
Message-Oriented Middleware with QoS

Awareness

Hao Yang, Minkyong Kim, Kyriakos Karenos, Fan Ye, and Hui Lei

IBM T. J. Watson Research Center
{haoyang,minkyong,kkarenos,fanye,hlei}@us.ibm.com

Abstract. Publish/subscribe messaging is a fundamental mechanism
for interconnecting disparate services and systems in the service-oriented
computing architecture. The quality of services (QoS) of the messaging
substrate plays a critical role in the overall system performance as per-
ceived by the end users. In this paper, we present the design and im-
plementation of Harmony, an overlay-based messaging system that can
manage the end-to-end QoS in wide-area publish/subscribe communica-
tions based on the application requirements. This is achieved through a
holistic set of overlay route establishment and maintenance mechanisms,
which actively exploit the diversity in the network paths and redirect
the traffic over links with good quality, e.g., low latency and high avail-
ability. In order to cope with network dynamics and failures, Harmony
continuously monitors the link quality and adapts the routes whenever
their quality deteriorates below the application requirements. Harmony
can operate on top of different data transport layers. When the transport
layer has built-in message scheduling capability, Harmony takes advan-
tage of it and utilizes a novel budget allocation scheme to control the
scheduling behavior. We have fully implemented the Harmony messaging
system, and our empirical experience has confirmed its effectiveness in
providing end-to-end QoS in dynamic wide-area network environments.

1 Introduction

We are witnessing major transformations to the enterprise computing landscape.
One of such transformations is the ever increasing awareness of the real-world
events and conditions through massive sensing, analytics and control capabil-
ities, leading to a proliferation of cyber–physical systems (CPS)[1]. Another
major transformation is the growing interconnection and interoperation of en-
terprise systems over a geographically distributed wide area, as triggered by
business practices like mergers and acquisitions, off-shoring, outsourcing, and
the formation of virtual enterprises. The second transformation has been driv-
ing an emerging engineering discipline around the system of systems (SoS) [2].
Message-oriented middleware (MOM) is widely recognized as a promising ap-
proach to the integration of both CPS and SoS, because messaging is a simple
and natural communication paradigm for connecting the loosely-coupled and
distributed components in those systems. However, CPS and SoS have also in-
troduced new non-functional requirements on MOM. Specifically, MOM must

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 331–345, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

332 H. Yang et al.

be aware of and satisfy the unique quality-of-service (QoS) needs of these new
systems in order for it to be practically useful.

Consider cyber physical systems being developed for a wide variety of appli-
cation domains ranging from the smart grid of electricity to environmental mon-
itoring and to intelligent transportation. Voluminous sensor event data needs
to be transported from field sensors to backend enterprise servers for complex
event processing and integration with the business processes. Sensor data is of-
ten time-sensitive in that the correct data that comes too late may become the
wrong data. Therefore sensor data must be transported in a very responsive
and reliable manner. Similarly, control directives carried in the reverse direction
of traffic may drive various mission-critical systems. The control directives may
have stringent requirements on delivery performance and security in order to
avoid catastrophic consequences. On the other hand, the communication infras-
tructure for sensor data and control directives presents a number of challenges.
Sensors are often deployed in potentially hostile environments, which make the
sensors more prone to malicious attacks and natural hazards. Further, sensors
are connected through wireless links that are inherently weak. There may be a
high degree of variability in wireless bandwidth due to moving obstructions, RF
interference, and weather. There may also be periods of intermittent disconnec-
tions. Such characteristics make it very difficult for MOM to effectively address
the QoS requirements of CPS.

In the realm of system of systems, the constituent systems may be distributed
over a large geographic area, e.g., across a nation or even spanning multiple
continents. Messages between the systems often have to travel a long commu-
nication path, incurring much larger delay than local-area messaging. It is also
harder for a long-haul communication path to maintain high availability due
to the increased number of nodes and links on the path. Further, the systems
are likely to be deployed and operated by separate organizations, which result in
different security properties and degrees of trustworthiness to be associated with
these systems. Despite technical challenges arising out of the communication in-
frastructure, many SoS applications require messaging capabilities with certain
assurance on a range of QoS metrics including latency, throughput, availability
and security. One example of such an SoS assimilated multiple systems used
by US federal agencies (FAA, DoD, DHS, etc.) to facilitate the distribution of
real-time national air surveillance data among these agencies [3].

