
7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 1

Software Measurement for Small and Medium
Enterprises

-A Brazilian - German view on extending the GQM method -

Christiane Gresse von Wangenheim1, Teade Punter2, Alessandra Anacleto3

1 Universidade do Vale do Itajaí/Centro de Eduação São José, Rod. SC 407/Km 04, 88122-000 São

José/SC, Brazil, gresse@sj.univali.br
2 Fraunhofer IESE, Sauerwiesen 6, 67661 Kaiserslautern, Germany, punter@iese.fhg.de
3 Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88049-200

Florianópolis/SC, Brazil, ale@inf.ufsc.br

Abstract
Today many large, medium and small software companies experience difficulties in establishing
quality improvement initiatives, although we can observe that unlike large companies, small and
medium sized enterprises (SMEs) find it particularly difficult to adapt these quality initiatives. This
is further complicated since most software quality initiatives, such as, e.g., CMM and SPICE,
primarily address the needs of large software organizations. Thus, in order to provide a basis for
the improvement of software quality and productivity also for small software companies, we
propose a customized approach to measurement as an essential infrastructure for software quality
improvement, which takes into account the specific characteristics and limitations of small
enterprises. Our approach basically consists of the integration of the systematic reuse of context-
specific quality and resource models in the planning of measurement programs, and of a
compaction of the measurement process to a lightweight GQM method in order to reduce the
measurement overhead. The approach is based on our experiences in applying measurement in
software SMEs, and first results are presented.

Keywords: Software Measurement, Goal Question Metric (GQM), Reuse of

Quality Models, GQM Lightweight, Assessment, Evaluation.

1 Introduction

Software engineering is not only done by large companies like Microsoft, Nokia
or Siemens, that belong to the world’s largest software development organizations.
A considerable amount of software is produced world-wide by small and medium-
sized enterprises (SMEs) ranging from 1 to about 50 employees. On the German
software market, for example, small companies largely characterize the primary
sector in software development and maintenance (77% in 2000), whereas medium-
sized and larger companies dominate the secondary sector that is related to, e.g.,
mechanical engineering, telecommunications, and financial services [GfK00]. A
similar situation is observed in Brazil, where the primary software sector is

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 2

basically composed of small and medium-sized software companies (69% in
2001) [MCT01].
In general, many software companies – regardless size – have difficulties in
establishing quality improvement initiatives. For example, the number of software
companies that have adopted reference models like CMM/CMMI, SPICE (ISO
15504) or ISO 9001 is still quite low. Till August 2002, only 21 official CMM
assessments were reported for Germany (about 17,315 companies were related to
German software production in 2000) and only 16 CMM assessments were
reported for Brazil [SEI01].

Therefore, we observe that unlike large companies, software SMEs have little
awareness of and/or encounter specific difficulties in adapting these quality
initiatives, due to limited financial and human resources. In general, SMEs are
frequently characterized by software processes that are hardly specified. Often,
they only have a small number of employees with multiple role assignments and
do not have resources for allocating dedicated staff and knowledge to start quality
initiatives. For example, in 2001, only 25% of the Brazilian small companies had
established a quality system (e.g., a total quality program or similar). In addition,
small software companies are frequently start-up companies, which have an
additional disadvantage compared to mature organizations regarding their lack of
experience and infrastructure. These problems are further complicated as most
software quality initiatives, such as, e.g., CMM or ISO9000, are primarily
addressed at large software organizations and require considerable resources,
infrastructure and experience.

In the context of any of those quality initiatives, measurement has proved to be an
essential necessity for controlling software projects and improving quality as
much as possible. Measurement is one of the Key Process Areas (CMM(i)) or
Base Practices (SPICE) of the aforementioned reference models. Although
measurement is applied in various areas and sciences, it has been shown to be a
complex and difficult undertaking in the software domain and especially in the
context of SMEs, due to their specific characteristics and limitations. For example,
in Brazil, more than 80 % of the SMEs do not use any kind of size measurement
[MCT01]. A survey among German software engineering companies [LVC02]
shows that more than 50% of the respondents do not collect metrics. The data are
either basically or systematically analyzed (75%), although 18% of the
respondents state that they are not analyzed at all.

Thus, in order to provide a basis for the improvement of software quality and
productivity, we propose a customized approach for measurement. Our approach

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 3

is based on the Goal/Question/Metric (GQM) Method as motivated in the next
section. We propose a more lightweight GQM method to enable measurement in
Small and Medium-sized Enterprises as described in Section 3. The adaptation of
our approach basically consists of the integration of the systematic reuse of quality
and resource models as described in Section 4. In Section 5, first experiences in
applying this customized approach in practice are presented.

