; once this is supplied, the
class will be included in the diagram. Figure 5 shows an
example of the hyperdocument that drives game
development using FraG, a framework for board games
[17].

Specification documents produced in the SEA
environment are treated as hyperdocuments (all model and
component descriptions can include links). So, when a
conventional link leads to a framework specification model
- to describe some design detail, for example - a new path
may be defined by the framework user, simply by link
activation, in this model and in following documents. By
means of the activation of the SEA environment back
button, it is possible to return to the driver
hyperdocument. So, this possibility of navigation available
in SEA-Preceptor hyperdocuments, besides to drive
application development, allows the browsing of design
specifications and code, as a way of learning about a
framework.

Once the framework user considers the application
specification development finished, he will use SEA-
Preceptor to do an application requirement checking.
Besides SEA-Preceptor, the framework users need the SEA
environment functionalities to produce an application
based on a framework (as graphical model edition,
semantic consistency checking and code generation).

6. Conclusion and future work

This article presents SEA-Preceptor, a tool supporting
the steps to produce applications based on frameworks.
SEA-Preceptor emphasizes the use of high-level models for
framework design and the guidance for the production of
the application specification through a hyperdocument
based cookbook. In fact, an integration between OOAD
notations and existing framework development techniques
is proposed.

In the SEA environment, an application is produced
extending a framework design specification. The design
notations are based on diagrammatic OOAD modelling
languages, slightly adapted to framework design needs.
These specifications are translated into source code. SEA
environment has tools that support the preparation of the
framework specification, do the semantic checking of the
metamodel repository, translate specifications into source

code, and SEA-Preceptor, the tool that aids user for
application development.

SEA-Preceptor offers the following functionalities:
framework requirement analysis, hyperdocument edition
and application requirement checking. The requirement
analysis produces a list of classes and methods from the
framework specification, that must (or can) be created for
the application. The hyperdocument edition creates the
hyperdocument that will guide the application
development activity. The application requirement
checking verifies if the application requirements are
complete.

Navigation through the application-generator
hyperdocument uses conventional links, to move between
hyperdocument components as examples, text, diagrams,
code and other ways of software documenting, but also
employs action links that prompt the user for specific
actions or activate tools to aid in the application
specification process.

Currently the tool is still being tested and refined using
small examples. The first application-generation
hyperdocument being created is to support the
development of games using the framework FraG [18]. This
hyperdocument will be used in class to help students to
develop board games using FraG. Other groups will
develop games using the framework without the use of the
hyperdocument. The comparison of the spent times to
develop applications with equivalent complexity levels
(with and without the use of Preceptor) will be used for a
concrete evaluation of the contribution of the SEA-
Preceptor approach. Besides SEA-Preceptor
hyperdocument edition, other SEA functionalities must be
included or completed, as the increasing of specification
analysis, and the capacity of producing code in other
programming languages, as Java.

SEA environment is being developed to support
development and use of frameworks in high-level manner.
According to this, SEA-Preceptor is pointed to make the
development of applications based on frameworks, a
comfortable activity.

7. References

[1] ARTIM, J. UML: the language of blueprints for
software?. Panel session in: Object-Oriented
Programming Systems, Languages and
Applications Conference - OOPSLA, 1997, Atlanta.
It refers only to author position.

[2] BRANT, J. HotDraw. Urbana: University of Illinois at
Urbana-Champaign, 1995. Master thesis.

[3] CAMPO, M. R. Compreensão visual de frameworks
através da introspecção de exemplos . Porto Alegre:
UFRGS/II/CPGCC, mar. 1997. Doctoral thesis.

[4] COLEMAN, D. et al. UML: the language of blueprints
for software?. Panel session in: Object-Oriented
Programming Systems, Languages and
Applications Conference - OOPSLA, 1997, Atlanta.

[5] FOWLER, M. Describing and comparing object-
oriented analysis and design methods. In:
Carmichael. Object development methods . New
York: SIGS Books, 1994. p. 79-109.

[6] GAMMA, E. Design patterns : elements of reusable
object-oriented software. Reading: Addison-
Wesley, 1994.

[7] HELM, R. et al. Contracts: specifying behaviour
composition in object-oriented systems . In: Object-
Oriented Programming Systems, Languages and
Applications Conference - OOPSLA, oct. 1990,
Otawa.

[8] JOHNSON, R. E., RUSSO, V. F. Reusing object-oriented
designs . Urbana: University of Illinois , 1991.
Technical Report UIUCDCS91-1696.

[9] JOHNSON, R. E. Documenting frameworks using
patterns . In: Object-Oriented Programming
Systems, Languages and Applications Conference
- OOPSLA, 1992, Vancouver.

[10] MARTIN, J. Técnicas estruturadas e CASE. São
Paulo: Makron Books, McGraw-Hill, 1991.

[11] MEUSEL, M. et al. A model for structuring user
documentation of object-oriented frameworks
using patterns and hypertext. In: European
Conference on Object-Oriented Programming -
ECOOP'97, 1997.

[12] PARCPLACE. VisualWorks Cookbook . ParcPlace
Systems Inc.1994.

[13] PREE, W. Design patterns for object oriented
software development. Reading: Addison-Wesley,
1995.

[14] PREE, W. et al. Active guidance of framework
development. Software - Concepts and tools v.16,
n.3. 1995.

[15] RATIONAL. UML notation guide . Rational Software
Corporation, 1997. (www.rational.com,
uml/ad970805_uml11_Notation2.zip).

[16] SHAW, M., GARLAN, D. Software architecture -
perspectives on an emerging discipline. Upper
Saddle River: Prentice Hall, 1996.

[17] SILVA, R. P., PRICE, R. T. O uso de técnicas de
modelagem no projeto de frameworks orientados a
objetos . In: 26th JAIIO / First Argentine
Symposium on Object Orientation (ASOO'97),
Aug. 1997, Buenos Aires.

[18] ______. A busca de generalidade, flexibilidade e
extensibilidade no processo de desenvolvimento de
frameworks orientados a objetos . In: Workshop
Iberoamericano de Engenharia de Requisitos e
Ambientes de Software (IDEAS'98) abr. 1998,
Torres.

[19] SZYPERSKI, C. Component-oriented programming: a
refined variation on object-oriented programming .
In: European Conference on Object-Oriented
Programming - ECOOP, 1996, Linz.

[20] TALIGENT. Leveraging object-oriented frameworks.
Taligent Inc. white paper, 1995.

[21] ZANCAN, J. Nautilus - uma ferramenta de apoio à
navegação sobre estruturas de frameworks. Porto
Alegre: UFRGS/II/CPGCC, 1998. Master thesis in
development.

