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Abstract—Web-based collaborations and processes have become essential in today’s business environments. Such processes

typically span interactions between people and services across globally distributed companies. Web services and SOA are the defacto

technology to implement compositions of humans and services. The increasing complexity of compositions and the distribution of

people and services require adaptive and context-aware interaction models. To support complex interaction scenarios, we introduce a

mixed service-oriented system composed of both human-provided and Software-Based Services (SBSs) interacting to perform joint

activities or to solve emerging problems. However, competencies of people evolve over time, thereby requiring approaches for the

automated management of actor skills, reputation, and trust. Discovering the right actor in mixed service-oriented systems is

challenging due to scale and temporary nature of collaborations. We present a novel approach addressing the need for flexible

involvement of experts and knowledge workers in distributed collaborations. We argue that the automated inference of trust between

members is a key factor for successful collaborations. Instead of following a security perspective on trust, we focus on dynamic trust in

collaborative networks. We discuss Human-Provided Services (HPSs) and an approach for managing user preferences and network

structures. HPS allows experts to offer their skills and capabilities as services that can be requested on demand. Our main

contributions center around a context-sensitive trust-based algorithm called ExpertHITS inspired by the concept of hubs and

authorities in web-based environments. ExpertHITS takes trust-relations and link properties in social networks into account to estimate

the reputation of users.

Index Terms—Human-provided services, service-oriented expertise provisioning, crowdsourcing, social trust, hubs and authorities.
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1 INTRODUCTION

WEB services have paved the way for a new blend of
composable systems. Services already play an im-

portant role in fulfilling organizations’ business objectives
because process stakeholders can design, implement, and
execute business processes using web services and lan-
guages such as the Business Process Execution Language
(BPEL) [1]. A broad range of services is increasingly found
in open web-based platforms. Users and developers have
the ability to use services in various applications because
services offer well-defined, programmable, interfaces. In
process-centric collaboration, a top-down approach is
typically taken by defining process activities and tasks
prior to deploying and executing the process. Before
creating the model, the designer must fully understand
each step in the process. Flexibility in such composition
models is limited since unexpected changes require
remodeling of the process. Such changes may cause
exceptions, disrupting the normal execution of the process.
It is important to support adaptivity in collaborations and
compositions. An important role toward adaptive processes
is the ability to support the execution of ad hoc activities
and flexibility in human interactions to react to unexpected
events. While the process-centric collaboration approach

follows a top-down methodology in modeling flows, ad hoc
flows in flexible collaborations emerge at runtime. A
runtime environment constraints the execution of flows.
Such constraints are, for example, the availability of
resources, services, and people.

In this paper, we utilize Human-Provided Services
(HPSs) [2] enabling flexible interactions in service-oriented
systems. We discuss the discovery and interactions in mixed
service oriented systems [3] comprising HPS and software-
based services (SBS). Experts offer their skills and capabil-
ities as HPS that can be requested on demand. In this work,
we present the following key contributions: 1) estimation of
user reputation based on a context-sensitive algorithm. Our
approach, called ExpertHITS, is based on the concept of
hubs and authorities in web-based environments. 2) An
approach for community reputation (the hub-expertise of
users) influenced by trust relations. Dynamic link weights
are based on trust and user rating influenced by the query
context. ExpertHITS is calculated online, thus fully perso-
nalized based on the expert-requester’s preferences (i.e., the
demanded set of skills). 3) Implementation and evaluation
of our approach demonstrating scalability and effectiveness
of our proposed algorithm.

This paper is organized as follows: in Section 2, we
present a motivating example detailing the need for flexible
interaction models. Section 3 introduces the fundamental
idea and basic concepts of ExpertHITS. A detailed descrip-
tion of the ExpertHITS discovery approach is provided in
Section 4 followed by an overview of our implemented
architecture in Section 5. In Section 6, we discuss ranking
experiments using ExpertHITS. Related work is presented
in Section 7 and finally we conclude the paper in Section 8.
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2 MOTIVATING SCENARIO

A motivating use case for discovering experts on demand
and flexible interaction support is depicted in Fig. 1. The
process model may be composed of single tasks assigned to
responsible persons, describing the steps needed to produce
a software module. After finishing a common requirements
analysis, an engineer evaluates the reusability of existing
work, while a software architect designs the framework.
The implementation task is carried out by a software
developer; and two software testers evaluate the prototype
implementation with respect to functional properties (e.g.,
coverage of requirements) and nonfunctional properties
(e.g., performance and memory consumption). We assume
that the task owners in this process exchange only electronic
files and interact by using communication tools.

While various languages and techniques for modeling
such processes already exist, for example BPEL, we focus on
another aspect in this scenario: discovery and interactions with
trusted experts. A language such as BPEL demands for the
precise definition of flows and input/output data. However,
even in carefully planned processes with human participa-
tion, for example modeled as BPEL4People activities [4], ad
hoc interactions and adaptations are required due to the
complexity of human tasks, people’s individual under-
standing, and unpredictable events. According to Fig. 1, the
software architect receives the requirement analysis docu-
ment from a preceding step. But if people have not yet
worked jointly on similar tasks, it is likely that they need to
set up a meeting for discussing relevant information and
process artifacts. Personal meetings may be time and cost
intensive, especially in cases where people belong to
different geographically distributed organizational units.
Various Web 2.0 technologies, including forums, Wiki pages
and text chats, provide well-proven support for online work
in collaborative environments. Several challenges remain
unsolved that are addressed in this paper.

1. Who is the right expert that can assist in solving
problems which people face while participating in
the process?

2. How can third parties (experts) be contacted and
informed about the current situation and how can
they easily be involved in ongoing collaborations?

3. Based on which decision are experts selected, which
information needs to be exchanged, and how can such
scenarios be supported in service-oriented systems?

