
attribute are sharp. The set of small sand piles is distinct
from the sets of medium and large sand piles. If a certain
sand pile belongs to one of these sets, it cannot belong to the
others. Such sets are called crisp. They have well defined
boundaries, and there is no ambiguity regarding an object’s
membership in a crisp set.

A convenient way to represent a crisp set is by its charac-
teristic function, that is, the function whose value is 1 for ele-
ments of the set and 0 outside the set. As an example, here is
the characteristic function of the interval [2, 5]:

In[1]:= f[x_]:= If[x >= 2 && x <= 5, 1, 0];

In[2]:= Plot[f[x], {x, 0, 10}]

If we measure the size of sand piles in some units (say,
kilograms or gigagrains), we could define the sets of small,
medium, and large sand piles by the crisp membership func-
tions shown in Figure 1.

FIGURE 1. Characteristic functions for the sets of small, medium, and large sand piles.
The independent variable (x-value) is the size of the sand pile in some chosen units. The val-
ues of the functions are always either 0 or 1.

1 2 3 4

0.2
0.4
0.6
0.8

1

1 2 3 4

0.2
0.4
0.6
0.8

1

1 2 3 4

0.2
0.4
0.6
0.8

1

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Artificial Intelligence

Fuzzy Systems for Control Applications:
The Truck Backer-Upper

In this column, we introduce another tool in the advanced automation toolbox: fuzzy logic.
The basis of fuzzy logic lies in the ambiguity in our thinking about concepts such as big, tall, slow,
or bright, whose meanings are not only context dependent, but also ambiguous within a particu-
lar context. Using fuzzy sets named by these ambiguous linguistic variables, we can build appli-
cations that can outperform many of their traditional counterparts. As an example of the appli-
cation of this technology, we will develop a fuzzy control system that automatically backs up a
truck to a specified point on a loading dock.

64 THE MATHEMATICA JOURNAL © 1994 Miller Freeman Publications

Crisp Sets and Fuzzy Sets

The topic of this column is fuzziness. Fuzziness can be
defined as the ambiguity that can be found in the definition
of a concept or the meaning of a word [Terano et al. 1992].
Let me illustrate the idea with a short parable.

We are on the beach where I have made a mound with the
sand. I ask you to describe the mound.

“It is a large mound of sand,” you say.
“Very good,” I reply, as I remove a grain of sand from the

pile. “Now describe the mound.”
“It is still a large mound of sand,” you respond, hoping

that I do not intend to remove one grain at a time for the
next several years as you see me reach for another grain.
Mercifully, I pick up a shovel and begin to remove sand in
larger quantities.

“Tell me when the mound is no longer large,” I say. You
let me proceed for a minute, then stop me, saying, “Now.
Now it is a small mound of sand.”

“How many grains of sand would I have to add back for
it to become large again?” I ask you.

“That’s not a fair question,” you say. “There is no exact
boundary between large and medium piles of sand.”

“Aha!” I exclaim. “My point exactly!” Since it is very hot
on the beach, we march off in search of shade and a cold
beer — you’re buying, as I have just imparted valuable
knowledge to you for which you are in my debt.

Think about all the ambiguous words we use regularly to
describe things: big, small, tall, short, long, fast, slow, and so
on. Each of those words can be used to describe sets of
objects: small dogs, tall buildings. In the world of Boolean
logic, boundaries between sets defined by a particular

James A. Freeman

James Freeman is an AI researcher at Loral Space Information Systems in
Houston, TX, and an adjunct professor of physics and electro-optics at the
University of Houston. He is coauthor of Neural Networks: Algorithms,
Applications and Programming Techniques, and author of Simulating Neural
Networks with Mathematica, both published by Addison-Wesley.

A crisp set is described by a characteristic function whose
value is always either 0 or 1. A fuzzy set is defined by a
membership function that takes values anywhere between 0
and 1. In a fuzzy system, we might represent the sets of
small, medium, and large sand piles by the fuzzy membership
functions shown in Figure 2.

We say that an element “belongs” to a fuzzy set if the
value of the set’s membership function at that element is
nonzero. The degree to which an element belongs to a par-
ticular set can be any number between zero and one inclu-
sive. Notice that in Figure 2, certain sizes of sand pile (such
as 1.5 and 2.5) belong to more than one set.

