
PoliCap - Proposal, Development and Evaluation of a Policy Service and
Capabilities for CORBA Security

Carla Merkle Westphall *, Joni da Silva Fraga, Michelle Silva Wangham and Lau Cheuk Lung
Universidade Federal de Santa Catarina - LCMI-DAS-UFSC
Campus Universitário - Trindade - Florianópolis - SC - Brazil

PO Box 476 - CEP 88040-900
e-mail: { merkle, fraga, wangham, lau} @lcmi.ufsc.br

Abstract

This paper presents Policap - a Policy Service for distributed applications that use CORBA security model. Policap
was proposed for insertion in the JaCoWeb Project context, which is developing an authorization scheme for large-
scale networks. This scheme is being developed in order to deal with management of security policies in such
networks, simplifying authorization policy implementation. The Policap policy service fills the existing gap in the use
of security policies for distributed object programming. The paper further presents the implementation results
obtained and an evaluation of these results based on Common Criteria, ISO standard 15408.

Keywords – Security Policies, Security, Authorization Schemes, CORBA.

1 INTRODUCTION

Distributed applications (such as teleconferencing, white-boards, cooperative editing, group decision
support systems and banking), which were limited in local networks (e.g.: intranets), are being customized for
large-scale networks, such as the Internet, to heed the demands of great corporations. Large-scale networks are
characterized by the great space distribution, with an open feature, integrating significant amounts of
computational resources designated by its heterogeneity. A recent concern in relation to these new applications
is the definition of new services that regard the security requirements in large-scale networks. These services
must provide mechanisms that assure the properties of confidentiali ty, integrity and authenticity, in order to
operate correctly, eff icaciously, and safety.

Management of security policies in large-scale systems is a great concern today. However, it presents
several diff iculties, as there is a large number of users, objects and operations, along with the lack of a security
policy enforcement and heterogeneous environments, present in large-scale network [1]. Thus, complexity and
scaling increase the diff iculty of security policy management.

The inherent complexity of distributed object systems cause additional vulnerabili ties, which have to be
countered by the security architecture. Among these vulnerabili ties, the access control on very large systems is
problematic, since distributed object systems can scale without limit, and new components are constantly being
added, deleted and modified in these environments. In geographically large systems there usually are many
different security policy domains that diff icult their administration.

Many of these distributed applications follow the object-oriented paradigm and consider CORBA
(Common Object Request Broker Architecture) the best alternative for adjusting to open systems requirements.
As result of this, the OMG introduced, after some years of work, the specifications of the CORBA Security
Service (CORBASec) [2], which, if implemented and managed properly, can provide a high level of security
for information and applications in large-scale environments. The CORBASec specifications, which still must
pass for some extensions (and updates), define a useful set of service interfaces and facili ties for
implementation of safety applications in heterogeneous distributed systems.

According to the CORBASec specifications, when an object is created in a distributed system, and made
visible via CORBA, it automatically becomes a member of one or more security domains. For each security
domain, a set of policies is defined, which define a set of rights (permissions) for invocation of the operations

* Doctoral student (CAPES scholarship holder) of Electrical Engineering at UFSC.

on objects of the security domain. However, a detailed analysis of the CORBASec specifications, shows that it
still l acks procedures for managing domain members and do not define procedures for including and removing
security polices, which are essential for these new applications in large-scale networks [2, 3, 4].

The PoliCap policy service, proposed in this paper, aims to provide a policy object management service
centralized in a domain of distributed object applications. Our proposals meet the need identif ied in CORBAsec
related to policy object management and were developed in order to act in the model of the JaCoWeb project
[5].

The JaCoWeb authorization scheme (http://www.lcmi.ufsc.br/jacoweb/) now being developed in our
laboratories, corresponds to an access control structure based on two levels of control: a global and a local
level, in the application object hosts. PoliCap establishes the first level of verification, at binding time. The
second access control level based on capabili ty mechanisms is carried through in application execution time,
reflecting the PoliCap policies, allowing verif ications on both sides – on the client and server sides – in method
invocations. The capabili ty mechanism is set up using abstractions of CORBA itself. This authorization
scheme is based on CORBAsec specifications, also integrating aspects of Java and Web security models.

Initially, the paper presents the security model of the CORBA standard in section 2. In section 3, the
policy service proposal and the authorization scheme considered are described. Implementation results are
shown in section 4 and the prototype evaluation developed is made in section 5 according to the Common
Criteria of Security. Section 6 presents some conclusions and related work.

2 CORBAsec – CORBA SECURITY MODEL

The OMG wrote a document defining the main directions for distributed object security [2, 4]. The
security model described in this document establishes some procedures involving the authentication and the
verification of the authorization in the invocation of a remote method, the security of the communication among
objects, in addition to aspects involving procedures for delegating rights, non-repudiation, auditing and security
management.

The CORBA security model relates objects and components on four levels of a system: the application
level with the application objects; the middleware level formed by service objects (COSS: Common Object
Services Specification), ORB services and the ORB core (all on the level of middleware CORBA); the security
technology level composed of the underlying security services; and finally, the basic protection level formed by
a combination of operating systems and hardware functionali ties. Figure 2 ill ustrates the levels and main
components of CORBAsec in the context of JaCoWeb project. The application applet and server represent the
application level. ORB services and service objects are buil t on the ORB core and extend the basic functions
with additional quali ties or controls, facili tating the distributed object implementation. A combination of ORB
services and COSS services is used on the middleware level, to implement the CORBAsec. The underlying
security technology defines algorithms and protocols used in implementing some CORBAsec service objects.

2.1 CORBAsec service objects

PrincipalAuthenticator, Credential, DomainAccessPolicy, RequiredRights, AccessDecision,
SecurityManager, PolicyCurrent, Current, Vault and SecurityContext, introduced in CORBA specifications,
constitute the COSS service objects that implement the security controls of a method invocation.

The PrincipalAuthenticator object implements the principal authentication service in CORBA with the
chief aim of acquiring the principal credentials. A credential (Credential object) has the privileges of a
principal necessary to allow it access to system objects during a session. After acquiring credentials, the
principal and objects that act on its behalf as clients can begin the invocations to server objects.

The authorization controls of the model allow the security policies defined to be verified on two levels:
on the middleware level using service objects during a method invocation and, therefore, transparently to the
application; and on the application level, which is aware of the security services of the environment. In this
work we restrict ourselves to the transparent authorization controls of security-unaware applications.

In CORBAsec, the security policies are described in the form of security attributes of the system
resources (control attributes) and of the principals (privilege attributes). The DomainAccessPolicy object
represents the access interface to a discretionary authorization policy, granting to a set of principals a specified
set of rights to perform operations on all objects in the domain [6]. The representation of a particular access
policy is defined in table 1.

Privilege Attribute Delegation State Rights Granted
Role:bank_manager Initi ator Corba: gs--
Role:bank_manager Delegate Corba: g---
Role:bank_teller Initi ator Corba: g--u

Table 1. DomainAccessPolicy object.

To simpli fy administration, DomainAccessPolicy aggregates principals for access control by using their
privilege attributes as subject entries. Some types of grouping are group and role. There is the possibili ty of
allowing different rights to be granted to a subject depending on whether the principal initiates an invocation
(initiator) or is participating in a delegation chain of tasks (delegate). Thus, the subject in the traditional sense
of an access control matrix is a combination of a privilege attribute and a delegation state [6]. To cope with
different needs to express authorization, rights are classified into sets of rights types named rights families.
CORBAsec defines only the Corba family that contains four types of rights: g (get), s (set), m (manage) and u
(use), although it allows a free definition of other rights famili es.