4. How can one support trusted interactions in such
dynamically changing environments?

2.1 Manual Discovery

Discovering support typically requires the expert seeker to
start an inquiry for an expert by asking other people for their
opinion or to provide recommendations; who is able to help
and who is trustworthy. Recommendations are typically
performed by asking friends or colleagues who may have
faced similar problems in the past. Once the expert seeker
has identified a potential candidate, contact can be estab-
lished using standard tools such as e-mail, instant messa-
ging, or telephone. People tend to know reputable and
trusted experts in small environments and also what data
needs to be exchanged to solve a particular problem. The
drawbacks are that people need extensive knowledge about
the skills of colleagues and internal structures of the
organization (e.g., the expertises of people in other depart-
ments). The manual discovery of an expert becomes a very
daunting task when the number of people increases, for
example, the web or large-scale enterprises. With a huge set
of people available, given that reputation, skills, and trust
between people changes dynamically, discovering experts
and support becomes a major undertaking that cannot be
performed any longer in a manual way.

2.2 The Expert Web

Today’s information and communication technologies can-
not fully address the above mentioned challenges. Here, we
propose the Expert Web consisting of connected experts that
provide help and support in a service-oriented manner.
Examples are crowdsourcing applications in enterprise en-
vironments or open Internet-based platforms. These online
platforms distribute problem-solving tasks among a group of
humans [5]. The members of the Expert Web are either
humans, such as company employees offering help as online
support services or can in some cases be provided as
software-based services. Applied to enterprise scenarios,
such a network of experts, spanning various organizational
units, can be consulted for efficient discovery of available
support. The expert seekers, for example the software
engineers or architect in our use case, send Requests For
Support (RFSs). Experts may also delegate RFSs to other
experts in the network, for example when they are over-
loaded or not able to provide satisfying responses. Following
this way, not only users of the expert network establish trust
in experts, but also trust relations between experts emerge.

3 EXPERTISE MODEL

In this section, we will detail the basic concepts enabling the
discovery of experts. Our approach is based on the
following idea: given a search query containing the set of
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relevant skills, who is the expert 1) satisfying these
demanded skills and 2) how well is this expert connected

to other people having similar expertise. From the Expert
Web’s point of view, finding the right expert by performing

skill matching is not sufficient. We also need to consider
whether the expert will be able to delegate RFSs to other

peers in the Expert Web.

3.1 Trust Emergence

Traditional rating and ranking models usually neglect
social aspects and individual preferences. However, actors

in the Expert Web may not be compatible with respect to
working style and behavior. As a consequence, social

aspects need to be considered and require dynamic
interaction models. In this paper, we focus on social trust

to support and guide delegations of requests. In contrast to

a common security perspective, social trust refers to the
flexible interpretation of previous collaboration behavior

[6], [7], [8] and the similarity of dynamically adapting
interests [9], [10]. Especially in collaborative environments,

where users are exposed to higher risks than in common
social network scenarios [11], and where business is at

stake, considering social trust is essential to effectively
guide human interactions. Relying on these works, we

define trust in the Expert Web as follows:

Trust reflects the expectation one expert has about another’s future
behavior to perform delegated RFSs dependably, securely, and
reliably based on experiences collected from previous interactions.

3.2 Hubs and Authorities

In this work, we utilize the concept of hubs and authorities in
web-based environments. This concept has been introduced
by Kleinberg [12] to rank web pages in search queries using

the Hyperlink-Induced Topic Search (HITS algorithm). The
notion of authorities in social or collaborative networks can

be interpreted as a measure to estimate the relative standing
or importance of individuals in social networks.

Applying this idea in our scenario, a member of the Expert

Web may receive an RFS and delegate work to some other
peer in the network (characterizing hubs in the network).

Receivers of the delegated work, however, expect RFSs
fitting their skills and expertise (i.e., being an authority in the

given domain). Careless delegations of work will overload
these peers resulting in degraded processing time due to

missing expertise. Within the Expert Web, authorities give
feedback using rating mechanism (e.g., a number on the scale

from 1 to 5) to indicate their satisfaction—whether a
particular hub distributes work according to their skills

and interest. Thus, a “good hub” is characterized by a
neighborhood of peers that are satisfied with received RFSs.
On the other hand, delegation of work is strongly influenced

by trust, for example, whether the initial receiver of the RFS
(hub within the Expert Web) expects that the peer will

process work in a reliable and timely manner. RFS receivers
need to be trusted by influential hubs that are highly rated in

order to be recognized as authoritative peers in the Expert
Web. Notice, hub and authority scores are available for each

member in the network. Thus, a member may act as a hub and

authority by processing or delegating tasks.

3.3 Personalized Expert Queries

Following the previous discussion, we define this concept
as expert hubs that are well connected (i.e., social network
structure and connections based on joint collaborations)
given a particular query context. Delegation is important in
flexible, interaction-based systems because expert hubs will
attract many RFSs over time, thus presenting bottlenecks in
terms of processing or delegating RFSs. On the other side,
being a hub in the Expert Web also means that a person
knows many other experts in similar fields of interest. We
argue that the likelihood of being able to delegate RFSs to
other experts greatly increases depending on the hubness of
a person arising from being a member in expert areas (e.g.,
communities or interest groups). The major challenge in this
scenario is that hubness needs to be calculated on demand
based on a given query. A query determines the context
specified as the set of relevant skills. Let us formalize this
concept by discussing two scenarios as shown in Fig. 2.

The following steps in Algorithm 1 outline our approach
at a high level, which will be detailed in the following
sections. First, matching is performed based on the query
context. In this step, a set of skills is specified to retrieve
qualified users. Second, expert hubs are discovered using
link and interaction information. We will further elaborate
on this concept in the following sections.

Algorithm 1. Outline discovery approach

Input: Given a query context Q to discover expert hubs

1) Find users matching demanded set of skills.

