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<<INTRODUCTION BY PATRICK WINSTON>> 
  
[Engineering and scientific education conditions us to expect 
everything, including intelligence, to have a simple, compact 
explanation. Accordingly, when people new to AI ask "What's 
AI all about," they seem to expect an answer that defines AI 
in terms of a few basic mathematical laws. 
  
Today, some researchers who seek a simple, compact 
explanation hope that systems modeled on neural nets or some 
other connectionist idea will quickly overtake more 
traditional systems based on symbol manipulation. Others 
believe that symbol manipulation, with a history that goes 
back millennia, remains the only viable approach. 
  
Minsky subscribes to neither of these extremist views. 
Instead, he argues that Artificial Intelligence must employ 
many approaches. Artificial Intelligence is not like circuit 
theory and electromagnetism. There is nothing wonderfully 
unifying like Kirchhoff's laws are to circuit theory or 
Maxwell's equations are to electromagnetism. Instead of 
looking for a "Right Way", Minsky believes that the time has 
come to build systems out of diverse components, some 
connectionist and some symbolic, each with its own diverse 
justification. 
  
Minsky, whose seminal contributions in Artificial 
Intelligence are established worldwide, is one of the 1990 
recipients of the prestigious Japan Prize---a prize 
recognizing original and outstanding achievements in science 
and technology.  
  

================= 
  
Why is there so much excitement about Neural Networks today, 
and how is this related to research on Artificial 
Intelligence? Much has been said, in the popular press, as 
though these were conflicting activities. This seems 
exceedingly strange to me, because both are parts of the very 
same enterprise. What caused this misconception? 
  



The symbol-oriented community in AI has brought this rift 
upon itself, by supporting models in research that are far 
too rigid and specialized. This focus on well-defined 
problems produced many successful applications, no matter 
that the underlying systems were too inflexible to function 
well outside the domains for which they were designed. (It 
seems to me that this happened because of the researchers' 
excessive concern with logical consistency and provability. 
Ultimately, that would be a proper concern, but not in the 
subject's present state of immaturity.) Thus, contemporary 
symbolic AI systems are now too constrained to be able to 
deal with exceptions to rules, or to exploit fuzzy, 
approximate, or heuristic fragments of knowledge. Partly in 
reaction to this, the connectionist movement initially tried 
to develop more flexible systems, but soon came to be 
imprisoned in its own peculiar ideology---of trying to build 
learning systems endowed with as little architectural 
structure as possible, hoping to create machines that could 
serve all masters equally well. The trouble with this is that 
even a seemingly neutral architecture still embodies an 
implicit assumption about which things are presumed to be 
"similar." 
  
The field called Artificial Intelligence includes many 
different aspirations. Some researchers simply want machines 
to do the various sorts of things that people call 
intelligent. Others hope to understand what enables people to 
do such things. Yet other researchers want to simplify 
programming; why can't we build, once and for all, machines 
that grow and improve themselves by learning from experience? 
Why can't we simply explain what we want, and then let our 
machines do experiments, or read some books, or go to school-
--the sorts of things that people do. Our machines today do 
no such things: Connectionist networks learn a bit, but show 
few signs of becoming "smart;" symbolic systems are shrewd 
from the start, but don't yet show any "common sense." How 
strange that our most advanced systems can compete with human 
specialists, yet be unable to do many things that seem easy 
to children. I suggest that this stems from the nature of 
what we call 'specialties'---for the the very act of naming a 
specialty amounts to celebrating the discovery of some model 
of some aspect of reality, which is useful despite being 
isolated from most of our other concerns. These models have 
rules which reliably work---so long as we stay in that 
special domain. But when we return to the commonsense world, 
we rarely find rules that precisely apply. Instead, we must 
know how to adapt each fragment of `knowledge' to particular 
contexts and circumstances, and we must expect to need more 
and different kinds of knowledge as our concerns broaden. 
Inside such simple "toy" domains, a rule may seem to be quite 
"general," but whenever we broaden those domains, we find 
more and more exceptions---and the early advantage of 
context-free rules then mutates into strong limitations. 
  



AI research must now move from its traditional focus on 
particular schemes. There is no one best way to represent 
knowledge, or to solve problems, and limitations of present-
day machine intelligence stem largely from seeking "unified 
theories," or trying to repair the deficiencies of 
theoretically neat, but conceptually impoverished ideological 
positions. Our purely numerical connectionist networks are 
inherently deficient in abilities to reason well; our purely 
symbolic logical systems are inherently deficient in 
abilities to represent the all-important "heuristic 
connections" between things---the uncertain, approximate, and 
analogical linkages that we need for making new hypotheses. 
The versatility that we need can be found only in larger-
scale architectures that can exploit and manage the 
advantages of several types of representations at the same 
time. Then, each can be used to overcome the deficiencies of 
the others. To do this, each formally neat type of knowledge 
representation or inference must be complemented with some 
"scruffier" kind of machinery that can embody the heuristic 
connections between the knowledge itself and what we hope to 
do with it. 
  

Figure: Symbo-Man and Connecto-Man: conflict between 
theoretical extremes 

  
TOP-DOWN VS. BOTTOM UP 

  
While different workers have diverse goals, all AI 
researchers seek to make machines that solve problems. One 
popular way to pursue that quest is to start with a "top-
down" strategy: begin at the level of commonsense psychology 
and try to imagine processes that could play a certain game, 
solve a certain kind of puzzle, or recognize a certain kind 
of object. If you can't do this in a single step, then keep 
breaking things down into simpler parts until you can 
actually embody them in hardware or software. 
  
This basically reductionist technique is typical of the 
approach to AI called heuristic programming. These techniques 
have developed productively for several decades and, today, 
heuristic programs based on top-down analysis have found many 
successful applications in technical, specialized areas. This 
progress is largely due to the maturation of many techniques 
for representing knowledge. But the same techniques have seen 
less success when applied to "commonsense" problem solving. 
Why can we build robots that compete with highly trained 
workers to assemble intricate machinery in factories---but 
not robots that can help with ordinary housework? It is 
because the conditions in factories are constrained, while 
the objects and activities of everyday life are too endlessly 
varied to be described by precise, logical definitions and 
deductions. Commonsense reality is too disorderly to 
represent in terms of universally valid "axioms." To deal 
with such variety and novelty, we need more flexible styles 



of thought, such as those we see in human commonsense 
reasoning, which is based more on analogies and 
approximations than on precise formal procedures. 
Nonetheless, top-down procedures have important advantages in 
being able to perform efficient, systematic search 
procedures, to manipulate and rearrange the elements of 
complex situations, and to supervise the management of 
intricately interacting subgoals---all functions that seem 
beyond the capabilities of connectionist systems with weak 
architectures. 
  
Short-sighted critics have always complained that progress in 
top-down symbolic AI research is slowing down. In one way 
this is natural: in the early phases of any field, it becomes 
ever harder to make important new advances as we put the 
easier problems behind us---and new workers must face a 
"squared" challenge, because there is so much more to learn. 
But the slowdown of progress in symbolic AI is not just a 
matter of laziness. Those top-down systems are inherently 
poor at solving problems which involve large numbers of 
weaker kinds of interactions, such as occur in many areas of 
pattern recognition and knowledge retrieval. Hence, there has 
been a mounting clamor for finding another, new, more 
flexible approach---and this is one reason for the recent 
popular turn toward connectionist models. 
  