An access policy grants rights to privilege attributes according to its delegation state. In contrast, a
RequiredRights object determines that for the invocation of each operation in the interface of a secure object,
some rights are necessary or required (control attributes). An example of RequiredRights object is shown in
Table 2. This table defines the rights required to gain access to each specific operation of an object. There is
also a rights combinator that makes it possible to specify whether a principal needs all the rights in an
operation’s required rights entry to execute that operation or whether it is suff icient to match any right within
the entry. Required rights are assigned to interfaces and not to instances (all i nstances of an interface will
always have the same required rights).

Required Rights Rights Combinator Operation Interface
Corba:g--- All See_Balance Savings_Account
Corba:gs-- Any Deposit Savings_Account
Corba:g--u All Deposit Checking_Account

Table 2. RequiredRights object for Savings_Account and Checking_Account interfaces.

All access decisions of object invocations are made through a service object interface known as
AccessDecision, which determines whether or not an operation to be executed by a specified target object is
allowed. The access decisions rely on privilege and control attributes provided by DomainAccessPolicy and
RequiredRights respectively. For example, the policy defined in table 1 grants a principal bank_teller, in
delegation state Initiator, all required rights – g and u – to execute the operation Deposit of the
Checking_Account interface.

Crucial objects for understanding the dynamic aspects of CORBAsec are the session objects. All
security service objects (COSS) are accessed through session objects SecurityManager, PolicyCurrent and
Current (figure 2), that hold information about the current security context related to the process (capsule
specific) or to the thread of execution (thread specific) respectively [2, 7]. The SecurityManager object
mantains state information associated with the ORB instance - for example, it keeps references to
RequiredRights and AccessDecision objects, that are used during an invocation. State information associated
with policy objects of the current execution context are kept in the PolicyCurrent object. The Current object,
on the server side, keeps the credentials that are sent by the client during the establishment of a association.

The Vault and SecurityContext objects participate in establishing an secure association. A secure

association is defined between client and server objects when there is trust between the entities by means of
authentication. Usually, Vault object creates credentials on behalf of PrincipalAuthenticator object, according
to the underlying security technology used in authentication. Moreover, Vault object is responsible for creating
the security context objects named SecurityContext, on both client and server sides in an association, which
keeps information about the security context used to protect messages, providing integrity and/or
confidentiality.

2.2 Interceptors

In CORBA security model specifications, interceptors implement ORB services. Each COSS service
related to security is associated with an interceptor, whose purpose is to cause the transparent deviation of a
method invocation, activating a corresponding service.

In a CORBA security model, two interceptors are designated that act while a method is being requested
(figure 2): the Access Control Interceptor that on higher level causes a deviation to carry through the access
control in the call and, the Secure Invocation Interceptor that makes a lower-level interception in order to
establish a secure association and provide integrity and confidentiality properties in the corresponding
invocation exchanges.

These interceptors defined in CORBAsec are created during the binding process between two
application objects that are to communicate and are associated with different functionalities at various
moments of a method invocation (in both sides).

In binding time, the access control interceptor is responsible for creating the AccessDecision object,
updating its reference in the SecurityManager object. The AccessDecision object, in turn, in binding time, is
responsible for making domain policy objects (DomainAccessPolicy) available. This occurs as a consequence
of the get_domain_policy operation execution of the domain manager – resulting in the insertion of the
DomainAccessPolicy reference in PolicyCurrent object. The AccessDecision also locates the RequiredRights
object of the environment inserting its reference in the SecurityManager object.

In access decision time, the access control interceptor invokes the access_allowed operation of the
AccessDecision object. The access_allowed operation is responsible for allowing or disallowing the invocation,
obtaining the rights granted by the DomainAccessPolicy object, and comparing these rights with the required
rights, obtained from RequiredRights object, to execute the operation specified.

The secure invocation interceptor is responsible, at bind time, for the establishment of secure
association between the client and the server. At bind time, this low-level interceptor activates the Vault
service object in order to create a SecurityContext object of the secure association that must be established
between the client and the server objects. This SecurityContext object provides the security context information
and is used, in message protection time, by secure invocation interceptor to maintain integrity and/or
confidentiality.

2.3 Security Technologies

The service objects in the CORBA security model isolate applications and the ORB from the security
technology (as in figure 2), which consists of an underlying layer that implement some functionality of related
security service objects. The security technology includes services such as authentication, secure association
(key distribution, certificates, encryption and decryption), and others. According to the CORBAsec
specifications, technologies that may be used to provide these services are [1]: SPKM; Kerberos; CSI-ECMA
(based on SESAME and ECMA GSS-API) and SSL (Secure Socket Layer)[2].

 CORBAsec was initially developed for static applications in restricted environments and cannot be
easily adapted to new requirements and trust relationships of Internet-based applications, for example because
the code base of CORBAsec is too big, and because firewalls block messages passed between objects. The
OMG firewall draft [8] and the integration of SSL into CORBA are first attempts to bring CORBAsec to the
Internet [9].

Among the various distributed system technologies available, SSL [10] stands out for being a
cryptographic protocol widely used in Internet applications. SSL is an adequate general-purpose protocol for
connection-protection in distributed systems, and for assuring authenticity, privacy and integrity in
communications through TCP/IP connections. The SSL protocol was chosen as the basic security mechanism
for this work, firstly for having been inserted in CORBAsec specification and secondly because it is standard
of fact to Internet-based applications.

2.4 CORBA Security Consideration Points

Figure 1 shows the seven points of attacks in the CORBAsec environment [11]. The threats and security
mechanisms that can prevent each one of these threats are shown in table 3.

Principal

CLIENT
OBJECT

IMPLEMENTATION

STUB SKELETON

ORB ORB

TCP/IP Network

IDL Interface

1

72

3 6

4 4

5

Figure 1. CORBA Security Consideration Points.

Other threats are:

− Bypass of Security Controls

− Lack or loss of accountability

− Misconfiguration of the system

− Vulnerabilities with no

countermeasures

Attack Points Threats Security Mechanisms
1 • User impersonation

• User exceeding assigned authorization
• User Identification
• User Authentication and
• User Authorization

2 • Undesired use of an object implementation
• Request/Response repudiation
• Disclosure of data

• Application-layer access control
• Non repudiation
• Security audit logging
• Data protection

3 • Unprotected security-unaware applications
• Unwanted revelation of client machine existence

• Client-side object invocation access control
• Data protection

4 • Object masquerade
• Client masquerade
• IOR tampering
• Disclosure of request contents
• Modification/destruction of request contents

• Authentication between client and object
• Encryption between client and object
• Delegation controls
• Security audit logging

5 • Network eavesdropping
• Message tampering
• Inability to cross network boundaries (e.g., firewalls)

• Transport encryption
• IIOP traversal of firewalls

6 • Unprotected security-unaware applications
• Too many object interfaces and implementations to

manage individually

• Server-side object invocation access control
• Security policy domains

7 • Unauthorized disclosure of specific information to client
• Request/response repudiation
• Protection of data

• Application-layer access control
• Non-repudiation
• Security audit logging
• Data protection

Table 3. The threats in CORBAsec environment and security mechanisms to prevent them.

3 JaCoWeb Security Framework

The JaCoWeb aims to use CORBA security model integrated with Web and Java security models to
compose an authorization scheme for distributed applications in large-scale networks. This scheme is being
developed in order to carry out the implantation of global policies, representing a great challenge, mainly in
large-scale networks, such as the Internet [5].

In this environment, distributed applications are expressed in the form of clients represented by Java
applets, and of application server objects, available via CORBA. The authorization scheme defines two
security control levels: the global level and the local level. These two levels are actualized in COSS service
objects and in security nodes and TCB' s (Trusted Computing Bases), respectively. The service objects
described in section 2.1, concentrate functions of identification and authentication of users and authorization
controls in the access of visible objects on the global level. The security nodes and TCB' s, present in each
machine of the system, validate the ways of access to the local resources.