2) Calculate hub-expertise of users given query
context Q.

a) For each user calculate hub score in Q.

b) For each user calculate authority score in Q.

3) Rank users by hub score.

Output: Ranked experts in Q

First, a query (seeQA orQB) is specified either manually by
a (human) expert seeker or derived automatically from a
given process context, for example a predefined rule denoting
that a particular set of skills is needed to solve a problem. The
purpose of a query is to return a set of experts who can process
RFSs, either by working on the RFSs or delegation. Thus, QA

would return HA as the user who is well connected to
authorities in query context QA. There are two influencing
factors, i.e., relations, determining hub- and authority scores:
1) how much hubs trust authorities (depicted as filled arrows
from hubs to authorities) and 2) ratings hubs receive from
authorities (open arrows to hubs). Trust mainly influences the
potential number of users (e.g., known by HA) who can
process delegated RFSs. On the other hand, receivers can
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associate ratings to RFSs to express their opinion whether the
delegated RFSs fit their expertise. QB may demand for a
different set of skills. Thus, not only matching of actors is
influenced, but also the set of interactions and ratings
considered for calculation ExpertHITS (i.e., only the set of
RFSs and ratings relevant for QB).

Note, single interactions that lead to trust relations, as
well as single rating actions that lead to rating relations are
not depicted here, but explained in detail in the next
section. This approach provides a powerful tool for expert
discovery because reputation (for example, within commu-
nities) is expressed as hub-expertise by weighting trust
relations in personalized scopes (through the query context)
and feedback ratings. Also, we believe that our approach is
difficult to cheat on because hub-expertise is influenced by
how well hubs are connected to multiple authorities who
propagate their expertise back to hubs.

3.4 Skill Model

Our proposed skill model is based on the ACM Computing
Classification System [13]. This simple model is sufficient to
serve as a basic classification scheme for skills in the
computer science domain which is well aligned with the
requirements of the previously introduced motivating
scenario. More advanced skill or competency models (e.g.,
ontological systems [14]) are not within the scope of this
work. In Fig. 3, we show an excerpt of a taxonomy that can
be used to classify skills in, for example, the software
engineering domain. However, our ranking model can be
extended to other domains as well by using different
taxonomies. The basic idea of our approach is to define
different weights for each level in the tree—see Fig. 3a.
The top-most level (the root node) has the lowest weight
since top levels in the skill tree denote broad areas of
expertise. The weights increase depending on the tree depth
because lower levels contain fine-grained skill and expertise
information (specialism). We define the set of levels L ¼
fL0; L1; . . . ; Lng with

P
i:1...n wLi ¼ 1. Note, having all level

weights sum up to 1 means that there is a mutual
dependency between weights. All nodes in the skill tree
that do not have successor nodes are called leaf nodes.

A subset of the tree may be selected by a query Q to
discover experts. Thus, the provided query needs to be
matched against user profiles to determine how well users
match the demanded set of skills. Each node in the tree is

called skill property. We introduce query preferences enabling
the expert seeker to express strong or weak matching
preferences of skill properties and optional (“nice to have”)
properties. A strong preference might denote that the expert
seeker requires the user to have certain skill properties,
whereas weak preferences would express that the expert
should have as many skill properties. Optional means that
higher preferences are given to those experts that have a
higher degree of similarity with a set of optional skill
properties. In Fig. 3b, an example query is shown that can
be formulated as, for example, SE for Internet pro-

jects and [Requirements [Analysis][Language]]

specified within the skill subtree SE. For a given user
profile, e.g., Fig. 3c, matching is performed according to
different preferences. Specifying strong preferences for the
first part of the query expression would mean no overlap
between specified skill property [SE for Internet

projects] and the user expertise in Standards, whereas
a weak preference expresses the need to have some
specialism in a given area (i.e., [SE [General]]).
Considering the second part of the query expression, strong
preferences are calculated as the overlap similarity between
the set of skill properties [Analysis][Language] and
[Languages][Methodologies].

4 EXPERT DISCOVERY

In this section, we detail our discovery approach by
defining a matching procedure and an algorithm for
calculating ExpertHITS. An important aspect of the pre-
sented approach is to select interactions based on (query)
context information. We assume that each interaction (e.g.,
based on delegated RFSs) is associated with context tags
based on the skill taxonomy.

4.1 Skill Matching Algorithm

The basic approach is to use a metric to calculate the
overlap of two sets A and B. A straightforward way to
define overlap similarity is jA\Bj

n [15]. In this work, we
present an algorithm supporting the notion of strong, weak,
and optional matching preferences through alternate ap-
proaches for calculating overlap similarities of sets of
properties. These preferences have impact on matching of
skill properties on lower levels. As mentioned before, all
nodes in the skill tree that do not have successor nodes are
called leaf nodes. For simplicity, we do not consider
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by an expert seeker. (c) Gives an example of a skill profile.



unbalanced trees or complicated branching structures.
Matches at leaf-node level have higher impact on simila-
rities due to the following property: weights increase
depending on the tree depth such that wL0

< wL1
< � � � <

wLn . In the following, we will derive an algorithm for
matching elements which may depict interaction data
(tagged RFS-based interactions) and user profiles holding
skill information. The function childN returns the set of
child nodes associated with a given property in the query or
the global skill taxonomy tree GT . jP ðLiÞj denotes the
number of properties in Li.

The numerator of the set metric (i.e., jA \Bj) is calculated
by the Steps 1-3. The set similarity is divided by the number
n based on different matching preferences. Minimum match
(Step 1) means that user profiles and interaction data
matching the query root node are taken into account for
subsequent ranking. For example, the root node of a query in
Fig. 3b is [SE]. All profiles and interaction data that have
been tagged with elements underneath [SE] will then be
considered for matching and ranking. As shown in Algo-
rithm 2 (Step 4), n is appended to the matching result to
obtain similarity scores based on the different preferences
strong; weak, or optional as defined in the following:

n ¼
jchildNðqpðLiÞÞj [ jchildNðepðLiÞÞj; ðaÞ
jchildNðGT ðLiÞÞj; ðbÞ
jP ðLiÞj: ðcÞ

8<
: ð1Þ

Condition (a) is satisfied if strong preferences are
selected, (b) if weak or optional and (c) otherwise.

