CONTEÚDO

- Introdução
 - Motivação, Objetivo, Definição, Características Básicas e Histórico
- Conceitos Básicos
 - Neurônio Artificial, Modos de Interconexão
- Processamento Neural
 - Learning e Recall
- Regras de Aprendizado
 - Perceptron, Back Propagation e Competitive Learning.

Regra de HEBB

• Declaração de Hebb:

"Quando um axônio de uma célula A está próximo o suficiente de excitar a célula B e repetidamente ou persistentemente participa da ativação desta, um processo de crescimento ou mudança metabólica ocorre em uma ou ambas as células, de tal forma que a eficiência de A em ativar B é aumentada" ⇒ Portanto, a cada apresentação do padrão a saída fica mais reforçada.

Regra de HEBB

• Em termos práticos:

- Se dois neurônios em cada lado de uma sinápse (conexão) são ativados simultaneamente (sincronamente), então a "força" daquela sinápse deve ser aumentada.
- Se dois neurônios em cada lado de uma sinápse são ativados assincronamente, então aquela sinápse dever ser enfraquecida.

Regra de HEBB

• Conclusão:

A *modificação* nas sinápses tem relação com a *correlação entre as atividades* dos dois neurônios envolvidos na conexão.

correlação + P o valor do peso aumenta correlação - P o valor do peso diminui

A saída é reforçada a cada apresentação do padrão P padrões frequentes terão maior influência no vetor de pesos do neurônio.

Regra de HEBB

 $D\mathbf{w_{ij}} = h \mathbf{s_{i}.s_{j}}$ $\mathbf{0} < h < \mathbf{1}$

"Hebbian Learning Rule" taxa de aprendizado

A informação está disponível localmente

ICA

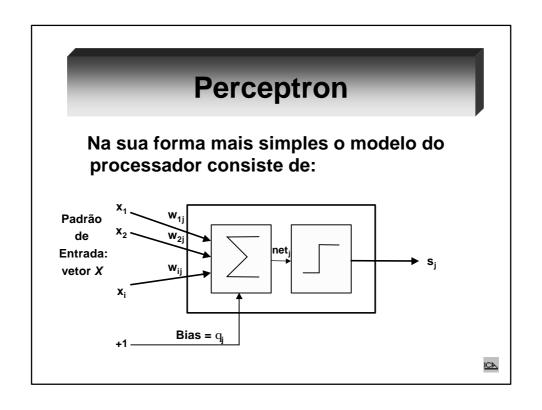
Algoritmos de Aprendizado

Os algoritmos podem ser definidos através das seguintes características:

- ❖Regra de Propagação
- ❖Função de Ativação
- **❖Topologia**
- ❖Regra de Aprendizado Dw

CIA_

Perceptron



Perceptron

- Características Básicas:
 - Regra de Propagação → net_i = S x_i. w_{ij} + q_j
 - Função de Ativação → Degrau
 - Topologia → Uma única camada de processadores.
 - Algoritmo de Aprendizado \Rightarrow Supervisionado: $Dw_{ii} = h.s_{i}.(t_i s_i)$
 - Valores de Entrada/Saída → Binários

Algoritmo de Aprendizado

Iniciar os pesos sinápticos com valores randômicos e pequenos;

- **2** Aplicar um padrão de entrada, com seu respectivo valor de saída desejado (t_j) , e verificar a saída da rede (s_j) ;
 - Calcular o erro na saída: $\mathbf{e}_j = \mathbf{t}_j \mathbf{s}_j$
- **9** Se $\mathbf{e}_j = 0$, voltar ao passo 2;
 - Se \mathbf{e}_{i} 0, atualizar os pesos: $\mathrm{D}\mathbf{w}_{ii} = \mathrm{h.s}_{i}.\mathbf{e}_{i}$
- **❸** Voltar ao passo 2.

Rosenblatt (1962) provou que:

Uma rede Perceptron é capaz de Aprender tudo que puder Representar.

Representação → refere-se à habilidade do sistema neural de representar (simular) uma função específica.

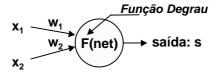
Aprendizado → refere-se à existência de um procedimento sistemático de aquisição de conhecimento (ajuste dos pesos), de forma a produzir a função desejada

O Problema do OU-Exclusivo

Minsky & Papert provaram (Perceptrons 1969)
que existem séries restrições sobre o que as
redes Perceptron são capazes de Representar.

