Learning to Coordinate Behaviors

Pattie Maes & Rodney A. Brooks

Al-Laboratory
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139
pattie@ai.mit.edu
brooks@ai.mit.edu

Abstract

We describe an algorithm whichllows a behavior-basedobot to learn on the basis of positive and negative feedback
when to activate its behaviors. In accordance whiphilosophy of behavior-basedobots, the algorithm is completely
distributed: each of the behaviors independently tries to find out (i) whethereieisant (ie. whetherit is at all correlated
to positive feedbackand (i) what the conditions are underwhich it becomesreliable (i.e. the conditions underwhich it
maximizes the probability of receiving positive feedbaeid minimizesthe probability of receiving negative feedback).
The algorithm has been tested successfully on an autonomous 6-legged robot which had to léarrobadinateits legs

so as to walk forward.

Situation of the Problem

Since 1985, the MIT Mobile Robot group has
advocated a radically different architecture for
autonomousintelligent agents(Brooks, 1986). Instead
of decomposing the architecture into functional
modules, such as perception, modeling, and planning
(figure 1), the architecture is decomposed into
task-achieving modules, also called behaviors (figure 2).
This novel approach has already demonstrated teelbg
successfuland similar approacheshave become more
widely adopted (cfr. for example (Brooks, 1990)
(Rosenschein & Kaelbling, 1986) (Arkin, 1987)
(Payton, 1986) (Anderson& Donath, 1988) (Yamaushi
1990) (Zhang, 1989)).

£ensors ———s- — actuators

perception
modelling
planning
task execution
motor control

Figure 1: Classical decomposition of an autonomous
robot. ;

One of the main difficulties of this neapproachlies
in the control of behaviors. Somehowit has to be
decided which othe behaviorsshould be active andget
control over the actuatorsat a particular point in time.
Until now, this problem was solved by precompiling the
control flow and priorities among behaviors either by
hand (Brooks, 1986), or automatically, using a
description of the desired behavior selection
(Rosenschein& Kaelbling, 1986). In both casesthe
result is some “switching circuitry” among the
behaviors which is completely fixedt compile time by
the designer.

However, for morecomplicatedrobots prewiring such
a solution becomes either too difficult or impracticas
the number of behaviors goes up, the problencarftrol
and coordination becomes increasingly complex.
Additionally, it is often too difficultfor the programmer
to fully grasp the peculiarities of the task and
environment, so as to be able gpecify what will make
the robot successfully achieve the task (Maes, 1990).

build maps

explore

sensors —————» ———— actuators

wander
avoid objects

Figure 2: Behavior-based decomposition of an autono-
' mous robot.

We therefore started developing an algorithm for
learning the control of behaviors through experierice.
accordancewith the philosophy of behavior-based
robots, the learning algorithm is completely distributed.
There is no central learning component, but insteach
behavior tries tdearn whenit should becomeactive. It
does so by (i) tryingo find out what the conditions are
under which it maximizes positive feedback and
minimizes negative feedback,and (i) measuring how
relevant it is tothe global task (whetherit is correlated
to positive feedback).

We hope thaultimately, this learning algorithm will
allow us to program the behavior ofr@bot by selecting
a number of behaviors from a library of behaviors,
connectingtheseto the actualsensorsandactuatorson
the robot, defining positive and negative feedback
functions, andmaking eachof the behaviorslearn from
experience when it is appropriate for it to become active.

The Learning Task

The learning task we are concernedwith is definedas
follows. Given a robot which has:

« a vector of binary perceptual conditions which are
either being perceived (or “on”) or not beipgrceived
(or “off”) at every instant of time,

* a set of behaviors; where a behavior is a set of
processesdnvolving sensing and action; a behavior
has a precondition list, which is a conjunction of
predicatestesting a specific value (on or off) for a
certain perceptualcondition; a behavior may become
active whenall of its preconditions are fulfilled; an
active behavior executes its processes,

* a positive feedback generator, which is binary and
global, i.e. at every timg the robot(andthereforeall
of the behaviors)either receive positive feedbackor
not,

« a negative feedbackgenerator,which is again binary
and global.

