
REMEX - A Case-Based Approach for
Reusing Software Measurement Experienceware

Christiane Gresse von Wangenheim

Federal University of Santa Catarina - Production Engineering
Florianópolis, Brazil

gresse@eps.ufsc.br

Abstract. For the improvement of software quality and productivity, organiza-
tions need to systematically build up and reuse software engineering know-how,
promoting organizational learning in software development. Therefore, an inte-
grated support platform has to be developed for capturing, storing and retrieving
software engineering knowledge. Technical support is complicated through spe-
cific characteristics of the software engineering domain, such as the lack of
explicit domain models in practice and the diversity of environments. Applying
Case-Based Reasoning, we propose an approach for the representation of rele-
vant software engineering experiences, the goal-oriented and similarity-based
retrieval tailorable to organization-specific characteristics and the continuous
acquisition of new experiences. The approach is applied and validated in the
context of the Goal/Question/Metric (GQM) approach, an innovative technology
for software measurement.

Keywords. reuse, experience factory, case-based reasoning, software engineer-
ing, software measurement, GQM

1 Introduction

Today almost any business involves the development or use of software. However,
state-of-the-practice is that software systems often lack quality and many software
projects are behind schedule and out of budget [17]. In order to successfully plan, con-
trol and improve software projects, organizations need to continuously evolve software
engineering (SE) know-how tailored to their specific characteristics and needs [8,10].
Experiences from their software projects have to systematically captured and reused
across the organization. This enables the consolidation of organization wide SE know-
how into competencies that empower the company to achieve considerable improve-
ments and benefits [32]. Currently, reuse of SE knowledge is done in an ad-hoc, infor-
mal manner, usually limited to personal experiences. For the systematic acquisition and
organization-wide communication of these experiences, corporate memories
[2,8,18,20] have to be built (see Figure 1). In the software domain, the Experience Fac-
tory (EF) approach [8] proposes an organizational infrastructure for the analysis and
synthesis of all kinds of software life cycle experiences or products. It acts as a reposi-
tory for those and supplies these experiences to various software projects. However, for
the operationalization of an EF in practice, we need a clever assistant that supplies the
right experiences from the Experience Base (EB) to the user on demand.

In order to comprehensively sup-
port the software development
process, various types of experi-
enceware (EW) [18], including
expertise and lessons learned
(e.g., how to apply design in-
spections), quality models (e.g.,
distribution of rework effort per
fault type), and deliverables
(e.g., software measurement
plans, requirement documents)
related to several processes (e.g.,
design inspection, measure-
ment) in different environments
have to be retrieved addressing various purposes: facilitation of the planning or execu-
tion of software projects, prevention of past failures by anticipating problems, and
guidance for the solution of occurring problems. And, since each software project is
different, it is very unlikely to find an artifact fulfilling the needs of the actual project
completely. Thus, experiences have to be retrieved from projects with “similar” char-
acteristics, assuming that similar situations (or problems) require similar solutions. In
the SE domain, for example, we assume, that measurement programs with similar goals
use similar quality models or that similar problems occurring during design inspections
have corresponding solutions. Due to the lack of general SE models in practice, organi-
zational software know-how has to evolve in an incremental manner by learning from
each new software project. Thus, the EF has to support continuous learning by captur-
ing and integrating new experiences when software projects are planned and executed.
In this context, Case-Based Reasoning (CBR) [5] plays a key role [10,18,20,27], as it
provides a broad support for similarity-based retrieval for all kinds of EW and contin-
uous incremental learning. However, the operationalization of the EF is not trivial, as
relevant SE knowledge has to be identified, modeled and represented in the EB. Meth-
ods for goal-oriented retrieval providing support for different processes, objectives, and
environments in the SE domain and for the continuous acquisition and integration of
new experiences have to be developed. In this paper, we propose a case-based approach
for an integrated support platform enabling organizational learning from SE experienc-
es tailorable to organization specific characteristics. The approach is based on our ex-
periences on reusing GQM-based measurement know-how (e.g., in the context of the
industrial transfer and research projects [11,26]).

2 Reuse of GQM Measurement Plans

In this section, we give a short overview on software measurement, the application do-
main of our approach, and provide scenarios illustrating the reuse of measurement EW.
Software measurement is an essential infrastructure technology for the planning, con-
trol and improvement of software projects. Organizations have to collect quantitative
and qualitative data concerning their software products and processes, to build an em-

software project n

software project 1

Planning

����
��

project team

experience factoryknowledge engineer

SE experienceware feedback, lessons
learned, deliverables,...

experience base

Fig. 1. Experience factory organization

Execution

Control

Project plan

pirical justified body of knowledge. A specific technology for goal-oriented measure-
ment is the Goal/Question/Metric approach (GQM) [9], which supports the definition
and implementation of operationalizable software improvement goals. Based on a pre-
cisely specified measurement goal, relevant measures are derived in a top-down fash-
ion via a set of questions and models. This refinement is documented in a GQM plan,
providing a rationale for the selection of the underlying measures. Data is collected wrt.
the measures and interpreted in a bottom-up fashion in the context of the models, ques-
tion and goals, considering the limitations and assumptions underlying each measure.
The establishment of measurement programs, which in practice requires a significant
planning effort, can be substantially facilitated by reusing measurement EW [16], as il-
lustrated in the following scenario.