Existing MOMs fall into one of two categories: enterprise messaging systems
and real-time messaging systems. Intended to address traditional business needs,
enterprise messaging systems provide message delivery assurance and transac-
tional guarantees. They usually implement the JMS standard [4] and can trans-
port messages over a wide area across multiple domains. However, they do not
proactively manage messaging performance. As such, applications cannot predict
or depend on when messages will arrive at the destination. Real-time messag-
ing systems, on the other hand, offer QoS assurance by allocating resources and
scheduling messages based on application-specific QoS objectives. They often
conform to the DDS standard [5]. Unfortunately these systems are limited to

Message-Oriented Middleware with QoS Awareness 333

QoS management within a local area or a single domain. They are not designed
for wide-area messaging involving multiple separate domains. Neither enterprise
messaging nor real-time messaging is adequate for the emerging CPS and SoS,
which require QoS awareness and enablement for messaging in a large geographic
area and through federated domains.

The Harmony messaging system developed at IBM T. J. Watson Research
Center is designed to combine the best of enterprise messaging and real-time mes-
saging to suit the needs of the emerging CPS and SoS paradigms. Specifically,
Harmony facilitates the interconnection of disparate messaging domains over
large geographic areas and heterogeneous network infrastructure, and provides
compatibility and interoperability with de-facto messaging standards including
both JMS and DDS. One salient feature of Harmony is the holistic provisioning
of dependable and predictable QoS by effectively addressing system and net-
work dynamics, heterogeneity and failure conditions. It allows the specification
of required performance properties (i.e., latency, throughput), availability and
reliability models, and security constraints separately for each message topic or
connection session; it further transports messages across autonomously admin-
istered domains respecting the above requirements end-to-end.

In this paper, we focus on the provisioning of end-to-end latency QoS in Har-
mony in the context of MOM for wide-area federated domains. This is achieved
through a holistic set of overlay route establishment and maintenance mecha-
nisms for managing the end-to-end latency, including both network latency and
processing latency. In particular, the overlay routing mechanisms actively ex-
ploit diversity in the network paths and redirect messages over those links with
good quality, e.g., low latency and high availability. In order to cope with net-
work dynamics and failures, Harmony continuously monitors the link quality
and adapts the routes whenever their quality deteriorates below the application
requirements. Harmony can operate on top of different data transport layers.
When the transport layer has built-in message scheduling capability, Harmony
also adopts a novel budget allocation scheme to control its scheduling behav-
ior and adapt to short-term network dynamics. Our experience from a testbed
deployment demonstrates that Harmony can effectively manage the end-to-end
latency with respect to the application requirements, despite the dynamics com-
monly seen in the wide-area networks.

The rest of this paper is organized as follows. Section 2 reviews our network
and system models, and Section 3 presents our design of Harmony, a QoS-aware
messaging middleware over wide-area networks. Section 4 describes our imple-
mentation efforts, and Section 5 reports our empirical experience from a testbed
deployment. Section 6 compares the Harmony system to the literature. Finally,
Section 7 concludes the paper.

2 Network and System Models

Our work targets the emerging CPS and SoS paradigms which require message-
oriented middlewares to interconnect massively distributed components, services

334 H. Yang et al.

DOMAIN

DOMAIN

DOMAIN

Sensor
Node

Sensor
Node

Sensor
Node

BROKER

BROKER

BROKER

BROKER

BROKER

Fig. 1. Network Model

and systems over large geographic areas. Examples of such systems include Smart
Grid for electricity distribution, smart city management and intelligent trans-
portation. In all these applications, a large number of sensors and actuators are
deployed in the field, and they must be interconnected with the event processing
and analytics capabilities at the back end. A wide variety of event data and con-
trol directives are transported across different nodes in real time. This requires
a messaging service that supports different communication paradigms, such as
point-to-point, multicast and publish/subscribe. While the system we developed
supports all these communication paradigms, we focus on the publish/subscribe
aspect in this paper, because it provides the fundamental mechanism for asyn-
chronous communication in distributed systems.

We assume that the endpoint nodes in the system are clustered into many local
domains, and there is one broker node inside each domain. As shown in Figure
1, these brokers are inter-connected through an overlay network and collectively
provide the publish/subscribe messaging service. Each endpoint node, such as a
sensor, an actuator or a processing element, is attached to the local broker. There
can be an arbitrary number of topics in the system, which can be defined either
through administrative tools or dynamically using programming APIs. Each
endpoint can publish and subscribe to one or multiple topics, while each broker
can perform publish/subscribe matching, transport messages to local endpoints
or neighboring brokers, and optionally perform message mediation (e.g., format
transformation). Compared to the traditional approach using a single broker or
a cluster of brokers, our overlay-based approach provides several architectural
benefits as follow:

– Scalability: Each node only needs to know the local broker, while each broker
only communicates with a small number of neighboring brokers. As such, we
can avoid maintaining pair-wise connections, which is prohibitively expensive
as the system scales up.