The implementation of an authorization project does not depend only on access control. Other internal
controls are also important for the implementation of authorization policies, such as cryptographic controls,
authentication and identification services etc. In this work, to implement these cryptographic controls, the SSL
was used as the underlying technology. However, the CORBAsec specifications do not present a clear insight
(regarding concepts and needs) on the integration of ORB and security technologies without compromising
interoperability. In this article, the JaCoWeb framework, integrating ORB and SSL, based on the service
objects approach, is also presented. It will not alter ORB' s original characteristics and functionality, thus
allowing ORB+SSL to perform both conventional and secure connections. Figure 2 shows the main
components that implement the JaCoWeb framework.

The PoliCap is a policy service for distributed objects whose invocations are ruled by the CORBAsec
model. PoliCap was designed within the context of JaCoWeb project and corresponds to a first level of access
control verification in the authorization scheme. The second access control level corresponds to a capability
mechanism. The emphasized boxes are the main contribution of our work, considering the original CORBAsec
model and are an evolution of our previous work [5].

The application applet (figure 2), after its authentication, interacts with the CORBA name service
(CosNaming) [12], to obtain, from the name of the object, the reference or IOR of the server application
object. This must allow the binding with the server object. The calls executed by this application applet on a
remote application server are subjected to two levels of access control. On the higher level, the verification
occurs in binding time, and once the requisition is validated, the PoliCap policy service provides versions of
the DomainAccessPolicy policy objects and of the RequiredRights object that are used locally in the validation
of access requests to the application objects. From this high level verification, capabilities are generated which
are validated locally in the remote servers, completing, in this way, the second access control level defined in
our scheme.

To construct these two levels of access control, we use the two defined interception levels on CORBA
security model and its service objects. The high level interception, on the client side, deviates to the
AccessDecision service object that obtains, in binding time, from the PoliCap policy service (detailed in
section 3.2), the local objects (DomainAccessPolicy and RequiredRights) to be used in verifications of
capabilities mechanism in access decision time. On the server side of the application, this high-level
interception is used to validate the capability received with the invocation request.

The representation of privileges in the form of capabilities in the authorization scheme is detailed in
section 3.3. Besides the controls cited above, the cryptographic controls are also necessary in the scheme and
are defined in the CORBA service object form that uses the security technology resident under the ORB
(detailed in section 3.1).

Access Control
Interceptor

Local
Required

Rights

Local
Dom ain
Access
Policy

Client AccessDecision

Access Control
Interceptor

Server
AccessDecision

Secure
Invocation
Interceptor

Secure
Invocation
Interceptor

Vault

Client
Security
Context

create

in bind-time
to set up a
secure
association

Vault

Server
Security
Context

create

CO SS Services CO SS ServicesORB
Services

ORB
Services

ORB Core

Security
Manager

Current
Policy

Current

Session Objects
Application

Server

Required
Rights

Dom ain
Access
Policy

PoliCap

Application
Applet

 CORBA Name
Service (CosNaming)

Service
Register

Service IOR

Security
Manager

Current
Policy

Current

Session Objects

Local
Authorization

Objects

in bind-time
to set up a
secure
association

per message
to protect
message

per message
to protect
message

Object Request Broker

Security Technology

Basic Protection and Communications

Figure 2. JaCoWeb Authorization Scheme.

3.1 ORB +SSL Integration

During the development of CORBAsec, SESAME [13] was the most powerful security mechanism
available at that time, therefore the basic concepts of SESAME are found in CORBAsec. Unexpectedly the
weaker SSL became more widely used than SESAME. Consequently, CORBAsec on top of SSL is not as
powerful as CORBAsec on SESAME, and many features simply no longer match [9].

Two ways of integrating SSL technology and ORB were discussed during the project phase, both
according to the CORBAsec specification [2]. In this work, we attempted to define a solution that would allow
the ORB to deal with both secure and conventional connections, thus maintaining the ORB' s original
functionality. The first alternative consists in implementing the entire SSL specifications as a part of the
security service. In this case, the model is completely respected, and security concepts are created and
maintained by the security service. In other words, the message interceptor has complete control over the
handshake process. The major problem with this implementation is its high cost, since it would be necessary to
restructure an available SSL code, in order to have an API to be accessed by the Vault object. The other
solution consists in using an SSL package with available executable code, and model it according to the needs.
In this case, however, some of the functionality of the message interceptor in controlling the handshake process
is lost. The second alternative was chosen, since, not having to implement the entire SSL specifications, the
authors could pay special attention to other CORBA security model services.

The framework for integrating ORB/CORBA and SSL support consists in encapsulating an available
SSL package in the form of a service object, such as the COSS objects.

3.2 PoliCap

The PoliCap policy service, proposed in this work, sets out to provide the central management of policy
objects in a domain of distributed object applications, filling in the existing gap of policy object management in
CORBAsec specifications. According to these specifications, discretionary security policies are made available
through DomainAccessPolicy and RequiredRights objects. Administrative applications are responsible for
defining these objects and operational applications use them to carry out the access control [2].

According to CORBA security service, when an object is created, it automatically becomes a member of
one or more domains (policy domains), being subjected to the security policies of the domain. However, the
present specification [2] does not cover procedures either to manage domain members (include, remove, etc) or
to manage security policy objects. The security policy domains are formed by a collection of object references
that have a set of common security policies and are managed by a domain manager object [3]. This manager
has the following functions [14]: to provide mechanisms for creating and accessing policy objects of the
domain and to keep the domain structures updated. However, interfaces to add new policies (new policy
objects) to domains or to modify domain membership are still not standardized. The initial idea to fill in this
gap is being proposed in the Security Domain Membership Management Service [3], where an extension of the
DomainManager interface is proposed, with administrative functions that would serve to define and remove
policy objects of a domain.

Even with these interfaces not yet standardized in CORBAsec, we felt the need to introduce this policy
object management service in the authorization scheme proposed. The service developed – the PoliCap – is
based on initial documents (drafts) released by OMG [3] and surely will not be too far from the specifications
that are to be standardized shortly. The PoliCap (figure 2) is a service that offers operations, both for
administrative and operational functions concerning policy objects, playing the roles of domain manager for
policy objects (DomainAccessPolicy) and of rights manager for required rights objects (RequiredRights) in
our domain. The authorization scheme proposed (JaCoWeb) initially was defined as consisting of a unique
domain and the policy service acts as a central service for managing policies and rights .

Administrative applications interact with PoliCap to manage policies and required rights and,
operational applications or COSS objects, interact with the policy service to obtain, in binding time, policies
and required rights necessary for the controls over a method invocation in execution time. The idea is that, in
binding time, the policy service (domain manager) is to provide the DomainAccessPolicy and RequiredRights
objects that act on an invocation. Figure 3 describes the PoliCap interface.

The operation set_policy of the DomainAccessPolicyAdmin interface associates the authorization policy
defined and the corresponding policy object with the policy domain. The operation delete_policy of the
DomainAccessPolicyAdmin interface removes the authorization policy from the domain.

The operation get_local_domain_policy of the DomainAccessPolicyAdmin interface sets up a
DomainAccessPolicy object with the effective rights (GrantedRights) in the authorization policy related to the
privilege attribute and its delegation states (subject). In fact, this operation sets up locally, in binding time, a
version of the DomainAccessPolicy, essential for the validation (in access decision time) of several operations
present in the same interface. For example, getting the DomainAccessPolicy object with the information of
table 1 - the global object defined in the domain - to execute the operation: localDomainAccessPolicy =

get_local_domain_policy(SecClientInvocationAccessDiscretionary,'role,authority,bank_teller', initiator), the return of this operation is
the DomainAccessPolicy object – a version shown in table 4 – that has to act locally in the AccessDecision
object of an invocation.

Figure 3. IDL interface of PoliCap.