Suppose a company, IntelliCar, which produces embedded software for automobiles
has two main departments: FI which develops software for fuel injection devices and
ABS which develops software for ABS brake control devices. As the company produc-
es embedded software, one of its most important goals is to produce zero-defect soft-
ware. Therefore, department FI established successfully a quality improvement pro-
gram based on measurement two years ago. Now, also department ABS wants to start
measurement-based improvement. As the contexts of both departments are similar and
the improvement goal is the same, experiences available in department FI can be reused
at ABS in order to reduce the planning effort and to improve the quality of the measure-
ment program. Based on the measurement goal «Analyze the software development
process in order to improve the reliability from the viewpoint of the software developer
at ABS/IntelliCar», relevant quality aspects and influence factors have been acquired
during interviews with the developers of department ABS. These are represented as a
set of questions in the GQM plan, as shown in Figure 2. Now, in order to operationalize
the questions of the GQM plan, quality models have to be developed. Assume, for ex-
ample, that the question «Q3. Does the type of inspection have an impact on the effec-

Fig. 2. Excerpt of simplified example of GQM plan

Measurement Program at ABS/IntelliCar

 GQM Goal
 Analyze the software development process in order to improve the reliability from the viewpoint of the
software developer at ABS/IntelliCar
GQM Questions
Q1. What is the total number of defects detected before delivery?
Q2. What is the distribution of defects?
Q3. Does the type of inspections have an impact on their effectiveness?
Q4. Does the experience of developers have an impact on number of faults introduced in the system?
 ...
 Quality Models
Effectiveness of inspections
Context: company IntelliCar, automobile domain
Assumptions: The defect density is comparable across documents.
Computation: effectiveness = (number of defects detected in inspection)/(size of document * training
duration)
Attributes: number of defects detected in inspections; size of document; duration of training

tiveness of inspections?», has also been evaluated in a similar measurement program in
department FI. Then, the respective model can be reused, assessing its applicability
based on its underlying assumptions. If necessary, the model is adapted to the specific
characteristics of ABS. For example, assuming that inspector capabilities vary exten-
sively between departments, the effectiveness of inspections is expected to depend not
only on the size of the inspected document (as stated in the reused model), but also on
the training of inspectors, then the new factor is included in the model.
While defining a model
for question Q2, it turned
out that an operational re-
finement of the question
is impossible due to miss-
ing information concern-
ing defect classification.
The solution of this prob-
lem can be guided by ex-
periences describing how
a similar problem has
been successfully solved
at department FI (see Figure 3) by suggesting follow-up interviews in order to acquire
the required information completely. In addition, reusing organizational glossaries can
support the consistent usage of terms (e.g. defect) and reusing taxonomies representing
generalization relations can help the refinement of abstract concepts (e.g. «distribution
of defects» in Q2). Other phases of the measurement planning process can be supported
accordingly through the reuse of measurement EW [16].

3 Representation of GQM Experienceware

In order to facilitate and improve the planning of GQM-based measurement programs
through reuse of EW, an Experience Base is developed, modeling and representing rel-
evant measurement EW.

3.1 GQM Experienceware Cases

As today wrt. most SE technologies no formal knowledge exists, the principal source
are individual project experiences. Thus, SE EW is primarily captured in form of cases

in the GQM-Experience Base (GQM-EB)1, representing context-specific experiences
gained in a particular software project in a specific organization. In order to provide
comprehensive support, different types of EW cases are modeled by using a flexible,
object-oriented frame-like representation formalism based on [24,28] and are stored in
the GQM-EB [15,19]:
• GQM Product Experienceware Case (GQM-PEC). These cases include GQM prod-

ucts developed during the planning of a GQM-based measurement program. GQM-
PECs are reused in similar software projects as a basis for the development of respec-

1.Here, we consider a specific instantiation of the experience base focusing on EW on the
planning of GQM-based measurement programs.

 Context company IntelliCar; department FI
 Problem Question of the GQM plan cannot be refined into an

operational quality model due to missing information.
 Cause of
Problem

During the interviews the necessary knowledge has not been
acquired completely from the project personnel.

 Solution A follow-up interview was performed with the person(s) who
mentioned the respective quality aspects during the first inter-
views in order to clarify the formulation of the GQM question.

 Outcome The required knowledge was acquired completely and the
respective quality model was defined.

Fig. 3. Example of problem experience

tive products, resulting in a reduction of planning effort and improved quality of the
GQM products.

• GQM Problem-Solution Experienceware Case (GQM-PSEC). GQM-PSECs explicit-
ly capture problem solution strategies that have been adopted in past measurement
programs (see Figure 3). Reusing GQM-PSECs can warn for potential failures in ad-
vance and guide a solution fitting the application context. Due to the specific nature
of experiential knowledge, GQM-PSECs are represented as cases describing a specif-
ic problem, its cause, the solution applied and the outcome achieved.

