
Robotics and Autonomous Systems 38 (2002) 171–181

Mobile robot programming using natural language

Stanislao Lauriaa, Guido Bugmanna,∗, Theocharis Kyriacoua, Ewan Kleinb

a Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
b Institute for Communicating and Collaborative Systems, Division of Informatics, University of Edinburgh,

2 Buccleuch Place, Edinburgh EH8 9LW, UK

Received 30 August 2001; received in revised form 30 September 2001; accepted 30 November 2001

Abstract

How will naive users program domestic robots? This paper describes the design of a practical system that uses natural
language to teach a vision-based robot how to navigate in a miniature town. To enable unconstrained speech the robot is provided
with a set of primitive procedures derived from a corpus of route instructions. When the user refers to a route that is not known
to the robot, the system will learn it by combining primitives as instructed by the user. This paper describes the components
of the Instruction-Based Learning architecture and discusses issues of knowledge representation, the selection of primitives
and the conversion of natural language into robot-understandable procedures. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Intelligent robots must be capable of action in
reasonably complicated domains with some degree of
autonomy. This requires adaptivity to a dynamic envi-
ronment, ability to plan and also speed of execution. In
the case of helper robots, or domestic robots, the abil-
ity to adapt to the special needs of their users is cru-
cial. The problem addressed here is one of how a user
could instruct the robot to perform tasks which man-
ufacturers cannot completely program in advance. In
such case the system would not work at all if it cannot
learn.

Such learning requires interaction and collabora-
tion between the user and the robot. But, as most
users are computer-language-naive, they cannot per-
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sonalise their robot using standard programming
methods. Indirect methods, such as learning by re-
inforcement or learning by imitation, are also not
appropriate for acquiring user-specific knowledge.
For instance, learning by reinforcement is a lengthy
process that is best used for refining low-level mo-
tor controls, but becomes impractical for complex
tasks. Further, both methods do not readily gen-
erate knowledge representations that the user can
interrogate.

Instruction-Based Learning (IBL), which uses un-
constrained speech, has several potential advantages.
Natural language can express rules and sequences of
commands in a very concise way. Natural language
uses symbols and syntactic rules and is well suited to
interact with robot knowledge represented at the sym-
bolic level. It has been shown that learning in robots
is much more effective if it operates at the symbolic
level [2]. This is to be contrasted with the much slower
learning at the level of direct sensory-motor associa-
tions.
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Chunking, sequencing and repair are the aspects,
related to natural language interactions, shaping the
design of IBL systems discussed here. Chunking is a
principle that applies to the communication of infor-
mation. Chunking is meant here as the human char-
acteristic to divide, during explanations, tasks into
sub-tasks so that all information should be presented
in small ‘basic’ units of actions. As shown in [12],
chunking is done spontaneously by humans and we
expect that conversions from natural language instruc-
tion to robot program will be facilitated if the robot
knows a set of primitive procedures corresponding to
the action-chunks natural to the user.

Regarding repair, natural language explanations are
notoriously underspecified, and the robot must be able
to verify the consistency of the acquired program. For
example, in a sequence of instructions given by the
user, the final state of an action may not correspond
to the expected state for the next action. In this case,
the system would not be able to perform its task due
to a missing chunk. For this reason, it is necessary to
define a proper internal knowledge representation al-
lowing the system to detect the missing information.
In this way, the system would be able to make pre-
dictions about future events so that the problem can

Table 1
From speech to action. The various steps involved in the transformation of a user command into the corresponding action are shown here

be solved while the system is still interacting with the
user.

The system not only has to pay attention to user
knowledge and dialogue goals, but it also has to adapt
its dialogue behaviour to current limitations of the
user’s cognitive processing capabilities. Assistance is
then expected from the system, so that the interaction
may naturally flow over the course of several dialogue
turns. Finally, a dialogue manager (DM) should take
care of identifying, and recovering from speech recog-
nition and understanding errors.

This paper describes initial steps and considera-
tions towards a practical realisation of an IBL system.
The experimental environment is that of a miniature
town in which a robot provided with video cam-
era executes route instructions. The robot has a set
of pre-programmed sensory-motor action primitives,
such as “turn left” or “follow the road”. The task of
the user is to teach the robot new routes by combin-
ing action primitives. That task should reveal all the
constraints described above, and enable testing of the
developed methodology.

