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Abstract. This work presents a BFT Atomic Multicast Protocol (Vbam) whose al-
gorithm manages to implement a reliable consensus service with only 2f + 1 serv-
ers using only common technologies, such as virtualization and data sharing ab-
stractions. In order to achieve these goals, we chose to adopt a hybrid model, 
which means it has different assumptions between components regarding syn-
chrony, and two different local area networks (LANs), a payload LAN and a sepa-
rated LAN where message ordering happens.  

1  Introduction 

The difficulty to build distributed systems can be strongly reduced by relying on 
group communication primitives such as atomic (or totally ordered) multicast [1]. 
The atomic multicast ensures that messages sent to a set of processes are delivered 
by all these processes in the same order. Atomic multicast has many important ap-
plications such as clock synchronization, CSCW, distributed shared memory, da-
tabase replication [2], [3], [4] and basis the state machine approach, the main 
component of many fault-tolerant systems [5], [6], [7], [8]. 

There exists a considerable amount of literature on total order multicast, and 
many algorithms, following various approaches, have been proposed to solve this 
problem. However, in most cases, these algorithms consider system models sub-
ject only to crash faults [1], [9]. Very few address also byzantine/arbitrary faults 
[10], [7]. In general, these relies on a consensus algorithm to agree on messages 
ordering and need 3f + 1 processes involved in the agreement. There are some 
works that separate the consensus from the agreement problem creating a consen-
sus service [11], [12]. 

We present Vbam, a byzantine fault tolerant consensus service for atomic mul-
ticast messages. The model and architecture that we propose needs only 2f + 1 
servers compounding the consensus service and is based on a hybrid model where 
there exist variation, from component to component, on the assumptions of syn-
chrony and presence/severity of failures [13], [14], [15]. In this model, there is a 
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payload LAN in which the clients communicate with the consensus service, and 
an inviolable LAN where the servers do the ordering. In our proposal we contrib-
ute with an improvement to make the consensus service [11] byzantine fault toler-
ant with low resilience (only 2f + 1 servers). 

2  Related work 

The atomic multicast problem has been widely addressed in the past decades [2], 
[10], [14], [3], [9], [7]. In the majority, the approaches consider that the processes 
can only crash, i.e., not acting in arbitrary/byzantine manner. 

In [10], it is presented Rampart for reliable and atomic multicast in systems 
with byzantine faults. The algorithm is based on a group membership service, 
which requires that at least one third of all processes in the current view reach an 
agreement on the exclusion of some process from the group. The atomic multicast 
is done by some member of the group, called sequencer, which determines the or-
der for the messages in the current view. In the next view, another sequencer is 
chosen by some deterministic algorithm. Rampart assumes an asynchronous sys-
tem model with reliable FIFO channels, and a public key infrastructure known by 
every process. With the assumption of authenticated communication channels the 
integrity of messages between two non-Byzantine processes is always guaranteed. 

Guerraoui and Schiper proposed in 2001 the generic consensus service [11] for 
solving agreement problems, including the atomic multicast. This is the base for 
our proposal. Their model considers a crash-only environment with a consensus 
service that separates the consensus from the agreement problem to be solved. The 
system requires a perfect failure detector (that basis the consensus server) and the 
resilience is a tradeoff with performance, varying depending on the necessity. 

In 2006 Correia and Veríssimo showed a transformation from consensus to 
atomic broadcast [7]. The system model presented assumes a byzantine environ-
ment in which up to f = [(n - 1)/3] faults are tolerated. The authors implement a 
multi-valued consensus protocol on top of a randomized binary consensus and a 
reliable broadcast protocol. The atomic multicast protocol is designed as succes-
sive transformations from the consensus protocol. The atomic multicast is done by 
the use of a hash vector. Each process of the system proposes values to the con-
sensus vector (that is a vector with the hashes of the messages). The vector con-
sensus protocol decides on a vector Xi with at least 2f + 1 vectors H from different 
processes. In the sequence the messages are stored in a set to be atomically deliv-
ered in a pre-established order. 