Message-Oriented Middleware with QoS Awareness 335

– Federation: The system is likely deployed and operated jointly by multiple
organizations. In such a federated scenario, it is critical that each adminis-
trative domain can independently manage the access from/to its own nodes,
which can be easily facilitated by the local brokers.

– Heterogeneity: The sensors are inevitably heterogeneous in a large-scale sys-
tem. It is difficult, if possible, for any broker to understand all the protocols
used by different nodes. With an overlay, the brokers can agree on a canoni-
cal protocol among themselves, and use a few adapters to communicate with
the local sensor nodes.

Within each local domain, the sensor and actuator nodes can be connected to
the broker through a variety of forms, e.g., wireless sensor networks. There have
been numerous research in the sensor networking area, which is beyond our scope
in this paper. Instead, we focus on providing Quality-of-Service (QoS) assurance
within the broker overlay network. In the next subsection, we elaborate on the
QoS model that we employ in this work.

2.1 Quality-of-Service Goals

Providing predictable QoS is an essential requirement for mission-critical appli-
cations. In particular, the messaging middleware should ensure timely and reli-
able delivery of critical messages, such as emergency alerts or real-time control
commands. Formally stated, our goal is to provide QoS-aware publish/subscribe
service in terms of message latency and delivery rate between all matching pairs
of publishers and subscribers. Specifically, each topic is associated with a max-
imum delay that its messages can tolerate1, and our system seeks to maximize
the in-time message delivery rate, i.e., the percentage of messages that arrive
before their respective deadline.

Note that the end-to-end delay for a given message consists of both processing
delay at each intermediate broker and the communication delay between adjacent
brokers. The former is affected by the load (i.e., message arrival process) of a
broker, while the latter is affected by the characteristics of the network links. The
broker processing delay also varies over time as each broker dispatches messages
on multiple topics, and the messages may arrive in burst. Furthermore, since
the sensors and actuators are deployed over a large geographic area, they will
inevitably operate over wide-area networks, where the link quality fluctuates
due to the dynamic traffic load. While some applications may employ dedicated
networks, in general we do not assume the underlying network provides any QoS
assurance. Such a relaxed network model allows our system to be applicable
in different deployment scenarios, but it also poses challenges to our design as
the messaging service must cope with such network and system dynamics, and
ensure the end-to-end latency requirement is continuously satisfied.

1 We consider per-topic latency requirement for ease of presentation. Our system can
be easily extended to provide different QoS for individual publishers and subscribers.

336 H. Yang et al.

3 Design

In this section, we present the design of Harmony, a message-oriented middleware
with QoS awareness for wide-area publish/subscribe communication.

3.1 Overview

In order to meet the end-to-end latency requirements, our basic idea is to use
overlay forwarding to bypass any congested network links or overloaded brokers,
and to properly manage the network resources based on the message priorities.
These techniques have been used in the literature for improving the QoS of
point-to-point communication in the Internet [6][7][8]. However, there are a few
non-trivial challenges in the context of publish/subscribe communication, where
a topic may have many distributed publishers and subscribers. First, how can
we establish QoS-aware overlay routes that interconnect all publishers and sub-
scribers of a given topic, and adapt these routes in response to network dynamics
such as link congestion and broker failures? Second, how can we coordinate the
brokers along a route to collectively ensure the end-to-end latency performance?

Harmony addresses these challenges by a holistic set of overlay route establish-
ment and maintenance mechanisms. Specifically, the brokers exchange control
messages among themselves to discover remote subscriptions, and employ a dis-
tributed protocol to establish end-to-end overlay routes that satisfy the latency
requirements. To handle network dynamics, each broker has a monitoring agent
that keeps track of the latest processing latency and network latency to its neigh-
boring brokers. These measurements are propagated among the brokers and used
in the path computation to continuously find QoS-satisfied overlay routes. These
overlay routing mechanisms can work with any data transport layer that sup-
ports publish/subscribe communication. Nevertheless, when the transport layer
has additional message scheduling capability, Harmony allocates latency budgets
for different topics at each hop, which are used to decide the scheduling prior-
ity of different messages at transmission time. This way, the system can handle
short-term latency increase at one broker by increasing the latency budget at this
broker, while reducing the budgets at other brokers. When the latency changes
go beyond what can be handled by shifting budgets, however, new routing paths
are computed to avoid congested links or overloaded brokers.