Algorithm 2. Topic tree matching algorithm.

Input: Given a query context Q containing a set of

properties qp and elements E

Compute:

1) Get all elements e 2 E0 � E whose properties provide
a minimum match of topics.

2) Extract topic tree matching query root node.

3) Iterate through each level and calculate overlap

similarity of property in query at current level i.

Given current property qpðLiÞ:
a) If childNðqpðLiÞÞ 6¼ ; then do

jchildNðqpðLiÞÞj \ jchildNðepðLiÞÞj.
b) If childNðqpðLiÞÞ ¼ ; and weak preference then use
jchildNðepðLiÞÞj.

c) Otherwise perform qpðLiÞ \ epðLiÞ.
4) Divide similarity by n and append score with wLi to

previous score sum.

Output: Ranked elements according to similarity

4.2 Discovery of Expert Hubs

Here, we present our expert discovery algorithm that is
influenced by social trust and rating mechanisms. Our
algorithm accounts for context information and weighted
links between actors. Context is utilized by considering
relations of experts in different scopes. Thus, the goal of our
algorithm is to find hubs with respect to context. In the
following, we discuss the basic flow of actions in the Expert
Web. The actions include delegation of RFSs, ratings of
requests, and advanced delegation patterns. First, we
discuss the discovery and selection of expert hubs and
authorities (Figs. 4a and 4b) followed by the definition of
delegation patterns and ratings (Fig. 4c and 4d).

Hub discovery. Let us assume that a query Q is specified
to discover an expert hub (see Fig. 4a). Every query
influences the set of prior ratings (arrows pointing to u)
and interactions (i.e., actions) that need to be considered
when calculating hub- and authority scores. Consider the
query contextQ comprising actions related to the demanded
set of skills. Notice, the previously defined matching
algorithm is used to select related actions. In this case, u
has been discovered as the entry point denoted as HB.

Delegation actions. In Fig. 4a, user u receives an RFS
issued toward the Expert Web. Since u represents the hub
expert, u may decide to delegate the request to one of its
neighbors v; w; y; z, which can be discovered through knows

relations1 (Fig. 4b). In our Expert Web application scenario,
knows is a bidirectional relation between users. A relation
becomes active if both users acknowledge that they are
connected to each other (v knows u and u knows v), a simple
yet effective mechanism to support growth in social net-
works (e.g., newcomers and bootstrapping problem) while
preserving user control. Notice, knows relations do not
contain context related information such as tags. The context
of interactions is derived from delegated RFSs (tags or type
of RFS classified by using the skill taxonomy). To support
growth in networks (e.g., how can newcomers become
members of communities), we introduce an advanced
interaction pattern in the Expert Web depicted by Fig. 4c.

Triadic delegation pattern. An authority may need to
delegate an RFS received from the hub to somebody who is
known to the authority, but not the hub. This pattern is
shown in Fig. 4c. Hub u delegates an RFS to y, which is in
turn delegated to x and, thus, being responsible for
processing the RFS.
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Fig. 4. ExpertHITS discovery model, advanced interaction patterns, and feedback ratings.

1. The knows property in FOAF profiles can be used for discovering
social relations; see http://xmlns.com/foaf/spec.



If ties (i.e., through knows relations) between the pairs
ðu; yÞ and ðy; xÞ exist, it is likely that x will attempt to
establish a connection to u as well. This concept is known as
triadic closure in social networks [16] and can be applied to
support interaction patterns in service-oriented systems.
The triadic interaction pattern enables x to connect to hubs
and helps increasing its authority in the Expert Web. As
mentioned previously, knows is a bidirectional connection
and needs to be acknowledged by u.

Rating procedure. An RFS is delivered back to the
expert seeker from the Expert Web; i.e., the selected hub u

depicted in Fig. 4d. The main argument of our model is to
determine those hubs that are well embedded in expertise
areas (e.g., communities). Thus, the hub-score should be
influenced by feedback ratings denoting the level of
satisfaction of authorities. Ratings are subjective opinions
of authorities with respect to RFSs received from hubs, i.e.,
whether RFSs fit the expertise area of authorities. In the
final step, RFSs are rated (see dashed open arrows)
expressing the precision of received delegations. Indeed,
such ratings are also given to RFSs traversing the Expert
Web through triad delegation patterns. Given the scenario
in Fig. 4d, automatic propagation of ratings (e.g., if a
delegated RFS from u to y was further delegated to x) is
currently not considered in our model. Thus, x rates the
RFS received from y and similarly y from u.

Trust updates. Trust relations, based on experts’
behavior are periodically updated with recent interaction
data. Those interactions (reflected by filled dashed arrows)
are aggregated to interaction metrics that are interpreted
by predefined rules to infer trust.

4.3 ExpertHITS Model

In this section, we discuss the formal model for our
proposed expertise ranking algorithm consisting of two
components 1) hub score Hðu;QÞ of user u in query context
Q and 2) authority score Aðv;QÞ of user v in the same query
context Q

Hðu;QÞ  
X

v2knowsðuÞ
wQvuAðv;QÞ; ð2Þ

Aðv;QÞ  
X

u2knowsðvÞ
wQuvHðu;QÞ: ð3Þ

. Hðu;QÞ: Hub score of user u acting as a reliable
entry point to the Expert Web brokering RFSs to
authoritative users. Hubs are identified based on the
demanded expertise, knows relations connecting u
to other experts and feedback ratings received from
prior delegations.