Experienceware Cases are represented by a set of relevant attributes and interdependen-
cies based on domain models (see Section 3.2) [29]. To enable the retrieval of EW cas-
es from similar software projects, the environment from which the case has been ob-
tained is characterized. This is done through a minimal set of characteristics (e.g., busi-
ness sector, improvement goals, development process used), which allows to identify
similar cases and to discriminate different ones. In order to assess the reuse potential of
the case, cases are enhanced by basic information (e.g., viewpoint, representativeness).
Information about past reuses of a case, such as preconditions for reuse, required adap-
tations, cost and frequency of reuse, are explicitly captured [19] in order to facilitate the
reuse of experiences and their adaptation to specific project characteristics.

3.2 General Domain Knowledge

In order to model relevant EW and facilitate the consistent representation and acquisi-
tion of new experiences across software projects, general domain knowledge on GQM
EW is represented in the GQM-EB [16,19].
GQM EW Models. Entities related to GQM EW are explicitly modeled in a hierarchy
of classes [16,28] (see Figure 4). Each class is structured by a set of attributes represent-

ing basic values or relationships to other entities. Attributes are defined through an
identifier, description, cardinality, its type or kind of relationship, a default value and
explicitly stating if the attribute has to be specified (mandatory) when a new instance of
this class is acquired [15].

Fig. 4. GQM EW Classes (is_a relation)

GQM Product

GQM Plan

GQM Measure

GQM Goal

GQM Model

Measurement Plan

Data Collection Instrument
Data Collection Procedure

GQM Question

Abstraction Sheet

Measurement Tool
Questionnaire

InterviewQuestionnaire Question

 Item
Quality Item
Variation Item

OBJECT

Context Characterization
Organization Characterization
Project Characterization
Measurement Characterization
Data Collection Event
Software Object

Process Event
Periodic Event

Artifact Event

Experienceware

Measurement EW
Inspection EW

GQM Product EW Case
GQM Problem Solution EW Case

Problem
Problem Cause
Solution
Outcome

Type Definitions. Type definitions model qualities of SE entities, such as, developer
experience, or categorize concepts, e.g., programming languages as Unordered Symbol
with the possible values «Delphi, C++, etc.». Type definitions are used to type class at-
tributes. They facilitate the situation assessment and support the manual adaptation of
retrieved EW cases by explicitly indicating alternatives, as well, as the consistent ac-
quisition of experiences across projects. For each type, its related supertype, range and
the local similarity measure are specified. For example, the experience level of devel-
opers might be classified through the Ordered Symbols: none, low, medium, high, us-
ing the standard local similarity measure for ordered symbols. For symbol types, the
meaning of each value is explicitly defined through range definitions, e.g., «high» ex-
perience may be defined as worked for more than 2 years in the application domain. In
addition, for numerical types, the unit is explicitly stated, e.g., person-hours.
Glossaries. Glossaries define terminology and basic concepts related to software mea-
surement [16,19]. For example, «Failure: is the inability of the software to perform a re-
quired function wrt. its specifications». A glossary supports the adequate use of terms,
their consistency across an organization, and ensures that the reuse of GQM products is
based on sound assumptions.
Taxonomies. Taxonomies represent ordered arrangements of entities according to their
presumed relationships, e.g., organization hierarchy [16,19]. They guide the appropri-
ate refinement of objects of interest during the situation assessment and acquisition of
new experiences.

3.3 Knowledge Levels

Software products, processes, resources as well as characteristics and terminology vary
between different organizations. Therefore, the domain model has to be tailored to the
specific environment. Generally, we can identify different levels of knowledge valid in
different scopes of domains:
• Software measurement domain. Here, general knowledge on GQM-based measure-

ment is represented, which is transferrable between organizations. This level includes

Class GQM Measure

Description defines data to be collected

Attributes Identifier Description Cardinality Type or Kind Default Mandatory

id identifies the GQM measure 1 Identifier - yes
assumptions about the applicability of the measure 0..1 Text none no
description describes data to be collected 0..1 Text - yes
scale defines scale of the measure 0..1 Scale - yes
unit declares unit of the measure 0..1 Unit - no
range declares range of the values of the measures 0..1 Text - no
model references the corresponding model 0..* defined-by

[GQM-
Model])

- yes

...

A GQM measure defines which data has to be collected. It includes the explicit definition of assumptions concerning the
application of the measure. Regarding the expected values, scale, unit (only in case of numerical values) and range have to
be defined.As GQM measures are derived from models which determine the attributes to be measured, this is represented
as a defined-by relation. Based on the GQM measure the collection procedure defining when, how, and by whom the data
has to be collected is defined.

Fig. 5. Simplified example of the class GQM Measure

GQM EW models, general valid types and range definitions (e.g., on measurement
scale), and general valid terms in the glossary (e.g., software process).