It is important to realize that we are not discussing uncer-
tainty here; rather, class membership is equivocal in some
cases. Class boundaries are often ambiguous in our minds, as
in our speech; and this phenomenon is not simply a matter of
our inability to be precise. None of us would likely accept
$50.00 less in our paycheck even though our paycheck was
close to what we normally receive; on the other hand, no
one could reasonably argue that a pile of sand changed from
medium size to large size on the basis of one additional grain.
Yet we often impose unrealistically precise class boundaries
and control setpoints in software that we write. Consider
the following rules from a hypothetical control system:

If(flow rate is greater than 3.4
and flow rate is less than 4.5)

Then(set valve position to 12)

If(flow rate is greater than 4.5
and flow rate is less than 5.7)

Then(set valve position to 30)

Does it really make sense to adjust the valve from 12 to 30 as
the flow rate varies from 4.4999 to 4.5001? In a fuzzy con-
trol system we might say something like the following:

If(flow rate is very low)
Then(set valve position to open slightly)

If(flow rate is medium low)
Then(set valve position to open somewhat)

where terms such as very low and open slightly are the
names of fuzzy sets. We establish ambiguous class bound-
aries between very low and medium low, and between open
slightly and open somewhat. Then we use fuzzy inferencing
techniques to determine what action the system should take
based on the measurement of the flow rate. The result is
often a smoother transition between states, and a more effec-
tive control system, especially in circumstances where an
accurate mathematical model of the system is difficult to
determine. We will apply these ideas to an actual problem.
First, however, we need to define some functions.

Constructing Fuzzy Membership Functions

The function defineSet takes as arguments a symbol name
and a list of four points in the plane. It defines a piecewise
linear function with the given name, whose graph consists of
the line segments joining the four points. The implementa-
tion uses Maeder’s makeRuleConditional function [Maeder
1991], and two auxiliary functions, slope and intercept, that
compute the slope and y-intercept of a line through two
given points.

In[3]:= MakeRuleConditional[

f_Symbol, var_Symbol, rhs_, condition_] :=

(f[var_] := rhs /; condition)

In[4]:= SetAttributes[MakeRuleConditional, HoldAll]

In[5]:= slope[{x1_, y1_}, {x2_, y2_}]:= (y2-y1)/(x2-x1)

In[6]:= intercept[{x1_, y1_}, {x2_, y2_}]:=(y1 x2 - y2 x1)/(x2-x1)

In[7]:= defineSet[name_, {p1_, p2_, p3_, p4_}]:=

(ClearAll[name];

MakeRuleConditional[name, x, 0.0, x < p1[[1]]];

MakeRuleConditional[name, x,

Release[slope[p1, p2] x + intercept[p1, p2]],

p1[[1]] <= x < p2[[1]]];

If[p2 != p3, MakeRuleConditional[name, x,

Release[slope[p2, p3] x + intercept[p2, p3]],

p2[[1]] <= x < p3[[1]]];];

If[p3 != p4, MakeRuleConditional[name, x,

Release[slope[p3, p4] x + intercept[p3, p4]],

p3[[1]] <= x < p4[[1]]];];

MakeRuleConditional[name, x, 0.0, x >= p4[[1]]];)

The crisp sets shown in Figure 1 are defined and plotted
with the following inputs:

In[8]:= defineSet[crispSmall,

{{0, 1}, {1.5, 1}, {1.5, 1}, {1.5, 1}}];

defineSet[crispMedium,

{{1.5, 1}, {2.5, 1}, {2.5, 1}, {2.5, 1}}];

defineSet[crispLarge, {{2.5, 1}, {4, 1}, {4, 1}, {4, 1}}];

In[11]:= crispSets = {crispSmall, crispMedium, crispLarge};

In[12]:= Show[GraphicsArray[Plot[#[x], {x, 0, 4}]& /@ crispSets]]

The fuzzy sets in Figure 2 are defined and plotted similarly:

In[13]:= defineSet[fuzzySmall, {{0, 1}, {1, 1}, {1, 1}, {2, 0}}];

defineSet[fuzzyMedium, {{1, 0}, {2, 1}, {2, 1}, {3, 0}}];

defineSet[fuzzyLarge, {{2, 0}, {3, 1}, {3, 1}, {4, 1}}];

In[16]:= fuzzySets = {fuzzySmall, fuzzyMedium, fuzzyLarge};

In[17]:= Show[GraphicsArray[Plot[#[x], {x, 0, 4}]& /@ fuzzySets]]

Note that in the definition of the crisp functions, the last
three points in each list are the same, so the nonzero part of
each graph consists of just one (nonvertical) segment. For
the fuzzy functions, the middle two points are the same, so
the graphs have two segments. Fuzzy membership functions
typically comprise either one, two, or three segments.

