
Engineering Distributed Shared Memory
Middleware for Java

Michele Mazzucco1,3,�, Graham Morgan2, Fabio Panzieri3, and Craig Sharp2

1 University of Cyprus, Nicosia, CY 1678, Cyprus
2 Newcastle University, Newcastle upon Tyne, NE17RU, UK

3 University of Bologna, Bologna, 40127, Italy

Abstract. This paper describes the design, implementation and initial evalua-
tion of an object-based Distributed Shared Memory (DSM) middleware system
for Java. The resulting implementation allows the construction of event-based
distributed systems using a simple programming model, allowing applications to
be deployed without hardware or communication channel assumptions. Our im-
plementation utilises standard, freely available, Message Oriented Middleware
(MOM). This approach eases DSM development as many reliability and scalabil-
ity issues associated to DSM may be handled by MOM. In addition to an imple-
mentation description, we provide performance results of a prototype system on
a Local Area Network.

1 Introduction

The evolution of middleware architectures has provided developers with enabling tech-
nologies, easing the implementation of large-scale distributed applications deployed
in heterogeneous environments. Such middleware identify the remote procedure call
(RPC) as the mechanism within which transparency of distribution is achieved. This
has the result of making the interface and associated implementation the unit of dis-
tribution across a middleware platform. For clarity, we consider objects as the unit of
distribution as this is by far the most popular approach supported in middleware.

Distributed Shared Memory. (DSM) systems attempt to provide a higher level of ab-
straction to the developer than that found in middleware where developers knowingly
incorporate RPCs into their applications. In such systems transparency of distribution
is afforded via the access of shared memory. Irrelevant of where a client access oc-
curs, or where the shared resource is located, the developer views such an access as
simply a local access of a local resource within the regular programming style of the
implementation language being used. As such, the appropriate utilization of required
services (e.g., location and discovery) is handled by the DSM run-time that transpar-
ently intercepts user access attempts to remote memory addresses and translates them
into the appropriate messages.

Developing a DSM system for use with object-oriented middleware and providing
distributed application deployment in heterogeneous environments would be beneficial.

� Michele was partly funded by the European Commission under the Seventh Framework Pro-
gramme through the SEARCHiN project (Marie Curie Action, contract number FP6-042467).

R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 531–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

532 M. Mazzucco et al.

Developers would program their applications without the hindrance incurred from using
the services required for distributed object implementation. This would abstract the bulk
of the required distributed service architecture currently used directly by developers in
RPC based middleware into the DSM system itself. We now term such a DSM system
‘DSM Middleware’.

If DSM middleware is to be successfully deployed and used by distributed appli-
cation developers (who would otherwise use object-oriented middleware) the benefits
associated with object oriented middleware must be maintained. These benefits include:

– Platform independence: reliance should not be directly placed on hardware or op-
erating system services, allowing development in heterogeneous environments;

– Ease of programming: like RPC in object-oriented middleware, DSM middleware
should not require significant changes in programming style to accommodate
distribution;

– Run-time deployment: to permit evolving software solutions, the addition of soft-
ware artifacts should be allowed at run-time, and not be restricted by compile-time
decisions.

The principal contribution of this paper consists of providing a practical implementa-
tion of a DSM protocol in order to support the construction of event-based application
systems. In addition, our architecture can use non-reliable communication support (e.g.,
the Internet), where packets may be lost, or experience unpredictable delays.

2 Design Issues

Before we can clearly identify a suitable approach for the provision of DSM middle-
ware, we must first explore general approaches to DSM implementation. Within such
approaches we identify themes of development that may be suitably tailored, or used
“as is” within our own DSM middleware. We consider suitability based on the benefits
of object-oriented middleware listed in the previous section. We divide this section into
three further subsections based on the basic design choices of a DSM:

1. Implementation level, i.e., where within existing middleware is it most appropriate
to implement DSM;

2. Consistency model, i.e., how best to afford sufficient consistency of a shared re-
source without hindering performance;

3. Communications, i.e., how to enact communications appropriately to provide the
propagation of state changes associated with DSM updates.