The bottom-up approach goes the opposite way. We begin with 
simpler elements---they might be small computer programs, 
elementary logical principles, or simplified models of what 
brain cells do---and then move upwards in complexity by 
finding ways to interconnect those units to produce larger 
scale phenomena. The currently popular form of this, the 
connectionist neural network approach, developed more 
sporadically than did heuristic programming. In part, this 
was because heuristic programming developed so rapidly in the 
1960s that connectionist networks were swiftly outclassed. 
Also, the networks need computation and memory resources that 
were too prodigious for that period. Now that faster 
computers are available, bottom-up connectionist research has 
shown considerable promise in mimicking some of what we 
admire in the behavior of lower animals, particularly in the 
areas of pattern recognition, automatic optimization, 
clustering, and knowledge retrieval. But their performance 
has been far weaker in the very areas in which symbolic 
systems have successfully mimicked much of what we admire in 
high-level human thinking---for example, in goal-based 
reasoning, parsing, and causal analysis. These weakly 
structured connectionist networks cannot deal with the sorts 
of tree-search explorations, and complex, composite knowledge 
structures required for parsing, recursion, complex scene 
analysis, or other sorts of problems that involve "functional 
parallelism." It is an amusing paradox that connectionists 
frequently boast about the massive parallelism of their 
computations, yet the homogeneity and interconnectedness of 



those structures make them virtually unable to do more than 
one thing at a time- --at least, at levels above that of 
their basic associative functionality. This is essentially 
because they lack the architecture needed to maintain 
adequate short-term memories. 
  
Thus, the present-day systems of both types show serious 
limitations. The top-down systems are handicapped by 
inflexible mechanisms for retrieving knowledge and reasoning 
about it, while the bottom-up systems are crippled by 
inflexible architectures and organizational schemes. Neither 
type of system has been developed so as to be able to exploit 
multiple, diverse varieties of knowledge. 
  
Which approach is best to pursue? That is simply a wrong 
question. Each has virtues and deficiencies, and we need 
integrated systems that can exploit the advantages of both. 
In favor of the top-down side, research in Artificial 
Intelligence has told us a little---but only a little---about 
how to solve problems by using methods that resemble 
reasoning. If we understood more about this, perhaps we could 
more easily work down toward finding out how brain cells do 
such things. In favor of the bottom-up approach, the brain 
sciences have told us something---but again, only a little---
about the workings of brain cells and their connections. More 
research on this might help us discover how the activities of 
brain-cell networks support our higher level processes. But 
right now we're caught in the middle; neither purely 
connectionist nor purely symbolic systems seem able to 
support the sorts of intellectual performances we take for 
granted even in young children. This essay aims at 
understanding why both types of AI systems have developed to 
become so inflexible. I'll argue that the solution lies 
somewhere between these two extremes, and our problem will be 
to find out how to build a suitable bridge. We already have 
plenty of ideas at either extreme. On the connectionist side 
we can extend our efforts to design neural networks that can 
learn various ways to represent knowledge. On the symbolic 
side, we can extend our research on knowledge 
representations, and on designing systems that can 
effectively exploit the knowledge thus represented. But above 
all, at the present time, we need more research on how to 
combine both types of ideas. 
  

REPRESENTATION AND RETRIEVAL: STRUCTURE AND FUNCTION 
  
In order for a machine to learn, it must represent what it 
will learn. The knowledge must be embodied in some form of 
mechanism, data-structure, or other representation. 
Researchers in Artificial Intelligence have devised many ways 
to do this, for example, in the forms of: 
  
Rule-based systems. 
Frames with Default Assignments. 



Predicate Calculus.  
Procedural Representations. 
Associative data bases.  
Procedural representations. 
Semantic Networks.  
Object Oriented Programming. 
Conceptual Dependency.  
Action Scripts. 
Neural Networks  
Natural Language. 

  
In the 1960s and 1970s, students frequently asked, "Which 
kind of representation is best," and I usually replied that 
we'd need more research before answering that. But now I 
would give a different reply: "To solve really hard problems, 
we'll have to use several different representations." This is 
because each particular kind of data-structure has its own 
virtues and deficiencies, and none by itself seems adequate 
for all the different functions involved with what we call 
"common sense." Each have domains of competence and 
efficiency, so that one may work where another fails. 
Furthermore, if we rely only on any single "unified" scheme, 
then we'll have no way to recover from failure. As suggested 
in section 6.9 of The_Society_of_Mind, (hencefirth called 
"SOM"),  
  
"The secret of what something means lies in how it connects 
to other things we know. That's why it's almost always wrong 
to seek the "real meaning" of anything. A thing with just one 
meaning has scarcely any meaning at all." 
  
In order to get around these constraints, we must develop 
systems that combine the expressiveness and procedural 
versatility of symbolic systems with the fuzziness and 
adaptiveness of connectionist representations. Why has there 
been so little work on synthesizing these techniques? I 
suspect that it is because both of these AI communities 
suffer from a common cultural- philosophical disposition: 
they would like to explain intelligence in the image of what 
was successful in Physics---by minimizing the amount and 
variety of its assumptions. But this seems to be a wrong 
ideal; instead, we should take our cue from biology rather 
than from physics. This is because what we call "thinking" 
does not emerge directly from a few fundamental principles of 
wave-function symmetry and exclusion rules. Mental activities 
are not the sorts of unitary or "elementary" phenomenon that 
can be described by a few mathematical operations on logical 
axioms. Instead, the functions performed by the brain are the 
products of the work of thousands of different, specialized 
sub-systems, the intricate product of hundreds of millions of 
years of biological evolution. We cannot hope to understand 
such an organization by emulating the techniques of those 
particle physicists who search for the simplest possible 
unifying conceptions. Constructing a mind is simply a 



different kind of problem---of how to synthesize 
organizational systems that can support a large enough 
diversity of different schemes, yet enable them to work 
together to exploit one another's abilities. 
  
To solve typical real-world commonsense problems, a mind must 
have at least several different kinds of knowledge. First, we 
need to represent goals: what is the problem to be solved. 
Then the system must also possess adequate knowledge about 
the domain or context in which that problem occurs. Finally, 
the system must know what kinds of reasoning are applicable 
in that area. Superimposed on all of this, our systems must 
have management schemes that can operate different 
representations and procedures in parallel, so that when any 
particular method breaks down or gets stuck, the system can 
quickly shift over to analogous operations in other realms 
that may be able to continue the work. For example, when you 
hear a natural language expression like 
  
"Mary gave Jack the book" 
  
this will produce in you, albeit unconsciously, many 
different kinds of thoughts (see SOM 29.2)---that is, mental 
activities in such different realms as: 
  
A visual representation of the scene. 
Postural and Tactile representations of the experience. 
A script-sequence of a typical script-sequence for 
"giving." 
Representation of the participants' roles. 
Representations of their social motivations.  
Default assumptions about Jack, Mary and the book. 
Other assumptions about past and future expectations.  