2 Software Measurement and Quality & Resource Models

It is generally accepted that in order to manage software projects effectively and
improve software quality in a continuous way, context-specific quality and
resource models have to be built that are based on quantitative and qualitative data
collected through organization-specific measurement programs [BCR94]. Such
quality and resource models can model a variety of relevant quality or productivity
aspects (e.g., reliability, usability, maintainability, effort) by operationally
defining the entities and attributes to be measured, the set of measures used and
the relationships among several measures. For building such models, we need to
determine how to model the aspects adequately, what to measure, and how to
analyze and interpret the collected data and their relationships.

Two approaches to measurement have been distinguished. On the one hand,
universal quality frameworks have been proposed, such as [McC77], which
suggest pre-defined ways to decompose software quality into a set of components
and further into a set of metrics. However, these universal models assume that all
important quality factors in any context are a subset of those of the model. Several
authors have already stated that more research is needed to confirm that internal
quality assures external quality [KP96]. In addition, these frameworks do not
provide guidance on how to select relevant factors and metrics and, if necessary,
on how to adapt them to a specific environment.

On the other hand, measurement methods have been developed, for deciding what
to measure and how to interpret the collected data. Basically, there exist two types
of measurement approaches [PR94]: top-down and bottom-up. Bottom-up
approaches start with measurable observations and build up to management
objectives and goals, whereas top-down approaches help to derive useful measures
from goals and interpret the collected data in the context of the goals of interest.
However, in comparison to bottom-up approaches, top-down approaches have
been shown to support the adequacy, consistency, and completeness of the
measurement plan and to help manage the complexity of measurement programs
[Rom91]. Different top-down measurement approaches have been developed as a

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 4

basis for the definition and implementation of tailored measurable and operational
software improvement goals in a specific context, such as Quality Function
Development (QFD) [KA83], Software Quality Metrics Approach (SQM)
[Mur80], and Goal/Question/Metric Approach (GQM) [BCR94b, BW84].

Those top-down approaches focus on the relationship of the measures to the
measurement goals, representing generic methods, instead of defining a pre-
defined set of measures, and, e.g., like the GQM approach, guide the top-down
definition of a customized set of relevant measures and the bottom-up analysis and
interpretation of the collected data with respect to the measurement goal tailored to
the company-specific context. Yet, the approaches differ significantly in terms of
the scope of supported measurement goals, guidance for the identification of the
relevant measures and their potential uses. In that sense, the GQM approach has
been shown to be the most flexible of the three approaches [Rom91].

However, as these approaches, in general, start each new measurement program
from scratch, measurement remains an intellectually complex process, which
requires a considerable amount of effort, time and expertise [CEM96]. This turns
out to be a problem especially for small and medium-sized enterprises due to their
limited resources for investments in improving software quality and productivity
compared to large companies. Here, we observe that software SMEs encounter
specific difficulties as they generally do not have resources for allocating
dedicated and experienced staff to measurement initiatives. In addition, small
software companies are frequently start-up companies, which are often
characterized by informal processes, the lack of systematic project management,
their primary focus on getting the product out as well as their lack of experience.

In order to have a trade-off between the application of universal and validated
models and the need for measurement customized to a specific environment, we
aim at an integration of both approaches, especially taking into account the
characteristics and limitations of SMEs. Therefore, we propose an enhancement of
the GQM method, by enabling the systematic reuse of context-dependent quality
and resource models that have been developed in past measurement programs, on
the other hand, by compacting the measurement process to a lightweight GQM
method in order to reduce measurement overhead.

3 A GQM Lightweight Process

The Goal/Question/Metric (GQM) paradigm [BCR94b,BR88,BW84] has been
proposed as a goal-oriented approach for the measurement of products and

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 5

processes in software engineering. It is a mechanism for defining and evaluating a
set of operational goals, using measurement. GQM represents a systematic
approach for tailoring and integrating goals with models of the software processes,
products and quality perspectives of interest, based upon the specific needs of the
project and the organization.

The GQM paradigm was first developed in 1984 at the University of Maryland
[BW84] in cooperation with the NASA Goddard Space Flight Center [BCG+92]
and has been extended as part of the TAME project [BR88]. A first GQM process
was defined by Basili in 1992 [Bas92], which was extended by the definition of a
structure for GQM plans [Rom91] and the explicit representation of assumptions
[BMB96]. Based on the results of the ESPRIT/ESSI project CEMP, the GQM
process was refined [vSB99, GHW95]. In 1996, SEI defined a handbook where
the goal-driven software measurement is presented [PGF96]. Recent
enhancements of the GQM process are mostly directed at formalizing the
development of the GQM plan based on explicit quality models, as done, e.g., by
[CD99, MBB+98, OJ97, GM97, Gre02a], or on the integration of reuse
[Gre02a,Dif01]. However, there does not exist any approach directly addressing
small software companies and considering their specific requirements and
limitations.

Based upon these existing GQM process models, especially [vSB99, PGF96,
Gre02a, GHW95] and our experiences in applying GQM-based measurement in
small software companies, we describe a customized GQM process model that
combines the existing models adapted to the specific characteristics and
limitations of small software companies. Table 1 shows an overview of the
principal phases and activities of the GQM “lightweight” process, referred to in
the following as GQM Lightweight.