Privilege Attribute Delegation State Granted Rights
Role: bank_teller Initi ator corba: g--u

Table 4. DomainAccessPolicy object returned by the get_local_domain_policy operation.

The operation get_local_required_rights of the RequiredRightsAdmin interface also sets up a local
version, with the required rights present in the global RequiredRights (centralized) object of the domain policy
service. This version of the RequiredRights object, set up locally in binding time, contains all rows related to
an interface, considering that a client object can execute several operations defined in these application object
interface, for example, having the RequiredRights object (global) in table 2, executing the operation:
localRequiredRights = get_local_required_rights (Savings_Account), the returned value of this operation is the
RequiredRights object (local) shown in table 5.

Required Rights Rights Combinator Operation Interface
Corba:g--- All See_Balance Savings_Account
Corba:gs-- Any Deposit Savings_Account

Table 5. RequiredRights object returned by get_local_required_rights operation.

3.3 Capabilities using CORBAsec

In the CORBAsec model, access control decisions can be carried out both on the client side and on the
server side. The access control in the target object side is defined in CORBAsec specifications as normal. But
it is also made clear that, when access control verifications are made on the client side, access denials to the
server object determine a network traff ic decrease. In some ORB’s, system integrity considerations can cause
the trust in the access control made on the client side alone, to become undesirable [2].

In JaCoWeb, the aim is to control the access to the visible distributed objects via CORBA, assuming
that, on the first level, the verifications are made by the client object AccessDecision in partnership with the
PoliCap service. The execution of the operations get_local_domain_policy and get_local_required_rights
from the interception of access control in binding time, sets up the local objects DomainAccessPolicy and
RequiredRights. These objects are part of the structure necessary in the client object AccessDecision to
generate capabilities to be verified in the server object AccessDecision. High-level verification is made only
once, during the binding of the client and server objects, on the first request. The requests of subsequent
operations on the server interface will be validated only by the capabili ty mechanism. The two access control
levels reduce the network traff ic in the case of access denial, and at the same time the security of the system
does not depend exclusively on the client’s integrity.

The capabili ty mechanism is not sponsored by CORBAsec, although there is the suggestion regarding the

module PoliCap {
#include "SecurityLevel2.idl"
 interface DomainAccessPolicyAdmin:CORBA::DomainManager {

const CORBA::PolicyType SecClientInvocationAccessDiscretionary = 100;
void set_policy (in CORBA::PolicyType policyType,

in CORBA::Policy policy);
void delete_policy (in CORBA::PolicyType policyType);
CORBA::Policy get_local_domain_policy (in CORBA::PolicyType policyType,

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state); };

interface RequiredRightsAdmin : SecurityLevel2::RequiredRights {
SecurityLevel2::RequiredRights get_local_required_rights (

in CORBA::Identifier target_interface_name); };
};

use of capabiliti es in [2], from the abstractions created in the model. It cannot be stated that a universal
definition of the content of a capabilit y exists. Traditionally, a capabilit y must contain the reference of an
object and a set of rights. Capabilit y defines the rights of a holder over the object in question. In [15], a classic
capabilit y is represented as the triple (IdObject, Rights, Random) containing the name of the object, a set of
access rights and a random number, respectively. The number random prevents falsif ication, normally resulting
from a one-way f function, applied over the identifier of the object and the rights over that object (Random =
f(IdObject, Rights))1. When a request arrives on the server side, with its respective capabilit y, the one-way f
function is executed again and its result is checked with the random number sent to detect possible
modifications (tampering) in the request message. This random number plays the role of a nonce, and also
assures the ‘ freshness’ property [17] of the client request.

Just as it is impossible to falsify a capabilit y, it must also be impossible re-utili ze it or pass it on to third
parties. For this reason, normally, in addition to the random number, a client identification field is included in a
capabilit y for the one who requested the operation. These capabiliti es are protected by ciphering mechanisms
when transmitted on the communication support [15].

In the JaCoWeb scheme, the capabiliti es are created dynamically at each client request for operations on
the server. The Request class defined in the ORBA specifications is used in the composition of a capabilit y in
our scheme. A capabilit y in JaCoWeb contains in its fields: the IOR (Interoperable Object reference) of the
server object, representing the identity of the entity over which a capabilit y provides the access rights; method
requested, representing the right; identifier of the sender/principal, representing the identity of the entity
requesting the operation; and a nonce that assures the ‘ freshness’ property of the request. In a Request for a
usual invocation in CORBA, the IOR of the server object and the identification of the method requested are
already present. The other two capabilit y fields, identifier of sender of request and a nonce field, must be
inserted in Request during the high level interception, in the object AccessDecision on the client side. The value
of nonce is calculated as follows: nonce = f (identifier of sender, method requested, server IOR, Random); where f corresponds
to the SHA one-way hash function, present in the java.security package [18]. The value Random is a random
number calculated by means of the java.security.SecureRandom class of the Cryptographic API of Java JDK
1.2 [18]. This random value is a redundancy that guarantees the freshness property of the Request message,
providing protection against replay attacks [15]. The values of Random are also inserted into Request
messages and sent to the server functioning as a message counter (Random, Random+1, ...). The identifier of
the sender (or the one who requested the operation) is obtained from the client credential. After being included
to generate the capabilit y, the Request is represented as in figure 4.

New Request with the capabilit y (IOR, method, sender, nonce)
Old Request Added fields

Server IOR Requested method ... Identifier of Sender Nonce Random

Figure 4. Request structure with added fields to implement the capabilit y.

At the time of access decision, the access control interceptor on the server side verifies the capabilit y.
In this way, capabiliti es can be buil t for each of a client’s invocations in CORBAsec. These capabiliti es are
utili zed to form a second access control level in the JaCoWeb authorization scheme.

4 JaCoWeb IMPLEMENTATION

 A prototype – including the PoliCap policy service, the capabilit y mechanism and SSL as the underlying
technology - was developed in our laboratories (figure 5). An application example consisting of a bank system
composed of a CORBA server object and a Java client applet was constructed to test the implementation of
this prototype. The CORBA server object was developed with the tool JacORB 1.0 [12], a free Java ORB, and

1 There are several practical algorithms that implement one-way hash functions. The algorithms of MD4, MD5 e SHA are an
example of these functions [16].

the client applet was implemented with the tool JDK 1.2.1. Netscape browser 4.5 was also used as an
environment for the interaction between the client and the server. The aim of this implementation was to effect
a discretionary policy based on CORBAsec structures [33].

 This version of PoliCap was concerned with fully developing, first of all, the whole dynamic aspect of
the CORBAsec service objects, which is no trivial task, inasmuch as the specification utilized is extremely
broad [2] and the dynamism of an application that uses CORBAsec is not described in the literature. For this
reason, this initial version of PoliCap defines only the local objects DomainAccessPolicy and RequiredRights
defined in a static form in the binding time that resides in the client machine. Figure 5 synthesizes the
functionalities implemented in the prototype.

 Among the objects implemented in this prototype (besides the signed applet and application server) are
the objects ClientAccessDecision, ServerAccessDecision, DomainAccessPolicy, RequiredRights,
SecurityManager and PolicyCurrent. These objects use other CORBA (COSS) services, such as name service.
The prototype is limited to a single name domain. The object PrincipalAuthenticator, responsible for the
authentication and creation of the object Credential, was not implemented in this prototype. The prototype
credentials are created statically and have security attributes that identify the client rights in the system and the
security mechanism that is being utilized (SSL [10], in our case).

 The entities that are subject to security controls in our system are the principals (with their privilege
attributes) and the server application objects (with their control attributes). The experiment implements
discretionary policies by verifying access control on the client side.