We also need operations corresponding to intersection and
union of sets. These operations are given by Min and Max of
the membership functions:

VOLUME 4, ISSUE 1 65

1 2 3 4

0.2
0.4
0.6
0.8

1

1 2 3 4

0.2
0.4
0.6
0.8

1

1 2 3 4

0.2
0.4
0.6
0.8

1

FIGURE 2. Fuzzy membership functions for the sets of small, medium, and large sand
piles. The functions take values in the interval [0, 1].

In[18]:= union[functions__]:= Max[functions]

intersection[functions__]:= Min[functions]

Here is an example of the union of two fuzzy sets:

In[20]:= Plot[union[fuzzySmall[x], fuzzyMedium[x]], {x, 0, 4}];

The Fuzzy Truck-Driving Academy

Let’s apply this technology to a control problem, namely,
that of backing up a truck to a specified point on a loading
dock. The truck backer-upper problem has become a stan-
dard control problem. There are several varieties; the one
we will work on here is a simple version taken from the
work of Kong and Kosko [Kosko 1992]. Figure 3 shows a
simple model. The object of the control system is to back up
the truck so that it arrives perpendicular to the dock at posi-
tion (xf, yf). The point (x, y) is the center of the rear of the
truck, f is the angle of the truck axis to the horizontal, and q
is the steering angle measured from the truck axis. The con-
troller takes as input the position of the truck, specified by
the pair (x, f), and outputs the steering angle q.

The linguistic variables associated with the fuzzy sets for
the x position are: LE (left), LC (left center), CE (center),
RC (right center), and RI (right). The following five func-
tions define those sets:

In[21]:= defineSet[LE, {{0, 1}, {10, 1}, {10, 1}, {35, 0}}];

defineSet[LC, {{30, 0}, {40, 1}, {40, 1}, {50, 0}}];

defineSet[CE, {{45, 0}, {50, 1}, {50, 1}, {55, 0}}];

defineSet[RC, {{50, 0}, {60, 1}, {60, 1}, {70, 0}}];

defineSet[RI, {{65, 0}, {90, 1}, {90, 1}, {100, 1}}];

We can assemble the sets in a list and plot them together.

In[26]:= xSets[x_]:= {LE[x], LC[x], CE[x], RC[x], RI[x]};

In[27]:= Plot[Evaluate[xSets[x]], {x, 0, 100},

PlotStyle ->

Dashing /@ {{.01}, {.02}, {.03}, {.04}, {.05}}]

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1 2 3 4

0.2

0.4

0.6

0.8

1

Notice that there is an odd number of sets and that the sets
are concentrated near the optimum control point xf = 50.
Moreover, the values of the membership functions are at
most 0.5 where the sets overlap and the sum of the values is
at most 1 everywhere. These characteristics reflect rules of
thumb more than any hard and fast requirements for fuzzy
systems.

Fuzzy sets for the angle f are: RB (right below), RU (right
upper), RV (right vertical), VE (vertical), LV (left vertical),
LU (left upper), and LB (left below).

In[28]:= defineSet[RB, {{-100, 0}, {-45, 1}, {-45, 1}, {10, 0}}];

defineSet[RU, {{-10, 0}, {35, 1}, {35, 1}, {60, 0}}];

defineSet[RV, {{45, 0}, {67.5, 1}, {67.5, 1}, {90, 0}}];

defineSet[VE, {{80, 0}, {90, 1}, {90, 1}, {100, 0}}];

defineSet[LV, {{90, 0}, {112.5, 1}, {112.5, 1}, {135, 0}}];

defineSet[LU, {{120, 0}, {155, 1}, {155, 1}, {190, 0}}];

defineSet[LB, {{170, 0}, {225, 1}, {225, 1}, {280, 0}}];

In[35]:= phiSets[phi_] = {RB[phi], RU[phi], RV[phi], VE[phi],

LV[phi], LU[phi], LB[phi]};

In[36]:= Plot[Evaluate[phiSets[phi]], {phi, -100, 280},

PlotStyle -> Dashing /@

{{.01}, {.02}, {.03}, {.04}, {.03}, {.02}, {.01}}]

For the output variable, the sets are: NB (negative big),
NM (negative medium), NS (negative small),ZE (zero), PS
(positive small), PM (positive medium), and PB (positive big).