2.1 Implementation Level

A number of alternatives exist for determining the level of abstraction where a DSM
implementation is to be deployed: from systems that maintain consistency entirely in
hardware to those that exist entirely in software. Considering our requirement of a mid-
dleware solution, we cannot guarantee homogeneous hardware support; we focus exclu-
sively on software supported DSM systems. Software DSM systems can be split into
three classes: page-based, variable-based, and object-based. In each of these approaches
our concern is where and how transparency of remote access is introduced:

Engineering Distributed Shared Memory Middleware for Java 533

1. Page-based implementations use the memory management unit (MMU) to trap re-
mote access attempts;

2. Variable-based run-times require custom compilers to add special instructions to
program code in order to detect remote access requests;

3. Object-based systems use special programming language features to determine
when the memory of a remote machine is to be accessed.

Due to platform dependencies (e.g., operating system), we cannot consider page-based
solutions as an adequate approach for a heterogeneous solution to DSM middleware.
Although variable-based solutions may be possible (given that a certain degree of plat-
form independence is provided) the compile time requirements restrict the ability to in-
troduce new types during run-time. This leaves the possibility of object based solutions.
Although this approach seems tightly coupled to a particular programming language, a
degree of platform independence is afforded beyond that offered by page-based systems.
In addition, if the language in question supports the introduction of new types during
run-time, then this desirable feature may be incorporated into the DSM middleware.

2.2 Memory Consistency Model

Choosing an appropriate memory consistency model presents a trade-off between min-
imizing access order constraints and the complexity of the programming model: strict
memory models (e.g., sequential [14]) reduce complexity from the programmer’s per-
spective but are achieved at the expense of performance; increased message passing cou-
pled with the locking of resources is required. On the other hand, weak memory models
(e.g., release consistency [12]) grant improved performance, but allow the memory to re-
turn unexpected values. It is the duty of the programmer, using explicit synchronization
techniques, to provide algorithmic semantics equivalent to the sequential model.

Given the type of DSM middleware under consideration, the most important de-
sign choice, in terms of scalability, is where to physically store memory. If a single
reader/single writer algorithm is in operation, i.e., if such a storage space is consigned
to a single location, there is a greater potential for memory contention issues to arise,
commonly resulting in bottlenecks. Furthermore, data may be geographically separated
from an accessing process to such an extent that latency of message exchange may be
sufficiently high as to hinder performance.

In order to realise a scalable solution for DSM middleware, a compromise must be
reached regarding the consistency of memory against the performance incurred from
using such memory. One design option would be to replicate shared memory across the
DSM middleware, affording local access when appropriate, while seeking to maintain
a degree of consistency across replicas to ensure successful application operation.

2.3 Communication Channel

To ensure availability for the widest audience, a developer must rely on standard pro-
tocols such as those governing public access network traffic (e.g., TCP/IP for the In-
ternet). As existing middleware provides a convenient and practical communication ab-
straction for developers over such protocols, it would be imprudent not to exploit such
middleware.

534 M. Mazzucco et al.

As RPC is the primary mechanism for enacting communication within existing mid-
dleware, one must consider RPC as a suitable communication mechanism on which to
construct DSM middleware. Using RPC requires an initialised and maintained com-
munication stream between sender and receiver, either throughout a call or for as long
as RPC participants hold references to each other (usually sender holding reference
to receiver). This tightly coupled approach to communication is satisfactory for small
numbers of participants but does not scale to support hundreds or thousands of partici-
pants. RPC used in such a manner is not scalable, as the management of connections at
both client and server would be a substantial drain on available processing resources.

Middleware developers have tackled this scalability issue by abstracting away the
one-to-one communication model of RPC in favour of a many-to-many solution. This
is achieved by providing messaging services that decouple sender from receiver (e.g.,
the sender does not know who is receiving its messages [8]). In distributed systems
such an approach to message exchange is encapsulated in Message Oriented Middle-
ware (MOM) [17] with the Java Message Service (JMS) [28] providing an example
implementation in Java.