In 2010 Pieri et al proposed an extension of the generic consensus service [11] 
for byzantine environments [12]. The system model proposed has nc = 3fc + 1 cli-
ents and ns = 2fs + 1 servers, and they make use of virtual machines to provide the 
generic consensus service. The atomic consensus starts whenever one of the pro-
cesses called initiator reliably multicast a message mi to the clients set. Upon re-
ceiving the message mi, each client sends a proposal to the generic consensus ser-
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vice for mi. When the servers receive nc - fc proposals from clients to the same 
consensus instance, each server start a consensus protocol. Then, the result of this 
protocol is relayed to the clients. The importance of this work comes in means of 
making the generic consensus available for byzantine environments. However, it 
limits the size of the clients set. Furthermore the system has to deal with the faulty 
clients, lowering the system resilience. This is acceptable when dealing with ge-
neric agreement problems, but for solving the atomic multicast it is expensive. 

 
Table 1 Comparison on evaluated atomic multicast protocols properties 

 Rampart[10] Guerraoui and 
Schiper [11] 

Correia and 
Veríssimo [7] 

Pieri et al [12] Vbam 
 

Resilience for atomic 
multicast 

3f + 1 - 3f + 1 3fc + 1 + 2fs + 1 2f + 1 

Communication steps 6 5 - 5 4 
Messages exchanged 6n - 6 3nc + 2nc - 3 18n2 + 13n + 1 

+ 16n2f + 10nf 

2(ns
2
  + 3nc - ns 
- 1) 

3ns
2
 - ns 

+ nc + 1 

Tolerated faults Byzantine Crash Byzantine Byzantine Byzant 

3 System model and architecture 

The system model is hybrid [14], which is where assumptions of synchrony and 
presence/severity of failures vary from component to component [13], [14]. In our 
model, we consider different assumptions for the subsystems running in host, than 
for the ones running in the guest of the virtual machines that composes the system. 
In this model, C = {c1, c2, c3, …} is a set that contains a finite number of client 
processes and S = {s1, s2, s3, …, sn} representing a set of servers with n elements 
that compound the consensus service.  

The Figure 1, each consensus service server is hosted by a virtual machine. 
Each server physical machine has one, and only one, virtual machine as its guest 
(see Figure 1). The process failure model admits a finite number of clients and up 
to f ≤ [(n – 1)/2] servers incurring failure based on its specifications, presenting 
byzantine faults [17]: the faulty processes that arbitrary detour from its 
specification can stop, omit sending or receiving messages, send wrong messages 
or have any non-specified behavior. However, we assume independence of faults, 
in other words, the probability of a process having a fault is independent of anoth-
er fault in any other process. This is possible in practice by the extensive use of 
diversity (different hardware, operational systems, virtual machines, databases, 
programming languages, etc.) [18]. 

The system has two distinct networks, the payload and the controlled networks 
(see Figure 1), both are local area networks (LANs). The former is asynchronous 
and is used for application data transfers. There are no assumptions based on time 
on the payload LAN and it is used for client-server communication. The later, 
used for server-server communication, is a controlled LAN composed by physical 
machines, where is implemented a Distributed Shared Register (DSR) [16]. The 
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consensus service uses the DSR to execute the crucial parts of the consensus pro-
tocol. The DSR: 

• has a finite and known number of members; 
• is assumed to be secure, i.e., resistant to any possible attacks; it can only 

fail by crashing; 
• is capable of executing certain operations with a bounded delay; 
• provides only two operations, read and write register, which cannot be 

possibly affected by malicious faults. 
Each physical machine has its own space inside the DSR where its respective 

virtual machine registers PROPOSE messages, ACCEPT messages or CHANGE 
messages. All servers can read all register space, no matter who hold the rights to 
write into it. 