In general, GQM Lightweight is based on [Gre02b, GHW95] regarding its
principal phases and activities. However, each of the activities has been revised,
shortcut or adapted when possible, especially due to the predominant informality,
the small number of employees, and the limited resources in small software
companies.

The planning phase prepares the establishment of software measurement in the
organization. The organization and its projects are characterized in order to get a
better understanding of the context. Normally, a pilot project is selected to
introduce measurement and all people involved in the measurement program are
motivated and trained. We think that less attention is needed for GQM-planning in

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 6

an SME. For example, in the context of an SME, no separate measurement team
will be established due to the small number of employees and informal structures
of the organizations. Here, one person of the organization will rather be allocated
part-time to measurement responsibilities. In addition, much less effort has to be
spent on promotion and training, as, in general, there are less people involved in
the pilot project and shorter communication channels in such organizations make
planning less intensive. However, we also observed that measurement programs
are mainly supported by one or two persons who are convinced of their added
value. For example, in a fault measurement program in a small development
department (8 engineers), it was assumed that the direct communication within the
organization would facilitate feedback of the data collection forms. However,
developers had to be asked again and again to submit their data collection forms,
although they originally expressed their interest and although they were involved
in the development of the forms, which were quite simple and easy to use.

Phases Approach for SMEs
GQM Lightweigh

GQM method [vSB99] Goal-driven
measurement [PGF96]

Planning Introduce measurement
program

Establish GQM team, Create
project plan, Training and
promotion

 Select improvement areas, Select
application project & establish
project team

Identify business goals,
Identify what to know or
learn

Definition Define measurement
goals,
Goal formalization

Define measurement goals,
Conduct GQM interview, Review
or produce software process models

Identify subgoals, Identify
entities and attributes,
Formalize measurement
goals

 Define questions Define questions & hypothesis and
Review

Identify quantifiable
questions

Produce analysis plan Identify indicators & data
elements

 Define metrics Define measures and Review Define measures

 Produce GQM plan,
Define data collection
procedures, Define data
instruments

Produce GQM plan, Produce
measurement plan

Identify the actions
needed to implement
measures, Prepare a plan

 Produce data collection
plan
Create metrics base

Trial period, Hold a kick-off
session

Data
collection

Collect and validate
data

Create metrics base

 Store data collected Collect and check data collection
form, Store measurement data in
metrics base

Interpre-
tation

Data analysis

Define analysis sheets and
presentation slides

Reuse
of Qua-
lity &
Resource
models

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 7

 Data interpretation –
Feedback session

Prepare feedback session, Organize
and hold feedback session, Report
measures resulting

Packaging Packaging results

Table 1 Overview of GQM Lightweight and comparison with two existing GQM approaches

An explanation for this is that in the daily software development job, engineers
have to prioritize their work load and cope with a multitude of information, which
might result in lowering attention to the measurement program (this is true for
both large and small companies). Therefore, the kick-off session whose objective
is to get agreement of all people involved in the measurement program is essential
but not enough for the success of the measurement program. Motivation for the
measurement program should be reconfirmed during the process; we think that
feedback sessions (see below) can support this.

The definition phase aims at defining the GQM-based measurement program. This
includes the definition of the GQM goal(s) to be achieved by the measurement
program, the development of the GQM plan, including questions and measures,
and the development of the measurement plan defining data collection procedures
and instruments. Here, these basic activities also have to be followed in an SME
and a GQM and measurement plan have to be defined explicitly in order to have
an acceptable foundation for the measurement program.

However, significant support can be provided by the reuse of quality and
resource models during this step (see Section 4), resulting in a reduction of the
definition effort and facilitating the definition. Our experience has further shown
that the identification and selection of measurement goals is easier in SMEs partly
due to the fact that less people are involved in the pilot project and, therefore, in
the goal definition process, and often the goals defined in SMEs turn out to be
more restricted.

Once the GQM plan and measurement are defined, they have to be
reviewed. Here, in order to reduce the respective review effort, only project
personnel review the Abstraction Sheets and data collection instruments, whereas
the other parts of the GQM and the measurement plans are revised with respect to
their consistencies by the person(s) responsible for the GQM program.

During the data collection phase the data is collected according to the procedures
specified in the measurement plan. Effort reductions in the data collection phase
can be achieved by developing suitable data collection instruments that are very
well integrated into the software process of the specific SME. Wherever possible,
data collection should be automated, e.g., through integration into existing tools at

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 8

the organization. However, due to the large degree of informality, the majority of
measures often have to be collected manually. Therefore, data collection sheets
have to be developed that can be used in paper form or online depending on the
specific characteristics of the organization. For example, employees in one of the
SMEs where we applied measurement used to work at different locations and did
not necessarily have Internet access at all locations, and, therefore, preferred paper
sheets. However, the collection using paper sheets requires an additional effort for
the inclusion of the data into the measurement database.