. Aðv;QÞ: Authority score of user v. Authorities are
skilled users (experts) that are connected to influen-
tial hubs. In our model, authority means that users
process RFSs received from hubs in a reliable,
trustworthy manner.

. wQuv: Trust influences the delegation behavior of
hubs by selecting authorities based the success of
interactions; in our example successfully delegated
and processed RFSs.

. wQvu: Denotes the connection strength of an authority
v to hub u. The weight can be calculated using
information from ratings given by v to RFSs
received from u.

Considering the loosely structured and dynamically
bound Expert Web example, it is important to derive
metrics that can be used to infer trust relations in an
automated manner. The weight wQuv can be interpreted as
how much u trusts v in processing RFSs in a reliable
manner. Specifically, experts’ behavior in terms of relia-
bility, availability, or RFS processing successes, are peri-
odically updated with recent interaction data. The weight is
calculated as

wQuv ¼
successful del: from u to vP

w2knowsðuÞ successful del: from u to w
: ð4Þ

4.4 Metric Calculation

Metrics describe the interaction behavior and dynamically
changing properties of actors. Interactions such as delega-
tions are aggregated to metrics that are interpreted by rules
to infer trust (see [8] for the detailed mechanisms).
Currently, we account for the metrics described in Table 1
for trust interpretation upon logged SOAP calls in the
Expert Web scenario. Note, as described before, these
metrics are determined for particular query scopes; i.e.,
based on a subset of interactions that meet certain
constraints. The availability of a service, either provided
by humans or implemented in software, can be high in one
query context, but much lower in another one. Furthermore,
these metrics are calculated for each directed relation
between pairs of network members. An actor u might serve
v reliably, but not a third party w.

Our approach relies on mining of metrics, thus, values
are not manually entered but are frequently updated by
the system. This enables collaboration partners to keep
track of the dynamics in highly flexible large-scale
networks. Besides interaction behavior in terms of relia-
bility or responsiveness, also context-sensitive expertise
mining can be conducted. This approach is explained in
detail [3].

We accounted for the average response time tr (5) of a
service and its success rate sr (6). These are typical metrics
for an emergency help and support environment, where fast and
reliable support is absolutely required, but costs can be
neglected. We assume, similar complexity of requests for
support in a context Q, thus different RFSs require
comparable efforts from services (similar to a traditional
Internet forum).
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The response time is calculated as the duration between
sending (or delegating) a request (tsend) to a service and
receiving the corresponding response (treceive), averaged
over all processed RFSs. Unique IDs of calls (see SOAP
header in Listing 3) enable sophisticated message correla-
tion to identify corresponding messages.

tQr ¼
P

rfs2RFS ðtreceiveðrfsÞ � tsendðrfsÞÞ
jRFSj : ð5Þ

An RFS is considered successfully processed (sRFS) if
leading to a result before a predefined deadline, otherwise
it fails (fRFS)

srQ ¼ numðsRFSÞ
numðsRFSÞ þ numðfRFSÞ : ð6Þ

5 ARCHITECTURE AND IMPLEMENTATION

We depict the overview of the architecture in Fig. 5
adopting parts from our previous work, in particular the
HPS framework [2], [3] and the VieTE trust emergence
framework [8]. The block on the left side contains common
services from activity-centric collaboration systems. On the
right side, the ExpertHITS services are shown. The lower
layer contains services supporting fundamental concepts,
including data access, message routing and interaction
logging; on higher level services for trust management, RFS
creation, and expert ranking are shown. These services are
utilized via SOAP- and REST-based web service interfaces
from a user portal. We outline some (exemplary) imple-
mentation details, focusing on realizing the introduced
concepts including the RFS model, and skill requirements
for HPS discovery and selection.

Activity management. Activities are structures to de-
scribe work and its goals, as well as participating actors,
used resources, and produced project artifacts.

Interaction monitoring. Interactions are either captured
by interaction sensors, included in infrastructure services,
or external access layers. An example for the first case is the
activity management service that notifies a logging service

about activity delegations and assignments. In the second
case, service invocations via SOAP are routed over an
access layer that captures the SOAP messages. Interactions
are periodically analyzed to calculate higher level metrics.
While the depicted architecture follows a centralized
approach, the logging facilities are replicated for scalability
reasons, and monitoring takes place in a distributed form.
Interactions are purged in predefined time intervals,
depending on the required depth of history needed by
metric calculation plugins.

Computational trust model. A domain expert configures
certain properties of the trust inference process that are
applied for all participants of the network. For instance,
she/he defines meaningful trust scopes in the given domain
and business area, configures available metric calculation
plugins that provide the metrics for personal trust rules,
and sets up the general trust model behavior, such as
temporal constraints for interaction analysis and endpoints
of logging facilities.

Network management and provisioning. This compo-
nent enables the registration of human- and software
services, including their individual profiles. All registered
actors build the set of nodes of a trust graph (see the Web of
Trust in [6]). We support the discovery of actors during
ongoing collaborations (similar to a web service registry),
relying on actor capabilities (profiles), and periodically
inferred metrics (interaction-, similarity-, collaboration-,
and trust metrics).

5.1 Human Provided Services in the Expert Web

Previously, we discussed interaction scenarios in mixed
service-oriented collaboration environments. These interac-
tions are governed by dynamics as new HPSs can be
registered and flows of activities might change (e.g.,
delegation patterns) due to actor preferences, trust, and
reputation. Activities are used for different purposes:
1) people use activities to structure collaborations in a
flexible manner and 2) activities enable users to define HPSs
[3]. As stated before, interactions may take place between
humans (using HPSs) or between (software) services and
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humans. Both scenarios are enabled by using web services

technology. The HPS activity model is shown in Fig. 6.

. An ActivityDeclaration defines the name and
description of an activity, URI, and a set of tags that
can be applied to the declaration. Tags are applied
by users to associate keywords to declarations.