We assume that each client-server pair ci , sj and each pair of servers si , sj is 
connected by a reliable channel with two properties: if the sender and the recipient 
of a message are both correct then (1) the message is eventually received and (2) 
the message is not modified in the channel [15]. In practice, these properties have 
to be obtained with retransmissions and using cryptography. Message authentica-
tion codes (MACs) are cryptographic checksums that serve our purpose, and only 
use symmetric cryptography [19], [5]. The processes have to share symmetric 
keys in order to use MACs. We assume these keys are distributed before the pro-
tocol is executed. In practice, this can be solved using key distribution protocols 
available in the literature [19]. This issue is out of the scope of this paper. 

 

 
 
Fig. 1 Vbam Architecture Overview 
 
We assume that only the physical machine can, in fact, connect to the con-

trolled LAN used for the register. That is, the DSR is accessible only by the physi-
cal machines that host virtual machines (servers), which are participants of the 
system, not being possible to reach the DSR directly through accessing the virtual 
machine. Each process is encapsulated inside its own virtual machine, ensuring 
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isolation. All client-server communication happens inside a separate LAN (pay-
load) and, on the clients point of view, the virtual machine is transparent, meaning 
clients can not recognize the physical-virtual architecture. Each machine has only 
one network interface (NIC), a firewall and/or bridge mode are used in the host to 
ensure the division of the networks. 

We assume that host vulnerabilities cannot be explored by the virtual machine. 
The virtual machine monitor (VMM) ensures this isolation, meaning the attacker 
has no way to access the host through the virtual machine. This is a premise in the 
virtualization technologies, such as VirtualBox, LVM, XEN, VMWare, VirtualPC, 
etc. Our model assumes that the host system is not accessible externally, which is 
also granted by the use of bridge mode and/or firewalls on the host system. 

Distributed Shared Register (DSR): We created the DSR, an emulated shared 
memory [16] based on message passing over a controlled LAN and making use of 
local files. We assume the controlled LAN to be only accessed by components of 
the DSR. The DSR is implemented in the virtual machine host and we assume that 
the VMM ensures isolation between the host and the guest. 

The DSR performs just two operations: (1) read(), that reads the last message 
written in the DSR; and (2) write(m) that writes the message m in the DSR. We 
assume two properties about these operations: (i) liveness, meaning that the opera-
tion eventually ends; and (ii) safety, i.e., the read operation always returns the last 
value written. To ensure this properties, in each server we created a file where the 
guest has write-only access and another file where it has read-only access and the 
access is made by a single process [16]. The first file is the server space, and no 
other server can write on it. The second one is the other servers register, updated 
by the DSR. The VMM provides the support to make a file created in the host to 
be accessible to the guest, enforcing the write-only/read-only permissions. 

The DSR only accept typed messages, and there is only three types, (i) 
PROPOSE, (ii) ACCEPT and (iii) CHANGE. The untyped or mistyped messages 
are ignored. We assume that the communication is made by fair links with the fol-
lowing properties: if the client and the recipient of a message are both correct then 
(1) if a message is sent infinitely often to a correct receiver then it is received 
infinitely often by that receiver; (2) there exists some delay T such that if a mes-
sage is retransmitted infinitely often to a correct receiver according to some 
schedule from time t0, then the receiver receives the message at least once before 
time t0 + T; and (3) the message is not modified in the channel [6] [20]. This as-
sumption appears reasonable in practice, since the DSR is running in a separated 
synchronous LAN and can only fail by crash, based on the VMM isolation. 

3.1  Properties 

The problem of atomic multicast, or total order reliable multicast, is the problem 
of delivering the same messages in the same order to all processes of a system. 
The definition in byzantine context can be seen as the following properties [7]: 
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Validity - If a correct process multicasts a message M, then some correct pro-
cess eventually delivers M. 
Agreement - If a correct process delivers a message M, then all correct pro-
cesses eventually deliver M. 
Integrity - For any message M, every correct process p delivers M at most 
once, and if sender(M) is correct then M was previously multicast by send-
er(M). 
Total order - If two correct processes deliver two messages M1 and M2 then 
both processes deliver the two messages in the same order. 
 