In MOM, senders publish their messages onto well-known message channels (topics
or queues, depending on the model in operation), while receivers express interest in
receiving messages from such channels. The use of MOM allows additional services
(such as message ordering) to be abstracted away from the concern of the programmer
to the systems level.

2.4 Memory Design

To provide a DSM middleware for use by developers, a suitable approach to implemen-
tation would be object-based, while affording run-time introduction of software objects.
Although not ideal (given that language dependency persists) such an approach would
provide a significant degree of platform independence. The Java Programming Lan-
guage offers a semi-platform independent solution as the Java Virtual Machine (JVM)
is available on most platforms and widely used by existing RPC middleware solutions.
In addition, the reflective qualities of Java coupled with the serializability of object
instances, allow the introduction of new object types at run-time.

Once the decision is taken to model the shared memory abstraction as a collection of
shared objects, two further choices present themselves: (i) the algorithm to use and (ii)
the memory consistency model.

As we are deploying our DSM on multiple machines using copies of objects (with a
view to eventual distribution over a wide geographical area), we need to employ replica-
tion techniques that minimise the possibility of bottleneck and excessive access delays
due to network latencies. This raises a significant challenge in ensuring consistency of
data across replicated memory locations; hence an agreement protocol will be required
to maintain a degree of consistency. This subject however, presents complexity in dis-
tributed systems owing to the unavailability of an absolute global time. The lack of
such temporal-synchronisation means it is not always possible to determine the order
in which events occurred due to the asynchronous nature of the network (message de-
lays are bounded but unknown) coupled with the non-determinism of multi-threaded
process execution on preemptive operating systems. Our approach is quite similar to

Engineering Distributed Shared Memory Middleware for Java 535

that proposed by [9] such that we exploit the ordering features provided by the com-
munication channel – in particular, given two messages m1 and m2, if m1 → m2

1 then
all processes will receive m1 before receiving m2 – while the run-time system uses an
algorithm which allows the update of remote replicas.

Extensive research has been carried out in the area of memory consistency models;
for the purposes of our work, we adopt and experiment with (i) the sequential and (ii)
the Pipelined RAM (PRAM) consistency models [16]. These models offer a compro-
mise between programming constraints and implementation complexity, allowing us to
evaluate the feasibility of our approach at an early stage.

An integral component of any agreement-protocol is support for ordering and reliable
message delivery. By choosing a MOM solution for our communication channel we not
only provide scalability for message exchange, but the opportunity to use as required,
associated services potentially providing ordering and reliability guarantees; this will
ease the overall development of the DSM agreement protocol. Having identified Java
as a suitable implementation language for our DSM, so we choose JMS as our MOM
technology. Consequentially, our system provides the following main features:

1. The combination Java/object-based run-time allows us to deploy our DSM in het-
erogeneous environments (possessing a Java Virtual Machine);

2. By utilizing existing middleware services in our DSM middleware we aim to
provide QoS guarantees (e.g., atomic delivery order of messages, exactly-once
semantics);

3. The use of Java and MOM, coupled with our DSM middleware (constructed us-
ing existing middleware techniques) means we can grant the developer run-time
introduction of new types;

4. Our multiple reader/multiple writer algorithm uses both partitioning and replica-
tion. Read operations are local (see Figure 1), while nodes interact only with a
(dynamic) subset of shared objects, as shown in Figure 2. Furthermore, different
processes can operate on the same object concurrently, as processes read/write their
own local copies, thus increasing the degree of parallelism;

5. Distributed applications do not interact with the memory via an object’s methods
(this is by far the most common approach used by object-based DSM implemen-
tations). Instead, our system provides the same primitives of page-based systems
(i.e., read and write).