The learning task is to incrementally change the
precondition list of behaviors so that gradually only
those behaviors become active thalfill the following
two constraints:

1. they areelevant,
where a relevant behavior is a behavior that is
positively correlated to positive feedback (i.e.
positive feedbackis more often received when the
behavioris active then whenit is is not active) and
not positively correlatedto negative feedback (i.e.
either not correlated at all or inversely correlated),

2. they arereliable,
where a reliable behavior is definedabehaviorthat
receivesconsistentfeedback(i.e. the probability of
receiving positive (respectively negative) feedback
when the behavior iactive is close enoughto either
1 or 0).

An additional requirement, imposed by our
philosophy, is that we want the algorithm to be
distributed. It should allow individual behaviors to
changetheir precondition list in responseto certain
feedback patterns sihat the global behavior of the set
of behaviors converges towards a situation where
maximal positive feedback and minimal negative
feedback is received. Finally, three additional
constraints are related to the fact thiais algorithm has
to be useful for real robots in unconstrained
environments: (i) the algorithm should be able to deal
with noise, (ii) the algorithm should beomputationally
inexpensive so that itan be usedin real-time, and (iii)
the algorithm should support readaptation,i.e. if the
robot changes(e.g. somecomponentbreaks down), or
its environmentchanges(e.g. the feedbackgenerators

change) the algorithm wilmakethe robot adaptto this
new situation (which possibly involves forgetting or
revising learned knowledge).

We adopted some simplifying, but realistic,
assumptions.One is that, for every behavior, there
exists at least one conjunction of preconditions for
which the probability of positive feedbackas; well as
the probability of negative feedbackwe within some
boundary(which is a parameter of the algorithm) from
either 0 or 1. Another important assumptionis that
feedback is immediate (theren® delayedfeedback)and
doesnot involve action sequencesAnd finally only
conjunctions of conditions (including negationsgnbe
learned.The last section of the papersketcheshow the
algorithm could be extendedto deal with the more
general problent. Nevertheless, even after adopting
these simplifying assumptions, the learning taslstigl
far from trivial. More specifically, the global search
space for a robot with n behaviors, and m binary
perceptualconditions is n * 3", since every behavior
possibly has to learn an “on”, “off” or “don't-car&alue
for every perceptual condition.

The Algorithm

The learning algorithm employely eachbehavioris
the following. Each behavior starts from a “minimal”
precondition list. More specifically, only conditions
that are necessaryin orderto be able to executethe
processes of the behavior are present. Behaviors
maintain data about their performance. A fisst of data
is relatedto whetherthe behavioris relevantor not. A
behavior measures i, j, k and I

|| active | not active
positive feedback j k
no positive feedback Il | m

Where, j is the number of times positive feedback
happened when the behavior was activés the number
of times positive feedbackhappenedvhenthe behavior
was not active, | is the number of times positive
feedbackdid not happenwhenthe behaviorwas active,
andm is the numberof times negative feedbackdid not
happenwhen the behavior was not active. The same
statistics are maintained for negative feedback. The
statistics are initialized at some valNgfor exampleN =
N

10) and “decayedby multiplying them with ¥! every
time they are updated.This ensuresthat impact of past
experienceon the statistics is less than that of more
recent experiences. The correlation (the Pearson
product-moment correlation coefficient) between
positive feedbackand the status of the behavior is

defined as

1 Some additional assumptions being made are, that the robot is

first of all, able to doexperimentsand second,that thesedo not
involve too big riskgthe environmentcan not be too hostile nor
the robot too fragile).

jxm—1I=xk

corr(P, A) =
(P, 4) Vim+)s(m+E)»(G+E)+(G+1))

This gives a statistical measureof the degreeto which
the status of the behavior (active or not active) is
correlated with positive feedback happening or not.
corr(P,A) ranges from1 to 1, wherea value closeto -1
represents a negative correlation (feedbacless likely
when the behavior is active), 0 represents no
correlation and | represents a positive correlation
(feedback is more likely when the behavioragive). In
a similar waycorr(N, A), i.e. the correlation betweethe
status ofthe behavior and negative feedbackis defined.
The relevance of a particular behavior is defined as

corr(P, A) — corr(N, A)