The closer the correspondence between primitives
and chunks expressing the very basic actions (such as
turn left) is, the less difficult the learning is, since, in
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this way, the number of repair dialogue between the
user and system is kept to the minimum. For this rea-
son, it is necessary to select these primitives that cor-
responds as closely as possible to the action expressed
in the chunks (see Section 4).

A complete IBL requires several steps to transform
a spoken chunk into a robot action (Table 1). First, the
system must be able to convert speech into text. After
that some syntactic parsing and semantic analysis is
carried out. Then at the functional mapping level, the
system must be able to transform the user utterance
into internal symbols that the robot can understand.
By understanding, we mean here that there is a corre-
spondence between symbols and actions or real-world
objects. In this way, the appropriate procedure can be
called to act on the sensors and motors according to
the user intentions.

Section 2 clarifies how symbol-level description
and low-level sensory-motor action procedures are
integrated. The proposed representation of procedural
knowledge is also described. In Section 3 the system
architecture is described.

The problems of considering the appropriate selec-
tion of action primitives is described in Section 4 by
analysing recorded route instructions, and establishing
a list of actions that are natural to users. The results
of this investigation are also discussed. These impli-
cations and other findings are discussed in Section 5,
along with the question of how the proposed system
compares to other approaches. The conclusion follows
in Section 6.

Fig. 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising symbols associated with pre-programmed
(innate) primitive action procedures. In (B) the user has defined a new procedure (open circle) as a combination of symbols. The new
symbol is grounded because it is a construct of grounded symbols. In (C), the user has defined a new procedure that combines a procedure
previously defined by himself with primitive action procedures.

2. The IBL model

2.1. Symbolic learning

The learning process is based on predefined initial
knowledge. This “innate” knowledge consists of prim-
itive sensory-motor procedures with names, such as
turn left, follow the road (the choice of these primi-
tives is explained in Sections 2.3 and 4). The name is
what we call here a “symbol”, and the piece of com-
puter program that controls the execution of the cor-
responding procedure is called the “action” (Fig. 1A).
As each symbol is associated with an action, it is said
to be “grounded”.

When a user explains a new procedure to the robot,
say a route from A to B that involves a number of
primitive actions, the IBL system, on the one hand,
creates a new name for the procedure, and, on the other
hand, writes a new piece of program code that executes
that procedure and links the code with the name (see
Section 2.2 for details). The code refers to primitive
actions by name. It does not duplicate the low-level
code defining these primitives. For that reason, the
new program can be seen as a combination of symbols
rather than a combination of actions (Fig. 1B). As all
new procedures are constructed from grounded prim-
itives, they become also grounded by inheritance and
are “understandable” by the system when referred to
in natural language .

When explaining a new procedure, the user can also
refer to old procedures previously defined by himself.
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In that way the complexity of the robot’s symbolic
knowledge increases (Fig. 1C).

2.2. Knowledge representation

The internal representation needs to support three
functions: (i) formal modelling of natural language
route descriptions; (ii) internal route planning for
determining whether a given route description is
sufficiently specified; and (iii) the generation of pro-
cedures for navigation at execution time. These three
functions require different representations that will be
described in turn.

(i) The utterances of the user are represented using
the Discourse Representation Structure (DRS)
[9]. This is then translated into symbols repre-
senting procedures or is used to initiate internal
functions such as execution of a command or
learning of a series of commands (Section 3).

(ii) When the user describes a route as a sequence
of actions, it is important for the robot to ver-
ify if this sequence is executable. The approach
proposed here associate each procedure with a

Fig. 2. Route instruction verification. (A) For each procedure there is a PREDICTION function that transforms a state vector into its future
value. The function first determines if the input state satisfied the minimal criteria (pre-condition) to enable the procedure to be executed.
An action is executable only if selected elements of the state vector have required values. If this is the case, the next state is predicted and
processed by the PREDICTION function associated with the next procedure in the instruction. Each action modifies certain components of
the state vector, and leaves the other unchanged. (B) If the predicted state produced by one procedure does not allow the next procedure
to be executed, an error handling process is initiated. (Note: the initial state in the text corresponds to the “current state” in the figure.)

triplet SiAij Sj with properties similar to produc-
tions in SOAR [8]. The state Si is the initial state
in which the action Aij can take place. It is the
pre-condition for action Aij . The state Sj is the
final state, resulting of the action of Aij applied
to the initial state (Fig. 2 clarifies the difference
between “initial state” and “pre-condition”). For
a sequence of actions to be realisable, the final
state of one action must be compatible with the
pre-condition of the next one. To enable this
verification, the robot must be able to “imagine”
the consequence of an action. For that purpose, a
PREDICTION function is associated with each
primitive action, and with each newly created
procedure. Fig. 2 illustrates the use of the PRE-
DICTION function during verification of the
consistency of the sequence of instructions from
the user. It should be noted that this process also
helps detecting some of the errors in natural
language processing.