 
                            Fig. 2 Atomic multicast flow 

4 Vbam algorithm 

Discussion: The process needs only one server as sequencer. This server is re-
sponsible for proposing orders for client messages. Other servers are replicas of 
the service. Initially, the sequencer is the process which the id is zero. The se-
quencership change happens every time most servers (f + 1) agree to be necessary. 
As in others byzantine fault tolerant (BFT) system [5], [6], [15], to deal with the 
problem of a malicious server pj, that would discard a message. Therefore the cli-
ent pi waits for receiving its own message with an order number for a Tresend time. 
After this Tresend the client send its message to all servers. A correct server when 
receives the client message, and it is not the sequencer, asks for a sequencer 
change. If f + 1 correct servers ask for a sequencer change, then it will be per-
formed and the protocol makes progress. However, the payload system is assumed 
to be asynchronous, so there are no bounds on communication delays, and it is not 
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possible to define an ”ideal” value for Tresend. Correia [15], shows that the value of 
Tresend involves a tradeoff: if too high, the client can take long to have the message 
ordered; if too low, the client can resend the message without necessity. The value 
should be selected taking this tradeoff into account. If the command is resent 
without need, the duplicates are discarded by the system. 

This section offers a deeper description of the algorithm. The sequence of oper-
ations of the algorithm is presented in the sequencer and destination nodes. It is 
first considered the normal case operation and, following, the execution where 
faults do exist. The flowchart of the normal case operation can be seen in the Fig-
ure 2. For clarity of presentation, we consider a single group multicast. 

4.1  Normal operation 

step 1) The process starts when some client ci sends to the sequencer an ORDER 
message 〈ORDER,m, t,v〉σ si  with the message m included. The field t is the 
timestamp of the message content to ensure one-time order semantics, in 
other words, servers will not order the message if t is not bigger than t - 1 
for ci. This politics prevents multiple ordering of a single message. The 
field v is vector that takes a MAC per server, each obtained with the key 
shared between the client and that server. Therefore, each server can test 
the integrity of the message by checking if its MAC is valid, and discard 
the message otherwise. In case the message has already been ordered, the 
server resends it to the client.  

step 2) After verifying that MAC in v is correct and the timestamp is valid for the 
client’s message, the sequencer generates a PROPOSE message as 
〈PROPOSE,n,o,mac〉σ p , where o is the original message, n the ordering 
number for it and mac is the message authentication code for m. The DSR 
automatically input in the proposal message the ID of the sequencer. The 
server will expect for the acceptance of the message, i.e., f processes 
agreeing with the proposal. Then the server, accept this order and saves it 
in the atomic buffer. All messages sent in the DSR will be delivered if the 
sender and the receiver are not crashed, as we have discussed in 4. 

step 3) By receiving a proposal, the server sk validates it, meaning that (i) sk 
verifies, using the MAC in v, if the content of the message m is correct 
and (ii) verifies if there is no other proposal accepted before that with the 
same sequence number n. Then the proposal is accepted by sk that writes 
an ACCEPT message on it’s reserved space of the register. The message 
format is 〈ACCEPT,n,hm,mac〉σ p and it contains the hash of the client’s 
message hm, the ordering number n to m and a message authentication 
code mac for m. After writing the accept message, the process waits for f  
- 1 acceptance messages to save it in the atomic buffer.  

step 4) The sequencer reliably multicast the message with the order and the mac 
vector from at least f + 1 different servers that accepted it. After receiving 
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and validating the vector the clients finally accepts it and delivers in the 
proposed order. 