The interpretation phase aims at the periodic analysis of the collected data and
interpretation during feedback sessions involving project personnel following the
GQM plan bottom-up. The intervals in which the collected data is analyzed and
interpreted should not be too short in order to keep the effort low, but also not too
long in order to provide feedback in time. On the one hand, intervals depend on
the measurement goal (e.g., when the respective information has to be available)
and, on the other hand, on the availability of the necessary data in order to be able
to answer a sufficient number of questions of the GQM plan.

The measurement database used to store and process the collected data for
analysis can simply be made with spreadsheet tools and database management
systems (DBMS). Spreadsheets are interesting to use because of their flexibility in
supporting goal adjustments during the execution of the measurement program.
The advantages of using a DBMS are the availability of languages to define the
data structure and the operations on the stored data and their support for
consistency checks. Based on our experiences, depending on the total duration of
the execution of the measurement program, it can be beneficial to automate the
data analysis process as much as possible. Although, in general, this requires a
higher effort in the beginning when developing the automated support, it results in
effort reduction each time the data is analyzed. However, if depending on the
specific measurement goal, the analysis is only performed a few times, this may
not justify the higher initial effort.

We think that it is absolutely essential to perform the feedback sessions in order to
obtain valid interpretations and to keep up the motivation in measurement.
However, in small companies, such feedback sessions will not be as formal as in
large companies, and should be prepared carefully in order to keep the time
required for these meetings minimal.

Another more critical issue regarding the data analysis and interpretation in
SMEs is the confidentiality of the data collected. Due to the fact that the person
responsible for measurement in an SME often is a person with multiple role
assignments (e.g., as project manager and developer), it may be difficult to

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 9

guarantee the anonymous analysis of the data. As a consequence, it becomes even
more important not to use the collected data for the evaluation of people in the
organization.

Once the measurement program is finished, in the Packaging phase, the
measurement results including the collected data and its interpretation are
analyzed, packaged and stored in a way suited to the organizational context so that
this knowledge can be reused in future software projects and measurement
programs.

The packaging should especially focus on documenting the GQM plan, the results
of the feedback sessions, and cost and benefits reported.

4 Reusing Quality and Resource Models

Measurement aims at defining the software qualities to be analyzed operationally
in relation to the particular environment. This is explicitly done in the form of
quality or resource models, which operationally define a software quality or
resource aspect of interest relative to an explicitly and precisely defined goal and
context. Quality models describe quality attributes of all kinds of products or
processes, for example, reliability, usability or maintainability, whereas resource
models describe models regarding resource consumption in the context of software
development and maintenance, e.g., on effort or duration. In general, those models
are often related to abstract concepts. Thus, one of the major problems is to refine
these aspects into operational models, leading to measurement that takes into
account the characteristics of the particular environment. In order to develop a
measurement program within a particular context oriented to a specific goal to be
achieved by measurement, we need to define a customized and operational quality
or resource model that defines relevant measures. Following the GQM approach
[BDR96, BCR94b, GHW95, Gre02a], the elements of such a quality or resource
model are:
� The measurement goal defining precisely the object of study, the purpose, the

quality focus, the viewpoint and the context in which the respective model is
valid.

� An object model describing the object of study of the measurement goal (e.g.,
the software process model).

� A high-level quality focus model refining the quality focus (e.g., documented
in the form of an Abstraction Sheet).

� A set of questions, expressing the information of interest in order to achieve
the goal.

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 10

� A GQM model operationalizing each of the questions by providing a means of
to answer the questions.

� Measures for each of the attributes/entities to be measured in order to feed a
GQM model.

� Data collection procedures, which define for each measure when, how, and by
whom the data are to be collected, validated and stored.

� Data collection instruments, which implement the measurement plan, e.g.,
tools or questionnaires.

� Analysis and interpretation procedures, which define when and how to
analyze and interpret which questions of the measurement program.

� Packaging procedures, which define how to capture and package the models
in order to make them reusable in the future.

In the traditional GQM method, such models are generally developed from
scratch. In practice, we have seen that such operationalization is not as easy as it
seems to be. Especially the planning of measurement programs has been shown to
be an intellectually complex and time-consuming process, difficult to be applied in
small and medium-sized software companies [CEM96]. We, therefore, aim at the
reuse of context-specific quality and resource models instead of starting each new
measurement program completely from scratch.