3 Implementation

In our system, interactions between actual shared object instances are not the concern of
the application developer; rather, he or she interacts with “wrapper” objects, which pro-
vide the abstraction of DSM as depicted in Figure 2. This approach originates from the
technique used by page–based implementations. In order to recreate similar behaviour,
the shared memory abstraction is based on two elements; namely, wrapper objects and
memory addresses. The wrapper object is the DSM coherence unit while a memory ad-
dress unequivocally locates a wrapper (given a replicated wrapper object o, all replicas

1 The → symbol indicates the “happened before” relation as defined in [13].

536 M. Mazzucco et al.

Distributed Shared Memory
JMS Layer

Communication Channel
(i.e. TCP)

Application Layer

Runtime System Layer

Private
Memory

JMS Layer

Communication Channel
(i.e. TCP)

Application Layer

Runtime System Layer

Private
Memory

Fig. 1. DSM architecture. The cache allows for local reads

Node

Shared Object

Object space

Distributed Shared Memory

Object

Fig. 2. The DSM uses both replication and partitioning to reduce the number of exchanged
messages

share the same address Addr(o)). The main advantage of this scheme is that it supplies
a single system image; all processes reading (or writing) the memory address x read (or
write) the same item.

3.1 Local Memory

Even though the proposed scheme is object-based, it uses some techniques adopted by
page-based protocols. The main difference is that the Java programming language does
not allow the programmer to directly manipulate the physical memory. This is a short-
coming in the sense that it adds overhead, but also an advantage in terms of providing

Engineering Distributed Shared Memory Middleware for Java 537

Application Layer Serializable

JMS Layer

Communication Channel

ObjectMessage

ISharedObject

Serializable

(1) ML2

(2) Event Dispatcher

Runtime
System

... MLnML1

ISharedObject

Serializable

ISharedObject

Serializable

ISharedObject

Serializable
...

Fig. 3. Updates management

platform independence. In order to solve this limitation we decided to implement the
local memory abstraction through two hash tables, 〈k,v〉:
1. memory, acting as local cache where the keys are memory addresses and the val-

ues are ISharedObject instances, specifically wrapper objects. As the objects
stored in the DSM are transmitted over the network we require the content to be
Serializable.

2. subscriptions, storing subscribed topics. The key is the topic name while the
value is an object containing all JMS objects needed during communication phases.
Hence a “topic” in this discussion, represents a list of update-messages having rel-
evance to specific shared-object replicas.

Since the system is asynchronous in nature, shared memory management challenges
comprised of (i) how to update the local cache, and (ii) how to notify the application
when updates happen. The run-time system we propose, depicted in Figure 3, consists
of a MessageListenerobject for every subscribed topic and the event dispatcher. The
event dispatcher is based on the Observer design pattern [11], which guarantees that
every time the subject is updated, all observers are notified automatically and transpar-
ently. Consequently, the shared memory API is composed of three methods:

1. void write(ISharedObject): writes a wrapper object to the shared memory.
The address to write is contained in the argument;

2. void read(Address): reads the specified shared memory address. In using the
event dispatcher, this method need not return a value, as the application will be

538 M. Mazzucco et al.

notified as soon as the data becomes available (averting the possibility of reading
an address that has not yet been written);

3. void deleteLocal(Address): locally deletes the memory zone bound with the
specified memory address, resulting in the topic specified by the function argument
to become un-subscribed.

3.2 Remote Data

Our approach allows the run-time system to distinguish between local and remote ac-
cess attempts. However, due to the introduction of the Observer design pattern, access
attempts use this notification system whether local or remote reads are taking place.
Remote access requests are satisfied using a three-step algorithm: Transmission request
to the topic T is bound with the memory address; Local memory synchronization, i.e.,
creation of a new replica; Subscription of the topic T .

Since memory is physically distributed, interaction between system components oc-
curs only through messages. During the step number 3.2 the synchronization protocol
must guarantee that the requesting node will receive only one (correct) reply in order to
maintain the consistency among replicated data. The solution to this issue is the solution
to the consensus problem.