. The HPSInterface relates to an ActivityDeclara-
tion. Name in the HPSInterface depicts the
HPSs name, for example, a support service. The
HPSInterface (description) is very similar to the
description of “conventional” software services.
Essentially, we perform a simple mapping to depict
declarations as web service descriptions (e.g., using
WSDL).

. A Resource is used for different purposes. As
mentioned before, HPSInterfaces are depicted
using languages such as WSDL. Thus, the interface is
an XML document that can be modified by using
resource identifiers (URIs) to retrieve or update
resources. Other resources are type definitions, for
example, activity types and/or parts of complex
data types.

. A GenericResource is a special type of Resource,
which we use to wrap Artifacts. Artifacts

include collaboration documents and all sorts of files
that are used and created during collaborations. The
GenericResource defines metadata associated
with Artifacts.

. The Action concept is used to interact with HPSs in
the scope of an activity. The HPSInterface is
composed of a set of Actions. Notice, there are
different action concepts in our model. Action, as
discussed here, is defined by the user in the scope of
an HPSInterface. The definition of an Action is
done at design time.

. The HPSPort depicts the technical in a web services
sense realization of an HPS interface. The HPSPort

relates to a set of resources (e.g., typed messages),
which are used in certain Actions.

The following concepts describe activity and HPS-centric

interactions at runtime.

. An ActivityInstance represents an actual work
item. Each instance corresponds to a declaration.
Instances represent the context of interactions.

. An ActionInstance is connected to an Activi-

tyInstance. An Attachment is generic to associ-
ate XML documents, for example, XML messages
that are exchanged between HPSs, and other
content-types with an ActionInstance. Both
ControlAction and ActionInstance are used
at runtime. A ControlAction, however, depicts
common action types in human collaboration (e.g.,
coordination, communication, and execution ac-
tions). Each action, ControlAction as well as
ActionInstance, is logged to keep a history of
interactions. The InteractionLog captures traces
of interactions.

An excerpt of the RFS schema definitions is shown in
Listings 1 defining complex data structures.

Listing 1. RFS schema definition.

Request defines the structure of an RFS (here we show
a simplified example). A Reply is the corresponding RFS
response (we omitted the actual XML defintion). The
protocol (at the technical HPS middleware level) is
asynchronous allowing RFSs to be stored, retrieved, and
processed. For that purpose we implemented a middleware
service (HPS Access Layer—HAL) which dispatches and
routes RFSs. GetSupport depicts a WSDL message
corresponding to the RFS SupportRequest. From the
user’s point of view XML Forms (XForms2) are used to
render graphical user interfaces.

Listing 2 shows the binding of the HPS WSDL to the
(HPS) infrastructure services.

Listing 2. HPS WSDL binding.

Upon receiving such a request, HAL generates a session
identifier contained in the output message AckSuppor-

tRequest. A notification is sent to the requester (assuming
a callback destination or notification endpoint has been
provided) to deliver RFS status updates for example;
processed RFSs can be retrieved via GetSupportReply.
The detailed notification mechanism can be found in [3].
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Fig. 6. Overview of HPS activity model.

2. XML Forms: http://www.w3.org/MarkUp/Forms.



Activities can be structured as hierarchies using parent

and child relations. Child activities specify the details
with respect to the (sub)steps in collaborations, for
example, subactivities in the scope of a parent activity.
This allows for the refinement of collaboration structures as
the demand for a new set of activities (e.g., performed by
different people and services) increases. For example, an
activity ða1; uÞ performed by u can be delegated to multiple
actors v; w (as discussed previously) resulting in the
creation of a set of subactivities fða2; vÞ; ða3; wÞg to support
patterns such as the 4-eyes principle. The task model is
shown in Fig. 7.

Controlling the execution of activities. The most
fundamental aspect is to control the execution of activities
by associating a HumanTask with an ActivityInstance.
Multiple tasks can be created because activity instances can
be divided into subactivities. A HumanTask is derived from
a generic Task defining basic task-properties—StartAt,
DueAt, and, Priority. If tasks are used in HPS-based
collaborations, requesters are aware of the state of a given
interaction (e.g., accepted, inprogress, or completed). Based on
these execution parameters, for example, the properties
Priority and DueAt, Notifications can be sent to a
set of people. Examples include, notify a set of people
(PeopleGroup) about the status of an activity, escalate
deviations in the execution of activities, or notify the
supervisor of an activity when the activity (or one of its
subactivities) has been completed. This model is well
aligned with the WS-HT specification [17]. Moreover,
functional properties can be associated with Activity-

Declarations, depicted as Requirement in Fig. 7; for
example, role models controlling whether users are allowed
to work on activities. A generic PeopleGroup is used
which is populated with a set of people depending on
specified requirement. Notice, requirements typically do
not change over time. For example, if we use a role model to
control the set of people who can work on an activity, we
follow a top-down view—modeling how an activity should
be performed. In contrast, constraints change over time
depending on the runtime context. Constraints are, for
example, the set of skills or level of expertise a potential
worker must have. Indeed, skills and level of expertise
change over time depending on performed activities.

5.2 Interaction Monitoring and Logging

The HPS Access Layer logs each service interaction (request
and response message) through a logging service. RFSs and
their responses, exchanged between community members,
are modeled as traditional SOAP calls, but with various
header extensions, as shown in Listing 3. These header
extensions include for example addressing and message
correlation mechanisms.

The most important extensions are

. Timestamp capture the actual creation of the
message and is used to calculate temporal interac-
tion metrics, such as average response times.

. Delegation holds parameters that influence dele-
gation behavior, such as the number of subsequent
delegations numHops (to avoid circulating RFSs)
and hard deadlines.

. Activity uri describes the context of interactions.

. MessageID enables message correlation, i.e., to
properly match requests and responses.