However, instead of using “universal frameworks” that are supposed to be
applicable in any context, we rather focus on the reuse of context-specific models
that have been developed in past measurement programs within a similar context
and are related to a similar measurement goal. In contrast to “universal
frameworks”, these quality and resource models present measurement knowledge
that is gathered and valid only in a specific scope of context. Such organization-
specific models can frequently be reused, as a company often develops various
software systems with similar characteristics in the same domain. This approach
balances the trade-off between relying upon universal quality models –that do not
exist – and ‘reinventing the wheel each time’. The benefits of such an integration
are the improvement of the planning of customized measurement programs, which
are more likely to address the specific needs than, e.g., universal frameworks, the
reduction of measurement effort, and the provision of greater support for
measurement planning.

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 11

Figure 1 Example of generalization of quality and resource models

Besides reusing concrete experiences that have been gathered in a past
measurement program, experiences gathered in similar types of contexts and
related to similar measurement goals can be synthesized by developing
generalized models. Such generalized quality or resource models are explicit
abstract representations of measurement knowledge that capture key variables.
The objective of these models is to summarize and communicate complex
knowledge for a specific type of context (e.g., an organization, a market sector or a
type of company) and does not intend to be “universally” valid. For example, as
shown in Figure 2, based on the experiences gathered in various small software
companies and standards wrt. the same measurement goal, a generalized resource
model in the context of small software companies can be derived by unifying and
abstracting relevant aspects from the individual plans.

Today, however, the reuse of quality and resource models often does not result in
a satisfactory measurement plan, as, in most cases, reuse is done in an ad-hoc,
informal manner, usually limited to personal experiences. To maximize
productivity and quality gains, knowledge management and organizational
learning with respect to the quality and resource models have to be systematically
integrated into the measurement process.

Msmt prg.: Analyse the
embedded software system for
injection control wrt.
reliability from the viewpoint of
the sw developer in the project Hyper
at the company IntelliCar

Msmt prg.: Analyse the
embedded software system
for motor control wrt.
reliability from the
viewpoint of the sw developer
 in the project Auto
at the company IntelliCar

Msmt model: Analyse an embedded
software system for control wrt.
reliability from the viewpoint of the
sw developer at the company IntelliCar

Msmt prg.: Analyse the
sw project wrt. cost from
the viewpoint of the
project manager in the
project alpha at the small
sw company IntelliTele

Msmt prg.: Analyse the
sw project wrt. cost from
the viewpoint of the
project manager in the
project beta at the small
sw company IntelliBank

Msmt prg.: Analyse
the sw
project wrt. cost from
the
viewpoint of the
project
manager in the project
BigShoeShop at the
small sw
company IntelliShop

Msmt model: Analyse the sw project
wrt. cost from the viewpoint of
the project manager at a small sw company

Msmt prg.: Analyse the
embedded software system
for motor control wrt.
reliability from the
viewpoint of the sw
developer in the project
Carro at the company BestCar

Msmt model: Analyse an
embedded sw control system
wrt. reliability from the
viewpoint of the sw developer at a
company in the automobile sector

Generalized quality and resource models

Quality and resource models
developed in a specific measurement
program

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 12

An approach for continuous learning and reuse of experience in the software
domain is the Quality Improvement Paradigm (QIP) [BCR94] supported by the
Experience Factory approach (EF) [BCR94a, BR88]. Based on the QIP/EF
approach, context-specific quality and resource models can be developed and
managed in order to provide systematic support for measurement (see Figure 3)
[AG02, Gre02a, PTK02].

Figure 2 Management of context-specific quality and resource models

The EF organization provides support for the continuous collection of concrete
quality and resource models developed in ongoing measurement programs. Those
models are analyzed and packaged in order to create a repository of well-specified
and organized experiences. This may include the storing of concrete quality and
resource models, the cataloguing of a set of models wrt. their measurement goals
and contexts or the development of generalized models by synthesizing
experiences from individual measurement programs. These stored models then
become available for reuse in new measurement programs, where useful quality
and resource models are retrieved by identifying models that have been developed
in similar contexts.

The usage of a technical infrastructure supporting the management of quality and
resource models is meant to facilitate the reuse of useful models and will reduce
overhead. However, so far only few first experiences with the application of tool
support for this specific type of knowledge management exist (including ES-
TAME [Oiv94,OB92] and REMEX [Gre02a]), and further experiences– especially
looking at SMEs – are studied.

Collection

Memory

Project
Support

Analysis,
Synthesis &
Packaging

Experience Factory

1 Characterization of the context

2 Definition of research goals

3 Selection of methods, techniques and
tools
4 Execution of the
case studies wrt. a specific
aspect and context class

5 Analysis of the case studies

6 Development/Refinement of models

Measmt. prg. 1

Measmt. prg. 2

...

Continuous
validation

Quality Improvement Paradigm

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 13

5 First Experiences in Applying the Approach

In this section, we describe our experiences with respect to reusing quality and
resource models and the application of GQM Lightweight in practice.

What was done?
We applied (parts of) the GQM Lightweight approach in five small and medium-
sized software companies. This included three start-up companies, each with 2 to 4
employees focusing on the development of information management systems for
external commercialization. The other two cases were done at departments (each
with 8 to 10 engineers) whose core task was software development. In all cases,
the authors of this paper had a coaching/consultant role. They were the GQM
experts that provided GQM knowledge and supported the people in the small
enterprises in defining a suitable measurement plan.