  
How could a brain possibly coordinate the use of such 
different kinds of processes and representations? Our 
conjecture is that our brains construct and maintain them in 
different brain-agencies. (The corresponding neural 
structures need not, of course, be entirely separate in their 
spatial extents inside the brain.) But it is not enough to 
maintain separate processes inside separate agencies; we also 
need additional mechanisms to enable each of them to support 
the activities of the others---or, at least, to provide 
alternative operations in case of failures. Chapters 19 
through 23 of SOM sketch some ideas about how the 
representations in different agencies could be coordinated. 
These sections introduce the concepts of: 
  
Polyneme---a hypothetical neuronal mechanism for activating 
corresponding slots in different representations.  
  
Microneme---a context-representing mechanism which 
similarly biases all the agencies to activate knowledge 
related to the current situation and goal. 



  
Paranome---yet another mechanism that can apply 
corresponding processes or operations simultaneously to the 
short-term memory agents--- called pronomes---of those 
various agencies.  

  
It is impossible to summarize briefly how all these 
mechanisms are imagined to work, but section 29.3 of SOM 
gives some of the flavor of our theory. What controls those 
paranomes? I suspect that, in human minds, this control comes 
from mutual exploitation between: 
  
A long-range planning agency (whose scripts are influenced 
by various strong goals and ideals; this agency resembles 
the Freudian superego, and is based on early imprinting). 
 
Another supervisory agency capable of using semi-formal 
inferences and natural-language reformulations.  
 
A Freudian-like censorship agency that incorporates massive 
records of previous failures of various sorts. 

RELEVANCE AND SIMILARITY 
  
Problem-solvers must find relevant data. How does the human 
mind retrieve what it needs from among so many millions of 
knowledge items? Different AI systems have attempted to use a 
variety of different methods for this. Some assign keywords, 
attributes, or descriptors to each item and then locate data 
by feature-matching or by using more sophisticated 
associative data-base methods. Others use graph-matching or 
analogical case-based adaptation. Yet others try to find 
relevant information by threading their ways through 
systematic, usually hierarchical classifications of 
knowledge---sometimes called "ontologies". But, to me, all 
such ideas seem deficient because it is not enough to 
classify items of information simply in terms of the features 
or structures of those items themselves. This is because we 
rarely use a representation in an intentional vacuum, but we 
always have goals---and two objects may seem similar for one 
purpose but different for another purpose. Consequently, we 
must also take into account the functional aspects of what we 
know, and therefore we must classify things (and ideas) 
according to what they can be used for, or which goals they 
can help us achieve. Two armchairs of identical shape may 
seem equally comfortable as objects for sitting in, but those 
same chairs may seem very different for other purposes, for 
example, if they differ much in weight, fragility, cost, or 
appearance. The further a feature or difference lies from the 
surface of the chosen representation, the harder it will be 
to respond to, exploit, or adapt to it---and this is why the 
choice of representation is so important. In each functional 
context we need to represent particularly well the heuristic 
connections between each object's internal features and 



relationships, and the possible functions of those objects. 
That is, we must be able to easily relate the structural 
features of each object's representation to how that object 
might behave in regard to achieving our present goals. This 
is further discussed in sections 12.4, 12.5, 12.12, and 12.13 
of SOM. 
  

Fig: ARM-CHAIR 
  
New problems, by definition, are different from those we have 
already encountered; so we cannot always depend on using 
records of past experience--and yet, to do better than random 
search, we have to exploit what was learned from the past, no 
matter that it may not perfectly match. Which records should 
we retrieve as likely to be the most relevant?  
  
Explanations of "relevance," in traditional theories, abound 
with synonyms for nearness and similarity. If a certain item 
gives bad results, it makes sense to try something different. 
But when something we try turns out to be good, then a 
similar one may be better. We see this idea in myriad forms, 
and whenever we solve problems we find ourselves employing 
metrical metaphors: we're "getting close" or "on the right 
track;" using words that express proximity. But what do we 
mean by "close" or "near." Decades of research on different 
forms of that question have produced theories and procedures 
for use in signal processing, pattern recognition, induction, 
classification, clustering, generalization, etc., and each of 
these methods has been found useful for certain applications, 
but ineffective for others. Recent connectionist research has 
considerably enlarged our resources in these areas. Each 
method has its advocates---but I contend that it is now time 
to move to another stage of research. For, although each such 
concept or method may have merit in certain domains, none of 
them seem powerful enough alone to make our machines more 
intelligent. It is time to stop arguing over which type of 
pattern classification technique is best--- because that 
depends on our context and goal. Instead, we should work at a 
higher level of organization, discover how to build 
managerial systems to exploit the different virtues, and to 
evade the different limitations, of each of these ways of 
comparing things. Different types of problems, and 
representations, may require different concepts of 
similarity. Within each realm of discourse, some 
representation will make certain problems and concepts appear 
to be more closely related than others. To make matters 
worse, even within the same problem domain, we may need 
different notions of similarity for: 
  
Descriptions of problems and goals.  
Descriptions of knowledge about the subject domain.  
Descriptions of procedures to be used.  

  



For small domains, we can try to apply all of our reasoning 
methods to all of our knowledge, and test for satisfactory 
solutions. But this is usually impractical, because the 
search becomes too huge---in both symbolic and connectionist 
systems. To constrain the extent of mindless search, we must 
incorporate additional kinds of knowledge---embodying 
expertise about problem-solving itself and, particularly, 
about managing the resources that may be available. The 
spatial metaphor helps us think about such issues by 
providing us with a superficial unification: if we envision 
problem-solving as "searching for solutions" in a space-like 
realm, then it is tempting to analogize between the ideas of 
similarity and nearness: to think about similar things as 
being in some sense near or close to one another. 
  

Fig: FOOT-WHEEL: functional similarity 
  
But "near" in what sense? To a mathematician, the most 
obvious idea would be to imagine the objects under comparison 
to be like points in some abstract space; then each 
representation of that space would induce (or reflect) some 
sort of topology-like structure or relationship among the 
possible objects being represented. Thus, the languages of 
many sciences, not merely those of Artificial Intelligence 
and of psychology, are replete with attempts to portray 
families of concepts in terms of various sorts of spaces 
equipped with various measures of similarity. If, for 
example, you represent things in terms of (allegedly 
independent) properties then it seems natural to try to 
assign magnitudes to each, and then to sum the squares of 
their differences---in effect, representing those objects as 
vectors in Euclidean space. This further encourages us to 
formulate the function of knowledge in terms of helping us to 
decide "which way to go." This is often usefully translated 
into the popular metaphor of "hill-climbing" because, if we 
can impose on that space a suitable metrical structure, we 
may be able to devise iterative ways to find solutions by 
analogy with the method of hill- climbing or gradient ascent-
--that is, when any experiment seems more or less successful 
than another, then we exploit that metrical structure to help 
us make the next move in the proper "direction." (Later, we 
shall emphasize that having a sense of direction entails a 
little more than a sense of proximity; it is not enough just 
to know metrical distances, we must also respond to other 
kinds of heuristic differences---and these may be difficult 
to detect.) 
  

Fig: HILL-CLIMBING - "Heureka!" 
  