CORBA Name Service

Application
Server

Vault

Security
Context

Server
Access

Decision

Security
Context

Vault

Server IOR

Secure
Invocation
Interceptor

 URL
Load

Application
Applet

Secure
Invocation
Interceptor

Access
Control

Interceptor

Domain
AccessPolicy

Required
Rights

Client
Access

Decision

Access
Control

Interceptor

get_
effective_

rights

get_
required_

rights

SSL (Secure Socket Layer) - iSaSiLk

ORB CORE

Service Registration

Figure 5. Structure of Prototype Implemented.

The implementation uses as deviation
mechanisms the interceptors present in
JacORB. In the prototype, the access control
interceptor in the client machine invokes the
object ClientAccessDecision, that is responsible
for the validation of the access requests for the
methods of server object, interacting with the
local objects DomainAccessPolicy e
RequiredRights. The method access_allowed
(figure 6) of object ClientAccessDecision
obtains the required rights invoking the method
get_required_rights of the object
RequiredRights and obtains the granted rights
by the DomainAccessPolicy invoking the
method get_effective_rights. It compares the
required rights and the granted rights to the
privilege attribute to decide whether or not the
method to be invoked can be executed.

 From this high level verification, the object ClientAccessDecision in cooperation with the access control
interceptor (that has access to the Request CORBA structure) generates capabilities, as defined in section 3.3.
Using API cryptographic methods of JDK 1.2, in the package IAIK-JCE and used in the prototype for
executing ciphering tasks [19], the values of nonce and random are generated. The sender identifier is
obtained from the static credential. Once a capability has been formed, its fields are inserted in the Request
CORBA. The object ServerAccessDecision verifies capabilities. In the prototype, the package iSaSiLk v.5.2
that implements the SSL v3 in Java [19] was utilized. All negotiation and use of SSL is executed transparently

by iSaSiLk [19]. The iSaSiLk package was chosen because it presented all the functionality required for the
proposed framework.

The implementation of objects defined in PoliCap will cause our model to take on its original format
once again, as shown in figure 2, where local objects are obtained from global objects, thus performing the first
global level of the authorization scheme JaCoWeb.

Figure 6. Access_allowed for the ClientAccessDecision object.

5 PROTOTYPE EVALUATION USING SECURITY COMMON CRITERIA

 The Common Criteria (Common Criteria – CC) for the evaluation of security are the result of the effort
of various international organizations to develop single security evaluation criteria for systems and products of
information technologies in distributed systems (http://www.commoncriteria.org/). These criteria are derived
from previous standards, such as TCSEC, ITSEC, CTCPEC and have the collaboration of Canada, France,
Germany, Holland, England and the United States. They became standard ISO 15408 in 1999 [20, 21, 22].

The industry, government and academic communities are interested in using these security evaluation
criteria (http://niap.nist.gov/cc-scheme/iccc/trackc.html), since there is a growing demand for security
assurance of security products and systems. Some products like Microsoft Windows 2000 and Oracle
Databases are using CC to evaluate their products. A list of other CC evaluated products and the names of
companies involved are described in http://commoncriteria.org/epl/ProductType/all.html. OMG itself [2]
suggests using CC as en evaluation tool for distributed objects applications that are based on CORBAsec.
OMG is also working with CC in mind, as can be seen at the DOCsec 2000 proceedings
(http://cgi.omg.org/meetings/docsec/presentations.html).

The CC [20, 21, 22] define the way to express the security requisites of a system or product, define
distinct categories of functional and assurance requirements. Functional requirements define the desired
security behavior. Assurance requirements are the basis for gaining the confidence that the means of security
requested are effectively and correctly implemented. The confidence in the security of an information
technology can be obtained through actions performed during the development, evaluation and operation
processes.

Some important concepts of this criterion include TOE, PP and ST. The object of evaluation (TOE –
Target of Evaluation) is the part of the product or system that is subject to evaluation. In our case, the TOE to

 // Access_allowed method of the ClientAccessDecision object

 public boolean access_allowed(Org.omg.SecurityLevel2.Credentials[] cred_list, Org.omg.CORBA.Object target,
String operation_name, String target_interface_name) {

 boolean b = false;
 // Obtains required rights – invokes get_required_rights
 Org.omg.Security.RightsListHolder rightslist = new Org.omg.Security.RightsListHolder();
 Org.omg.Security.RightsCombinatorHolder combinator = new Org.omg.Security.RightsCombinatorHolder();
 rights.get_required_rights((Org.omg.CORBA.Object) null, operation_name, "sistemaBancario.idl", rightslist,
combinator);

 //extensiblefamily of JaCoWeb project – SSLCredentials class
 Org.omg.Security.ExtensibleFamily extFamily = new Org.omg.Security.ExtensibleFamily((short) 0, (short) 1);
 Org.omg.Security.AttributeType[] attributes = new Org.omg.Security.AttributeType[1];
 attributes[0] = new Org.omg.Security.AttributeType(extFamily, 5);

 // Obtains granted rights of the DomainAccessPolicy object – invokes get_effective_rights
 granted = access.get_effective_rights(cred_list[0].get_attributes(attributes), extFamily);
 for (int i = 0; i < access.getCount(); i++) { // Compares required rights with granted rights to grant or deny access
 if (granted[i] != null) {
 if ((granted[i].right).equals(rightslist.value[0].right)) {
 i++; b = true; break; }
 } } return b;}

be considered is the prototype developed. The protection profile (PP) is a definition of sets of requisites and
goals, regardless of the implementation, that allow the consumers and developers to create standardized sets of
security requisites according to their needs. In the case of the evaluation of this prototype, a registered PP,
designated as Controlled Access Protection Profile (CAPP) [24], was utilized and accepted as standard.
Security threats to TOE, goals, requisites and the specifications for functional and assurance requirements
offered by that TOE to fulfill the specific requisites, altogether, constitute the main entrances to the Security
Target (ST). The ST can declare the conformity to one or more of the PPs and form the basis for an
evaluation.

In this way, the CC are used to develop PP’s and ST’s, defining what a product/system must do and
also, to evaluate security features of products/systems against known and understood requirements in order to
gain assurance that the implementation of the TOE is correct and that the TOE satisfies defined objectives.

The CC provides a security guarantee of a TOE using the concept of active investigation, which is an
evaluation of a system or an information technology product in order to determine its security properties [21].
Following the example of previous criteria, CC also has a set of security guarantee levels named EALs -
Evaluation Assurance Levels. There are seven levels of guarantee: EAL1 to EAL7.

There are two stages for the evaluation of a TOE: the ST evaluation and the corresponding TOE
evaluation. To this end, an ST known as JaCoWeb-ST, was developed for the prototype and some of its
components are here described. The evaluated2 ST operates in conformity with [24] reaching the level EAL3 of
CC.

EAL3 provides a moderate level of assurance, meaning that the prototype is methodically tested and
checked. The security functions are analyzed using a functional specification, guidance documentation, and the
high-level design of the TOE to understand the security behavior. The analysis is supported by independent
testing of a subset of the TOE security functions, evidence of developer testing based on the functional
specification and the high level design, selective confirmation of the developer test results, analysis of strengths
of the functions, and evidence of a developer search for obvious vulnerabilities (e.g. those in the public
domain). Further assurance is gained through the use of development environment controls, TOE configuration
management, and evidence of secure delivery procedures [23].

5.1 JaCoWeb-ST

The JaCoWeb-ST, as defined for an ST, is composed of a description of the TOE, by the threats to which
the TOE is subject, by security policies, security goals that determine the functional and assurance requisites
that must exist in the system and a declaration of conformity to some PP available and certified (CAPP).

