

UFSC-Universidade Federal de Santa Catarina CTC-Centro Tecnológico INE-Departamento de Informática e Estatística

INE6105-Introdução à Robótica Prof. Mauro Roisemberg

Arkin. Ronald C.
"Behavior-Based Robotics"

Adaptive Behavior - Capítulo 8

Por:Cíntia Schoeninger

Apresentação:

- Porque os robôs devem aprender?
- Oportunidades de Aprendizado em comportamentos baseados em robótica.
- Reinforcement Learning.
- Aprendizado com Redes Neurais.
- Algoritmos Genéticos.
- Controle de Comportamento Fuzzy.
- Outros Tipos de Aprendizados.

1. Porque os robôs devem aprender?

- Não existe a inteligência como um todo se não há aprendizado. Mas a final o que significa <u>"aprender ou adaptar"</u>?
- Como relacionar Aprendizado com Adaptação?

1. Porque os robôs devem aprender?
A IA tem-se dedicado a determinar um mecanismo pelo qual o sistema robótico possa aprender, entre eles:

- Reinforcement Learning.
- Redes Neurais.
- Aprendizagem Evolucionária.
- Aprendizado por experiências (baseado em memória e baseado em casos).
- Aprendizado Indutivo.
- Aprendizado baseado em Explicações.
- Aprendizado Multi-Estratégias.

2. Oportunidade de aprendizado em Comportamento Baseado em Robótica.

- Aonde que ocorre o aprendizado dentro de um sistema robótico baseado em comportamento?
- Lembrando: Função de mapeamento:

$$\beta(s) \rightarrow r$$

 Posso adicionar um valor gi para modificar a força Global da resposta.

$$ri = gi * \beta i(si)$$

2. Oportunidade de aprendizado em Comportamento Baseado em Robótica.

- Os robôs aprendem pela mais vasta variedade de métodos que podem ser classificados como:
- Numérica ou Simbólica.
- Indutivo e Dedutivo.
- Continuo ou em Lote.

- É um dos métodos mais usados para adaptação de sistemas de controle robótico.
- É numérico, indutivo e contínuo.
- É baseado na conceito de Lei do Efeito da psicologia a qual expressa: aplicando uma recompensa imediatamente após ocorrer uma resposta de incremento essa resposta provavelmente irá acontecer novamente, enquanto que fornecer punições ocorre uma baixa nas respostas.

3. Reinforcement Learning:

 o Reinforcement Learning, (RL), se baseia na idéia de que a tendência de executar uma ação deve ser reforçada se esta ação produzir resultados favoráveis, e deve ser enfraquecida se produzir resultados desfavoráveis.

Formalmente, o modelo de RL consiste de:

- um conjunto discreto de estados do ambiente, S
- um conjunto discreto de ações do agente, A
- um conjunto escalar de sinais de reforço.
 Geralmente valores do intervalo {0, 1}, ou outros valores reais.

3. Reinforcement Learning:

• A função do agente é encontrar uma política de ação PI, mapeando estados com ações, de forma a maximizar alguma medida de reforço a longo prazo. Após escolhida a ação, o agente recebe uma premiação imediata, assim como um novo estado, mas não recebe nenhuma indicação sobre qual a melhor ação para uma meta a longo prazo.

- Critic é um componente que avalia a resposta.
- Não é uma forma de aprendizado supervisionada, pois não há especificado qual é a resposta correta, somente o quão boa a resposta é em uma tarefa específica.

3. Reinforcement Learning:

 Um dos principais problemas associados com o Reinforcement Learning é a tarefa de créditos para a recompensa ou para a punição.

Para um sistema robótico aprender por Reinforcement Learning precisa-se estudar os seguintes temas:

- Qual <u>algoritmo de Reinforcement Learning</u> deve ser escolhido?
- Como aproximar a função de controle mais eficientemente?Devemos utilizar tabelas ou aproximações continuas, discretas e qual o aspecto do controle de estados necessita-se representar?
- Quanto rápido deve-se aprender? Isto é uma dependência forte no domínio do problema no qual o robô opera.

3.1 Reinforcement Learning: Aprendendo a Caminhar.

- O problema de coordenar múltiplas pernas em um sistema robótico não é nada trivial.
- Uma alternativa é usar RL.
- Um exemplo disso seria o Genghis de Maes e Brooks (1990) que possui 6 pernas.
- Algoritmos de Aprendizagem
- Resultados Robóticos

3.2 Reinforcement Learning: Learning to Push

- Mahadevan e Connell(1991) usaram o Q-learning ensinar um comportamento robótico de enpurrar uma caixa. Robô utilizado foi o Obelix.
- Algoritmos de Aprendizagem
- Resultados Robóticos

3.3 Reinforcement Learning: Learning to Shoot

- Pesquisadores da Universidade de Osaka tem aplicado RL baseado em visão para a tarefa de lançar uma bola em um alvo, usando
 Q-Learning como sua metodologia.
- A função utilidade Q(x,a) é definida em termos da imagem visual de entrada obtida de uma câmera montada no robô.