3.2 Overlay Routing

For simplicity, we assume that the set of brokers is known in advance, and
the topology of the broker overlay is also decided a priori. Nevertheless, these
brokers and links may fail and recover at any time. This assumption is reasonable
in many application scenarios because the broker deployment only changes at
very coarse timescales (e.g., once in a few weeks). In cases where brokers do
frequently join and leave, a dynamic topology maintenance scheme is needed to
adjust the overlay topology in runtime. We leave this issue for future study.

Message-Oriented Middleware with QoS Awareness 337

In general, there are two approaches for routing, namely link state (e.g., OSPF
[9]) and distance vector (e.g., RIP [10]). While each approach has its own merits,
our design follows the link state one which, as explained later, is more suitable
for our specific context. We also employ several novel techniques to support QoS
in distributed publish/subscribe communication.

Finding Subscribers. As discussed in Section 2, each endpoint can subscribe
to any topic at any time. Such subscriptions are sent to the local broker which this
endpoint is attached to. Each broker maintains a local subscription table to record
which topics each local endpoint subscribes to. The brokers then propagate these
topics to other brokers. As a result, each broker knows which topics any other
broker needs; it maintains such information in a remote subscription table.

When an endpoint publishes a message on a topic, say T , the message is sent
to the local broker. This broker first checks the local subscription table and
transmits to all local subscribers of T . It also checks the remote subscription
table to finds all remote brokers that subscribe to T , and sends the message to
these brokers using the overlay routes. Upon receiving this message, these brokers
further forward it to their respective local subscribers. As such, the message will
eventually arrive at all subscribers of topic T in the system.

Monitoring and Link State Advertisement. Similar to OSPF [9], every
broker periodically advertises its link states, including the measured processing
latency for each topic and the network latency to each of its neighbors. Such link
states are propagated to all other brokers through a simple neighbor forwarding
mechanism [9]. Asa result, each broker has a local copy of the entire network
map, i.e., the broker overlay topology with the latest latency measurements for
all nodes and links.

Each broker employs a monitoring agent to measure processing and network
latencies. It periodically pings neighboring brokers to obtain network latency.
We use Exponentially Weighted Moving Averaging (EWMA) to avoid sudden
spikes and drops in the measurements. On the other hand, if a neighbor fails
to reply to three consecutive pings, it is considered to have failed and the link
latency is marked as ∞. The monitoring agent also keeps track of the broker
processing latency, including the time spent on publish/subscribe matching and
the queueing delay. Both latency measurements are included in the link state
advertisement so that each broker can build a complete network map.

QoS-aware Multipath Route Computation. For both resilient and in-
time message delivery, Harmony employs multipath routing in which a message
may be delivered to the subscribers via multiple parallel paths. Since every bro-
ker maintains the complete overlay topology from the link-state advertisements,
it can compute the QoS-satisfied paths individually and use a source routing pro-
tocol, which will be described shortly, to establish these paths. In what follows,
we consider resiliency level (or simply resiliency) as the probability of deliver-
ing a message end-to-end over one or more paths, which can be measured over
long periods of time. We provide a path computation algorithm that takes into

338 H. Yang et al.

account such failure probabilities towards choosing the most resilient combina-
tion of parallel paths. The failure probabilities of brokers and links are assumed
to be known in advance, while our algorithm can accommodate various defini-
tions of resiliency such as [11] or using historic information. For example, the
percentage of time that a broker is available in a specific operational period of
time can be extracted from traces such as the all-pairs-pings service.

Our algorithm takes as input the overlay network topology, the failure prob-
ability of each broker and each overlay link, the number of multipaths needed
n, a delay constraint D and a maximum search depth k. The goal is to compute
the n-multipath that provides the highest resiliency while satisfying the delay
constraint. It first uses the k-shortest paths algorithm in [12] to find the k paths
with the shortest delays between a source and a destination, in the order of in-
creasing delays. It then excludes paths that exceed delay D. For the remaining
k′ paths we apply the provided failure probability of each broker to compute
the resiliency of the remaining paths as follows: A path is considered available
only when all brokers and all links along that path are also available. Thus, the
resiliency of a path can be computed as Pr(E) = Πi,j(1 − pn

i)(1 − pl
j), where

Pr(E) is the resiliency of the path, and pn
i and pl

j are failure probabilities for
brokers and links respectively. The algorithm then computes the resiliency of all
the n-path combinations within the remaining k′ paths, using inclusion-exclusion
to compute Pr(Q), i.e., the resiliency of the multi-path of n paths.