3.3 Agreement Protocol

Several definitions of the consensus problem can be found in literature. For the purpose of
our discussion we state the consensus problem in the following terms: given a collection
of processes p1, . . . , pn (n > 1) communicating via message passing, every process begins
in the undecided state and proposes a single value. Following a deterministic protocol, at
some point during its computation a process must irreversibly decide on a single value,
vi, drawn from a set V = {v1, . . . ,vn}. If every correct process proposes a value then an
algorithm is a consensus protocol only if it satisfies the following three properties:

1. Termination: every correct process eventually decides a value;
2. Agreement: all correct processes decide the same value;
3. Integrity: if the correct process p j decides vi, then some correct process has pro-

posed that value.

time

P1

P2

P3

cc

c

j

j
c

s

w(a, o) w(a, o)

r

T

Q

j

r

w(a, o)

c
r

r
c

s

Fig. 4. Naive agreement protocol

Engineering Distributed Shared Memory Middleware for Java 539

time

P1

P2

P3

cc

c

j

j

c

s

w(a,o) w(a,o)

r

T

Q

j

r

w(a,o)

c

r

r
c

s

Fig. 5. The agreement protocol. The synchronization message s1,3 is sent only after all proposals
are received.

A protocol run starts when a process pi would like to join a topic T (e.g. when a remote
memory access attempt is made): p3 creates a temporary queue Q needed to receive the
synchronization message and publishes to T a message containing its identifier and Q’s
identifier (message j3,Q in Figure 4).

When a process p j (∀ j ∈ T) falling into T receives a request, it immediately ceases
outgoing memory communications to T ’s channel (further requests will be buffered)
and publishes to the topic its own proposal (messages c1,3 and c2,3). To find an agree-
ment, our protocol exploits the delivery order warranty provided by JMS. Since all
nodes belonging to the same subsystem receive messages in the same order, the leader
is the sender of the first received message. The elected process continues by sending a
synchronization message to the queue Q containing all ISharedObjects bound to T .

At first glance, the protocol described above looks correct. However, if used, it would
cause coherence problems under certain circumstances. As illustrated in Figure 4 after
the receipt of the message s1,3, P3’s cache differs from those of P1 and P2, because the
leader P1 sent the synchronization message before receiving P2’s update.

The solution requires that the coordinator send thesynchronization message only when
all proposals are received (message s1,3 in Figure 5). Since processes stop outgoing mem-
ory communicationsas soon as they receive a join request, the causal delivery order guar-
antees that all updates (marked as waddress,ob ject) are propagated before the leader receives
the last proposal. When the initiator node receives the synchronization message, it up-
dates its own memory, deletes the queue Q, subscribes to the topic T, and finally publishes
a message ending the protocol, marked as r3. When processes receive an r message from
the channel T , they recommence outgoing memory communications to T .

Finally, if a process is no longer interested in a topic T , a protocol allowing that
node to leave T is used. As this algorithm is very similar to the previous one, its details
have been omitted for the sake of brevity. The main difference with the leaving protocol
however is that the number of available nodes is decremented.

This proposed scheme does have one serious shortcoming however; since the coor-
dinator process must wait until all proposals are received, it has to know how many
processes belong to T . Hence, due to the findings of the FLP theorem [10], this pro-
tocol cannot cope with crashes (this may be solved however with group membership
protocols like JGroups [5] or Project Shoal from Glassfish [1]).

540 M. Mazzucco et al.

3.4 Memory Updates

To distinguish between new objects and updates the ISharedObject data type is ex-
tended by two interfaces, namely INewData and IUpdate.

Within synchronization messages (see figure 5), the requesting process receives a
hash table containing only INewData objects. Thus, the message content is stored into
the memory hash table as it is; every time the local cache is updated, registered ob-
servers are notified.

During updates matters become more complex; the proposed scheme exploits the
observation that when operations are commutative they can be reordered without af-
fecting the final state [20, 30]. If the received message contains an “entire” object then
the content is stored in the local cache (this could mean for example, that operations are
not commutative) while if the message content is an update then the original object is
modified using reflection techniques.

In the case of updates, the DSM low-level behavior differs according to the mem-
ory consistency model in operation. If the sequential consistency model is used, then
the update is sent over the communication channel and the local memory is updated
only when the message is received (a topic subscription could be required). The PRAM
model requires instead that the new value be written to the local memory before up-
dating remote copies; in order to avoid coherence problems, the following actions are
required: The old value is saved so that in the case of communication problems it can be
restored; The node which updates the shared memory cannot receive its own message
(as is the case in the sequential model), otherwise the memory would be updated twice
for each write invocation.