. WS-Addressing tags, besides MessageID, are used
to route RFSs through the network.

Listing 3. Simplified RFS via SOAP example.

5.3 Expert Discovery Application

To conclude our implementation discussion, we present
user interfaces demonstrating the integration with infra-
structure services (i.e., as shown in Fig. 5) including Skill
Requirements Definition, Expert Discovery, Expert Involvement,
RFS Creation, Profile Visualization, RFS Delegation Manage-
ment, and the Social Network Management. The screenshots at
the top in Fig. 8 visualize the input data provided by the
expert seeker and the figure at the bottom shows a simple
HPS-based RFS form. All user interfaces have been
implemented using state-of-the-art web technologies.

The following steps are performed:

1. The expert seeker specifies a set of demanded skills
(Fig. 8a) using dropdown lists. For simplicity, we do
not visualize selection options for matching prefer-
ences (as introduced in Section 4.1).

2. A list of experts is retrieved matching the search
criteria (Fig. 8b). The set of expert skills are visualized.
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Additionally, the experts’ profile can be retrieved (see
[ FOAF ] link). Such profile information is typically
available via public web sites containing information
about collaborators, joint projects or scientific papers
published by an expert. As mentioned before, FOAF
profile information and knows relations are using by
ExpertHITS. The expert seeker can also visualize the
social network as a graph (see Explore Profile).
We use a JavaScript library (http://thejit.org) for
graph visualization.

3. In Fig. 8c, the expert seeker enters information
regarding the RFS (simplified form for brevity).
Upon submission, form elements are translated into
XML and SOAP messages. This is done on the client
side using XForm technology and a browser plugin
for XForm processing. Additional communication
tools might be used (if available) such as Skype,
however, without the ability to perform complex
interactions such as delegations or duplication of
requests (4-eyes principle).

4. The expert can review a request (see Fig. 8d) and
decide whether to process a request or delegate the

request to some other peer. Delegation loops or
cycles are prevented by the RFS Delegation Manage-
ment (see Fig. 5). Delegation rules (see also Rule
Management) ensure that RFSs are not delegated back
to the originally delegating HPS.

6 EXPERIMENTS

In Fig. 9, we show the essential steps of the ExpertHITS
ranking algorithm including data sources used to calculate
the weighted interaction graph. A query interface enables
expert seekers to specify queries based on preferences. As
mentioned before, preferences include demanded set of
hierarchically defined skills (Skill Matching). User profiles
are evaluated to find the potential candidate experts. The
ExpertHITS calculation is performed online based on the
weighted, trust-based interaction graph.

6.1 Setup

In our experiments, we focus on the performance of
ExpertHITS as well as the influence of trust and ratings
on hub/authority scores. In this paper, we do not deal with
performance issues due to network delay or end-to-end
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Fig. 8. Flexible expert involvement with the Trusted Online Help and Support Service.

Fig. 9. ExpertHITS calculation steps.



characteristics of the entire system. Here, we focus on
ExpertHITS calculation time under different conditions.

System configuration. In all our experiments we used a
computer with Intel Core2 Duo CPU 2.50 GHz and 4 GB
RAM hardware running Java 1.6 and an OSGi Java
container for hosting services. A query service has been
implemented on top of the HPS Framework [2]. We use
trust mining and metric calculation capabilities available as
services to construct graphs based on user relations and
trust [8]. The ExpertHITS algorithm has been implemented
on top of a Java-based graph modeling toolkit.3

Data generation. The approach we take is to generate
artificial interaction data imitating real collaboration envir-
onments. For this purpose, we adopt the preferential
attachment method [18] which provides a realistic model
for science collaboration scenarios. Specifically, a collabora-
tion network is modeled as an undirected graph G ¼ ðN;EÞ
comprising a set of nodes N and edges E establishing
connections between nodes. The probability of establishing
a new connection to a given node is proportional to its
degree distribution. Using this basic network structure, we
generate interactions (delegations and ratings) associated
with edges. Assuming a scale free network with power law
distribution, hubs play a central role, thereby generating a
large amount of delegations. This behavior is taken into
account when generating artificial interactions by estimat-
ing that 80 percent of delegations are initiated by about
20 percent of network users (i.e., immitating hubs).

6.2 Results

Complexity is a crucial factor in order to support
personalization of queries. The complexity for computing
ExpertHITS is OðjN j � itÞ, jNj representing the number of
nodes in the graph and it the number of iterations until the
algorithm converges. We analyze different network scales
comprising actors and interactions that have already been
matched with a specific query context.

. Small: 100 nodes, 400 edges (�60 ms).

. Medium: 1,000 nodes, 4,000 edges (�600 ms).

. Large: 10,000 nodes, 40,000 edges (�12;100 ms).

ExpertHITS can be computed in a sufficient amount of
time scaling up to large networks (i.e., 10,000 nodes). Notice,
these networks represent already filtered subgraphs based
on the query context. We believe that this assumption is
realistic considering the targeted Expert Web consisting of

professionals. The system must be able to handle multiple
requests simultaneously. We analyze the performance of
ExpertHITS under different load conditions. At this stage,
we focus on small-scale (100 nodes) and medium-scale
(1,000 nodes) networks. Figs. 10a and 10b show the results
given 50-500 concurrent requests to calculate ExpertHITS. A
queue holds instances of the constructed network. A thread
pool instantiates worker threads to calculate personalized
ranking scores based on query preferences.

Small-scale networks can be processed in a real-time
manner requiring in our experiments in the worst case
(MAX values) up to 12 seconds. On average, 17 seconds can
be expected under different load conditions (50-500 con-
current requests). The results of medium-scale networks are
shown in Fig. 10b and compared with small-scale networks
in Fig. 10c. Computing ExpertHITS in such networks takes
up to several minutes when serving concurrent requests
(i.e., on average, 390 s at a load of 200 requests). Load
conditions in the range between 300-500 concurrent execu-
tions of the algorithms results on average in response times
between 15-25 minutes.