Pr(Q) =
∑n

j=1(−1)j+1
∑

I⊆{1...n},|I|=j Pr(EI)

where, I is a subset containing j of the n paths, Pr(EI) is the probability that
all the j paths are operational, meaning their brokers and links are all on. The
sum is done over all subsets of size j, and over all sizes of j (from 1 to n).

Observe that the selection step is of exponential complexity due to its combi-
natorial nature. Another observation is that when adding an additional path say,
pi to a multipath Q the resiliency of the new multipath Q∪pi is at least equal to
Q. This observation motivates the utilization of a branch-and-cut-based heuristic
search. We construct a tree, the root of which is the complete set of paths. Each
broker of the tree represents a multipath. For each broker of the tree, its chil-
dren are associated to all its sub-paths. Clearly, when a broker does not satisfy
a resiliency value, none of its children will; thus it can be safely eliminated along
with its children.

QoS Route Establishment. In OSPF, each node independently runs Dijk-
stra’s algorithm to determine the shortest path to every other node, and then
populate its routing table accordingly. We do not directly apply this method in
our broker overlay due to the need for controlling per-hop latency budget, as we
shall describe in Section 3.3. Because each node on a route makes independent
and possibly different decisions on how to reach the destination, the end-to-end
routes change frequently; no single node can control the route. This makes it
difficult to apply the budget allocation technique on a hop-by-hop basis.

Instead, we employ a novel source routing scheme, where a publisher broker
locally computes the routes to all destinations (i.e., matching subscribers), and

Message-Oriented Middleware with QoS Awareness 339

BROKERBROKER

BROKER

BROKER

1:RT_EST

2:RT_EST

2:RT_EST

3:ACK

3:ACK

4:ACK

PUBLISHER

SUBSCRIBER

SUBSCRIBER

Fig. 2. Route establishment example. Numbers indicate the sequence of an operation.

uses a signaling protocol to set up these routes. As illustrated in Figure 2, the
source node sends a route establishment (RT EST) message to its next-hop
neighbor on a route. The RT EST message contains the topic name and all
intermediate brokers on the route.

Upon receiving this message, a broker first checks whether it is the destination
on the route. If so, it sends an acknowledgment to the upstream node from
which it receives this message. Otherwise, it extracts its own next hops from
the routes and forwards this RT EST message to its next hop broker. When
a node receives an acknowledgment from its downstream broker, it inserts the
<topic,next hop> pairs into its routing table, and then acknowledges to its own
upstream node. Eventually, the source node receives the acknowledgment and the
path is established. The process is repeated periodically to ensure the persistence
of all QoS paths.

To briefly summarize, our scheme differs from OSPF in two fundamental as-
pects: 1) In OSPF, each node independently decides its next-hop nodes. In our
scheme, the source node decides the entire routes. 2) In OSPF, a new link state
advertisement may trigger an intermediate node to update its routing table, thus
changing the end-to-end routes. In our scheme, once the routes are established,
they remain fixed until the source node tears them down. To adapt to network
dynamics, we employ a QoS-driven route maintenance mechanism.

Route Maintenance. Harmony updates the overlay routes only when they
cannot meet the latency requirement. This could happen when the route is dis-
rupted by broker failure or network outage, or when the route quality deterio-
rates as the brokers are overloaded or the network is congested. All these cases
can be easily detected by a source node, because it receives link state advertise-
ment from all other brokers2. Specifically, when a source node receives a link
state update, it checks whether the reported latency affects any of its routes. If
so, it updates the end-to-end latency of the current routes and compares it to
the latency requirement. If the requirement is still satisfied, no action is taken.

2 Assuming the overlay is not partitioned by the failures.

340 H. Yang et al.

Otherwise, it re-computes a new set of routes and establishes them using the
signaling protocol as described above.

When routes need to be updated, a task similar to the route establishment is
performed, with the difference that routing tables are updated incrementally. In
particular, the source compute the delta-path between the previous and current
paths and sends out a route establishment (RT EST) message the contains the
list of new links as well as the list of obsolete links. Upon reception, a node will
perform a similar operation as above, i.e. forward (RT EST) to current and new
downstream nodes but only wait for replies from its new downstream nodes. As
soon as acknowledgments are received, the routing table is updated with the
new downstream destinations and cleared of its removed links. This technique
ensures that no flow will be interrupted while the update process is executed.