 Por exemplo, as redes Perceptron NÃO são capazes de Representar a função OU-Exclusivo

PONTO	X_1	X_2	Saída
A_0	0	0	0
A ₁	0	1	1
A_2	1	0	1
A_3	1	1	0



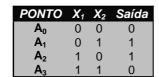
De acordo com a definição do neurônio: $s = F(x_1w_1 + x_2w_2 + q)$

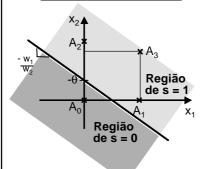
net =
$$x_1w_1 + x_2w_2 + \theta$$

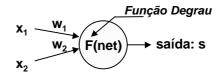
Se net $\ge 0 \Rightarrow s = 1$
Se net $\le 0 \Rightarrow s = 0$

A rede Perceptron divide o plano $X_1 \times X_2$ em duas regiões (através da reta net)

O Problema do OU-Exclusivo







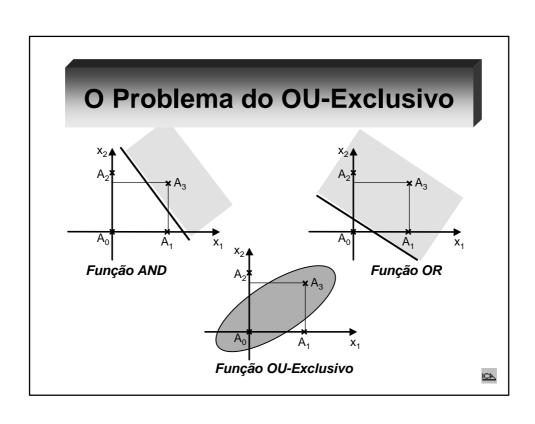
De acordo com a definição do neurônio: $s = F(x_1w_1 + x_2w_2 + q)$

$$\text{net} = x_1 w_1 + x_2 w_2 + \theta \Rightarrow \begin{cases} \text{Se net } \ge 0 \Rightarrow s = 1 \\ \text{Se net } \le 0 \Rightarrow s = 0 \end{cases}$$

A rede Perceptron divide o plano $X_1 \times X_2$ em duas regiões (através da reta net)

Conclusão:

- mudando-se os valores de w₁, w₂ e q,
 muda-se a inclinação e a posição da reta.
- Entretanto, é **impossível** achar uma reta que divida o plano de forma a separar os pontos A_1 **e** A_2 de um lado e A_0 e A_3 de outro.
- Redes de 1 única camada só representam funções linearmente separáveis!



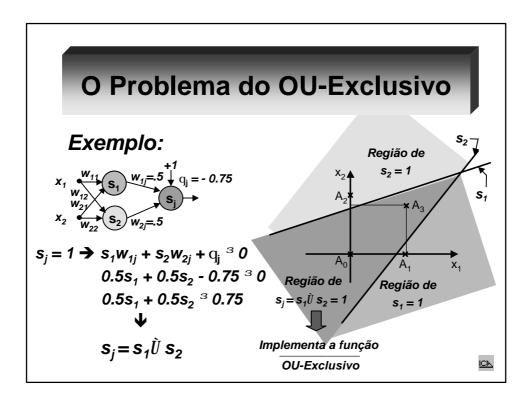
Minsky & Papert provaram que este problema pode ser solucionado adicionando-se uma outra *camada intermediária* de processadores.

Multi-Layer Perceptrons

O Problema do OU-Exclusivo

Exemplo:

$$x_1$$
 w_{12} $w_{1} = .5$ $q_1 = -0.75$ x_2 w_{22} x_2 $w_{23} = .5$



• Observação:

Redes Neurais de múltiplas camadas só oferecem <u>vantagens</u> sobre as de uma única camada se existir uma função de ativação não-linear entre as camadas!

ICA_

- Em termos vetoriais:
 - Camada Escondida P NET₁ = S_1 . W_1

 $S_1 = k_1 NET_1$

Camada de Saída P $S_2 = k_2 NET_2 = k_2(S_1.W_2) P$

 $S_2 = k_2 [(k_1 \text{ NET}_1) W_2] P$

 $S_2 = k_2 [(k_1 S_1 W_1) W_2] P$

 $S_2 = k_2 k_1 (S_i W_1) W_2 P$

 $S_2 = K \cdot S_1 \cdot (W_1 \cdot W_2)$

 $S_2 = K \cdot S_1 \cdot W$

 $\hat{\mathbb{U}}$

Equivalente a uma única camada

4**2**1

Verificando o Problema do OU-EXCLUSIVO

NeuralWorks Professional II

<u>NWE</u>

ICA_