Given our initial online help and support example, we
believe it is sufficient to compute ExpertHITS in this
magnitude because illustrated processes in software en-
gineering do not demand for hard computational (time)
constraints. Scalability and reduced processing time can be
achieved by using multiple servers and load balancing
mechanisms. These mechanisms are subject to our future
work and performance evaluation.

To test the effectiveness of ExpertHITS, we performed
experiments to study the impact of ratings and trust on expert
rankings. In Fig. 11, we show the top-30 ranked experts in a
small-scale network (100 nodes). Results are sorted based on
the position within the result set (horizontal axis). Fig. 11a
shows the degree of network nodes and Fig. 11b ranking
changes obtained by comparing ranking results using the
HITS algorithm without taking trust or ratings into account.
Specifically, posðuÞHITS � posðuÞExpertHITS returns the abso-
lute ranking change of u in a given result set. In Fig. 11c, we
show the average rating of each ranked node; average rating
of node u received from its neighboring nodes divided by the
expected rating. We define quality as the aggregated trust
weights. Quality is calculated as

P
v2knowsðuÞ

P
z2inlinkðvÞ wzv.

Quality measures the overall trust in node v. In Fig. 11c, we
see that all nodes within the top segment received high
ratings given a high degree of links which is the desired
property of ExpertHITS. Some nodes are demoted (negative
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ranking change) since the node (e.g., see 11) has received low
ratings even though the node has a high degree of links. On
the other hand, nodes get promoted (positive ranking
change) if they exhibit sufficient high ratings (see 15) or high
quality (see 20 which was promoted a few positions only due
to limited degree). The different levels of quality can be
explained by the impact of node degree on quality (see rank
between 6 to 30). High link degree to trusted authorities
increases the quality of hubs. Overall, ExpertHITS exhibits
the demanded properties of promoting well-connected and
rated hubs, thereby guaranteeing the discovery of reliable
entry points to the Expert Web.

7 RELATED WORK

The notion of service orientation is not only applicable to
web services. Service orientation in human collaboration is
becoming increasingly important. Major software vendors
have been working on standards addressing the lack of
human interaction support in service-oriented systems. WS-
HT [17] and Bpel4People [4] were released to address the
emergent need for human interactions in business pro-
cesses [19]. These standards specify languages to model
human interactions, the lifecycle of human tasks, and
generic role models. Role-based access models [17] are used
to model responsibilities and potential task assignees in
processes. While Bpel4People-based applications focus on
top-down modeling of business processes, mixed service-
oriented systems [3] target flexible interactions and composi-
tions of Human-Provided and software-based services.
Open service-oriented systems are specifically relevant for
future crowdsourcing applications [5]. While existing plat-
forms (e.g., Amazon’s Mechanical Turk [20]) only support
simple interaction models (tasks are assigned to indivi-
duals), social network principles support more advanced
techniques such as formation and adaptive coordination.

Task-based platforms on the web allow users to share
their expertise [21]; or users offer their expertise by helping
other users in forums or answer communities [22], [23]. By
analyzing email conversations [24], the authors studied
graph-based algorithms such as HITS [12] and PageRank
[25] to estimate the expertise of users. In [26], an email
analysis in enterprises, defining information flow metrics in
the social interaction graph was presented. The work by [27]
followed a graph-based approach and applied HITS as well
as PageRank in online communities (i.e., a Java question and
answer forum). While the above cited works attempted to

model the importance of users based on interactions; they
do not consider that interactions typically take place in
different contexts. Approaches for calculating personalized
PageRank scores [15], [28] were introduced to enable topic-
sensitive search on the web. In contrast, we presented a
model where expertise analysis is performed considering
context information. We proposed an algorithm that can be
computed online, while most other approaches demand for
offline calculation due to computational complexity.

Recently, trust in social environments and service-
oriented systems has become a very important research
area. SOA-based infrastructures are typically distributed
comprising a large number of available services and huge
amounts of interaction logs. Trust in SOA has to be
managed in an automatic manner. A trust management
framework for service-oriented environments has been
presented in [29], [30], and [31], however, without con-
sidering particular application scenarios with human actors
in SOA. While various theoretically sound models have
been developed in the last years, fundamental research
questions, such as the technical grounding in SOA and the
complexity of trust-aware context-sensitive data manage-
ment are still widely unaddressed. Although several
models define trust on interactions and behavior, existing
work lacks case studies about the application of these
models in SOA.

8 CONCLUSION AND FUTURE WORK

Unlike traditional models found in process-centric environ-
ments, we proposed the combination of preplanned process
steps and ad hoc activities to solve emergent problems in
distributed collaboration environments. Our approach is
based on the Human-Provided Services concept enabling
knowledge workers to offer their skills and expertise in
service-oriented systems. Expert discovery is greatly influ-
enced by (behavioral) trust and reputation mechanisms. We
demonstrated a novel approach for estimating expert
reputation based on link structure and trust relations. Trust
information is periodically updated to capture dynamically
changing interaction preferences and trust relations. We
have shown that ExpertHITS can be computed in an online
manner, thereby enabling full personalization at runtime.
Existing approaches in personalized expertise mining
algorithm typically perform offline interaction analysis.
Our empirical evaluations have shown that ExpertHITS
exhibits the desired properties; trust and rating weights
influence hub- and authority scores. These properties
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ensure that our algorithm discovers experts which are well
connected to other experts.

Although we have focused on the application of
ExpertHITS in human-centric and social collaborations,
we believe that the underlying trust-based interaction
model can be applied to coordination problems in dis-
tributed systems in general. In our future work, we will
study network effects of two-sided markets [32] in mixed
service-oriented systems. Also, we plan to make the system
available for public use.
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