3.3 Latency Budget Allocation

The Harmony overlay routing mechanisms can work on top of many different
data transport layers. We have integrated the system with TCP/IP transport,
a JMS-based publish/subscribe transport, and a real-time transport [13] with
built-in message schedulers. In this subsection, we discuss how we take advantage
of the scheduling capability in [13], which implements a laxity-based scheduling
algorithm [14]. While message scheduling provides an important QoS mechanism
of proactive network resource management, it does not always lead to globally
desirable performance. In particular, the multiple brokers that a message tra-
verses make independently scheduling decisions, and the resulting end-to-end
latency may not satisfy the QoS requirement. While one could use a centralized
algorithm to find globally optimal decisions based on the queue behavior (e.g.,
arrival process, steady states) of all brokers, such information changes fast and
is difficult to maintain in practice.

Instead, we apply a heuristics algorithm where the latency margin, the differ-
ent between the delay requirement and the current end-to-end delay, is divided
among all brokers. This way, each broker will have some “buffer” to absorb sud-
den latency increases, provided they are small enough compared to the margin.

Consider a broker B which is currently on the forwarding routes for a set of
topics T1, T2, . . . , TI . Let Di be the end-to-end latency requirement for topic Ti.
The routes for topic Ti has Ki hops, and the measured latency at each hop is
dj

i , where 1 ≤ j ≤ Ki.
Our intuition is to give higher priority to those topics whose end-to-end la-

tency is approaching the bound. To do so, we calculate the end-to-end latency
margin for each topic (say Ti) as:

Li = Di −
Ki∑

j=1

dj
i (1)

We equally split this end-to-end latency margin among the Ki hops in the route.
Thus the per-hop latency margin for topic Ti is:

Message-Oriented Middleware with QoS Awareness 341

Lj
i = (Di −

Ki∑

j=1

dj
i)/Ki (2)

Now the broker B can sort the topics in an increasing order of their per-hop
latency margin. That is, the first topic has the smallest margin, thus should have
the highest priority. Since laxity-based scheduling is used by the transmission
queue, a high priority can be enforced by assigning a small latency budget for
this topic. In general, for the n-th topic in the sorted list, we can assign a latency
budget as (where δ is a step parameter):

LBn = min
1≤i≤I

Ti + n × δ (3)

Note that equal splitting is one simplest method for allocating latency margin
among the brokers. It allows coordinated scheduling across brokers such that
messages close to their delay bound get preferential treatment. We leave other
forms of budget allocation, such as differentiated splitting, as future work.

4 Implementation

We have implemented the Harmony system within IBM Websphere Message
Broker (WMB), an industry-leading messaging platform. WMB introduces the
concept of message flows ; a message flow comprises of one or more incoming
connections, a message processing component and one or more outgoing con-
nections. Incoming connections are used by local domain applications to access
the Harmony messaging service. Our implementation allows the applications to
access the messaging service via standard Java Messaging Service (JMS) APIs
[4]. Thus, those legacy applications that are already JMS-compatible can readily
switch to a Harmony-enabled system, while JMS adapters can be easily built in
order for non-JMS-compatible applications to leverage Harmony. Finally, Incom-
ing and outgoing connections are also established to interconnect brokers across
the wide area network.

Harmony control sits between the incoming and the outgoing connections,
handling the process of routing various messages to the appropriate outgoing
connections. In this way, WMB acts as the integrating agent between the Har-
mony routing control layer and the data transport layer. Therefore, Harmony
routing control layer remains decoupled from any specific transport.

4.1 Topic Structure and Data Forwarding

To facilitate message forwarding, Harmony defines a different topic name space
and naming convention to make a clear distinction between (i) topics coming
from and destined for the local domain applications, and (ii) topics coming from
and destined for the wide-area broker overlay. Harmony will then handle the topic
name transformation from local domains to wide-area overlay. More precisely, in

342 H. Yang et al.

Fig. 3. WMB flow implementation of a Harmony overlay broker

the local domain, a global topic name T is transformed into the form /src/Twhen
forwarded to Harmony and /dst/T when sent out from Harmony. At the overlay,
topic T will be transformed according to the destination as /destID/T. This
novel forwarding approach significantly simplifies the routing process by directly
leveraging the underlying publish/subscribe infrastructure, without requiring for
a separate forwarding protocol. Moreover, it can be readily used among different
publish/subscribe engines beyond the current JMS implementation.