The description of TOE has already been presented in section 4. The threats that the prototype can
expect to prevent are designated as follows: T.ACCESS, where a user obtains access to information or
resources of the system without full authorization, T.CAPTURE, where an invader can modify or obtain
information by listening on the transmission line, T.INTEGRITY, where the integrity of information transmitted
can be affected due to user or transmission errors, T.SECRET, where a user of the prototype, either
intentionally or accidentally, can obtain confidential information from the system without permission and
T.IMPERSON, where an invader can obtain access to information or resources by impersonating an authorized
user of the prototype. Some kinds of threats cannot be contained in the prototype: there is no way of holding
any user responsible for his/her acts, since there are no auditing services.

Among the existing types of security policies in the prototype is the discretionary policy designated -
P.DAC that seeks to prevent the above-mentioned threats from taking place. The rights of access to resources
provided by the prototype are available through the objects DomainAccessPolicy and RequiredRights.

2 JaCoWeb Security Group conducted an informal evaluation of the ST against the ASE (Security Target Evaluation class)
requirements presented in part 3 of the CC. Although a working draft, the ST was deemed to be in a reasonable state to allow the
evaluation to proceed. NSA (http://www.radium.ncsc.mil/tpep) is responsible for formally evaluating the ST.

The security goals are determined so as to establish necessary functional requisites for containing the
threats defined for a system and to enforce the established security policy. Among the security goals defined
that are in accordance with CAPP are the following: O.AUTHORIZATION, which establishes that the security
functions of the prototype must be implemented so that only authorized users may have access to the system,
O.DISCRETIONARY_ACCESS, which establishes that the security functions of the prototype must provide
permission for access to the resources and information based on the attributes of subject privilege and
O.MANAGE, which establishes that the prototype must support the authorized administrator of the system.

 Each security goal is implemented by a set of functional and assurance requisites defined for the
prototype. As the prototype is being evaluated in conformity with [24], the same set of functional requisites and
of assurance requisites can be assumed. Functional requirements define aspects such as audit, user data
protection, identification and authentication, security management and protection of TOE security functions of
the JaCoWeb prototype. Assurance requirements, in turn, define the following aspects: configuration
management aspects, delivery and operation components, development specifications that describe the
implementation, guidance documents necessary for correct administration and use of the prototype, life cycle
support (which defines physical, procedural, personnel, and other security measures that are necessary to
protect the confidentiality and integrity of the TOE design and implementation in its development environment),
security testing (that involves depth, coverage, functional and independent tests results) and vulnerability
assessment.

As an example, the goal O.DISCRETIONARY_ACCESS is implemented by the following security
requisites: FDP_ACC.1 (discretionary access control policy, implemented by the objects of CORBAsec),
FPD_ACF.1 (access control function implemented by the object ClientAccessDecision), FIA_ATD.1
(definition of user attributes made statically in the prototype), FIA_USB.1 (link between user and principal
established in case the user is manager or client of the bank server of the prototype), FMT_MSA.1
(management of object security attributes, implemented by the object RequiredRights of CORBAsec) and
FMT_MSA.3 (initialization of static attributes, implemented to manage the object policy in the prototype).

 A summary specification of this ST describes the security features of the JaCoWeb prototype. This
prototype has cryptographic support provided by iSaSiLk Toolkit [19], user data protection performed by
discretionary security policy objects of the CORBA security model, identification and authentication of the
mobile code (applet Java) through signed applets, security management performed by the security
administrator of the system and security functions protection by enforcing security in the ORB level.

5.2 JaCoWeb Evaluation Report Results

The TOE evaluation was conducted by following the evaluator actions elements defined by the EAL3
requirements [23] using the evaluated JaCoWeb-ST as the basis. As a result, a Final Evaluation Report was
written in order to document the prototype evaluation. Performing each one of the evaluator action elements,
the JaCoWeb Security team, in conformity with all other requirements defined in [24], concluded that the
prototype is considered a TOE level EAL3, meaning the prototype is methodically tested and checked.

Evaluation evidences performed during the JaCoWeb evaluation related to the tests results and to the
vulnerability analysis, some of the key points of the CC evaluation methodology [25, 26], are described here
and are also available in Portuguese in the Internet links references.

5.2.1 Tests results

The purpose of this activity is to determine whether the TOE behaves as specified in the design
documentation and in accordance with the TOE security functional requirements specified in the ST. This is
accomplished by determining that the developer has tested the security functions against its functional
specification and high-level design, gaining confidence in those test results by performing a sample of the
developer’s tests, and by independently testing a subset of the security functions. The tests activity at EAL3
contains sub-activities related to the following components: ATE_COV.2 (evaluation of coverage),

ATE_DPT.1 (evaluation of depth), ATE_FUN.1 (evaluation of functional tests) and ATE_IND.2
(evaluation of independent testing) [23].

Testing is a dynamic method for verification and validation, where the system to be tested is actually
executed and the behavior of the system is observed [27]. Different levels of testing are often employed. Unit
testing is used for testing a module or a small number of modules. Its objective is to detect coding errors in
modules. During integration testing, modules are combined into sub-systems, which are then tested. The goal
here is to test the system design. In system testing and acceptance testing, the entire system is tested. The goal
here is to test the system against the requirements, and to test the requirements themselves.

There are two approaches to testing, functional and structural. In functional testing, the internal logic of
the system under testing is not considered and the testcases are decided from the specifications or the
requirements. It is often called “black box testing”. Equivalence class partitioning, boundary value analysis and
cause-effect graphing are examples of methods for selecting testcases for functional testing [27]. Structural
testing is concerned with testing the implementation of the software. The testcases are decided entirely on the
internal logic of the program/module under testing. Although a structural criterion could be specified, the
procedure for selecting testcases is left to the tester. It is often called “coverage testing”. The most common
structural criteria are statement coverage (execution of all system statements) and branch coverage (execution
of logic branches of the system).

Having proper testcases is central to successful testing. Although all the faults in a program cannot be
practically revealed by testing and, due to economic limitations, the goal of testcase selection is to select
testcases such that the maximum possible number of faults is detected by the minimum possible testcases.
Testcases selection is still not a simple mechanical process. Knowledge and creativity of the tester are still
important, despite the availabili ty of tools that select testcases to ensure coverage.

Testing usually starts with the definition of a test plan, which is the basic document guiding the entire
testing of the software. Is specif ies the levels of testing and the units to be tested. For testing different units, the
testcases are specified and then executed.

In order to obtain tests results for the JaCoWeb Security prototype, a test plan was defined
(http://www.lcmi.ufsc.br/~merkle/TestPlan.html). Two types of testing were performed: unit tests and system
tests. The units tested were the application objects (application applet, bank server and name server) and
CORBAsec service objects (AccessDecision, RequiredRights, DomainAccessPolicy and Current). Testcases
are available at http://www.lcmi.ufsc.br/~merkle/TestCases.html.

Unit testing was based on branch coverage and the objective was to cover 95% of the prototype logic
branches. Unit testing was applied for each CORBAsec service object listed above. An UML state diagram
was made for each one of them. A unit test report is available at
http://www.lcmi.ufsc.br/~merkle/UnitTesting.html.

System testing used valid and invalid set of values (equivalence class partitioning), limit boundary
values, special sets of values and cause-effect graphing to define testcases. System testing was applied for the
application applet, the bank server and the CORBAsec service objects dealing with access control and secure
invocation tasks. UML usecases diagrams were designed to describe application objects and UML class
diagrams were used to describe CORBAsec service objects functionali ties. A system test report is available at
http://www.lcmi.ufsc.br/~merkle/SystemTesting.html.

5.2.2 Vulnerability Analysis

The vulnerabili ty analysis of security applications is one of the key points of the CC evaluation
methodology [23]. The purpose of the vulnerabili ty assessment activity is to determine the existence and
exploitabili ty of flaws or weaknesses in the TOE in the intended environment. This determination is based upon
analysis performed by the developer and the evaluator, and is supported by evaluator testing. Vulnerabili ty
analysis is necessary, considering the needs of the current market that demands larger trust in the security of
the products [28].