(iii) When a robot executes a command, it executes a
piece of program code that contains the sequence
of primitive procedures to be executed. Thus, a
key part of IBL is the generation of a program
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Fig. 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the physical displacement
of the robot, and a PREDICTION function that calculates the future state of the robot resulting from the action. The ACTION is used
during execution of a command, and the PREDICTION is used for consistency checking during the learning process. (B) An instruction
by the user results in a “new procedure” file being written. In this file, the actions components of the requested primitive procedures are
combined (in the form of function calls) to create the new ACTION function, and the prediction components are combined to create the
new PREDICTION function. This includes an additional procedure-specific pre-condition.

code. This is enabled by the use of a scripting
language (Section 3). This program is called the
ACTION function. Both ACTION and PRE-
DICTION functions are physically located in the
same file that contains all information specific
to a procedure. This is schematised in Fig. 3.

2.3. Sensory-motor primitives

Sensory-motor primitives are defined as action-
chunks that users usually refer to in unconstrained
speech. These could be low-level procedures refer-
ring, e.g., to robot wheel turns, distance vectors, etc.
or they can be high-level procedures like, e.g. “turn
left after the church” or “take the second exit off the
roundabout”. In natural language route instructions,
low-level specification of actions generally does not
appear. Instead, higher-level procedures are men-
tioned which will have to be pre-programmed and thus
become the sensory-motor primitives in this context.

In this project, we have defined primitives as proce-
dures which take parameters. For example the action
“take the second right after the post-office” maps to
the primitiveturn with parameterssecond, right, after

and post-office. It is then a matter of correctly map-
ping user utterances to the right primitives and passing
the right parameters to them.

3. System architecture

The architecture is comprised of several functional
processing modules (Fig. 4). These are divided into
two major units: the Dialogue Manager (DM) and the
Robot Manager (RM).

The DM is a bi-directional interface between the
RM and the user, either converting speech input into
a DRS semantic representation [16], or converting re-
quests from the RM into dialogues with the user. Its
components are described in [9].

The RM deals with the DM’s output and also with
the learning and execution of the commands from the
user.

As shown in Fig. 4 the RM includes two modules:
the Process Manager (PM) and the Procedure Execu-
tion Module (PEM). The PEM is responsible for car-
rying out the commands by the user. It executes pro-
cedures called by the PM module.
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Fig. 4. IBL system’s architecture (see text for description).

The PM transforms the semantic representation pro-
duced by the DM into the internal language of the
robot that includes learning and execution functions.
Mapping symbols from the DRS onto the correspond-
ing entities in the internal representation allows con-
verting user requests into robot procedures with the
right parameters. When successful, the PM starts the
appropriate process either to execute the requested
task by a call to the PEM or alternatively to build
a new user-defined procedure explained by the user.
When such mapping is not successful the RM must
inform the DM, which starts a clarification dialogue
with the user. Such mapping process is supported by
a new specification language that expresses the rela-
tions between the symbols used in the DRS and the
corresponding primitives. Thus to introduce new prim-
itives, it is sufficient for the designer of an IBL system
to change the grammar of the specification language
without having to recompile any of the RM modules.

The RM is written using the Python1 scripting lan-
guage. C language extensions to Python are also used
in case where speed is a constraint (e.g. in vision
routines). An important feature of scripting languages
such as Python is their ability to write their own code.
For instance, a route instruction given by the user will
be saved by the RM as a Python script that then be-
comes part of the procedure set available to the robot
for execution or future learning.

It is important that the RM must listen to the DM
and try to process its output but at the same time it

1 http://www.python.org.

should be able to send messages to the DM. The DM
and the RM are designed as two different processes
based on asynchronous communication protocols.
These processes run concurrently on different proces-
sors. In this way, the system can handle, at the same
time, both the dialogue aspects of an incoming request
from the user (i.e. speech recognition and semantic
analysis) and the execution of a previous user request
(i.e. check if the request is in the system knowl-
edge domain, and execute vision-based navigation
procedures).