The overall implementation is illustrated in Figure 3 where the actual Har-
mony WMB flow components are shown. Two JMS input components are seen,
one subscribing to local domain topics application publications (JMSInput LAN)
and one for incoming messages from remote brokers (JMSInput WAN). Messages
topics from the LAN are transformed via the Sensor Adapter component to in-
ternal Harmony names. Then, these messages along with incoming wide area
messages are forwarded to the routing component which maintains the per-topic
routing destinations. A de-duplication component removes possible duplicate
messages received at the local node which could occur in the case of multipath
routing. Finally, similar to the incoming messages, JMS output components are
used for publishing out local domain (JMSOutput LAN) and wide area messages
(JMSOutput WAN) according to destinations provided by the Harmony routing
component.

5 System in Action

We have deployed Harmony in several distributed testbeds across the nation. For
illustration purpose, we present a simplified operational example in which five
brokers are each deployed at a major communication hub, namely Los Angeles,
Seattle, Denver, Washington D.C. and Orlando. The presentation of the scenarios
is facilitated by Harmonitor, an administrative tool for real-time visualization
of the Harmony system, such as node/link status and per-topic paths.

In the scenario illustrated, two topics are published by the Seattle broker
(more precisely, application endpoints attached to the Seattle broker). The first
topic is subscribed by the Washington D.C. broker, while the second by Orlando.
The topic to D.C. is considered of higher priority as its required end-to-end

Message-Oriented Middleware with QoS Awareness 343

(a) Normal operation (b) Link slowdown

(c) Link failure (d) Node failure

Fig. 4. View of the deployed network from Harmonitor

latency is lower than that of the other topic. Figure 4(a) indicates the multipaths
for each topic. Additional load is then introduced on the link between Seattle
and Denver so as to slowdown that particular link, enough for the QoS of the first
topic to be violated. As shown in Figure 4(b), Harmony provides differentiated
service based on topic deadlines, and thus re-routes the higher priority topic
away from the problematic link and through the Los Angeles broker. Note that
while the second path is being reconfigured, data continue to flow within the
QoS budget along the first path. In Figure 4(c), the previously slowed-down
link is completely failed. The route for the topic that was flowing along the
failed link, is immediately reconfigured to restore the multipath via the Los
Angeles broker. Again observe that data delivery persists via the second path
while the broken link is identified and the routes re-established. In the final
Figure 4(d)), the Denver broker fails. The path that was routed via Denver is
reset to forward traffic around the failed node from Los Angeles to Orlando and
finally to Washington D.C.

6 Related Work

Message-oriented middleware has been widely used in today’s enterprise IT in-
frastructure for integrating different applications and services in an SOA

344 H. Yang et al.

environment. While these systems (e.g., IBM WebSphere MQ) provide essen-
tial features of reliability, security, transactionality and persistence, there is lit-
tle consideration for real-time QoS such as end-to-end latency. Also, they are
typically deployed within one or a few well-connected data centers. In contrast,
Harmony is designed for a different set of application domains that need to in-
tegrate distributed sensors and actuators with back-end processing capabilities
over wide-area networks, with an emphasis on QoS in the messaging service.

In recent years, overlay networks have been employed in an effort to provide
QoS in the Internet. For example, overlay routing has been shown effective for
providing resilient communication by recovering from Internet path failures [6],
or increasing the available bandwidth between end-hosts by avoiding the bottle-
neck links [15]. Several strategies for selecting the alternative overlay paths are
studied in [7]. The benefits of overlay routing are also established through rigor-
ous analysis in [8]. Our work is inspired by these existing research efforts, but it
studies a different problem of improving end-to-end latency for publish/subscribe
communication through a broker overlay network. We also present an integrated
routing and scheduling framework, with novel techniques in both layers.

The broker overlay in Harmony also resembles a Service Overlay Network
(SON) [16,17] in that the overlay nodes are deployed at strategic locations to
provide specific services. In our case, the services provided by the brokers are
publish/subscribe matching and potentially message mediation. However, there
is one fundamental difference between Harmony and SON: The brokers in Har-
mony collectively provide the publish/subscribe service, while each broker in
SON independently provides a service. There are several proposals for assuring
QoS in a SON [17,18]. In particular, QRON [18] is a QoS-aware routing protocol
that seeks to find paths satisfying QoS requirements yet balance the traffic on
different overlay link and nodes. However, it only considers overlay routes be-
tween a pair of nodes, while Harmony provide QoS-aware group communication
between multiple publishers and subscribers on the same topic.