• Organization domain. Here, organization specific knowledge related to software
measurement is represented. If the GQM technology is modified in a particular organ-
ization, the respective knowledge from the upper level is adapted accordingly. Type
and range definitions are enhanced by organization specific definitions. For example,
one organization could classify «experience of the developers» into the categories
(expert-participated in system development; medium-participated in training; none),
whereas another organization might classify experience into (high-working for more
than 2 years, medium-worked once, low-never worked in application domain). The
glossary and taxonomies are completed by organization specific terms.

• Project domain. At this level, instantiations of GQM EW cases are represented gath-
ered from particular software projects. For example, a GQM-PEC including a GQM
plan from a measurement program of the project HYPER at the department ABS/In-
telliCar.

4 Experience-Based Support of GQM Planning

4.1 Determination of Retrieval Goals

During the planning of GQM measurement programs the GQM-EB can be inquired to
find useful EW to guide, support and improve various SE tasks in a specific environ-
ment. In order to provide comprehensive support for several SE tasks, various types of
experiences have to be retrieved, from different viewpoints in different environments
addressing various purposes: support of software projects by reusing similar products
developed in the past, prevention of failures by anticipating problems, guidance for the
solution of problems by reusing solution strategies adopted in past similar problems,
and the identification of patterns of experiences for the maintenance and evolution of
the EB. Thus, a goal-oriented retrieval method [14] is developed that retrieves a set of
relevant experiences wrt. a specific reuse goal. Based on reuse scenarios, retrieval goals
are determined explicitly specifying the following dimensions:

Retrieve <object>
to <purpose>
concerning <process>
from the <viewpoint>
in the context of <environment>

For example, «retrieve lessons learned to guide problem solution concerning software
measurement from the viewpoint of quality assurance personnel at IntelliCar».
Based on the retrieval goals, reusability factors are determined. This includes the spec-

ification of relevant indexes1 and their importance and the parametrization of the simi-
larity measure. For example, for the retrieval of a solution strategy, relevant indexes

1.As index we denote attributes of the case, which predict the usefulness of the case concern-
ing the given situation description, and which are used for retrieval and determination of the
similarity value.

might be the problem description and the task when the problem occurred, whereas po-
tential problems wrt. a specific task might be identified based on the task only.

4.2 Retrieval Process

Considering different retrieval goals, a goal-oriented method for similarity based re-
trieval is defined, including the following steps [14]:
Step 1. Situation assessment. The current situation is described by the user specifying

the retrieval goal and a set of indexes related to the specific retrieval goal based on a
predefined indexing scheme. The importance of each index wrt. the specific retrieval
goal is stated through a relevance factor assigned to each index. Relevance factors are
stored in the EB and can be manually adapted by the user. To facilitate the assign-
ment, relevance factors are classified into «essential, important, less important, irrel-
evant». Indexes marked as essential are perfectly matched to the ones in the situation
assessment, the ones marked as important or less important are partially matched and
the ones marked as irrelevant are not further considered. Unknown indexes are ex-
plicitly marked. Table 1 illustrates a situation assessment with an exemplary set of in-
dexes. The situation assessment is further supported by general domain knowledge
[19]: glossaries can be used for a consistent usage of terminology across projects and
taxonomies guide and direct the appropriate definition of indexes. Type and range
definitions facilitate the identification of the present values and guarantee a consistent
description across projects.

Step 2. Exact matching of indexes marked as essential. In a first step, the cases of the
EB are perfectly matched with the situation assessment wrt. the indexes marked as
essential, determining a set of potential reuse candidates. Table 1 shows a simplified
example: while comparing the cases of the EB with the situation assessment, case
PSEC_03 and PSEC_11 are considered as potential reuse candidates, because the val-
ues of the indexes marked as essential («application domain» and «task») are equal
to the present ones. PSEC_07, which describes an experience regarding the develop-

Reuse goal GQM Experience Base (excerpt)

object lesson learned (PSEC) CASE
PSEC_003

CASE
PSEC_007

CASE
PSEC_011purpose guide problem solution

process sw measurement

viewpoint quality assurance personnel

environment IntelliCar

Indexes

department irrelevant ABS Fuel Injection Fuel Injection Fuel Injection

staff size less important 10 15 100 50

application
domain

essential automobile automobile automobile automobile

improvement goal important improvement of sw
system reliability

improvement of sw
system reliability

improvement of sw
system reliability

cost reduction in sw
development

programming language irrelevant Ada Fortran Ada C

dev. experience less important high medium low low

sw system size less important unknown 15 KLOC 80 KLOC 60 KLOC

measurement maturity important initial -- -- --

 task essential measurement goal
definition

measurement goal
definition

development of
measurement plan

measurement goal
definition

Table 1. Simplified retrieval example

ment of the measurement plan, is not further considered, as the value of the index
«task» is different to the one of interest.