–100 –50 50 100 150 200 250

0.2

0.4

0.6

0.8

1

66 THE MATHEMATICA JOURNAL © 1994 Miller Freeman Publications

(xf, yf)

(x, y)

q

f

FIGURE 3. The model for the simple truck backer upper. The point (x, y) is the center
of the rear of the truck, f is the angle of the truck axis to the horizontal, and q is the steer-
ing angle measured from the truck axis.

In[37]:= defineSet[NB, {{-30, 1}, {-15, 0}, {-15, 0}, {-15, 0}}];

defineSet[NM, {{-25, 0}, {-15, 1}, {-15, 1}, {-5, 0}}];

defineSet[NS, {{-12, 0}, {-6, 1}, {-6, 1}, {0, 0}}];

defineSet[ZE, {{-5, 0}, {0, 1}, {0, 1}, {5, 0}}];

defineSet[PS, {{0, 0}, {6, 1}, {6, 1}, {12, 0}}];

defineSet[PM, {{5, 0}, {15, 1}, {15, 1}, {25, 0}}];

defineSet[PB, {{18, 0}, {30, 1}, {30, 1}, {30, 1}}];

In[44]:= steerSets[theta_] =

{NB[theta], NM[theta], NS[theta], ZE[theta],

PS[theta], PM[theta], PB[theta]};

In[45]:= Plot[Evaluate[steerSets[theta]], {theta, -30, 30},

PlotStyle -> Dashing /@

{{.01}, {.02}, {.03}, {.04}, {.03}, {.02}, {.01}}]

With these sets we define rules which we call fuzzy associ-
ations. For example, if the angle f is vertical, and the x posi-
tion is right center, then we want to steer positive medium.
Symbolically,

IF f is VE AND x is RC, THEN q is PM.

Rather than write out each of these rules, we can assemble
them in a matrix format called a fuzzy associative memory
(FAM). The FAM for this problem appears in Table 1.

LE LC CE RC RI

RB PS PM PM PB PB
RU NS PS PM PB PB
RV NM NS PS PM PB
VE NM NM ZE PM PM
LV NB NM NS PS PM
LU NB NB NM NS PS
LB NB NB NM NM NS

TABLE 1. Fuzzy associative memory for the truck backer-upper system. Each position in
the matrix corresponds to a rule. For example, row 3, column 4 corresponds to the rule IF f
is RV AND x is RC, THEN q is PM.

Given a specific input pair (f, x), several rules may be
applicable since the fuzzy sets overlap. The membership
functions for the sets involved in each rule (such as LV, CE,
and NS) are combined using AND (Minimum) and the result is
evaluated at (f, x) to get a new q-set. The q-sets from the dif-
ferent rules are then combined with OR (Maximum) to get the
output q-set. Figure 4 illustrates the construction of an out-
put set from two rules, given an input (f1, x1).

–30 –20 –10 10 20 30

0.2

0.4

0.6

0.8

1

FIGURE 4. Two rules are combined to produce an output fuzzy set from an input (f1 , x1).
The numerical output of the system is the centroid qc of the output set.

To find the actual control value, we must convert the out-
put fuzzy set into a numerical value for q. We call this pro-
cess defuzzification. There are several possible methods. We
will use the centroid method because it is the typical choice
for control systems. The centroid is the “center of mass” of
the region under the graph of the membership function:

Let’s walk through a specific example. First, we must con-
struct the FAM matrix:

In[46]:= FAM = {{PS, PM, PM, PM, PB}, {NS, PS, PM, PB, PB},

{NM, NS, PS, PM, PB}, {NM, NM, ZE, PM, PM},

{NB, NM, NS, PS, PM}, {NB, NB, NM, NS, PS},

{NB, NB, NM, NM, NS}};

In[47]:= (truckFAM[theta_] = Through /@ Through @ FAM[theta]) //

MatrixForm

Out[47]//MatrixForm=

PS[theta] PM[theta] PM[theta] PM[theta] PB[theta]

NS[theta] PS[theta] PM[theta] PB[theta] PB[theta]

NM[theta] NS[theta] PS[theta] PM[theta] PB[theta]

NM[theta] NM[theta] ZE[theta] PM[theta] PM[theta]

NB[theta] NM[theta] NS[theta] PS[theta] PM[theta]

NB[theta] NB[theta] NM[theta] NS[theta] PS[theta]

NB[theta] NB[theta] NM[theta] NM[theta] NS[theta]

Suppose the configuration of the truck is given by f = 50.0
and x = 49.0. The values of the membership functions for the
f and x attributes are:

In[48]:= phiSets[50.]