It is usedby the algorithm to determinethe probability
that the behavior will become active (whichrelatedto
the effort which will be putinto doing experimentsin
order to improve the behavior, i.e. making it more
reliable). The relevancef a behavior rangesfrom -2 to
+2. The more relevara behavioris, the more chanceit
has of becoming active. A behavior that is not very
relevant has little chancef becomingactive. So, these
statistics make it possible to determine whihaviors
are the interesting ones (relevant ones). The relevant
behaviors we not necessarily very reliable yet: they
might only receivepositive feedbackin a minority of
the times they are active They also might still cause a lot
of negative feedback to be receivedl that is “known”
is that positive feedbackwill be more likely received
when these behaviors are active, thelmenthey arenot
active (respectively negative feedback being less
likely). Thereliability of a behavior is defined gsvhere
index P stand$or positive feedbackandindex N stands
for negative feedback)

'jr Ip)i mas(Jn In)

min(maz .= > 3
((Jp+1p je+lp in+In'in+in

The reliability of a behaviorrangesfrom 0 to 1. When
the valueis closeto 1, the behavioris consideredvery
reliable (i.e. the feedback is very consistent: the
probability of receiving feedbacls either closeto 0 or
to 1). The reliability of a behavior is used by the
algorithm to decidewhetherthe behavior should try to
improve itself (i.e. learrmore conditions or modify the
existing preconditions).If the behavioris not reliable
enough, i.e. if either the negative feedback is
inconsistent or thepositive feedbackis inconsistentor
both, then one or more additional preconditions are
relevant. In this case, the behavior will pick a new
perceptualcondition to monitor in orderto determine
whether this condition might be related to the
inconsistent feedbatkAn additionalset of statisticsis

Currently there is a complete connectivity between
behaviorsand perceptual conditions. The connectivity will be
decreasedn a subsequenimplementationthroughthe useof a
switchboard. In applications involving a large vector of

relatedto the specific condition being monitored (if
there is one):

|| cond. on | cond. off |

positive feedback n)
no positive feedback P q

Where n is the number of times positive feedback
happened when the behavior was active and the
condition was on, o is the numberof times positive
feedback happened when the behavior was aetivithe
condition was off (not on), p the number of times
positive feedback did not happen when Hehavior was
active and thecondition wason, andq is the numberof

times negative feedback did not happen when the
behavior was active and the condition was off. Agdia
samestatistics are maintainedfor negative feedback. If

the behavior notices a strong correlation betweenthe
condition being monitored anpositive and/ornegative
feedback, it will adopt this condition as a new
precondition. More specifically, if the correlation

nkg—pro
Vi@g+p)*(gto)*(n+o)x(n+p)

corr(P,on) =

becomes close to 1 (respectively -fijen the condition
will be adoptedin the preconditionlist, with a desired
value of“on” (respectively“off’). And similarly, if the
correlation for negative feedbackbecomesclose to 1
(respectively-1), then the condition will be adoptedin
the precondition list, with a desired value of “off”
(respectively “on”). If the values for positive and
negative feedbackareincompatible, the one suggested
by the negative feedback dominates. Fromrtimmenta
new condition has been learned, a behavior only
becomesactive when this condition has the desired
value. If after monitoring a condition for a while, the
behavior doesn't notice any correlation between the
value of the condition and positive or negative feedback,
and the behavior is still not reliable enoughwitl start
monitoring another condition.

After learning a new condition, the behavieill not
necessarily be completeleliable. Theremight still be
other conditions related to the feedback. Until the
behavior is reliable enough,it will try to find extra
preconditiond Notice that the list of conditions being
monitored/evaluatedis circular. When all of the
conditions have been evaluatedand feedbackis still
inconsistent, the behavior will start monitoring
conditions fromthe start of the list again, reevaluating
also those conditions whichave alreadybeentaken up
in the precondition list. A behavior might “forget”
something it learned and reevaluate televanceof that

perceptual conditions, oneould restrict the subsetof conditions
that a particular behavior considers for learning

3 We make the assumption here that for every condition that
has to be learned the correlation to feedback is independently
detectable. This is likely to be true, because we are not dealing
with the problem of learning disjunctions.

condition. This guarantees thitthe environment(e.g.
the feedback)or the robot changes,the behaviors are
able to adapt to the new situation.