Step 3. Partial matching of similar cases. For all potential reuse candidates a similar-
ity value is computed by partially matching the indexes (except the ones marked as
essential) using a specific similarity measure wrt. the retrieval goal (see Section 4.3).
Cases with a higher similarity value than a given threshold are considered as suffi-
ciently similar and proposed to the user as reuse candidates ranked by their similarity
values. Continuing the example shown in Table 1, case PSEC_03 is considered more
similar to the given situation than PSEC_11, because the values of the indexes of
PSEC_03 marked as important or less important are more similar to the current ones
(especially regarding «staff size», «improvement goal»).

Step 4. Selection of reuse candidate(s). Based on the proposed reuse candidates the
user can select the most appropriate case(s) and, if necessary, manually adapt them to
fit the current needs. Informed decisions are further supported by experiences explic-
itly captured in the EB about the reuses of a particular case in the past [19] (see
Section 3.1). If the system fails to propose reuse candidates, general domain knowl-
edge, e.g., GQM product models, is available to support the SE tasks.

4.3 Similarity Measure for the Retrieval of Experienceware

For the identification of «similar» EW cases concerning various retrieval goals (see
step 3/Section 4.2), we define a generic similarity measure sim(Sit´,Ek´) [14] that can

be parameterized for a specific goal. Taking into account specific characteristics of the
SE domain, such as the lack of explicit domain models in practice, diversity of environ-
ments, incompleteness of data, and the consideration of «similarity» of experiences, the
similarity measure is based on the following assumptions (see [14] for details):
• Depending on the retrieval goal, a particular set of indexes is defined for situation as-

sessment and matching. A set of indexes C is represented as a list of features
Cg={Cg1, Cg2,...} wrt. the particular retrieval goal g. The range of the value ci of the

feature Cgi is defined by the respective range definition Wi (see Figure 6).

• The present situation is assessed based on the set of indexes wrt. the retrieval goal,
represented as a list of feature-value pairs Sit´={(Cgi, si) ∈ Sit | relevance factor (Si)

≠ essential} including the features Cgi ∈ Cg and their values si ∈ Wi.

• In the EB, an EW casek = (Ek,εk) represents an experience by feature-value1 pairs (ex-

perience Ek={(Ek1, ek1), (Ek2, ek2),...} with the features Eki and their values eki ∈ Wi

Example Index Set Type/Range Relevance Vector
R g

Pres en t Si tuat i on
Sit´={(Cgi, si)

 Case Ek FS

C1 staff size Interval of numbers
[0,50]

le s s i mpor ta n t
(0.15)

s1 10 15 W

C2 improvement
goal

String important (0.35) s2 “improvement of
system reliability ”

“improvement of
system reliability ”

E

C3 measurement
maturity

Ordered Symbol:
{initial, low, routine}

important (0.35) s3 initial unknown U

C4 sw system size Number [0,100] le s s i mpor ta n t
(0.15)

s4 unknown 15KLOC R

Fig. 6. Example

(and with Ek´ ⊆ Ek and Eki´ ∈ Cg and their respective values eki´), describing the

know-how gathered in a software project, the context from which its originates, and
its relationships (see Figure 6). In addition, a threshold εk ∈ [0,1] is stated for each

case that determines, if the case is sufficiently similar to the situation assessment to
be proposed as a reuse candidate.

• In the SE domain, many cases may have a low similarity value, due to few identical
values, although they might be quite similar (e.g. programming languages C and
C++). Thus, local similarity measures are introduced. Generic local similarity meas-
ures υ´(si,eki´) ∈ [0,1] for basic value types W(v) are defined in [19,28]. Local simi-
larity thresholds θi ∈ [0,1] are introduced for each index Cgi determining if the values

are considered as (sufficiently) similar.
• Relevance factors are defined, which reflect the importance of a feature concerning

the similarity of cases wrt. a specific retrieval goal (see Figure 6). Here, for each re-
trieval goal g a specific index set Cg is used. Thus, for each index Cgi ∈ index set Cg,
a relevance factor ωgi ∈ [0,1] is defined in dependence on the specific retrieval goal

g. For each retrieval goal, those relevance factors are represented by a relevance vec-
tor Rg= {ωg1, ωg2,...} with ∑ ωgi=1 normalized in the EB.

• In order to explicitly deal with incomplete knowledge, the similarity of two objects is
expressed through a linear contrast of weighted differences between their common
and different features [6,30]. The following Feature Sets (FS) are distinguished:
• E: Set of corresponding features of the given situation and the stored case (E = {Cgi

| (Cgi ∈ Sit´∩ Eki´) and (υ´(si,eki´)≥θi)}). For example, if both, the situation assess-

ment and the stored case state the feature «experience of developer» as high.
• W: Set of contradicting features of the given situation and the stored case (W = {Cgi

| (Cgi ∈ Sit´∩ Eki´) and (υ´(si,eki´)<θi)}). For example, if in the past no effort report-
ing tools were available, but now in the given situation the feature «effort reporting
tools» is stated as available.