The Definition phase of GQM Lightweight was conducted by all
companies/departments. All three start-up companies focused on the analysis of
management aspects and, therefore, the quality model of company A (on project
management) was reused for the definition of the measurement programs at
companies B and C. The questions and measures that were used to conduct
Maintainability measurement for department D were reused from a past
measurement program, done previously for another company (same measurement
goal and a similar context). Only in Department E there was no explicit reuse of a
quality or resource model. Instead, the plan was developed from scratch with the
intention of future reuse.

Table 1 presents numbers of goals, questions and metrics per defined measurement
plan. The size of those plans is much smaller compared to the measurement plans
we generally experience at large companies, namely: ranging from 3 to 7
measurement goals, 10 to 50 questions, 22 to 70, sometimes even 160 measures.

Quality focus

 Number of goals,
questions &

metrics (G,Q,M)

Phases of GQM
Lightweight process

addressed1

Type of quality/
resource model2

Start-up company A

Project
management

1, 9, 10

All phases

Quality focus model

Start-up company B

Project
management

1, 10, 11

Definition

Quality focus model

1 See also section 3
2 See also section 4

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 14

Start-up company C

Project
management

1, 10, 10

Definition

Quality focus model

Department D

Maintainability

1, 5, 12

Definition

Questions, Measu-
res, Data collection

procedures

Department E

Requirements
elicitation and
management

1, 6, 17

All phases

Questions,
Measures

Table 2 Characterizing the application of GQM in SMEs

Criteria for analyzing the approach
The rest of this section reports on the experiences in applying GQM Lightweight
and the reuse of quality- and resource models by looking at three criteria, namely:
1. Applicability – of GQM Lightweight and the reuse of quality/resource models

in SME an context
2. Reduction in time and effort – to define a new measurement plan
3. Ability (of the people in the SMEs) to acquire measurement expertise

The first criterion is related to one of the problems of introducing software
measurement successfully in SMEs, namely that SMEs often do not have
structured processes. Instead, GQM Lightweight is a structured process. This
criterion is also related to another characteristic of SMEs, multiple role-
assignments. Thus the question is whether an extra task (such as measurement)
and a structured process can be satisfactorily applied in SMEs. The second
criterion is related to the motivation of having GQM Lightweight and reusing
quality- and resource models, namely that time and effort should be as low as
possible. The third criterion refers to the problems denoted in section 1 that SMEs
often do not have resources to allocate dedicated staff and knowledge to start
quality initiatives.

Applicability of the approach
For all participating companies and departments a measurement plan could be
defined. In those cases where the aim was to reuse quality/resource models (in
company B, C and department D), this was possible. The coaching by GQM
experts was an enabling factor to start the application of the approach. We think
that the companies/department that were consulted by us were not able to do it on
their own. On the hand, the coach was needed for the ‘tips and tricks’ to define a
measurement plan. On the other hand, the coach as an outsider is a soundboard for
company staff. The coaches were only necessary to start up the measurement
program. After a period of a few months the measurement program is lived by the
company and people are able to conduct data collection and interpretation

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 15

themselves. So far, we did not notice that the defined measurement plan was
improved/changed.

The data collection instruments that were applied in our cases were simple and
non-automatic. In company A, a paper effort report sheet was used, which was
filled out daily by all project personnel. In department D, a checklist was used that
was filled in by engineers each time they scored a software module on its
maintainability. The checklist was implemented by a spreadsheet, to provide
engineers with direct feedback and to facilitate the data collection process. In
department E, a mixture of automatic data collection (generated by a workflow
tool) and expert assessments was planned. However, this measurement has not
started yet because the choice of instruments was too complex to implement it in
this department. The lesson learned is that the ambitions to define measurement
instruments should not be too high and that starting with simple instruments (like
data collection sheets) should be preferred.

The measurement programs were executed at company A and department D. The
other companies/department did not yet implement the program, so no experiences
on measurement results can be presented for these cases. In department D, a set of
eight embedded code modules was assessed with the questionnaire resulting from
the measurement program. This enabled the department to select modules that
required further development.

At company A, the results provided a quantitative basis for the planning and
control of the existing software projects and for planning the new projects. The
measurement program also helped the company in getting a better understanding
of the software process. The planning of the measurement program required the
definition of the principal steps of the development process and resulted in a first
description of the software process, which did not exist before. This process
definition was validated and corrected adequately during the execution of the
measurement program. Having this validated process description supported the
company in defining improvement actions, e.g., by developing process guides and
templates to facilitate execution.