Whenever we design or select a particular representation, 
that particular choice will bias our dispositions about which 
objects to consider more or less similar to us (or, to the 
programs we apply to them) and thus will affect how we apply 
our knowledge to achieve goals and solve problems. Once we 



understand the effects of such commitments, we will be better 
prepared to select and modify those representations to 
produce more heuristically useful distinctions and 
confusions. So, let us now examine, from this point of view, 
some of the representations that have become popular in the 
field of Artificial Intelligence.  
  

HEURISTIC CONNECTIONS OF PURE LOGIC 
  
Why have logic-based formalisms been so widely used in AI 
research? I see two motives for selecting this type of 
representation. One virtue of logic is clarity, its lack of 
ambiguity. Another advantage is the pre-existence of many 
technical mathematical theories about logic. But logic also 
has its disadvantages. Logical generalizations apply only to 
their literal lexical instances, and logical implications 
apply only to expressions that precisely instantiate their 
antecedent conditions. No exceptions at all are allowed, no 
matter how "closely" they match. This permits you to use no 
near misses, no suggestive clues, no compromises, no 
analogies, and no metaphors. To shackle yourself so 
inflexibly is to shoot your own mind in the foot---if you 
know what I mean. 
  
These limitations of logic begin at the very foundation, with 
the basic connectives and quantifiers. The trouble is that 
worldly statements of the form, "For all $X$, $P(X)$," are 
never beyond suspicion. To be sure, such a statement can 
indeed be universally valid inside a mathematical realm--- 
but this is because such realms, themselves, are based on 
expressions of those very kinds. The use of such formalisms 
in AI have led most researchers to seek "truth" and universal 
"validity" to the virtual exclusion of "practical" or 
"interesting"---as though nothing would do except certainty. 
Now, that is acceptable in mathematics (wherein we ourselves 
define the worlds in which we solve problems) but, when it 
comes to reality, there is little advantage in demanding 
inferential perfection, when there is no guarantee even that 
our assumptions will always be correct. Logic theorists seem 
to have forgotten that in actual life, any expression like 
"For all X$, P(X)"--that is, in any world which we find, but 
don't make---must be seen as only a convenient abbreviation 
for something more like this: 
  
"For any thing X being considered in the current context, the 
assertion P(X) is likely to be useful for achieving goals 
like G, provided that we apply in conjunction with certain 
heuristically appropriate inference methods." 
  
In other words, we cannot ask our problem-solving systems to 
be absolutely perfect, or even consistent; we can only hope 
that they will grow increasingly better than blind search at 
generating, justifying, supporting, rejecting, modifying, and 
developing "evidence" for new hypotheses. 



  
Fig: EGG - Default Assumption 

  
It has become particularly popular, in AI logic programming, 
to restrict the representation to expressions written in the 
first order predicate calculus. This practice, which is so 
pervasive that most students engaged in it don't even know 
what "first order" means here, facilitates the use of certain 
types of inference, but at a very high price: that the 
predicates of such expressions are prohibited from referring 
in certain ways to one another. This prevents the 
representation of meta-knowledge, rendering those systems 
incapable, for example, of describing what the knowledge that 
they contain can be used for. In effect, it precludes the use 
of functional descriptions. We need to develop systems for 
logic that can reason about their own knowledge, and make 
heuristic adaptations and interpretations of it, by using 
knowledge about that knowledge---but these limitations of 
expressiveness make logic unsuitable for such purposes. 
  
Furthermore, it must be obvious that in order to apply our 
knowledge to commonsense problems, we need to be able to 
recognize which expressions are similar, in whatever 
heuristic sense may be appropriate. But this, too, seems 
technically impractical, at least for the most commonly used 
logical formalisms---namely, expressions in which absolute 
quantifiers range over string-like normal forms. For example, 
in order to use the popular method of "resolution theorem-
proving," one usually ends up using expressions that consist 
of logical disjunctions of separately almost meaningless 
conjunctions. Consequently, the "natural topology" of any 
such representation will almost surely be heuristically 
irrelevant to any real-life problem space. Consider how 
dissimilar these three expressions seem, when written in 
conjunctive form: 
  

AvBvCvD ABvACvADvBCvBDvCD ABCvABDvACDvBCD 
  
The simplest way to assess the distances or differences 
between expressions is to compare such superficial factors as 
the numbers of terms or sub-expressions they have in common. 
Any such assessment would seem meaningless for expressions 
like those above. In most situations, however, it would 
almost surely be more useful to recognize that these 
expressions are symmetric in their arguments, and hence will 
clearly seem more similar if we re-represent them, for 
example, by using S(n) to mean "n of S's arguments have 
truth-value T." Then those same expressions can be written in 
the simpler forms S(1), S(2), S(3), 
  
Even in mathematics itself, we consider it a great discovery 
to find a new representation for which the most natural- 
seeming heuristic connection can be recognized as close to 
the representation's surface structure. But this is too much 



to expect in general, so it is usually necessary to gauge the 
similarity of two expressions by using more complex 
assessments based, for example, on the number of set- 
inclusion levels between them, or on the number of available 
operations required to transform one into the other, or on 
the basis of the partial ordering suggested by their lattice 
of common generalizations and instances. This means that 
making good similarity judgments may itself require the use 
of other heuristic kinds of knowledge, until eventually---
that is, when our problems grow hard enough---we are forced 
to resort to techniques that exploit knowledge that is not so 
transparently expressed in any such "mathematically elegant" 
formulation. 
  
Indeed, we can think about much of Artificial Intelligence 
research in terms of a tension between solving problems by 
searching for solutions inside a compact and well-defined 
problem space (which is feasible only for prototypes)---
versus using external systems (that exploit larger amounts of 
heuristic knowledge) to reduce the complexity of that inner 
search. Compound systems of that sort need retrieval 
machinery that can select and extract knowledge which is 
"relevant" to the problem at hand. Although it is not 
especially hard to write such programs, it cannot be done in 
"first order" systems. In my view, this can best be achieved 
in systems that allow us to use, simultaneously, both object-
oriented structure-based descriptions and goal-oriented 
functional descriptions. 
  
How can we make Formal Logic more expressive, given that each 
fundamental quantifier and connective is defined so narrowly 
from the start. This could well be beyond repair, and the 
most satisfactory replacement might be some sort of object-
oriented frame-based language. After all, once we leave the 
domain of abstract mathematics, and free ourselves from those 
rigid notations, we can see that some virtues of logic-like 
reasoning may still remain---for example, in the sorts of 
deductive chaining we used, and the kinds of substitution 
procedures we applied to those expressions. The spirit of 
some of these formal techniques can then be approximated by 
other, less formal techniques of making chains, like those 
suggested in chapter 18 of SOM. For example, the mechanisms 
of defaults and frame-arrays could be used to approximate the 
formal effects of instantiating generalizations. When we use 
heuristic chaining, of course, we cannot assume absolute 
validity of the result, and so, after each reasoning step, we 
may have to look for more evidence. If we notice exceptions 
and disparities then, later, we must return again to each, or 
else remember them as assumptions or problems to be justified 
or settled at some later time---all things that humans so 
often do. 
  