• U: Set of unknown features in the actual situation description (U = {Cgi | (Cgi ∈ Eki´

- Sit´)}). For example, when initiating a software project certain information, such

as «software system size» may be stated as unknown in the situation description.
• R: Set of redundant features not contained in the stored case (R = {Cgi | (Cgi ∈ Sit´

- Eki´)}). For example, the feature «developer experience» may not have been con-

sidered initially, but later become important for the identification of relevant cases.
For each set, a specific weight α, β, γ, δ ∈ [0,1] is defined.

The global similarity measure is defined as:
sim(Sit´,Ek´)=(α ∑si∈ E ωikυ´(si,eki´)) / ((α ∑si∈ E ωik υ´(si,eki´)) + (β ∑si∈ W ωik(1-

υ´(si,eki´))) + (γ ∑si∈ U ωik(1-υ´(si,eki´))) + (δ ∑si∈ R ωik(1-υ´(si,eki´))))

Based on the similarity value calculated, a casek is considered as reuse candidate, if all

features marked as essential in the given situation exactly match the respective features

1.Here, values represent atomic values or relations to other entities.

 ∀

of the case, and if sim(Sit´,Ek´) ≥ global similarity threshold εk of casek.

5 Continuous Acquisition and Integration of Experienceware

The incremental evolution based on feedback from industrial applications is essential
for continuously building and improving SE know-how. Consequently, the knowledge
in the GQM-EB has to be enhanced and updated each time a new measurement pro-
gram is run in the organization. This means that we have to continuously capture new
experiences from the quality assurance personnel. In order to keep the effort related to
the knowledge acquisition minimal, this process is intertwined in the retrieval/reuse
process (see Figure 7): Information provided by the user as input to the retrieval pro-
cess, such as a context characterization, and reused experienceware from the GQM-EB
are in parallel used for the creation of new EW cases.
For example, while reusing EW in
order to support the solution of a
problem encountered (see Section
2) concerning the definition of a
quality model, the user provides the
following situation assessment:
«organization: IntelliCar; applica-
tion domain: automobile; problem:
Question of GQM plan cannot be
refined into model». This informa-
tion is used for the retrieval process,
and in parallel for the description of
a new case documenting experienc-
es regarding the present situation.
Information contained in a similar
case retrieved and reused in order to
solve the current problem, is used to supplement the new case description (see Figure
8). The generated new case is reviewed by the user before storage in the EB. Additional
information (e.g. basic information) is added, and if necessary, deviations from the re-
used case are adjusted, e.g., if a solution different to the one stated in the reused case
was applied. The acquisition of new experiences is further guided through GQM EW
models, which explicitly address relevant dimensions to be captured. Glossaries and
taxonomies facilitate the consistent description of experiences across software projects.
The new acquired experiences are integrated into the existing EB to be available for fu-
ture reuse. This implies that EW cases have to be stored, domain models enhanced and,
if necessary, generic patterns of cases have to be created or modified.
Project-specific cases (GQM-PECs or GQM-PSECs) acquired in parallel to the retriev-
al process are stored as instances of GQM EW cases in the GQM-EB. Based on proto-
cols on the retrieval/reuse process and comparisons of the reused and new case, reuse
information is added to the reused case. For example, the date of reuse is added, the fre-
quency of reuse is increased, and attributes which have been adapted to fit the new sit-
uation are explicitly listed.

Retrieval of
similar cases

Revise/reuse of
reuse candidate

Capturing of
reused case

Situation description

Review of new case

Reuse
candidates

Capturing of
situation description

New case V0.1

New case V0.2

New case V1.0

 EKB

Fig. 7. Integration of acquisition process

In addition, project-specific cases are evaluated wrt. their similarity to other cases of the
GQM-EB. If the new case differs only in small details from a case reused, an abstract
case subsuming the project-specific cases is created through case generalization. The
development of generic patterns through the knowledge engineer can be guided by tax-
onomies which provide a basis for the derivation of abstractions.
Based on an evaluation of
new terms defined in the
specific GQM EW case
through the knowledge
engineer, the organiza-
tional glossary and taxon-
omies are enhanced.
The continuous evolution
and customizing of the EF
to a specific environment
may also require the mod-
ification of the representa-
tion of EW cases, the in-
dexing scheme and simi-
larity measure based on
user feedback from the application. Due to the fact, that indexes depend on the specific
environment and may change over time, the continuous tailoring of the indexing
scheme needs to be supported during the whole life cycle of a GQM-EB through the
knowledge engineer. For example, supplemental context characteristics of software
projects may become relevant for the discrimination of cases. As shown in Figure 8, the
attribute «measurement maturity» had not been considered as a relevant characteristic
for the context description of a case in the past, because all experiences were related to
projects without variations concerning the maturity. Since a new measurement program
is established in a project with a different level of maturity, this attribute has become
relevant for the distinction of cases and is added to the context characterization.
Continuous learning has also to take place wrt. the similarity measure and its parame-
trization for specific retrieval goals in order to improve and optimize its performance.
Therefore, the retrieval and reuse process is supervised and, based on the feedback, ap-
propriately tailored to the specific environment through the knowledge engineer. Here,
protocols documenting the user´s (re-)actions and user-provided critics and suggestions
can serve as a basis for the maintenance through the knowledge engineer (see Table 2).