The control strategy of the algorithm is as follows.

Behaviors we groupedinto groups which control the
same actuators. At every timestep the selectable
behaviors in every group are determined (those
behaviors which are not yet active and whose
preconditions are fulfilled). For each of these groups,
one or zero behaviors are selected probabilistically
according to (in order of importance)

« the relative relevance of behaviors,

« the reliability of behaviors, and

» the “interestingness” of the current situation for

behaviors,where a situation is more interesting for a
behavior if the condition being monitored by the
behavior appears in the situation with a value ¢oroff)

that has been experienced a lesser number of times.

The selected behaviors are then activated. The
probabillistic nature of the selection process ensures
that there is a balandeetweenbehaviorsbeing selected
(i) because they arsuccessfularerelevantandreliable)
and (ii) becauseof experimentationpurposes(to learn).
Notice that the learning algorithm is biased: if
behaviors are not very relevant (in comparison with
other behaviors) they have very little chance of
becomingactive, which meansthat little effort is put
into making them more reliable (learn new
preconditions).

Finally, there are a number of global parameters which
can be varied to change the algorithm
» how strong a condition hae be correlatedto adoptit
as a new precondition,
» how long a condition is monitored before it is dropped,
» how reliable a behavior should try to become,
» how adaptivethe behavioris (the relative importance
of new data versus data of past experiences).

Theseparameterdave to be tunedto the particular
circumstances of task and robot at hand.

A Robot that Learns to Walk
The Task

The described algorithm is being tested on a
six-leggedrobot, called Genghis(seefigures 4 and 5).
The goal of theexperimentis to make Genghislearnto
walk forward. This task was chosen becauseof its
complexity. The current version consists of 12
behaviors learning about 6 perceptual conditiomkich
corresponds to aearchspaceof 12 * 3° = 8748 nodes.
Another reason for choosing this task was the
availability of a 6-leggedrobot with alot of degreesof
freedom (12 to be precise) (Angle, 1989). The final
reason is that ¢t is known both aboutinsect walking
(Wilson, 1966) (Beer, 1989) and about 6-leggedrobot
walking (Donner, 1987) (Brooks, 1989). The results
reported in this literature demonstratddht the task was
feasible (that the completely distributedwalking which

would result from our learning was indeed robust and
successful). This literature also made it possible to
compare and interpret our results.

The Robot
/w

\w . ‘,,,
X ‘ X
< i \
teg3 £ \legs
leg1 : ¥ tralling wheet
: / (positive feedback)
S~

fouch sensors
{negallve feedback)

Figure 3: Schematic representation of Genghis, its pos-
itive and negative feedback sensors and its distributed
collection of learning behaviors.

Genghis is an autonomous six-legged robot with
twelve servo motors controlling the two degree of
freedomlegs (Angle, 1989). It has 4 on board 8-bit
microprocessors linked by 62.5Kbaudtoken ring. The
total memory usageof the robot is about 32Kbytes.
Genghis has been programmed before to walk over rough
terrain and follow a person passively sensedin the
infrared spectrum (Brooks, 1989ur experimentswere
programmed using the Behavior Language and
Subsumption Compiler (Brooks, 1989b). The entire
learning program runs on board.

The sensorsusedin this experimentare two touch
sensors on the bottom of the robot (dnethe front and
onein the back) and a trailing wheel which measures
forward movement. Negativieedbackis receivedby all
of the behaviors every time at least one of the touch
sensorsfires. Positive feedbackis receivedevery time
the wheel measuresforward movement. We equipped
Genghis with a dozenbehaviors: 6 swing-leg-forward
behaviors (which move a leg that is backward, up,
forward and then down again), 6 swing-leg-backward
behaviors (which move a leg that is forward, up,
backwardandthen down again) (figure 3). Furtherthere
is one horizontal balance behavior, which sums the
horizontal anglesof the legs and sendsa correction to
all of the legs so as to reduce that sum to O (i.e. if one leg
is moved forward, albf the legs are movedbackwardsa
little). The 12 swing behaviorstry to learn what the
conditions are underwhich they should becomeactive.
The vector of binary perceptual conditions has 6
elements, each of which records whether a spelgfids
up (not touching the ground).