HEURISTIC CONNECTIONS OF RULE-BASED SYSTEMS 
  



While logical representations have been used in popular 
research, rule- based representations have been more 
successful in applications. In these systems, each fragment 
of knowledge is represented by an IF-THEN rule so that, 
whenever a description of the current problem-situation 
precisely matches the rule's antecedent IF condition, the 
system performs the action described by that rule's THEN 
consequent. What if no antecedent condition applies? Simple: 
the programmer adds another rule. It is this seeming 
modularity that made rule-based systems so attractive. You 
don't have to write complicated programs. Instead, whenever 
the system fails to perform, or does something wrong, you 
simply add another rule. This usually works quite well at 
first---but whenever we try to move beyond the realm of "toy" 
problems, and start to accumulate more and more rules, we 
usually get into trouble because each added rule is 
increasingly likely to interact in unexpected ways with the 
others. Then what should we ask the program to do, when no 
antecedent fits perfectly? We can equip the program to select 
the rule whose antecedent most closely describes the 
situation---and, again, we're back to "similar." To make any 
real-world application program resourceful, we must 
supplement its formal reasoning facilities with matching 
facilities that are heuristically appropriate for the problem 
domain it is working in. 
  
What if several rules match equally well? Of course, we could 
choose the first on the list, or choose one at random, or use 
some other superficial scheme---but why be so unimaginative? 
In SOM, we try to regard conflicts as opportunities rather 
than obstacles---an opening that we can use to exploit other 
kinds of knowledge. For example, section 3.2 of SOM suggests 
invoking a "Principle of Non-Compromise", to discard sets of 
rules with conflicting antecedents or consequents. The 
general idea is that whenever two fragments of knowledge 
disagree, it may be better to ignore them both, and refer to 
some other, independent agency. In effect this is a 
managerial approach in which one agency can engage some other 
body of expertise to help decide which rules to apply. For 
example, one might turn to case-based reasoning, to ask which 
method worked best in similar previous situations. 
  
Yet another approach would be to engage a mechanism for 
inventing a new rule, by trying to combine elements of those 
rules that almost fit already. Section 8.2 of SOM suggests 
using K-line representations for this purpose. To do this, we 
must be immersed in a society-of-agents framework in which 
each response to a situation involves activating not one, but 
a variety of interacting processes. In such a system, all the 
agents activated by several rules can then be left to 
interact, if only momentarily, both with one another and with 
the input signals, so as to make a useful self-selection 
about which of them should remain active. This could be done 
by combining certain present-day connectionist concepts with 



other ideas about K-line mechanisms. But we cannot do this 
until we learn how to design network architectures that can 
support new forms of internal management and external 
supervision of developmental staging. 
  
In any case, present-day rule-based systems are still are too 
limited in ability to express "typical" knowledge. They need 
better default machinery. They deal with exceptions too 
passively; they need censors. They need better "ring-closing" 
mechanisms for retrieving knowledge (see 19.10 of SOM). Above 
all, we need better ways to connect them with other kinds of 
representations, so that we can use them in problem-solving 
organizations that can exploit other kinds of models and 
search procedures. 
  

CONNECTIONIST NETWORKS  
  
Up to this point, we have considered ways to overcome the 
deficiencies of symbolic systems by augmenting them with 
connectionist machinery. But this kind of research should go 
both ways. Connectionist systems have equally crippling 
limitations, which might be ameliorated by augmentation with 
the sorts of architectures developed for symbolic 
applications. Perhaps such extensions and synthesis will 
recapitulate some aspects of how the primate brain grew over 
millions of years, by evolving symbolic systems to supervise 
its primitive connectionist learning mechanisms. 
  

Fig: WEIGHT-SCALE - "Weighty Decisions" 
  
What do we mean by "connectionist"? The usage of that term is 
still evolving rapidly, but here it refers to attempts to 
embody knowledge by assigning numerical conductivities or 
weights to the connections inside a network of nodes. The 
most common form of such a node is made by combing an analog, 
nearly linear part that "adds up evidence" with a nonlinear, 
nearly digital part that "makes a decision" based on a 
threshold. The most popular such networks today, take the 
form of multilayer perceptrons---that is, of sequences of 
layers of such nodes, each sending signals to the next. More 
complex arrangements are also under study; these can support 
cyclic internal activities, hence they are potentially more 
versatile, but harder to understand. What makes such 
architectures attractive? Mainly, that they appear to be so 
simple and homogeneous. At least on the surface, they can be 
seen as ways to represent knowledge without any complex 
syntax. The entire configuration-state of such a net can be 
described as nothing more than a simple vector---and the 
network's input-output characteristics as nothing more than a 
map from one vector space into another. This makes it easy to 
reformulate pattern-recognition and learning problems in 
simple terms---for example, finding the "best" such mapping, 
etc. Seen in this way, the subject presents a pleasing 
mathematical simplicity. It is often not mentioned that we 



still possess little theoretical understanding of the 
computational complexity of finding such mappings---that is, 
of how to discover good values for the connection- weights. 
Most current publications still merely exhibit successful 
small-scale examples without probing either into assessing 
the computational difficulty of those problems themselves, or 
of scaling those results to similar problems of larger size. 
  
However, we now know of quite a few situations in which even 
such simple systems have been made to compute (and, more 
important, to learn to compute) interesting functions, 
particularly in such domains as clustering, classification, 
and pattern recognition. In some instances, this has occurred 
without any external supervision; furthermore, some of these 
systems have also performed acceptably in the presence of 
incomplete or noisy inputs---and thus correctly recognized 
patterns that were novel or incomplete. This means that the 
architectures of those systems must indeed have embodied 
heuristic connectivities that were appropriate for those 
particular problem-domains. In such situations, these 
networks can be useful for the kind of reconstruction-
retrieval operations we call "Ring- Closing." 
  
But connectionist networks have limitations as well. The next 
few sections discuss some of these limitations, along with 
suggestions on how to overcome them by embedding these 
networks in more advanced architectural schemes. 
  

FRAGMENTATION, AND "THE PARALLEL PARADOX" 
  
In our Epilogue to [Perceptrons], Papert and I argued as 
follows:  
  
"It is often argued that the use of distributed 
representations enables a system to exploit the advantages 
of parallel processing. But what are the advantages of 
parallel processing? Suppose that a certain task involves 
two unrelated parts. To deal with both concurrently, we 
would have to maintain their representations in two 
decoupled agencies, both active at the same time. Then, 
should either of those agencies become involved with two or 
more sub-tasks, we'd have to deal with each of them with no 
more than a quarter of the available resources! If that 
proceeded on and on, the system would become so fragmented 
that each job would end up with virtually no resources 
assigned to it. In this regard, distribution may oppose 
parallelism: the more distributed a system is---that is, 
the more intimately its parts interact---the fewer 
different things it can do at the same time. On the other 
side, the more we do separately in parallel, the less 
machinery can be assigned to each element of what we do, 
and that ultimately leads to increasing fragmentation and 
incompetence. This is not to say that distributed 
representations and parallel processing are always 



incompatible. When we simultaneously activate two 
distributed representations in the same network, they will 
be forced to interact. In favorable circumstances, those 
interactions can lead to useful parallel computations, such 
as the satisfaction of simultaneous constraints. But that 
will not happen in general; it will occur only when the 
representations happen to mesh in suitably fortunate ways. 
Such problems will be especially serious when we try to 
train distributed systems to deal with problems that 
require any sort of structural analysis in which the system 
must represent relationships between substructures of 
related types---that is, problems that are likely to demand 
the same structural resources." (See also section 15.11 of 
SOM.) 