3.3 Reinforcement Learning: Learning to Shoot

- A localização da bola dentro da imagem é quantificada em termos da POSIÇÃO(esquerda, direita) e DISTÂNCIA(longe/perto, médio ou pequeno/distante).
- A localização do objetivo é quantificada em termos das mesmas características relativas a ângulos (esquerda-, direita-, ou orientação a frente).

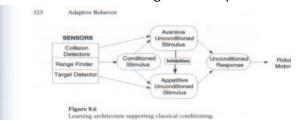
3.3 Reinforcement Learning: Learning to Shoot

- Cada Conjunto de ações das rodas consiste de três comandos: frente, para, atrás.
- O valor de recompensa é 1 caso a bola atinja o objetivo e 0 senão.

Resultados Robóticos

4. Aprendizagem em Redes Neurais.

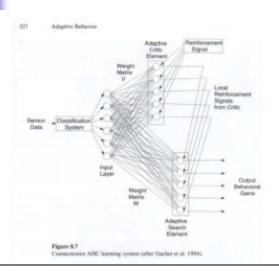
- Hebb (1949) desenvolveu um algoritmo de treinamento para redes neurais.
- Perceptrons tem sido usado para aprendizagem robótica. Aprendizagem por Perceptron usa um método diferente do Aprendizado Hebbian para ajustar pesos.


4.1 Aprendizagem em Redes Neurais.Condicionamento Clássico.

- Estudado por Pavlov (1927), assume que estímulos não condicionados (US) automaticamente geram respostas não condicionadas (UR). – essa relação US-UR gera associação de sobrevivência no agente.
- Pavlov observou que associação poderia ser desenvolvida entre estímulo condicionado (CS), no qual não tem valor intrínseco de sobrevivência e o UR.

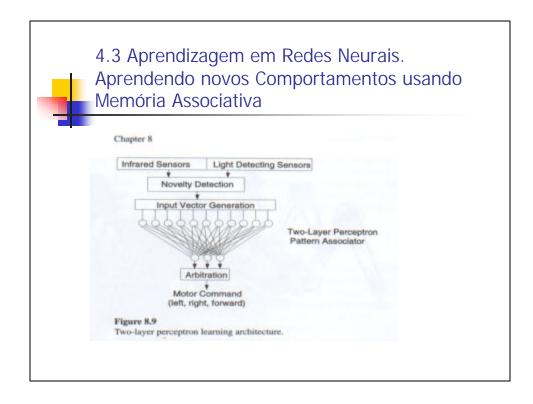
4.1 Aprendizagem em Redes Neurais.Condicionamento Clássico.

 Um grupo de pesquisadores sugeriu um alteração no Condicionamento Clássico. Em vez de ligar a relação entre estímulo resposta, a arquitetura de aprendizagem permite a essa associação se desenvolver ao longo do tempo.



4.1 Aprendizagem em Redes Neurais.Condicionamento Clássico.

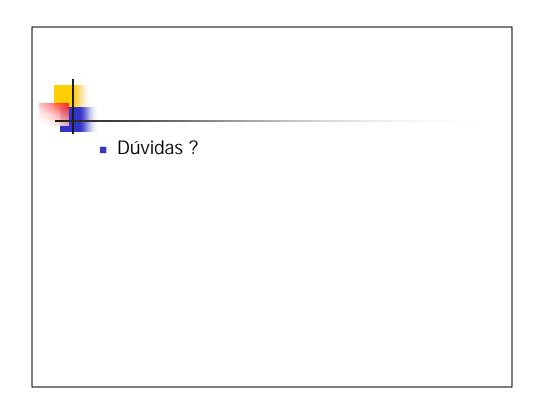
A tarefa do robô é aprender comportamentos úteis associando incentivos de percepções com realimentação do ambiente. Os comportamentos incluem vacância na qual o robô aprende a não bater em coisas, e vacância, combinada com aproximação a um objetivo desejado. Note que o robô a priori não tem conhecimento de como usar os dados para prevenir colisões de acontecer no conjunto US:isso deve ser aprendido pelo CS.


4.2 Aprendizagem em Redes Neurais. Adaptive Heuristic Critic (AHC) Learning

4.3 Aprendizagem em Redes Neurais. Aprendendo novos Comportamentos usando Memória Associativa

 Um grupo de pesquisadores da Universidade de Edinburgh (1993 e 1994) tem estudado maneiras de incrementar o comportamento de robôs (isto é aprender um novo âi) através de conexões de memória associativa.

5. Algoritmos Genéticos.


- O que são Algoritmos Genéticos?
- AG para controle Comportamental de Aprendizado.
- Sistema de Classificação.
- Evolução On-Line.
- Evoluindo forma concorrente com controle.
- Genéticos Híbridos/Aprendizagem Neural e Controle.

- 6. Controle de Comportamentos Fuzzy.
- O que é controle Fuzzy?
- Sistema Robótico baseado em Fuzzy.
- Regras de Aprendizado Fuzzy.

- 7. Outros tipos de Aprendizado.
- Alguns outros métodos de aprendizagem tem sido aplicado ou tem potencial para aplicação em sistemas baseados em comportamento. Segue uma síntese:
- Aprendizado baseado em casos.
- Aprendizado baseado em memória.
- Aprendizagem baseado em Explicações.