Reduction of time/effort
The effort/cost for definition was reduced significantly by reusing the models.
During the development of the resource model for company B, the model from
company A was reused and during the development of the resource model for
company C, both models from company A and B were reused by basically only
adding or removing certain aspects and adapting them to the specific software

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 16

process in place. The effort in the second application was reduced by about 41%
and in the third application by about 67%; see figure 4.

0

0.5

1

P
er

so
n-

da
y

Company 1

Company 2

Company 3

Figure 3 Planning effort reusing concrete models

This significant reduction might be partly due to the fact that the focus was on
resource models. There might be less reduction when reusing quality models (e.g.,
on usability), as they might be more context-specific and, thus, may require more
effort for their adaptation to completely fit into the particular context. However, in
reusing a quality model for maintainability (at Department D), we observed a
reduction in definition effort, too. The original definition cost 6 days; the tuning of
this model in department D was done in 3 days.

When other GQM Lightweight phases are also taken into account, it is interesting
to observe that the initial establishment of a measurement program focusing on
resource aspects in one of the start-up companies using the approach required
approximately 38 person-hours in the first 8 months of its application [AGH02].
These numbers are a first indication that GQM Lightweight can reduce the
measurement effort to an acceptable amount in the context of small and medium-
sized companies, especially in comparison with numbers from other GQM
applications where the approximate total effort has been about 1 person-year
[CEM96].

Contrary to these positive remarks on reducing effort/cost, we also noticed a great
risk in SMEs as their frequent changes of focus also require a re-definition of the
measurement program. For example, at company B and C, there was a sudden and
complete change in the business focus of the start-up due to the for finding a
market niche. As a consequence, the software product and application domain
changed completely. Depending on the degree of change, this might require
significant extra effort.

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 17

Ability to acquire measurement expertise
Measurement know-how was transferred by reusing the quality/resource models as
well as by transferring expertise about the GQM Lightweight process. Concerning
the models, it was observed that less expertise in measurement was required.
However, in order to enable the reuse of these models, they have to be carefully
revised in order to prevent the utilization of inappropriate models. Furthermore, a
certain measurement experience was necessary in order to appropriately adapt the
models to fully satisfy the present situation.

Concerning the process, the coaches provided expertise to one or two
representatives of the company/department. Later, people were capable of
continuing the measurement program after the coaching was finished. The
successful transfer was due to fact that the people had a clear responsibility for this
task and that they had time to consult the coaches and read about the GQM
process. The fact that the knowledge transfer was directed to one (or two)
person(s) also caused the GQM-knowledge to be restricted to these people.
Despite the existence of shorter communication channels (which is often regarded
as being a characteristic of SMEs), we observed that the knowledge on the
measurement programs itself (the questions and metrics) was transferred amongst
the people in the departments, but that additional background information on
GQM was not communicated explicitly. Also, discussions on, e.g., the type of data
collection were not conducted within the company. To conclude, the role of
measurement expertise was assigned in a way similar to that in large companies.
However, in a large company it is often a GQM team or department that is
involved, while in a small company only one person is responsible.

6 Conclusions

In this paper we have argued that small and medium-sized software companies
have various problems in adopting quality initiatives due to their specific
characteristics and limitations. Therefore, we have proposed a customized
approach for software measurement, as one of the key technologies for software
process improvement and as a basis for systematic project management.
Considering that there exists a trade-off between the application of universal and
validated models and the need for context-dependent measurement customized to
a specific environment, the GQM Lightweight approach presented aims at
integrating both approaches by compacting the measurement process based on the
GQM approach and integrating the reuse of context-specific quality and resource
models.

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 18

First results in applying GQM Lightweight in practice indicate that the method is
suitable for establishing an effective measurement program in SMEs. We have
observed that the method and especially the reuse of context-specific models can
reduce the effort spent on the planning and execution of measurement programs,
keeping it to a level that enables its application in SMEs. However, GQM
Lightweight should be empirically validated further, especially concerning other
quality models, in order to make more general statements about the impact of the
approach on software measurement in SMEs.

Acknowledgements

This work has been realized with the support of the CNPq (an entity of the
Brazilian Government directed to scientific and technologic development) and the
DLR (an entity of the German Ministry of Science and Education).

References
[AG02] A. Anacleto, C. Gresse von Wangenheim. Applying Measurement in Small Software Companies

for Supporting Project management (in Portuguese), in: Proceedings of Simpósio Brasileiro de
Qualidade de Software, Brazil, 2002.

[AGH02] A. Anacleto, C. Gresse von Wangenheim, J. Hammes, Measurement for Supporting Project
Management in a Small Software Company (in Portuguese), in: Proceedings of the XIII
Conferência Internacional de Qualidade de Software, Brazil, 2002.

[Bas 88] V. Basili, D. Rombach, The TAME Project: Towards improvement-oriented software
environments, in: IEEE Transactions on Software Engineering, vol. SE-14, no. 6, pp. 758-773,
1988.