  
For these reasons, it will always be hard for a homogeneous 
network to perform parallel "high-level" computations---
unless we can arrange for it to become divided into 
effectively disconnected parts. There is no general remedy 
for this---and the problem is no special peculiarity of 
connectionist hardware; computers have similar limitations, 
and the only answer is providing more hardware. More 
generally, it seems obvious that without adequate memory-
buffering, homogeneous networks must remain incapable of 
recursion, so long as successive "function calls" have to use 
the same hardware. This is because, without such facilities, 
either the different calls will side-effect one another, or 
some of them must be erased, leaving the system unable to 
execute proper returns or continuations. Again, this may be 
easily fixed by providing enough short-term memory, for 
example, in the form of a stack of temporary K-lines. 
  

LIMITATIONS OF SPECIALIZATION AND EFFICIENCY 
  
Each connectionist net, once trained, can do only what it has 
learned to do. To make it do something else---for example, to 
compute a different measure of similarity, or to recognize a 
different class of patterns---would, in general, require a 
complete change in the matrix of connection coefficients. 
Usually, we can change the functionality of a computer much 
more easily (at least, when the desired functions can each be 
computed by compact algorithms); this is because a computer's 
"memory cells" are so much more interchangeable. It is 
curious how even technically well-informed people tend to 
forget how computationally massive a fully connected neural 
network is. It is instructive to compare this with the few 
hundred rules that drive a typically successful commercial 
rule-based Expert System. 
  
How connected need networks be? There are several points in 
SOM that suggest that commonsense reasoning systems may not 
need to increase in the density of physical connectivity as 
fast as they increase the complexity and scope of their 
performances. Chapter 6 argues that knowledge systems must 



evolve into clumps of specialized agencies, rather than 
homogeneous networks, because they develop different types of 
internal representations. When this happens, it will become 
neither feasible nor practical for any of those agencies to 
communicate directly with the interior of others. 
Furthermore, there will be a tendency for newly acquired 
skills to develop from the relatively few that are already 
well developed and this, again, will bias the largest scale 
connections toward evolving into recursively clumped, rather 
than uniformly connected arrangements. A different tendency 
to limit connectivities is discussed in section 20.8, which 
proposes a sparse connection-scheme that can simulate, in 
real time, the behavior of fully connected nets---in which 
only a small proportion of agents are simultaneously active. 
This method, based on a half-century old idea of Calvin 
Mooers, allows many intermittently active agents to share the 
same relatively narrow, common connection bus. This might 
seem, at first, a mere economy, but section 20.9 suggests 
that this technique could also induce a more heuristically 
useful tendency, if the separate signals on that bus were to 
represent meaningful symbols. Finally, chapter 17 suggests 
other developmental reasons why minds may be virtually forced 
to grow in relatively discrete stages rather than as 
homogeneous networks. Our progress in this area may parallel 
our progress in understanding the stages we see in the growth 
of every child's thought. 
  
Fig: MESSY->NEAT NETS: Homostructural vs. Heterostructural 

  
If our minds are assembled of agencies with so little inter-
communication, how can those parts cooperate? What keeps them 
working on related aspects of the same problem? The first 
answer proposed in SOM is that it is less important for 
agencies to co-operate than to exploit one another. This is 
because those agencies tend to become specialized, developing 
their own internal languages and representations. 
Consequently, they cannot understand each other's internal 
operations very well---and each must learn to learn to 
exploit some of the others for the effects that those others 
produce---without knowing in any detail how those other 
effects are produced. For the same kind of reason, there must 
be other agencies to manage all those specialists, to keep 
the system from too much fruitless conflict for access to 
limited resources. Those management agencies themselves 
cannot deal directly with all the small interior details of 
what happens inside their subordinates. They must work, 
instead, with summaries of what those subordinates seem to 
do. This too, suggests that there must be constraints on 
internal connectivity: too much detailed information would 
overwhelm those managers. And this applies recursively to the 
insides of every large agency. So we argue, in chapter~8 of 
SOM, that relatively few direct connections are needed except 
between adjacent "level bands." 
  



All this suggests (but does not prove) that large commonsense 
reasoning systems will not need to be "fully connected." 
Instead, the system could consist of localized clumps of 
expertise. At the lowest levels these would have to be very 
densely connected, in order to support the sorts of 
associativity required to learn low-level pattern detecting 
agents. But as we ascend to higher levels, the individual 
signals must become increasingly abstract and significant 
and, accordingly, the density of connection paths between 
agencies can become increasingly (but only relatively) 
smaller. Eventually, we should be able to build a sound 
technical theory about the connection densities required for 
commonsense thinking, but I don't think that we have the 
right foundations as yet. The problem is that contemporary 
theories of computational complexity are still based too much 
on worst-case analyses, or on coarse statistical assumptions-
--neither of which suitably represents realistic heuristic 
conditions. The worst-case theories unduly emphasize the 
intractable versions of problems which, in their usual forms, 
present less practical difficulty. The statistical theories 
tend to uniformly weight all instances, for lack of 
systematic ways to emphasize the types of situations of most 
practical interest. But the AI systems of the future, like 
their human counterparts, will normally prefer to satisfy 
rather than optimize---and we don't yet have theories that 
can realistically portray those mundane sorts of 
requirements. 
  

LIMITATIONS OF CONTEXT, SEGMENTATION, AND PARSING 
  
When we see seemingly successful demonstrations of machine 
learning, in carefully prepared test situations, we must be 
careful about how we draw more general conclusions. This is 
because there is a large step between the abilities to 
recognize objects or patterns (1) when they are isolated and 
(2) when they appear as components of more complex scenes. In 
section 6.6 of [Perceptrons] we see that we must be prepared 
to find that even after training a certain network to 
recognize a certain type of pattern, we may find it unable to 
recognize that same pattern when embedded in a more 
complicated context or environment. (Some reviewers have 
objected that our proofs of this applied only to simple 
three-layer networks; however, most of those theorems are 
quite general, as those critics might see, if they'd take the 
time to extend those proofs.) The problem is that it is 
usually easy to make isolated recognitions by detecting the 
presence of various features, and then computing weighted 
conjunctions of them. Clearly, this is easy to do, even in 
three-layer acyclic nets. But in compound scenes, this will 
not work unless the separate features of all the distinct 
objects are somehow properly assigned to those correct 
"objects." For the same kind of reason, we cannot expect 
neural networks to be generally able to parse the tree-like 



or embedded structures found in the phrase structure of 
natural-language. 
  