Feedback Implication for update
Index manually added

for retrieval
•Addition of index to the indexing scheme

Relevance factor
manually modified

•Modification of weight assigned to the index
•Index frequently marked as irrelevant might be removed from the index
scheme

Increasing number of
retrieved reuse candidates

•Changing optimistic strategy for similarity measure into a more pessimistic
•Increase of tresholds

Table 2. Examples of retrieval feedback and its implications

 Context organization: IntelliCar; application do-
main: automobile; measurement maturity:
low

 Problem Question of the GQM plan cannot be re-
fined into operational quality model.

 Cause of
Problem

During the interviews the necessary knowl-
edge has not been acquired completely from
the project personnel.

 Solution A follow-up interview was performed with
the person(s) who mentioned the respective
quality aspects during the first interviews in
order to clarify the formulation of the GQM
question and organizational taxonomies on
software entities were consulted.

 Outcome The required knowledge was acquired com-
pletely and the respective quality model was
defined.

Fig. 8. Simplified example of acquisition

input for
retrieval
process

added
during
review

update of
reused
case
during
review

reused case
used as a
basis for
the
description
of the
new case

Based on a careful analysis of the causes, the selection of indexes and/or the similarity
measure have to be adapted accordingly in order to improve retrieval results in the fu-
ture.

6 Discussion

In the software domain, various approaches exist for reuse primarily focusing on soft-
ware code, e.g, based on library and information science, knowledge-based systems, or
database management technologies [12]. However, the majority of those approaches
fails to recognize the complexity of SE experience in general, often requires a thorough
classification of the domain, or does not provide any means for similarity-based retriev-
al.
Recently, CBR has been recognized as a promising approach for the operationalization
of learning organizations in the SE domain [2,3,18,22,27]. Applications are developed
in different SE areas, like capturing and formalizing best practices (e.g., [20]), effort
prediction (e.g., [13]), change management [23], and requirements acquisition (e.g.,
[25]). However, so far there does not exist an approach on reusing software measure-
ment EW. Only few approaches offer flexible similarity-based retrieval methods, for
example, through a context concept as a “similarity environment for the retrieval”
[1,31], dynamic ranking of importance ratings of indexes [21], or partitioning the case
base through the use of prototypes [7]. However, if multiple retrieval goals have to be
supported by a case base, this is not sufficient. The creation of distinct case bases for
test selection and diagnosis in PATDEX [6,31], can be seen in analogy to different re-
trieval goals, although inefficient due to administration and maintenance reasons. In
contrast, our approach, systematizes the concept of goal-oriented retrieval through a
flexible and tailorable retrieval method and similarity measure based on the advanced
similarity model of PATDEX which explicitly deals with unknown information, filter
attributes, and local similarity measures.
Besides integrating experiential knowledge (in form of cases) and general domain
knowledge as in several CBR systems, our approach explicitly models different levels
of knowledge focusing on different scopes.
Concerning the tailoring and continuous evolution of the EF to organization specific
characteristics, only a few systems offer mechanisms for the systematic and integrated
acquisition of user feedback and learning possibilities regarding the similarity measure
as, e.g., the tailoring of relevance factors (see [4] for an overview), which represent the
basis for the continuous evolution of our approach.

7 Conclusion

For the successful planning and improvement of software measurement, EW has to be
captured in corporate memories and reused across the organization. Based on our expe-

Frequent rejection of
cases suggested as

reuse candidates

•If a specific case is affected: increase of global treshold of the case
•If different cases are affected: review of indexing scheme and similarity
measure under consideration of additional critics and suggestions of the user

Table 2. Examples of retrieval feedback and its implications

riences on the application of the GQM approach in practice, we develop a case-based
approach for the operationalization of organizational learning in software measurement
focusing on the technical aspects. Relevant measurement EW is modeled, a goal-orient-
ed method for similarity-based retrieval tailorable to specific environments is devel-
oped, and an acquisition process intertwined into the retrieval/reuse process described.
Currently, we are implementing the approach. Further empirical research will have to
be carried out in experiments and industrial transfer projects to assess strengths and
weaknesses of the approach.