Two aspects are essential with this concurrent-
processes approach. The first is to define an ap-
propriate communication protocol between the two
processes. The second is to define an appropriate
architecture for the RM and DM allowing the two
processes to both communicate with each other
while performing other tasks. At present the use of
context-tagged messages within a communication
based on the Open Agent Architecture (OAA) [13] is
evaluated.

Moreover, the system must also dynamically adapt
itself to new user requests or to new internal changes,
by being able to temporarily suspend or permanently
interrupt some previous activity. For example the user
may want to prevent the robot crashing against a wall
and must therefore, be able to stop the robot while
the robot is driving towards the wall. Hence, the im-
portance of a concurrent approach where the system
constantly listens to the user while performing other
tasks and at the same time is able to adjust the task if
necessary.

http://www.python.org
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Fig. 5. Miniature town in which a robot will navigate according
to route instructions given by users.

4. Corpus collection and data analysis

To evaluate the potential and limitations of IBL,
a real-world instructions task is used, that is simple
enough to be realisable, and generic enough to war-
rant conclusions that hold also for other task domains.
A simple route scenario has been selected, using real
speech input and a robot using vision to execute the
instructed route (see Section 4.1 for more details).
The first task in the project is to define the innate ac-
tions and symbols in the route instruction domain. For
this reason, a corpus of route descriptions has been
collected from students and staff at the University of
Plymouth. In Sections 4.2 and 4.3 corpus collection
and data analysis are presented.

4.1. Experimental environment

The environment is a miniature town covering an
area of size 170 cm× 120 cm (Fig. 5). The robot is a
modified RobotFootball robot2 with an 8 cm× 8 cm
base (Fig. 6A). The robot carries a CCD colour TV
camera3 (628(H) × 582 (V) pixels) and a TV VHF
transmitter. Images are processed by a PC that acquires

2 Provided by Merlin Systems
(http://www.merlinsystemscorp.com/).

3 Provided by Allthings Sales and Services
(http://www.allthings.com.au/).

them via with a TV capture card4 (an example of such
image is shown in Fig. 6B). The PC then sends motion
commands by FM radio to the robot. During corpus
collection, the PC is also used to record instructions
given by subjects.

The advantage of a miniature environment is the
ability to build a complex route structure in the lim-
ited space of a laboratory. The design is as realistic as
possible, to enable subjects to use expressions natural
for the outdoor real-size environment. Buildings have
signs taken from real life to indicate given shops or
utilities such as the post-office. However, the environ-
ment lacks some elements such as traffic lights that
may normally be used in route instructions. Hence the
collected corpus is likely to be more restricted than
for outdoor route instructions. The advantage of us-
ing a robot with a remote-brain architecture [7] is that
the robot does not require huge on-board computing
and hence can be small, fitting the dimensions of the
environment.

4.2. Collection of a corpus of route instructions

To collect linguistic and functional data specific to
route learning, 24 subjects were recorded as they gave
route instructions for the robot in the environment.
Subjects were divided into three groups of 8. The first
two groups (A and B) used free flow speech, to provide
a performance baseline. It was assumed that a robot
that can understand these instructions as well as a hu-
man operator would represent the ideal standard. Sub-
jects from group C were induced in producing shorter
utterances by a remote operator taking notes.

The groups A and B were told that the robot was
remote-controlled and that, at a later date, a human op-
erator would use their instructions to drive the robot to
its destination. It was specified that the human opera-
tor would be located in another room, seeing only the
image from the wireless on-board video camera. This
induced subjects to use a camera-centred point of view
relevant for robot procedure primitives and to use ex-
pressions proper for human communication. Subjects
were also told to reuse previously defined routes when-
ever possible, instead of re-explaining them in detail.
Each subject had six routes to describe among which
three were “short” and three were “long”. The long

4 TV Card: Hauppage WinTV GO.

http://www.merlinsystemscorp.com/
http://www.allthings.com.au/
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Fig. 6. (A) Miniature robot (base 8 cm× 8 cm); (B) black/white picture of the view from the on-board color camera.

routes included a short one, so that users could refer to
the short one when describing the long one, instead of
re-describing all segments of the short one. This was
to reveal the type of expressions used by users to link
taught procedures with primitive ones. Each subject
described six routes having the same starting point and
six different destinations. Starting points were changed
after every two subjects. A total of 144 route descrip-
tions were collected. For more details about collection
and analysis of the corpus, see [1].