Fig: Robot dog & Dinosaur - Recognition in Context 
  
How could we augment connectionist networks to make them able 
to do such things as to analyze complex visual scenes, or to 
extract and assign the referents of linguistic expressions to 
the appropriate contents of short term memories? This will 
surely need additional architecture to represent that 
structural analysis of, for example, a visual scene into 
objects and their relationships, by protecting each mid-level 
recognizer from seeing inputs derived from other objects, 
perhaps by arranging for the object-recognizing agents to 
compete to assign each feature to itself, while denying it to 
competitors. This has been done successfully in symbolic 
systems, and parts have been done in connectionist systems 
(for example, by Waltz and Pollack) but there remain many 
conceptual missing links in this area--- particularly in 
regard to how another connectionist system could use the 
output of one that managed to parse the scene. In any case, 
we should not expect to see simple solutions to these 
problems, for it may be no accident that such a large 
proportion of the primate brain is occupied with such 
functions. 
  

LIMITATIONS OF OPACITY 
  
Most serious of all is what we might call the Problem of 
Opacity: the knowledge embodied inside a network's numerical 
coefficients is not accessible outside that net. This is not 
a challenge we should expect our connectionists to easily 
solve. I suspect it is so intractable that even our own 
brains have evolved little such capacity over the billions of 
years it took to evolve from anemone-like reticulae. Instead, 
I suspect that our societies and hierarchies of sub-systems 
have evolved ways to evade the problem, by arranging for some 
of our systems to learn to "model" what some of our other 
systems do (see SOM, section 6.12). They may do this, partly, 
by using information obtained from direct channels into the 
interiors of those other networks, but mostly, I suspect, 
they do it less directly---so to speak, behavioristically---
by making generalizations based on external observations, as 
though they were like miniature scientists. In effect, some 
of our agents invent models of others. Regardless of whether 
these models may be defective, or even entirely wrong (and 
here I refrain from directing my aim at peculiarly faulty 
philosophers), it suffices for those models to be useful in 
enough situations. To be sure, it might be feasible, in 
principle, for an external system to accurately model a 
connectionist network from outside, by formulating and 
testing hypotheses about its internal structure. But of what 
use would such a model be, if it merely repeated, 
redundantly? It would not only be simpler, but also more 



useful for that higher-level agency to assemble only a 
pragmatic, heuristic model of that other network's activity, 
based on concepts already available to that observer. (This 
is evidently the situation in human psychology. The apparent 
insights we gain from meditation and other forms of self- 
examination are genuine only infrequently.) 
  

Fig: Symbolic Apple vs. Connectionist Apple: Numerical 
Opacity 

  
The problem of opacity grows more acute as representations 
become more distributed---that is, as we move from symbolic 
to connectionist poles---and it becomes increasingly more 
difficult for external systems to analyze and reason about 
the delocalized ingredients of the knowledge inside 
distributed representations. It also makes it harder to 
learn, past a certain degree of complexity, because it is 
hard to assign credit for success, or to formulate new 
hypotheses (because the old hypotheses themselves are not 
"formulated"). Thus, distributed learning ultimately limits 
growth, no matter how convenient it may be in the short term, 
because "the idea of a thing with no parts provides nothing 
that we can use as pieces of explanation" (see SOM, section 
5.3). 
  
For such reasons, while homogeneous, distributed learning 
systems may work well to a certain point, they should 
eventually start to fail when confronted with problems of 
larger scale---unless we find ways to compensate the 
accumulation of many weak connections with some opposing 
mechanism that favors toward internal simplification and 
localization. Many connectionist writers seem positively to 
rejoice in the holistic opacity of representations within 
which even they are unable to discern the significant parts 
and relationships. But unless a distributed system has enough 
ability to crystallize its knowledge into lucid 
representations of its new sub-concepts and substructures, 
its ability to learn will eventually slow down and it will be 
unable to solve problems beyond a certain degree of 
complexity. And although this suggests that homogeneous 
network architectures may not work well past a certain size, 
this should be bad news only for those ideologically 
committed to minimal architectures. For all we know at the 
present time, the scales at which such systems crash are 
quite large enough for our purposes. Indeed, the Society of 
Mind thesis holds that most of the "agents" that grow in our 
brains need operate only on scales so small that each by 
itself seems no more than a toy. But when we combine enough 
of them---in ways that are not too delocalized---we can make 
them do almost anything. 
  
In any case, we should not assume that we always can---or 
always should--- avoid the use of opaque schemes. The 
circumstances of daily life compel us to make decisions based 



on "adding up the evidence." We frequently find (when we 
value our time) that, even if we had the means, it wouldn't 
pay to analyze. Nor does the Society of Mind theory of human 
thinking suggest otherwise; on the contrary it leads us to 
expect to encounter incomprehensible representations at every 
level of the mind. A typical agent does little more than 
exploit other agents' abilities---hence most of our agents 
accomplish their job knowing virtually nothing of how it is 
done. 
  
Analogous issues of opacity arise in the symbolic domain. 
Just as networks sometimes solve problems by using massive 
combinations of elements each of which has little individual 
significance, symbolic systems sometimes solve problems by 
manipulating large expressions with similarly insignificant 
terms, as when we replace the explicit structure of a 
composite Boolean function by a locally senseless canonical 
form. Although this simplifies some computations by making 
them more homogeneous, it disperses knowledge about the 
structure and composition of the data---and thus disables our 
ability to solve harder problems. At both extremes---in 
representations that are either too distributed or too 
discrete---we lose the structural knowledge embodied in the 
form of intermediate-level concepts. That loss may not be 
evident, as long as our problems are easy to solve, but those 
intermediate concepts may be indispensable for solving more 
advanced problems. Comprehending complex situations usually 
hinges on discovering a good analogy or variation on a theme. 
But it is virtually impossible to do this with a 
representation, such as a logical form, a linear sum, or a 
holographic transformation---each of whose elements seem 
meaningless because they are either too large or too small---
and thus leaving no way to represent significant parts and 
relationships. 
  
There are many other problems that invite synthesizing 
symbolic and connectionist architectures. How can we find 
ways for nodes to "refer" to other nodes, or to represent 
knowledge about the roles of particular coefficients? To see 
the difficulty, imagine trying to represent the structure of 
the Arch in Patrick Winston's thesis---without simply 
reproducing that topology. Another critical issue is how to 
enable nets to make comparisons. This problem is more serious 
than it might seem. Section 23.1 of [SOM] discusses the 
importance of "Differences and Goals," and section 23.2 
points out that connectionist networks deficient in memory 
will find it peculiarly difficult to detect differences 
between patterns. Networks with weak architectures will also 
find it difficult to detect or represent (invariant) 
abstractions; this problem was discussed as early as the 
Pitts- McCulloch paper of 1947. Yet another important problem 
for memory- weak, bottom-up mechanisms is that of controlling 
search: In order to solve hard problems, one may have to 
consider different alternatives, explore their sub-



alternatives, and then make comparisons among them---yet 
still be able to return to the initial situation without 
forgetting what was accomplished. This kind of activity, 
which we call "thinking," requires facilities for temporarily 
storing partial states of the system without confusing those 
memories. One answer is to provide, along with the required 
memory, some systems for learning and executing control 
scripts, as suggested in section 13.5 of SOM. To do this 
effectively, we must have some "Iinsulationism" to 
counterbalance our "connectionism". Smart systems need both 
of those components, so the symbolic-connectionist antagonism 
is not a valid technical issue, but only a transient concern 
in contemporary scientific politics. 
  