Results

In a first experiment only six swing forwateehaviors
plus the balancebehavior were involved. Genghis was
able to learn to activate behaviors safely (avoiding
negative feedback or “falling on its belly”) and
successfully (producing positive feedbackor moving

forward). More specifically, it learnedto adopta tripod
gait, keepingthreelegs on the groundat any moment:
the middle leg on one side atite front andback leg on
the other side. Notice that this task is not trivial:
negative feedbackis not relatedto particular behaviors
(none of the behaviors by itself causes negative
feedback), but rather tthe way they are coordinated(or
uncoordinated). It is therefore a necessity in this
application that actions are explored by the robot in
parallel. Thisextra difficulty is successfullyhandledby
the algorithm: the distributed learning behaviors are
able to learn a task which requires their coordination.

Figure 4: Genghis learning to walk. Initially, thehaviorsdo not
know yet how they are supposedto coordinate (under what
conditionsthey shouldbecomeactive). Sincethe two front leg
“swing forward” behaviors are being activatedtla¢ sametime,
Genghisfalls down and receives negative feedback from the
touch sensor mounted on the front of its belly.

This experimenthas beensuccessfullydemonstratedon
the robot. Using a non-intelligent searchthrough the
condition vector (i.e. every behavior monitors the
conditions in thesameorder, starting with the statusof
the first leg, then the statusof the secondleg, etc) this
takesin the order of 10 minutes. Using an intelligent
search(i.e. every behavior starts by monitoring the
status of legs that are nearby, then the ones that are
further away, and so on), this experiment takes
approximately 1 minute and 45 seconds.

Figure 5: Gradually,a more coherent“walk” emerges.In this
casethe global behaviorconvergestowards a tripod gait: two
groups of three legs we being swung forward alternately.

The reason why thigss so muchfasteris that in this
case, behaviors learn and converge more or less
simultaneously (in the non-intelligent searchseall of
the behaviors have to “wait” for leg 4 and 5 to go

through the whole condition vector before finding
correlated conditions). the preconditions that @a&ned
arethat a swing-forward be havior is only allowed to
become active when the neighboring l€gsy. leg3 and
leg0 in the cas®f legl) aredown. Actually, we noticed
that not all of the behaviors learn that both of the
neighboring legs have to be down. If for exampleleg0
andleg4 learnednot to be active at the sametime as
leg2, then leg2 doesn't have to learn how to avoid
negative feedback, because g0 neighborsaretaking
care of the coordination problem.

In a second experiment, which has been demonstrated
in simulation (it is therefore difficult to compare the
resulting convergence times), six swing-backward
behaviorswere added.The robot now also had to learn
that only certain behaviors are relevant for receiving
positive feedback(in the first experiment, positive
feedbackdidn't play much of a role, becauseevery
behavior was correlatedto positive feedbackunderall
conditions). More specifically, the robot had to learn
that eventhough the swing-leg-backwardbehaviors do
not cause negative feedback to be received (when
coordinated), they should never becomeactive because
they are not correlatedto positive feedback.In our
simulation, the “non-relevant” swing-backward
behaviors slowly die out, because they aot correlated
to positive feedback. Their probability of becoming
active gradually goes down, so that they have less
opportunitiesto find out what the conditions are under
which they can minimize negative feedback.Most of
them “die out” beforethey areable to find the optimal
list of preconditions so as to avoid negative feedback.

The gait that emerges ithe experimentsis the tripod
gait, in which alternatively 2 sets of 3 legs are
simultaneouslyswung forward. As reportedby Wilson
(Wilson, 1966) and confirmed in simulations by Beer
(Beer, 1989), the gait that emergesin a distributed
6-legged walking creature is an emergent propeftthe
time it takes topushaleg backwardsduring the “stance
phase”. One of the experimentg we working on right
now is to try to obtain different gaits as a result of
varying the speed of the stance phase and by
disconnectingone of the legs at run time. The circular
monitoring schemeshouldtake cue that the behaviors
can adapt to this new situation and modify their
preconditionlists accordingly. Another experimentwe
are currently working on is to make Genghislearn to
walk backward,by adding a switch which inverts the
movement feedback.