4.3. Corpus analysis: the functional vocabulary

The aim of the corpus analysis is to twofold. First,
to define the vocabulary used by the users in this ap-
plication, in order to tune the speech recognition sys-
tem for an optimal performance in the task. Secondly,
to establish a list of primitive procedures that users re-
fer to in their instructions. The aim is to pre-program
these procedures so that a direct translation from the
natural language to grounded symbols can take place.
In principle, if the robot does not know a primitive
procedure, the user could teach it. Hereafter, we report
on the functional analysis of the corpus. The reader
interested in the task vocabulary can refer to [1]. The
functional vocabulary is a list of primitive navigation
procedures found in route descriptions.

The initial annotation of instructions in terms or
procedures, as reported here, is somehow subjective,
and influenced by two considerations. (i) The defined

primitives will eventually be produced as C and
Python programs. It was hoped that only a few generic
procedures would have to be written. Therefore, the
corpus has been transcribed into rather general proce-
dures characterised by several parameters (Table 2).
(ii) An important issue is knowledge representation.
According to the SAS representation discussed in
Section 2.2, the executability of primitives can only
be evaluated if their initial and final states are defined.
Subjects, however, rarely specified explicitly the start-
ing point of an action and sometimes did not define
the final state in the same utterance. Nevertheless, it
was assumed that the system would be able to infer
the missing information from the context. Therefore,
procedures without initial or final state were consid-
ered to be complete, and were annotated as such. The
specifications of primitive procedures are likely to
evolve during the project.

This analysis methodology differs slightly from the
one in [4]. In our analysis, there are no statements de-
scribing landmarks, as these are made part of proce-
dures specifications, and consequently there are also
no actions without reference to landmarks. Even when
a subject specified a non-terminated action, such as
“keep going”, it was classified as “MOVE FORWARD
UNTIL”, assuming that a termination point would be
inferred from the next specified action. The list of ac-
tions found in the route descriptions of groups A, B
and C is given in Table 2. It has been shown in [9] that
the number of distinct procedures is increasing with
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Table 2
Primitive navigation procedures found in the route descriptions collected from groups A, B and C. Procedure 3 is used by most subjects
to indicate the last leg of a route, when the goal is in sight

Count Primitive procedures

1 308 MOVE FORWARD UNTIL [(past | over | across)<landmark>] | [(halfway of | endof) street ] | [
after <number><landmark> [left | right]] | [roadbend]

2 183 TAKE THE [<number>] turn [(left | right)] | [(before | after | at)<landmark>]
3 147 <landmark> IS LOCATED [left | right | ahead] | [(at | nextto | left of | right of | in front of | past |

behind | on | opposite | near)<landmark>] | [(halfway of | endof | beginningof | across) street] |
[between<landmark> and<landmark>] | [on<number> turning (left | right)]

4 62 GO (before | after | to)<landmark>
5 49 GO ROUND ROUNDABOUT [left | right] | [(after | before | at)<landmark>]
6 42 TAKE THE <number> EXIT [(before | after | at)<landmark>]
7 12 FOLLOW KNOWN ROUTE TO<landmark> UNTIL (before | after | at)<landmark>
8 4 TAKE ROADBEND (left | right)
9 4 STATIONARY TURN [left | right | around] | [at | from<landmark>]

10 2 CROSS ROAD
11 2 TAKE THE ROAD in front
12 2 GO ROUND<landmark> TO [front | back | leftside | rightside]
13 1 PARK AT <location>
14 1 EXIT [carpark | park]

the number of sampled instructions, but at a rate much
smaller than the number of distinct words. Here, we
discover on average one new procedure for every 38
route instructions, while with words, we discovered in
average one new word for each instruction. New pro-
cedures typically are the least frequent in Table 2.

5. Discussions

Teaching a route to a robot using natural language
is an application of a more general IBL methodol-
ogy. The corpus-based approach described here aims
at providing users with the possibility of using un-
constrained speech, whilst creating an efficient natural
language processing system using a restricted lexicon.

As mentioned in Section 2.3, primitives are quite
complex procedures. Section 4.3 describes how the
primitives where extracted from a corpus recorded
by a group of people, mostly students, from various
fields of study. They spoke freely to the robot using
human-like expressions and therefore, the primitives
extracted from what they said reflect the amount of
“knowledge” naive users would expect the robot to
have. The level of complexity of the primitives there-
fore, depends not only on the nature of the natural
language application but also on its users and their ex-

pectations of the robot. If the subjects of our corpus
were robot engineers, e.g., and were told that the robot
does not know how to move or turn prior to their route
instructions they may have produced a different cor-
pus from which different primitives would have been
extracted.