Out[48]= {0., 0.4, 0.222222, 0., 0., 0., 0.}

In[49]:= xSets[49.]

Out[49]= {0., 0.1, 0.8, 0., 0.}

q
q q q

q q
c

f d

d
= -•

•

-•

•
Ú
Ú

()

xf

xf

q

centroid

q

q

LV AND CE THEN NS

LV AND LC THEN NM

OR
f

f

x

x

1 1

1 1

qc

VOLUME 4, ISSUE 1 67

Notice that the f and x values are each members of two
fuzzy sets, so this pair of inputs will result in four rule firings.

To construct the output fuzzy set, take the intersection
(Min) of the fuzzy sets for each pair of f-x attributes (such as
{LV, CE}) and evaluate its membership function at the input
(f, x) = (50., 49.). This gives the so-called antecedants
matrix:

In[50]:= Outer[Min, phiSets[50.], xSets[49.]] // MatrixForm

Out[50]//MatrixForm=

0. 0. 0. 0. 0.

0. 0.1 0.4 0. 0.

0. 0.1 0.222222 0. 0.

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

The nonzero locations in the antecedants matrix correspond
to the four applicable rules in the FAM matrix. We now take
the intersections of the entries in the FAM matrix with the
corresponding values in the antecedants matrix. The result is
a matrix of q membership functions:

In[51]:= MapThread[Min, {%, truckFAM[theta]}, 2] // Short[#, 3]&

Out[51]//Short=

{{Min[0., PS[theta]], Min[0., PM[theta]],

Min[0., PM[theta]], Min[0., PM[theta]],

Min[0., PB[theta]]}, <<6>>}

Most of the entries in this matrix have the form Min[0., _]
and so are equivalent to zero. Only those entries that corre-
spond to applicable rules will be nonzero. The union (Max) of
all the entries is the output fuzzy q-set:

In[52]:= Max[Flatten[%]]

Out[52]= Max[{Min[0., NB[theta]], Min[0., NM[theta]],

Min[0., NS[theta]], Min[0., PB[theta]],

Min[0., PM[theta]], Min[0., PS[theta]],

Min[0., ZE[theta]], Min[0.1, NS[theta]],

Min[0.1, PS[theta]], Min[0.222222, PS[theta]],

Min[0.4, PM[theta]]}]

We can simplify this expression by removing the entries that
are equivalent to zero:

In[53]:= fuzzyTheta[theta_] = % /. Min[0., _] -> 0

Out[53]= Max[{0, Min[0.1, NS[theta]], Min[0.1, PS[theta]],

Min[0.222222, PS[theta]], Min[0.4, PM[theta]]}]

Here is the output fuzzy set:

In[54]:= Plot[fuzzyTheta[theta], {theta, -30, 30}]

Now, we must defuzzify this set to get a numerical value.
To find the centroid of the output fuzzy set, we should inte-
grate the product of q and fuzzyTheta and divide by the inte-
gral of fuzzyTheta, both integrations taken over the range of q.
In the function defuzzify, I use an approximation that will
speed the calculation while resulting in a small error:

In[55]:= defuzzify[fuzzySet_, {t_, min_, max_, dt_}]:=

Sum[t fuzzySet, {t, min, max, dt}]/

Sum[fuzzySet, {t, min, max, dt}]

The output q value for our example is:

In[56]:= defuzzify[fuzzyTheta[theta], {theta, -30, 30, .5}]

Out[56]= 10.6783

The function steer combines the steps above to compute
the steering angle q for a given configuration (x, f):

In[57]:= steer[x_, phi_]:=

defuzzify[

Max[Flatten[

MapThread[Min,

{Outer[Min, phiSets[phi], xSets[x]],

truckFAM[theta]}, 2]]] /. Min[0., _] -> 0,

{theta, -30, 30, .5}]

The function simulateTruck takes the initial values of x, y, and
f, and computes a list of configurations {x, y, f} giving a tra-
jectory for the truck until it reaches a y value of at least 95:

In[58]:= simulateTruck[x0_, y0_, phi0_] :=

Module[{x = x0, y = y0, phi = phi0, newPhi, result = {} },

While[y <= 95.,

newPhi = phi + steer[x, phi];

AppendTo[result,

{x, y, phi} =

{x + 5 Cos[newPhi Pi/180],

y + 5 Sin[newPhi Pi/180], newPhi} // N];];

result]

Note that the stepsize (5) used in this function can easily be
changed.