4.2  Faulty operation 

The faulty operation implies that a change will happen, therefore here is a brief 
explanation of how it develops. 
Sequencer change: During the system configuration, all servers receive an iden-
tification number. This numbers are sequential and start at zero. All servers can 
recognize the identifier i of the sequencer and the total number n of servers in the 
system. When f + 1 correct servers suspect of the current sequencer they simply 
define i = i + 1 as the next sequencer if i < n, otherwise i = 0. 

When validating a proposal the server sk verifies if the message’s content is cor-
rect using its MAC in the vector v and if the proposal is correct based on the earli-
er accepted proposals. If the message, for some of the reasons above, is not valid, 
then sk will ask for a sequencer change.  
a) Correct servers can entry in the faulty operation by the two following ways: 

i) When the server sk receives a change message e, but does not suspects the 
server ss yet, the process just stores e in its local buffer. 

ii) When the process sk suspects of the server ss about a single message m, 
then sk writes in the DSR and in it’s own buffer a new message 
〈CHANGE, sid,hm,Ss 〉σ p that contains sid as it’s own identifier, the hash of 

the message hm and ss as the id of the server for which it suspects. 
b) The server sk starts a search in its buffer trying to find f + 1 change messages 

that relate to m and the server ss. In case sk finds f + 1 (including server sk) dif-
ferent sid to the same propose message, then the server changes the sequencer 
to ss + 1. If ss is its own id then, based on the last accepted messages, it restart 
the ordering. 

With the new sequencer the protocol make progress as in normal case operation. 

5  Implementation and evaluation 

The algorithms were implemented using the programming language Java, JDK 
1.6.0, and executed using JVM Sun. The communication channels were imple-
mented using TCP sockets from API NIO. The operational systems of the virtual 
machine hosts used were MacOSX Lion and Ubuntu 12.04. On virtual machines 
themselves, we used Ubuntu 12.04, Ubuntu 12.10 and Debian 6 Stable, being Vir-
tualBox the VMM of choice. The adopted evaluation metric is latency, since this 
is one of the metrics most widely used to evaluate computational systems and that 
it represents the efficiency of the system in a very simple way [5], [6], [7], [8]. 
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The values were obtained through micro-benchmarks in different loads. The la-
tency was obtained measuring the round-trip time, that is, we measured the time 
between sending and receiving a group of messages. The reasoning behind the use 
of micro-benchmarks is to properly measure the algorithm without external 
influences. In order to gauge the protocol’s capacity, we ran it with different mes-
sage sizes. 

 

              
              (a) Latency - Normal Case                                             (b) Latency with faults 
  Fig. 3 Performance Evaluation 
 
To evaluate the algorithm’s performance in the absence of faults, we ran it in 

normal conditions and sent 10.000 messages by a single client with three different 
loads: 0/0 kb, 0/4 kb and 4/4 kb. With those we have: an empty message and an 
empty ordered message, an empty message and a 4kb ordered message and a 4kb 
message with an 4kb ordered message. To evaluate the algorithm in a faulty envi-
ronment, we conducted the experiment with f = 1 faulty server. In 3(a) and 3(b) 
we demonstrate the latency to each different load. The latency was obtained by the 
average from all total order multicasts. As we can observe, the latency has mini-
mal variations between different loads. 

We show the comparative data between our approach and the state of art for 
atomic multicast on the table 1. All the numbers consider non-faulty execution. 
Our approach benefits are visible as number of communication steps and resili-
ence since we consider systems subject to byzantine faults. 

6  Conclusion 

By exploring the use of the Distributed Shared Register and virtualization tech-
niques, we have managed to propose a simple inviolable LAN that supports our 
BFT atomic multicast. It was showed that it is possible to implement a reliable 
consensus service with only 2f + 1 servers using common technologies, as is vir-
tualization and data sharing abstractions. The virtualization technology is widely 
used and can provide a good isolation between the servers and the external world, 
and the use of the DSR makes it easy to maintain the protocol progress.  
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