MIND-SCULPTURE 
  
The future work of mind design will not be much like what we 
do today. Some programmers will continue to use traditional 
languages and processes. Others programmers will turn toward 
new kinds of knowledge-based expert systems. But eventually 
all of this will be incorporated into systems that exploit 
two new kinds of resources. On one side, we will use huge 
pre-programmed reservoirs of commonsense knowledge. On the 
other side, we will have powerful, modular learning machines 
equipped with no knowledge at all. Then what we know as 
programming will change its character entirely---to an 
activity that I envision as more like sculpturing. To program 
today, we must describe things very carefully, because 
nowhere is there any margin for error. But once we have 
modules that know how to learn, we won't have to specify 
nearly so much---and we'll program on a grander scale, 
relying on learning to fill in the details. 
  
This doesn't mean, I hasten to add, that things will be 
simpler than they are now. Instead we'll make our projects 
more ambitious. Designing an artificial mind will be much 
like evolving an animal. Imagine yourself at a terminal, 
assembling various parts of a brain. You'll be specifying the 
sorts of things that we've only been described heretofore in 
texts about neuroanatomy. "Here," you'll find yourself 
thinking, "We'll need two similar networks that can learn to 
shift time-signals into spatial patterns so that they can be 
compared by a feature extractor sensitive to a context about 
this wide." Then you'll have to sketch the architectures of 
organs that can learn to supply appropriate inputs to those 
agencies, and draft the outlines of intermediate organs for 
learning to suitably encode the outputs to suit the needs of 
other agencies. Section 31.3 of SOM suggests how a genetic 
system might mold the form of an agency that is predestined 
to learn to recognize the presence of particular human 
individuals. A functional sketch of such a design might turn 
out to involve dozens of different sorts of organs, centers, 
layers, and pathways. The human brain might have many 
thousands of such components. 



  
A functional sketch is only the start. Whenever you employ a 
learning machine, you must specify more than merely the 
sources of inputs and destinations of outputs. It must also, 
somehow, be impelled toward the sorts of things you want it 
to learn---what sorts of hypotheses it should make, how it 
should compare alternatives, how many examples should be 
required, and how to decide when enough has been done; when 
to decide that things have gone wrong, and how to deal with 
bugs and exceptions. It is all very well for theorists to 
speak about "spontaneous learning and generalization," but 
there are too many contingencies in real life for such words 
to mean anything by themselves. Should that agency be an 
adventurous risk-taker or a careful, conservative 
reductionist? One person's intelligence is another's 
stupidity. And how should that learning machine divide and 
budget its resources of hardware, time, and memory? 
  
How will we build those grand machines, when so many design 
constraints are involved? No one will be able to keep track 
of all the details because, just as a human brain is 
constituted by interconnecting hundreds of different kinds of 
highly evolved sub-architectures, so will those new kinds of 
thinking machines. Each new design will have to be assembled 
by using libraries of already developed, off-the-shelf sub-
systems already known to be able to handle particular kinds 
of representations and processing---and the designer will be 
less concerned with what happens inside these units, and more 
concerned with their interconnections and interrelationships. 
Because most components will be learning machines, the 
designer will have to specify, not only what each one will 
learn, but also which agencies should provide what incentives 
and rewards for which others. Every such decision about one 
agency imposes additional constraints and requirements on 
several others---and, in turn, on how to train those others. 
And, as in any society, there must be watchers to watch each 
watcher, lest any one or a few of them get too much control 
of the rest. 
  
Each agency will need nerve-bundle-like connections to 
certain other ones, for sending and receiving signals about 
representations, goals, and constraints---and we'll have to 
make decisions about the relative size and influence of every 
such parameter. Consequently, I expect that the future art of 
brain design will have to be more like sculpturing than like 
our present craft of programming. It will be much less 
concerned with the algorithmic details of the sub-machines 
than with balancing their relationships; perhaps this better 
resembles politics, sociology, or management than present-day 
engineering. 
  
Some neural-network advocates might hope that all this will 
be superfluous. Perhaps, they expect us to find simpler ways. 
Why not seek to find, instead, how to build one single, huge 



net that can learn to do all those things by itself. That 
could, in principle, be done since our own human brains 
themselves came about as the outcome of one great learning-
search. We could regard this as proving that just such a 
project is feasible---but only by ignoring the facts---the 
unthinkable scale of that billion year venture, and the 
octillions of lives of our ancestors. Remember, too, that 
even so, in all that evolutionary search, not all the 
problems have yet been solved. What will we do when our 
sculptures don't work? Consider a few of the wonderful bugs 
that still afflict even our own grand human brains: 
  
Obsessive preoccupation with inappropriate goals. 
Inattention and inability to concentrate. 
Bad representations. 
Excessively broad or narrow generalizations. 
Excessive accumulation of useless information. 
Superstition; defective credit assignment schema. 
Unrealistic cost/benefit analyses. 
Unbalanced, fanatical search strategies. 
Formation of defective categorizations. 
Inability to deal with exceptions to rules. 
Improper staging of development, or living in the past. 
Unwillingness to acknowledge loss. 
Depression or maniacal optimism. 
Excessive confusion from cross-coupling. 

  
Seeing that list, one has to wonder, "Can people think?" I 
suspect there is no simple and magical way to avoid such 
problems in our new machines; it will require a great deal of 
research and engineering. I suspect that it is no accident 
that our human brains themselves contain so many different 
and specialized brain centers. To suppress the emergence of 
serious bugs, both those natural systems, and the artificial 
ones we shall construct, will probably require intricate 
arrangements of interlocking checks and balances, in which 
each agency is supervised by several others. Furthermore, 
each of those other agencies must themselves learn when and 
how to use the resources available to them. How, for example, 
should each learning system balance the advantages of 
immediate gain over those of conservative, long-term growth? 
When should it favor the accumulating of competence over 
comprehension? In the large-scale design of our human brains, 
we still don't yet know much of what all those different 
organs do, but I'm willing to bet that many of them are 
largely involved in regulating others so as to keep the 
system as a whole from frequently falling prey to the sorts 
of bugs we mentioned above. Until we start building brains 
ourselves, to learn what bugs are most probable, it may 
remain hard for us to guess the actual functions of much of 
that hardware. 
  
There are countless wonders yet to be discovered, in these 
exciting new fields of research. We can still learn a great 



many things from experiments, on even the very simplest nets. 
We'll learn even more from trying to make theories about what 
we observe in this. And surely, soon, we'll start to prepare 
for that future art of mind design, by experimenting with 
societies of nets that embody more structured strategies---
and consequently make more progress on the networks that make 
up our own human minds. And in doing all that, we'll discover 
how to make symbolic representations that are more adaptable, 
and connectionist representations that are more expressive. 
  
It is amusing how persistently people express the view that 
machines based on symbolic representations (as opposed, 
presumably, to connectionist representations) could never 
achieve much, or ever be conscious and self- aware. For it 
is, I maintain, precisely because our brains are still mostly 
connectionist, that we humans have so little consciousness! 
And it's also why we're capable of so little functional 
parallelism of thought---and why we have such limited insight 
into the nature of our own machinery. 
  
This research was funded over a period of years by the 
Computer Science Division of the Office of Naval Research. 
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