[Bas92] V. Basili, Software Modelling and Measurement: The Goal/Question/Metric Paradigm, Technical
Report CS-TR-2956, Department of Computer Science, University of Maryland, College Park,
MD 20742, September 1992.

[BCR94] V. Basili, G. Caldiera, D. Rombach, Experience Factory, in: J. Marciniak (ed.), Encyclopedia of
Software Engineering, vol.1. John Wiley & Sons, 1994.

[BDR96] L.Briand, C. Differding, D. Rombach, Practical Guidelines for Measurement-Based Process
Improvement, in: Software Process, 2(4), December 1996.

[BMB96] L. Briand, S. Morasco, V. Basili. Property-Based Software Engineering Measurement. IEEE
Transaction on Software Engineering, vol. 22, no. 1, January 1996.

[BR88] V. Basili, D. Rombach. The TAME Project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Software Engineering, SE-14(6), 1988.

[BW84] V. Basili, D. Weiss, A Methodology for Collecting Valid Software Engineering Data, in: IEEE
Transactions on Software Engineering, SE-10(6):728-738, 1984.

[CD99] G. Cantone, P. Donzelli. Goal-oriented software measurement models. Proceedings of the
ESCOM, 1999.

[CEM96] The CEMP project. ESSI Project Number 10358. Customized Establishment of Measurement
Programs, Final Report, July 1996.

[Dif01] C. Differding, Adaptive Measurement Plans for Software Development, PhD Thesis, Department
of Computer Science, University of Kaiserslautern, 2001.

7th International Conference on Empirical Assessment in Software Engineering (EASE), 2003, Keele, UK

 19

[GHW95] C. Gresse, B. Hoisl, J. Wüst, A Process Model for GQM- Based Measurement, Technical Report
STTI-95-04-E, Software Technology Transfer Initiative, University of Kaiserslautern, Germany,
1995.

[GM97] A. Gray, S. MacDonell. GQM++ A Full Life Cycle Framework for the Development and
Implementation of Software Metric Programs. In Proc. of the Fourth Australian Conference on
Software Metrics, Australia, 1997.

[Gre02a] C. Gresse von Wangenheim, Operationalizing the Reuse of Software Measurement Planning
Knowledge, PhD Thesis, University of Kaiserslautern, Germany. aka Verlagsgesellschaft/infix,
DISKI 256, 2002.

[Gre02b] C. Gresse von Wangenheim. Planning and Executing GQM-Based Software Measurement.
Technical Report LQPS001.01E, UNIVALI, São José, Brazil, 2002.

[KA83] M. Kogure, Y. Akao, Quality Function Deployment and CWQC in Japan, Quality Progress,
October 1983.

[KP96] B. Kitchenham, S. Pfleeger, Software quality: the elusive target, in: IEEE Software, January,
pp.12-21, 1996.

[LVC02] O. Laitenberger, S. Vegas, M. Ciolkowski, The State of the Practice of Review and Inspection
Technologies in Germany, ViSEK Report 011.02, ViSEK Consortium / Fraunhofer IESE,
Kaiserslautern, 2002.

[MBB+98] M. Mendonça, V. Basili, I. Bhandari, J. Dawson, An approach to improving existing measurement
frameworks, IBM System Journal, vol 37 (4), 1998.

[McC 77] J. McCall, P. Richards, G. Walters, Factors in Software Quality, RADC TR-77-369, 1977. Vols
I,II,III', US Rome Air Development Center Reports NTIS AD/A-049 014, 015, 055, 1977.

[MCT01] Ministério da Ciência e Tecnologia, Quality and Productivity of the Brasilian Software Sector (in
Portuguese), Ministério da Ciência e Tecnologia, Brazil, 2001.

[Mur80] G. Murine, Applying Software Quality Metrics in the Requirements Analysis Phase of a
Distributive System, in: Proceedings of the Minnowbrook Workshop, New York 1980.

[OJ97] R. Offen, R. Jeffery, Establishing Software Measurement Programs, IEEE Software, March/April
1997.

[PR94] S. Pfleeger, D. Rombach, Measurement based Process Improvement, in: IEEE Software 1994.

[PGF96] R. Park, W. Goethert, W. Florac, Goal-driven Software measurement – A guidebook, CMU/SE-
96-HB-002.

[PTK02] T. Punter, A. Trendowicz, P. Kaiser, Evaluating Evolutionary Software Systems, in: Proceedings
of PROFES 2002, Rovaniemi (F), December 9-11, Springer LCNS 2559, 2002

[Rom91] D. Rombach, Practical Benefits of Goal-Oriented Measurement, in: Software Reliability and
Metrics, Elsevier Applied Science, 1991.

[vSB99] R. van Solingen, E. Berghout, The Goal/Question/Metric method – a practical guide for quality
improvement of software development, London, McGraw-Hill, 1999.

[SEI01] Software Engineering Institute, http://www.sei.cmu.edu/sema/pdf/2002aug.pdf.