References

1. Althoff, K.-D., et al.: Case-Based Reasoning for Decision Support and Diagnostic
Problem Solving: The INRECA Approach. Proc. 3rd German Workshop on Case-
Based Reasoning, Germany (1995)

2. Althoff, K.-D., Bomarius, F., Tautz, C.: Using Case-Based Reasoning Technology to
Build Learning Software Organizations. Proc. of Workshop on Building, Maintaining,
and Using Organizational Memories at the 13th European Conference on AI (1998)

3. Althoff, K.-D., et al.: CBR for Experimental Software Engineering. In M. Lenz et al.
(eds.), Case-Based Reasoning Technology - From Foundations to Applications, LNAI
1400, Springer Verlag (1998)

4. Althoff, K.-D.: Evaluating Case-Based Reasoning Systems: The Inreca Case Study.
Postdoctoral Thesis, University of Kaiserslautern, Germany (1997)

5. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, 17(1) (1994)

6. Althoff, K.-D., Wess, S.: Case-based Knowledge Acquisition, Learning and Problem
Solving in Diagnostic Real World Tasks. Proc. of the 5th European Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, Scotland/UK (1991)

7. Barletta, R.: A Hybrid Indexing and Retrieval Strategy for Advisory CBR Systems
Built with ReMind. Proc. of the 2nd European Workshop on Case-Based Reasoning
(1994)

8. Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak
(ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

9. Basili, V. R., Caldiera, G., Rombach, H. D.: Goal Question Metric Paradigm. In J. J.
Marciniak (ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

10.Barr, J.M., Magaldi, R.V.: Corporate Knowledge Management for the Millennium. In
I. Smith, B. Faltings (eds.), Advances in Case-Based Reasoning, Springer Verlag
(1996)

11.CEMP Consortium. Customized Establishment of Measurement Programs. Final Re-
port, ESSI Project Nr.10358 (1996)

12.Frakes, W. B., Gandel, P. B.: Representing Reusable Software. Information and Soft-
ware Technology, 32(10) (1990)

13.Finnie, G. R., Wittig, G. W., Desharnais, J.-M.: Estimating Software Development Ef-
fort with Case-Based Reasoning. Proc. of the 2nd Int. Conf. on Case-Based Reasoning,
RI (1997)

14.Gresse von Wangenheim, C., Althoff, K.-D., Barcia, R.M.: Intelligent Retrieval of

Software Engineering Experienceware. Proc. of the 11th Int. Conf. on Software En-
gineering and Knowledge Engineering, Germany (1999)

15.Gresse von Wangenheim, C.: REMEX - A Case-Based Approach for Reuse of Soft-
ware Measurement Experienceware. Technical Report PPGEP-C3002.99E, Graduate
Program in Production Engineering, Federal University of Santa Catarina, Brazil
(1999)

16.Gresse, C., Briand, L. C.: Requirements for the Knowledge-Based Support of Soft-
ware Engineering Measurement Plans. Journal of Knowledge-Based Systems, 11
(1998)

17.Gibbs, W.W.: Software´s Chronic Crisis. Scientific American (1994)
18.Gresse von Wangenheim, C.: Knowledge Management in Experimental Software En-

gineering - Create, Renew, Build and Organize Knowledge Assets. Proc. of the 10th
Int. Conf. on Software Engineering and Knowledge Engineering, San Francisco, Cal-
ifornia (1998)

19.Gresse von Wangenheim, C., von Wangenheim, A., Barcia, R. M.: Case-Based Reuse
of Software Engineering Measurement Plans. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

20.Henninger, S.: Capturing and Formalizing Best Practices in a Software Development
Organization. Proc. of the 9th Int. Conf. on Software Engineering and Knowledge En-
gineering, Spain (1997)

21.Kolodner, J. L.: Case-Based Reasoning. Morgan Kaufmann, San Francisco, Califor-
nia (1993)

22.Kitano, H., Shimazu, H.: The Experience-Sharing Architecture. In D. Leake (ed.),
Case-Based Reasoning Experiences: Lessons Learned & Future Directions (1996)

23.Lam, W., Shankararaman, V.: Managing Change During Software Development: An
Incremental, Knowledge-Based Approach. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

24.Manago, M. et al.: Casuel: A Common Case Representation Language. Technical Re-
port Deliverable D1, Esprit Project Inreca P6322 (1994)

25.Maiden, N.A., Sutcliffe, A. G.: Exploiting Reusable Specifications Through Analogy.
Communications of the ACM, 35(4) (1992)

26.Kempter, H., Leippert, F.: Systematische Software-Qualitätsverbesserung durch
zielorientiertes Messen und Bewerten sowie explizite Wiederverwendung des Soft-
ware-Entwicklungs-Know-how. Proc. of the BMBF-Seminar Software Technology,
Germany (1996)

27.Tautz, C., Althoff, K.-D.: Using Case-based Reasoning for Reusing Software Knowl-
edge. Proc. of the 2nd Int. Conference on Case-Based Reasoning, Springer Verlag
(1997)

28.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Proc. 5th German Conf. on Knowledge-Based Sys-
tems, Germany (1999).

29.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Technical IESE-Report 015.98/E, Fraunhofer In-
stitute for Experimental Software Engineering, Kaiserslautern, Germany (1998).

30. Tversky, A.: Features of Similarity. Psychological Review, 84 (1977)

31. Wess, S.: Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entsc-
heidungsunterstützung und Diagnostik. Ph.D. Thesis, University of Kaiserslautern,
Germany, infix Verlag (1995)

32. Zand, M., Samadzadeh, M.: Software Reuse: Current Status and Trends. Journal of
Systems and Software, 30 (3) (1995)