The vulnerability assessment activity at EAL3 contains sub-activities related to the following
components [23]: AVA_MSU.1 (evaluation of misuse); AVA_SOF.1 (evaluation of strength of TOE
security functions) and AVA_VLA.1 (evaluation of vulnerability analysis). Here we focus on the
AVA_VLA.1 item of the vulnerability analysis.

In order to find obvious vulnerabilities, penetration tests was used [29]. It consists in the use of hacking
tools to attack the systems. The use of those tools was made by members of the JaCoWeb Security project,
with the purpose of verifying the vulnerabilities of the JaCoWeb system.

The configuration used in the vulnerabilities analysis consists of three computers Intel P133 32Mb of a
local network, executing the JaCoWebSecurity package Version 1.0, the Netscape Communicator 4.5 browser
(only in the client computer), Microsoft Windows 95 and FreeBSD 2.2.8 operating systems, the Apache Web
Server 1.3.9, the client application applet, the application server object and CORBA name server. Figure 7
shows the used configuration.

TOE Client
150.162.14.58

TOE Server
150.162.14.31

Internet

CORBA Name Server
150.162.14.41

Application Applet

Netscape Communicator 4.5

JaCoWebSecurity Package
(CORBAsec service objects +

SSL iSaSiLk)

Application Server Object

JaCoWebSecurity Package
(CORBAsec service objects + SSL

iSaSiLk)

NetXRay

Figure 7. Configuration used in the Vulnerability Analysis and Penetration Tests.

For each of the attack points considered in the CORBAsec model (Table 3), the JaCoWeb project
provides at least one security mechanism to prevent the occurrence of those attacks (Table 5). We chose for
accomplishing the penetration tests using analysis tools (sniffers), available in the Internet, to verify if point of
attack number five (the communication net), can disclose any sensitive information. NetXRay was used for the
penetration tests.

NetXRay is a basic sniffer that is able monitor the network traffic, capture of packages and the
generation of spurious packages to be inserted in the network. The demonstration version was used, and for
being demonstrative, it has limitations in the number of packages that can be captured, and also, in the buffer
available to store captured data. This tool won the prize of Product of the Year of 1999 performed by the
Network Magazine and it was the tool of analysts' choice, during research accomplished by PC Week
Magazine. NetXRay is mentioned as one of the tools of contemporary hacking to accomplish penetration tests,
in SANS Institute security symposium in 1999 [29]. More information on the product can be obtained in
http://www.sniffer.com/.

During penetration tests, the three computers showed in Figure 7 were used. The computer with

150.162.14.58 IP address executed the client application applet. The 150.162.14.41 IP address computer
executed the CORBA name server and the 150.162.14.31 IP address computer run the bank server.

Attack Point CORBAsec Security Mechanisms JaCoWeb Security Mechanisms

1
• User Identification
• User Authentication
• User Authorization

• User Identification
• User Authentication
• User Authorization

2

• Application-Layer Access Control
• Non-Repudiation
• Security Audit Logging
• Data Protection

• -----------------------
• -----------------------
• -----------------------
• Data protection

3
• Client-side Object Invocation
• Access Control
• Data Protection

• Client-side Object Invocation
• Access Control
• Data Protection

4

• Authentication Between Client
• and Object
• Encryption Between Client
• and Object
• Delegation Controls
• Security Audit Logging

• Authentication Between Client
• and Object (via SSL)
• Encryption Between Client
• and Object (via SSL)
• -----------------------
• -----------------------

5
• Transport Encryption
• IIOP Traversal of Firewalls

• Transport Encryption
• -----------------------

6
• Server-side Object Invocation Access
• Control
• Security Policy Domains

• Server-side Object Invocation
Access

• Control
• -----------------------

7

• Application-Layer Access Control
• Non-Repudiation
• Security Audit Logging
• Data Protection

• -----------------------
• -----------------------
• -----------------------
• Data Protection

Table 5 – JaCoWeb Security Mechanisms.

For the capture of the packages exchanged between client applet (150.162.14.58) and name server
(150.162.14.41), it is possible to observe in the Figure 8, in the fields of data, that the operation requested to
the name server can be discovered (resolve), and also, what is the name of the server that will be accessed
(banco service). That is possible because to establish the first communication with the name server, the
information is exchanged in clear. The next communication exchanges use SSL for ciphering, as well as all
communication performed between the client applet (150.162.14.58) and the bank server (150.162.14.31),
preventing them from disclosing any type of information.

In Figure 8, it can be seen that the network ports used during communication are revealed easily by the
tool. Having that information, the possibility of using other kind of tool that sends spurious packages for those
ports, causing in that way the service denial, cannot be discarded.

Using the NetXRay tool, we can make the following considerations about JaCoWeb Vulnerabilities:
− There is the possibility of an intruder obtaining and or modifying the method to be executed by the

CORBA name server, in the client' s first request (this is a CosNaming problem and concern);
− The denial of service is impossible of being avoided;
− The audit services implementation would increase security level in the points of attacks 2 and 7

(Figure 1);
− The implementation of security policies domains would increase security level in the point of attack

6 (Figure 1).
In that way we verified some vulnerabilities, not considered obvious, that could be explored for the

accomplishment of an attack in JaCoWeb. In spite of that, we can affirm that those vulnerabilities do not
represent a great risk for the system.

Figure 8. Data captured during Application Applet and CORBA Name Server communication.

6 CONCLUSIONS

The literature presents some studies on security policy management in large-scale environments.
CORBAsec domain management service specification itself [3] is not standardized.

The access control architecture of the project Cherubim [30] was developed using the concept of
capabilities, that carry the access rights of the principal to the server machine where the authorization process
takes place. The project does not utilize the CORBAsec COSS objects, implementing its own policy objects
instead. The ORB utilized is JacORB [12] and the cryptographic services are implemented with Java IAIK
cryptographic API [19].

 Control [7] is an ORB that extends the ORBAsec with the CORBAsec COSS services that implement
authentication services, secure transmission of messages and automatic access control. The discretionary policy
is established with an access control language used for server objects. The interception of access control is
executed on the server object side. Security policy management is carried out using the domain management
module.

Comparing PoliCap with the experiences presented, we can verify that PoliCap is a service that
performs access control on the client side, unlike the proposals described. PoliCap combines characteristics of
Cherubim, such as that of capabilities and of Control, with the additional feature of restricted use of
standardized objects or objects still undergoing standardization in CORBAsec.

PoliCap fills in an existing gap in security policy management in the model CORBAsec, actualizing the
first access control level of the project JaCoWeb. The second access control level is developed with the use of
the capabilities proposed for the CORBAsec model. PoliCap and the capabilities for CORBAsec provide an
important contribution to the managing of authorization policies in large-scale networks. The two access
control levels reduce the network traffic in the case of access denial, and at the same time the security of the
system does not depend exclusively on the client’s integrity. The description of the dynamic functioning relating
to service objects and CORBAsec interceptors is also important.

The prototype is a true experiment with the implementation of the CORBAsec discretionary model,
considering that there are few experiments of this type available. This prototype facilitates management and
administration of security policies, enabling security to be guaranteed on the ORB level. The security
guaranteed on the ORB level has advantages, such as security transparency, for applications and greater
confidence in the security services that are always executed. Non-discretionary or mandatory policies are future
aims in our prototype.

In large-scale networks the authorization process necessarily goes through the connection of a variety of
name servers, each one responsible for a specific domain of objects and users. In each name domain, the
controls of the authorization scheme must be present, centered in service objects pertinent to the considered
domain. In other words, each name domain must have its Policy Service and PrincipalAuthenticator objects
centering the global controls on persistent objects and users of the domain. The X.500 specifications provide
means for these connections among different contexts of names based on alias mechanisms [31]. The alias can
be understood as a local designation in a domain, identifying an object or user as non-local, and it allows the
search in resolving names to be extended to other domains. Initially, the authorization scheme covers a single
domain, but to make feasible its use in large-scale networks, the possible use of LDAP (Lightweight Directory
Access Protocol) - an implementation of directory services based on the X.500 and sufficiently used nowadays
[32] - is envisioned.