Related Learning Work

This work is related to Drescher's PhD thesis on
“translating Piagetinto LISP” (Drescher,1989). The
main differences arghat our behaviors(corresponding
to his “schemas”) do not maintain statistics for all of the
perceptualconditions in the environment, but instead
only for one or zero conditions at the time. As a
consequenceour algorithm is less computationally
complex. Drescher'salgorithm would not be usablein
real time. A secondimportant difference is that the

algorithms are concernedwith different learning tasks.
In Drescher's case the taskt@sdiscoverthe regularities
of the world when taking actions (a
condition-action-effectkind of representationof the
world is built up), while in the work presentedcherethe
only things learnedarethe conditions which optimize
positive feedbackand minimize negative feedback.Our
system evolves towards a task-dependgotl-oriented)
solution, while in Drescher's case, generally useful
knowledge is built up.

There is further also some relation to Classifier
Systemsand GeneticAlgorithms (Holland at al., 1986)
(for an application to control problems cfr.
(Greffenstette,1989)). The main differenceis that our
learning techniqueis basically constructivist, while
theirs is selectionist. In our algorithm the right
representationsare built up (in an incremental way)
instead of being selected. An advantageis that our
algorithm is faster because it does not perfortbland”,
unstructuredsearch. It further also uses memory more
efficiently because there is no duplication of
information (all the information about one action is
grouped in one behavior) and because we only
monitor/explore a certain condition when thereniseed
for it (the behavior is not reliable yet).

Finally, the problem studiedhereis relatedto a class
of algorithms calledReinforcementLearning Algorithm
(Sutton, 1984) (Sutton, 1988) (Sutton, 1990)
(Kaelbling, 1990) (also related are (Narendra &
Thathachar,1989) and (Berry & Fristedt, 1985)). The
main differences are that (i) ttedgorithm discussechere

is distributed and parallel: several actions can be taken at

once, and asynchronously(this is even crucial to learn
the tripod gait, for example), (i) this algorithm is
action-oriented, whereas reinforcement learning
algorithms are state-oriented (utility functions are
associated with states, while here relevance and
reliability are associatedwith actions) and (iii) here
feedbackis binary and dual (positive and negative),
whereas in reinforcement learning thglity function is

real valued (both have advantages and disadvanttges:

former's advantage is that positive and negative
goals/feedbaclare treatedseparately,while the latter's

advantages is that there is a more gradual evaluation).

Conclusion and Future Work

We have developed a learniaggorithm which allows
a behavior-basedrobot to learn when its behaviors
should become active using positive and negative
feedback. We tested the algorithm by successfully
teaching a 6-legged robot to walk forward. In futwerk
we plan to test the generalitf the algorithm by doing
more experiments with the samaed different robots for
different tasks and by studying the properties and

limitations of the algorithm with a mathematical model.

We further plan some extensionsto the algorithm,
the first one being the addition of a mechanismto deal
with delayedfeedback(or learning action sequences).
Three possible solutions to this problem will be

investigated: (i) the usage of some Bucket Brigade
Algorithm or Temporal Difference method (Sutton,
1988) (Holland et al., 1986), (ii) the extension of the
perceptual condition vector with conditions
representing the pastctions taken and (iii) composing
actions into macro-actions(so that feedbackis still
immediate for such an action sequence).

Acknowledgements

Grinell Moore did most of the mechanicaldesign and
fabrication of Genghis. Colin Angle did much of the
processordesignand most of the electrical fabrication.
Olaf Bleck built the sensorsproviding positive and
negative feedbaclkndreplacedthe broken servosevery
time our buggy programs “tortured” the robot. Leslie
Kaelbling, Maja Mataric and Paul Viola provided useful
commentson an earlier draft of this paper. Richard
Lathrop and David Clemens helped with the statistics.

Supportedby Siemenswith additional support from
the University Researchitiative underOffice of Naval
Researchcontract NO0014-86-K-0685,andthe Defense
Advanced ResearchProjects Agency under Office of
Naval Researchcontract NO0014-85-K-0124. The first
authoris a researchassociateof the Belgian National
ScienceFoundation.She currently holds a position as
visiting professorat the M.L.T. Atrtificial Intelligence
Laboratory.