An important finding in [9] was that functional
vocabulary is not closed. Hence, at some point in
a robot’s life, the user may have to teach it new
primitives. For that purpose, the robot would need
to posses an additional set of low-level primitives,
which correspond to lower level robot actions. Exam-
ples of such primitive learning are found in [5,14].
With our approach, this would require the collection
of a new corpus to determine the necessary additional
primitive procedures. Another solution could lie in an
appropriate dialogue management to suggest a refor-
mulation of the instruction. It is expected that with
the corpus-based method used here, the frequency of
such “repair dialogues” will be minimised. An open
question is the detection of new functions in the user’s
utterance, as the lexicon may not contain the required
vocabulary.

The approach to robot control described may be
seen as an attempt to integrate the good proper-
ties of behaviour-based control and classical AI.
Behaviour-based control is an effective method for
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designing low-level primitives that can cope with
real-world uncertainties, and AI has developed effec-
tive tools for symbol manipulation and reasoning (for
a more detailed discussion about hybrid systems, see,
e.g. [10]). However, the system differs in several ways
from both methods. Here, the corpus defines what
symbols and primitives to use. Consequently, some of
the primitives are rather complex functions, involv-
ing representations of the environment and planning.
These primitives are not always compatible with the
representation-less philosophy of behaviour-based
systems. On the AI side, the system does not use
the full range of reasoning capabilities offered by
systems such as SOAR. There are no other aims in
symbolic processing than verifying the consistency of
instructions, and the construction of new procedure
specifications.

Other previous work on verbal communication with
robots has mainly focused on issuing commands, i.e.
activating pre-programmed procedures using a limited
vocabulary. Only a few research groups have consid-
ered learning, i.e. the stable and reusable acquisition
of new procedural knowledge. Huffman and Laird [6]
used textual input into a simulation of a manipulator
with a discrete state and action space. Crangle and
Suppes [3] used voice input to teach displacements
within a room and mathematical operations, but with
no reusability. In [15] textual input was used to build
a graph representation of spatial knowledge. This sys-
tem was brittle due to place recognition from odo-
metric data and use of IR sensors for reactive motion
control. Knowledge acquisition was concurrent with
navigation, not prior to it. Whereas in [11], the system
could learn new actions through natural language dia-
logues but only while the robot was performing them
(i.e. it could only learn a new route from A to B while
it was actually moving from A to B and dialoguing
with the user).

In the IBL system described here, learning operates
purely at the symbolic level; hence it can be done prior
to performance. The ability to predict future states en-
ables to engage in a verification dialogue before execu-
tion errors occur. If environmental conditions change
such that an instruction is not valid anymore, this can
be detected from the mismatch between the expected
result and the actual one. Learning, however, is not
autonomous. The system requires interaction with a
human user to learn new symbols and their meaning.

This simplifies the design of the robot due to the trans-
fer of part of the cognitive load to the user. Future
experiment will reveal if this approach results in ef-
fective and socially acceptable helper robots.

The design of an IBL system requires, as expected,
specialists in natural language processing and speech
recognition, as well as specialists in artificial vision
and robot control. Here, we found that significant work
was also required in extracting from the semantic rep-
resentation of the user’s utterance the corresponding
robot-executable procedures. It is hoped that this pro-
cess will be simplified in the future by using the new
specification language currently developed as part of
the project.

6. Conclusions

In this paper, it was noted that domestic robots,
which cannot learn from their users will be of limited
use. The IBL method has been presented in the special
case of route instructions.

A key task in an IBL system is the translation from
natural language instructions to robot-understandable
procedures. The corpus-based approach has been pro-
posed here to optimise such translation. It defines a
task domain specific lexicon and set of primitives.
This results in the implementation of a constrained
language and limited task capabilities. However, it
is expected that within a given task domain this will
maximise the use of spontaneous speech and natural
language conversion efficiency. Only 14 primitives
have been, but these are complex robotics procedures,
involving visual search and planning. We believe that
this is required to ensure efficient communication
with a naive user. But the set probably is not closed.
In other words, users at some time are likely to refer
to primitives for which there is not pre-programmed
counterpart in the robot’s repertoire. It is likely that
the dialogue management will play a key role in
handling such situations.
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