RC delay – 4: The Elmore delay - 3

Application of the Elmore delay formula to a (RC) wire.

The delay of a wire is proportional to the square of its length.

Note: The Elmore formula applied to the RC lumped model gives $\tau_{Dout} = RC$

Source: Rabaey

EEL7312 – INE5442 Digital Integrated Circuits

RC delay – 5: The Elmore delay - 4

Example 4.8 of Rabaey's book: 10-cm-long, 1- μ m-wide Al1 wire for which $r=0.075 \Omega/\mu m$, $c=110 aF/\mu m$.

 $\tau_{Dout} = rcl^2 / 2 = 0.075 \Omega / \mu m \cdot 110 a F / \mu m \cdot (10^5 \mu m)^2 / 2 = 41.3 ns$

Note: The Elmore delay is, in general, not equal to the delay time. For a distributed RC network, the Elmore delay $\tau_D = 0.5$ RC whereas the delay time $t_d = 0.38$ RC

RC delay -6

Example 4.8 of Rabaey's book: 10-cmlong, 1- μ m-wide Al1 wire for which $r=0.075 \Omega/\mu m, c= 110 aF/\mu m.$

RC delay -7

Source: Rabaey

EEL7312 – INE5442 Digital Integrated Circuits

RC delay – 8

Step-response of RC wire as a function of time and space

5

RC delay – 9

Voltage range	Lumped RC network	Distributed RC network
$0 \rightarrow 50\% (t_p)$	0.69 RC	0.38 RC
0→63% (<i>τ</i>)	RC	0.5 RC
$10 \rightarrow 90\% (t_r)$	2.2 RC	0.9 RC

Source: Rabaey

RC delay – 10

 V_{out} When are the effects of the
wire delay important?reAssume that the driver delayis t_{pgate} . The wire delay is
 $t_{pwire} = 0.38RC = 0.38r_w c_w L^2$

The wire delay is important when $t_{pwire} \cong t_{pgate}$ or, equivalently

$$L_{crit} = \sqrt{\frac{t_{pgate}}{0.38r_w c_w}}$$

RC delay -11

Example 4.8 of Rabaey's book: 10-cmlong, 1- μ m-wide Al1 wire for which $r=0.075 \Omega/\mu m$, $c=110 aF/\mu m$.

What if the rise time becomes much higher than RC?

EEL7312 – INE5442 Digital Integrated Circuits

RC delay - 12 Example 4.8 of Rabaey's book: 10-cm-long, 1- µm-wide All wire for which $r=0.075 \ \Omega/\mu m, c= 110 \ aF/\mu m.$

What if the rise time becomes much higher than RC?

EEL7312 - INE5442 **Digital Integrated Circuits**

RC delay – 13

RC delay
$$-14$$

Design Rules of Thumb

rc delays should only be considered when t_{pRC} >> t_{pgate} of the driving gate

rc delays should only be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

$$t_{\rm rise} < {\rm RC}$$

when not met, the change in the signal is slower than the propagation delay of the wire

Inductance - 1

 V_L -

 $V_L = LdI / dt$

 $E_{I} = LI^{2}/2$

+

Inductive effects

important for power grids (high current), clock networks (high speed), and wide busses (low resistance/unit length);

 may cause ringing/overshoot effects, reflection of signals, inductive coupling between lines (crosstalk), and switching noise in power lines

Clock trees and power/ground grid need to be designed carefully to avoid large clock skew, signal inductive coupling and ground bounce

Inductance - 2

Inductance of a wire depends on its geometry and surrounding dielectric

 Extracting the inductance is in general a 3-D problem and is extremely time-consuming for complex geometries

Inductance depends on the entire current loop; it is impractical to extract the inductance from a chip layout

Source: Rabaey, Weste&Harris

Inductance - 3

$$\frac{\frac{\partial^2 v}{\partial x^2}}{\frac{\partial v}{\partial t^2}} = rc\frac{\partial v}{\partial t} + lc\frac{\partial^2 v}{\partial t^2}$$

The Wave Equation

Source: Rabaey

When $r=0 \rightarrow$ signal travels at speed of light, which is smaller than speed of light in vacuum (300 mm/ns). In the real case, currents return in distant power lines and increase inductance thus reducing signal velocity.

When $I=0 \rightarrow rc$ wire (diffusion equation)