Bibliography

Anderson T.L. and DonatM. (1988) A computationalstructure
for enforcing reactive behavior in a mobile robot. In: Mobile
Robots Ill, Proc. of the SPIEonference,Vol. 1007, Cambridge,
MA.

Angle C.M. (1989) Genghis,a six-legged autonomouswalking
robot. Bachelors thesis, Department of EECS, MIT.

Arkin R. (1987) Motor schemabased navigation for a mobile
robot: An approach to programming by behavior. IEEE
Conference on Robotics and Automation '87.

Beer R.D. (1989) Intelligence as Adaptive Behavior: An
Experimentin ComputationalNeuroethology.Technical Report
89-118, Center for Automation and Intellige®ystemsResearch,
Case Western Reserve University.

Berry D.A. and FristedtB. (1986) Bandit problems: Sequential
allocation of experiments. Chapman and Hall, London.

Brooks R.A. (1986) A robust layered control systém a mobile
robot. IEEE Journal of Roboticsand Automation. Volume 2,
Number 1.

Brooks R.A. (1989) A robot thavalks: Emergentbehaviorfrom
a carefully evolved network. Neural Computation, 1(2).

Brooks R.A. (1989b) The Behavior Language; User's Guide.
Implementation Note. Al Laboratory, MIT.

Brooks R.A. (1990) Elephants don't plalgess.In: P. Maes (ed.)
DesigningAutonomousAgents, Bradford MIT Press,in press.
Also: special issue of Journal of Robotics and Autonomous
System, Spring '90, North Holland.

Donner M.D. (1987) Real-timecontrol of walking. Progressin
Computer Science series, Vol. 7, Birkhauser, Boston.

Drescher G.L. (1989) Made-Up Minds: A Constructivist
Approachto Artificial Intelligence, PhD Thesis,Departmeatof
EECS, MIT.

Greffenstette J.J. (1989) Incremental learning of control
strategieswith genetic algorithms. Proceedingsof the Sixth
International Workshop on Machine Learning, Morgan
Kaufmann.

Holland J.H., Holyoak K.J. Nisbett R.E. afithagardP.R. (1986)
Induction: Processesof inference, learning and discovery.
MIT-Press, Cambridge, MA.

Kaelbling L. (1990) Learning in embeddedsystemsPhD thesis,
Stanford Computer Science Department, forthcoming.

Maes P. (1990) Situated agents can have gbal$?. Maes (ed.)
DesigningAutonomousAgents, Bradford. MIT Press,in press.
Also: special issue of Journal of Robotics and Autonomous
Systems, Spring '90, North Holland.

Narendra K, and Thathachar M.A.L. (1989) Learnigtomata;
an Introduction. Prentice Hall, New Jersey.

PaytonD.W. (1986) An architecture for reflexive autonomous
vehicle control.IEEE Roboticsand Automation Conference'86,
San Francisco.

Rosenschein S.J., and Kaelbling L. (1986) The synthesis of digital
machines with provable epistemic, properties, in Joseph Halpern,
ed, Proceedings of the Conference on Theoretical Aspects of
Reasoning About Knowledge, Monterey, CA.

SchlimmerJ.C. (1986) Tracking ConceptDrift, Proceedingsof
the Sixth National Conference on Atrtificial Intelligence '86.

SuttonR. (1984) Temporal credit assignmentn reinforcement
learning. Doctoral dissertation, Department of Computer and
Information Science, University of Massachusetts, Amherst.

Sutton R. (1988) Learning to predict by theethodsof Temporal
Differences. Machine Learning Journal, Vol. 3, 9-44.

SuttonR. (1990) Integratedarchitecturesfor learning, planning

and reacting based on approximating dynamic programming.
Proceedings of the Seventh International Conference on Machine
Learning.

Wilson D.M. (1966) Insect walking. Annual Review of
Entomology, 11: 103-121.

YamaushiB. (1990) IndependentAgents: A Behavior-Based
Architecture for AutonomousRobots. Proceedingsof the Fifth
Annual SUNY Buffalo Graduate Conference on Computer
Science '90, Buffalo, NY.

Zhang, Y. (1989) Transputer-basedBehavioral Module for
Multi-Sensory Robot Control. 1st International Conference in
Artificial Intelligence and CommunicationProcessArchitecture
'89, London, UK.