–30 –20 –10 10 20 30

0.1

0.2

0.3

0.4

68 THE MATHEMATICA JOURNAL © 1994 Miller Freeman Publications

The position of the truck can be displayed with the func-
tion showTruck. It takes as inputs the {x, y, f} configuration
and the length and width of the truck:

In[59]:= showTruck[{x_, y_, phi_}, {l_, w_}] :=

Module[{s = Sin[phi Pi/180]//N, c = Cos[phi Pi/180]//N},

Show[Graphics[{

Polygon[Transpose[

{x, y} + {{-s w/2, s w/2, s w/2 - c l,

-1.2 c l, - s w/2 - c l, -s w/2},

{c w/2, -c w/2, - c w/2 - s l,

-1.2 s l, c w/2 - s l, c w/2}}]],

Point[{0,0}],

Line[{{0, 100}, {100, 100}}],

Line[{{50, 100}, {50, 95}}] },

Axes -> True, AspectRatio -> Automatic,

AxesOrigin -> {0, 0}]]];

For example:

In[60]:= showTruck[{20, 40, 45}, {10, 5}]

Let’s compute the trajectory of a truck starting at the posi-
tion shown above:

In[61]:= simulateTruck[20, 40, 45]

Out[61]= {{23.8857, 43.1466, 39.}, {28.0791, 45.8698, 33.},

{32.5341, 48.1397, 27.}, {36.8884, 50.5974, 29.441},

{40.962, 53.4967, 35.441}, {44.7102, 56.806, 41.441},

{48.0919, 60.4889, 47.441}, {50.698, 64.756, 58.5859},

{52.6265, 69.3691, 67.3134}, {53.6452, 74.2642, 78.2441},

{53.5617, 79.2635, 90.9564}, {52.6199, 84.174, 100.858},

{51.7959, 89.1057, 99.4856}, {50.9721, 94.0373, 99.4829},

{50.2237, 98.981, 98.6083}}

We can produce an animation of the moving truck by
mapping the function showTruck[#, {10, 5}]& onto this list of
configurations. The resulting graphics objects can also be
displayed in one frame by using Show. The individual posi-

20 40 60 80 100

20

40

60

80

100

tions of the truck are easier to see if we replace Polygon by
Line in the function showTruck:

I have not explored all of the various starting positions, so
I cannot guarantee that every one will result in an acceptable
trajectory. You can experiment by changing the various
parameters, such as the boundaries of the fuzzy sets, the step-
size in simulateTruck, and so on.

A fuzzy logic implementation of a control system is often a
good choice when a mathematical model of the system is
either unavailable or too complex to simulate efficiently. Our
can example shows that it is fairly easy to construct a fuzzy
controller for a system that might otherwise require quite an
effort at mathematical modeling. Other interesting examples,
both hypothetical and real-life, appear in [Terano et al. 1992,
Kosko 1992, White and Sofge 1992].

References

Kosko, B. 1992. Neural Networks and Fuzzy Systems: A
Dynamical Systems Approach to Machine Intelligence.
Prentice Hall, Englewood Cliffs, NJ.

Maeder, R. 1991. Programming in Mathematica 2d ed.
Addison-Wesley, Reading, MA.

Terano, T., K. Asai, and M. Sugeno. 1992. Fuzzy Systems
Theory and Its Application. Academic Press, Boston, MA.

White, David A., and Donald A. Sofge, eds. 1992. Hand-
book of Intelligent Control. Van Nostrand Reinhold, New
York.

20 40 60 80 100

20

40

60

80

100

VOLUME 4, ISSUE 1 69

James A. Freeman
Loral Space Information Systems, Artificial Intelligence

Laboratory, P.O. Box 58487, Mail Code F8H4A,
Houston, TX 77258, (713) 335-6626
71340.3016@compuserve.com

The electronic supplement contains the notebook
Fuzzy Control Systems.