7 Conclusion

In this paper, we presented the design and implementation of Harmony, a QoS-
aware messaging middleware for supporting wide-area publish/subscribe commu-
nication. Harmony constructs an overlay network on top of the physical topology
and provides a novel fusion of routing, scheduling and delay budget allocation
to maintain the end-to-end QoS requirements. It allows for path adaptation and
reconfigurations when either network outages or excessive delays occur along a
delivery path. We have implemented Harmony in an industry-leading messaging
platform and verified its feasibility and advantages through real deployment.

We are currently extending the Harmony system in several aspects. We plan
to support dynamic topology construction and adaptation as nodes join and
leave the overlay. We are also developing new path computation algorithms to
accommodate multiple end-to-end QoS requirements in parallel. Finally, we plan
to integrate mediation functionality in Harmony to allow applications to perform
various types of actions, such as transformation and filtering, on the messages.

Message-Oriented Middleware with QoS Awareness 345

Acknowledgments

We would like to thank Parijat Dube, William Jerome, Zhen Liu, Dimitrios
Pendarakis and Cathy Xia for their past contribution to the Harmony project.
We are grateful to Maria Ebling, Francis Parr and Paul Giangarra for their
support and valuable feedback. We also thank the anonymous reviewers for their
insightful comments.

References

1. Lee, E.A.: Cyber-physical systems - Are computing foundations adequate? In:
NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap (2006)

2. SOS: System of systems, http://www.sosece.org/
3. Comitz, P., Pinto, A., Sweet, D.E., Mazurkiewicz, J.: The joint NEO Spiral 1

program: Lessons learned, operational concepts and technical framework. In: Proc.
Integrated Communications, Navigation and Surveillance Conference, ICNS (2008)

4. JMS: Java messaging service, http://java.sun.com/products/jms/
5. DDS: Data distribution service for real-time systems,

http://www.omg.org/technology/documents/formal/data_distribution.htm

6. Anderson, D., Balakrishnan, H., Kaashoek, M., Morris, R.: Resilient overlay net-
works. In: Proc. ACM Symposium on Operating Systems Principles, SOSP (2001)

7. Fei, T., Tao, S., Gao, L., Guerin, R.: How to select a good alternate path in large
peer-to-peer systems? In: Proc. IEEE Conference on Computer Communications,
INFOCOM (2006)

8. Opos, J.M., Ramabhadran, S., Terry, A., Pasquale, J., Snoeren, A.C., Vahdat, A.:
A performance analysis of indirect routing. In: Proc. IEEE International Parallel
and Distributed Processing Symposium, IPDPS (2007)

9. Moy, J.: OSPF version 2. RFC 2328 (1998)
10. Malkin, G.: RIP version 2. RFC 2453 (1998)
11. Gu, X., Wang, H.: Online anomaly prediction for robust cluster systems. In: Proc.

IEEE International Conference on Data Engineering, ICDE (2009)
12. Martins, E., Pascoal, M.: A new implementation of Yen’s ranking loopless paths

algorithm. 4OR: A Quarterly Journal of Operations Research 1(2), 121–133 (2003)
13. Astley, M., Bhola, S., Ward, M., Shagin, K., Paz, H., Gershinsky, G.: Pulsar: A

resource-control architecture for time-critical service-oriented applications. IBM
Systems Journal 47(2), 265–280 (2008)

14. Ramamritham, K., Stankovic, J.: Dynamic task scheduling in hard real-time dis-
tributed systems. IEEE Software 1(3), 65–75 (1984)

15. Lee, S.J., Banerjee, S., Sharma, P., Yalagandula, P., Basu, S.: Bandwidth-aware
routing in overlay networks. In: Proc. IEEE Conference on Computer Communi-
cations, INFOCOM (2008)

16. Duan, Z., Zhang, Z., Hou, Y.: Service overlay networks: SLAs, QoS, and bandwidth
provisioning. IEEE/ACM Transactions on Networking 11(6), 870–883 (2003)

17. Gu, X., Nahrstedt, K., Chang, R., Ward, C.: QoS-assured service composition in
managed service overlay networks. In: Proc. IEEE International Conference on
Distributed Computing Systems, ICDCS (2003)

18. Li, Z., Mohapatra, P.: QRON: QoS-aware routing in overlay networks. IEEE Jour-
nal of Selected Areas in Communications 22(1), 29–40 (2004)

http://www.sosece.org/
http://java.sun.com/products/jms/
http://www.omg.org/technology/documents/formal/data_distribution.htm

	Message-Oriented Middleware with QoS Awareness
	Introduction
	Network and System Models
	Quality-of-Service Goals

	Design
	Overview
	Overlay Routing
	Latency Budget Allocation

	Implementation
	Topic Structure and Data Forwarding

	System in Action
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