This prototype provided subsidies for the evaluation concerning standard ISO 15408, and we conclude
that it meets the level EAL3. Results related to the vulnerability analysis, obtained during the JaCoWeb
security evaluation, point out some vulnerabilities that could be taken advantage of for a possible attack. For
example, the possibility to know which communication port is used among the application objects. These
results are important in the context of the evaluation of the JaCoWeb project, because they supply data on the
vulnerabilities of security mechanisms implemented in the project. We considered that JaCoWeb does not
possess significant obvious vulnerabilities that could be explored for the accomplishment of an attack.

The experience on using Common Criteria in a security evaluation process deserves some opinions
about. We observe that the higher level of security implies the higher cost of an evaluation. There are many
documents about CC, and too many details to be covered. Despite that, CC provides a complete and broad
framework for security evaluation and it is an excellent guideline for designing, implementing and evaluating
security features of a security technology system. Using CC was a good experience for the JaCoWeb Security
team.

Future perspectives that can be mentioned are the implementation of audit services and of security
policies domains, as defined by PoliCap, to improve the security of the points of attack 2, 7 and 6 as well as
the use of another types of tools for the accomplishment of penetration tests to identify other existing
vulnerabilities.

REFERENCES

[1] Bob Blakley, “The Emperor' s Old Armor,” In Proc. of the 1996 ACM NSPW, 1996, pp. 2-16, ACM.

[2] OMG, “Security Service:v1.5,” OMG Document Number 00-06-25, June 2000.

(ftp://ftp.omg.org/pub/docs/formal/00-06-25.pdf).

[3] OMG, “Security Domain Membership Management Service,” Doc. orbos/99-07-21, Aug. 1999.

[4] Bob Blakley, “CORBA Security: An Introduction to Safe Computing with Objects”, The Addison-Wesley Object Technology
Series, 1999.

[5] Carla M. Westphall and Joni S. Fraga, “A Large-scale System Authorization Scheme Proposal Integrating Java, CORBA and
Web Security Models and a Discretionary Prototype,” IEEE LANOMS' 99, pp. 14-25, Rio de Janeiro - Brazil, 1999.

[6] G. Karjoth, “Authorization in CORBA Security,” In Proceedings of the Fifth ESORICS, Lecture Notes in Computer Science,
pp. 143-158, Springer-Verlag, Berlin Germany, September 1998.

[7] Adiron Inc., “Control – Access Control for ORBAsec SL2 V 1.0 Alpha,” Adiron Center, Syracuse University, Dec. 1999.

[8] OMG, "Joint Revised Submission CORBA/Firewall Security," Doc. orbos/98-05-04, Jun. 1998.

[9] A. Ali reza , U. Lang , M. Padeli s, R. Schreiner and M. Schumacher, "The Challenges of CORBA Security," In: Workshop
Sicherheit in Mediendaten, June 2000, to appear, publi shed by Springer.

[10] A. Freier, P. Karlton and P. C. Kocher, “Secure Socket Layer 3.0,” Internet Draft, Nov. 1996.

[11] D. Chizmadia, "An Introduction to the Security Specifications of the Object Management Group," ppt slides. In: Proceedings
of the Fourth DOCsec 2000 - Distributed Object Computing Security Workshop, April 2000, U.S.A
(http://www.omg.org/meetings/docsec/).

[12] Gerald Brose, “JacORB – A free Java ORB,” Freie Universität Berlin, Institut für Informatik, Berlin, 1999 (http://www.inf.fu-
berlin.de/~brose/jacorb/).

[13] Joris Claessens, "A Secure European System for Appli cations in a Multi -vendor Environment,"
https://www.cosic.esat.kuleuven.ac.be/sesame/, 2000.

[14] OMG, “ORB Interface,” OMG Document 99-07-08, June 1999.

[15] Li Gong, “A Secure Identity-Based Capabilit y Systems,” In Proc. of the 1989 IEEE Symposium on Security and Privacy, pp.
56-63, Oakland, Cali fornia, May 1989.

[16] W. Stalli ngs, “Cryptography and Network Security:Principles and Practice,” Prentice Hall , 2nd edition, July 1998.

[17] Martin Abadi and Roger Needham, “Prudent Engineering Practice for Cryptographic Protocols,” IEEE Transactions on
Software Engineering, Vol. 22, Number 1, pp. 6-15, 1996.

[18] Sun M. Inc., “Java Cryptography Architecture API Specification & Reference,” Oct. 1998.

[19] Graz - University of Technology, “ iSaSiLk 2.5 User Manual,” Inst. for Applied Information Processing and Communications,
Graz University of Technology, Nov. 1999 (http://jcewww.iaik.at/iSaSiLk/isasil k.htm).

[20] ISO/IEC, “Common Criteria for Information Technology Secur ity Evaluation,” In Part 1: Introduction and general model,
ISO/IEC 15408-1, December 1999.

[21] ISO/IEC, “Common Criteria for Information Technology Security Evaluation,” In Part 2: Security Funcional Requirements,
ISO/IEC 15408-2, December 1999.

[22] ISO/IEC, “Common Criteria for Information Technology Security Evaluation,” In Part 3: Security Assurance Requirements,
ISO/IEC 15408-2, December 1999.

[23] CC Project Sponsoring Organisations, “Common Methodology for Information Technology Security Evaluation,”, In Part 2:
Evaluation Methodology, August 1999.

[24] Information Security Systems Organization, “Controlled Access Protection Profil e,” National Security Agency, Oct. 1999.
(http://www.radium.ncsc.mil/tpep/library/protection_profil es/index.html).

[25] K. Jamer - CSE Canada, "Common Evaluation Methodology Special Topic: Testing," ppt slides. In: ICCC First International
Common Criteria, 23-25 May 2000, Baltimore, Maryland, U.S.A.
(http://niap.nist.gov/cc-scheme/iccc/trackd.html)

[26] J. Straw, "Common Evaluation Methodology Special Topic: Vulnerabilit y Analysis," ppt slides. In: Proceedings of the ICCC
First International Common Criteria, May 2000, Baltimore, Maryland, U.S.A (http://niap.nist.gov/cc-
scheme/iccc/trackd.html).

[27] Pankaj Jalote, "An Integrated Approach to Software Engineering," Springer-Verlag New York Inc., ISBN 3-540-97561-6, 1991.

[28] A. K. Ghosh et al., "An Automated Approach for Identifying Potential Vulnerabiliti es in Software," In: Proceedings of the
1998 IEEE Symposium on Security and Privacy , May 1998, Oakland, U.S.A, pp. 104-114.

[29] T. J. Klevinsky, "Contemporary Hacking Tools and Their Use in Penetration Testing," Course. In: FCSC99 - The Federal
Computer Security Conference. Course Day, May 1999, Baltimore, MD, U.S.A (http://www.cio.org/sans99/).

[30] Campbell , Roy and Qian Tin, “Dynamic Agent-Based Security Architecture for Mobile Computers,” Proc. of the Second
PDCN ’98, Australia, December 1998.

[31] ITU-T. “Autentication Framework,” ITU-T Recommendation X.509, Nov. 1993.

[32] Johner, H., et al. "Understanding LDAP," SG24-4986-00 (http://www.reedbooks.ibm.com).

[33] M. Wangham, “Study and Implementation of a Discretionary Authorization Scheme based on CORBAsec Specification,”
CPGEEL-DAS-UFSC, Master Thesis, Florianópoli s, Brazil , March 2000.