4 Experimental Results

A number of performance tests were conducted on our prototype architecture. This
section presents the preliminary results of those tests.

Our testbed environment consisted of a cluster composing Pentium 4 PCs running
Linux 2.6.10 and JVM Sun 1.5.0 02 and connected by a 100 Mbit Fast Ethernet LAN.
The JMS provider we used was Joram 4.3.1 [21] with each node deployed on a Pentium
4 3.0 GHz with 1 GB of RAM, while clients were deployed on Pentium 4 2.4 GHz with
512 MB of RAM. Before discussing the results of the tests, it must be stressed that they
were carried out on a shared network with shared servers. Therefore the occurrence of
unpredictable delays due to unrelated network traffic was a possibility, however this did
present the opportunity to test the DSM system performance in a realistic environment.

A “benchmark” application suite was developed to determine the overhead of com-
ponents, the agreement protocol cost and the cost of updates. A detailed description of
the benchmarks is given during the tests discussion.

4.1 Components Overhead

The aim of this test was to measure the overhead incurred by each component. We mea-
sured the performance differences between (i) TCP and (transient) JMS, (ii) transient
and persistent JMS, (iii) ‘local’ and ‘remote’ connections, and (iv) JMS and our DSM.

Engineering Distributed Shared Memory Middleware for Java 541

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 4.4

 4.8

 1 10 100 1000 10000

T
im

e
(m

s)

Size (bytes)

TCP
Transient JMS

(a) TCP vs. transient JMS.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 10 100 1000 10000

T
im

e
(m

s)

Size (bytes)

Transient JMS
Persistent JMS

(b) Transient vs. persistent JMS.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 1 10 100 1000 10000 100000

T
im

e
(m

s)

Size (bytes)

Same host
Different hosts

(c) Local vs. remote connections.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 10 100 1000 10000 100000

T
im

e
(m

s)

Size (bytes)

JMS (1 thread)
JMS (locks)

DSM

(d) Persistent JMS vs. DSM.

Fig. 6. Components cost

The overhead was calculated as round-trip time depending on the message size. The
results show the mean values of 1000 measurements.

TCP vs. JMS. Figure 6(a) shows the overhead introduced by JMS. While TCP provides
at-most-once semantics with FIFO order, this JMS configuration (single server, tran-
sient) guarantees the same semantic but a causal atomic delivery order. Measurements
show that the overhead is approximately the same in absolute terms and thus its impact
decreases as the message size increases. JMS is 11 times more expensive than TCP
when a single byte is sent and four times more expensive when the message is 10 KB
large.

An additional point of interest regarding the difference between 1 KB and 10 KB mes-
sages is that since the network MTU is 1500 bytes, the first message is contained within
one IP packet while the second is split into seven fragments. In these conditions the cost
of a TCP send operation grows by a factor of 2.5 while the JMS grows by only 1.5.

Transient vs. Persistent mode. This test measured the overhead needed to guarantee an
exactly-once delivery semantic. When persistent mode is used in transit, messages are
not lost due to a JMS provider failure. In this scenario the JMS provider is distributed
among three nodes: Figure 6(b) shows that the overhead is indeed quite noticeable; the

542 M. Mazzucco et al.

persistent mode is approximately four times more expensive than the transient, with an
increasing trend.

Transparency cost. The aim of this third experiment was to determine the outcome
of JMS clients connecting to a server, then sending messages to a topic deployed on
another server (usually JMS clients create only one connection). This test was carried
out by running a distributed JMS configuration composed of three nodes configured
in transient mode. Figure 6(c) shows that the difference is approximately 26%, with
an increasing trend; as shown in Figure 7. This difference explains the high overhead
introduced by the run-time system when large messages are handled. Unfortunately
there is no immediate solution to this problem. The use of a distributed architecture
requires some form of synchronization, and this happens by message exchange. This is
price for providing location transparency, and is related to the naming service (JNDI).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

194byte 1KB 10KB 100KB 1MB

%
 o

f t
ot

al

TCP
Causal atomic order

Exactly-once delivery
Runtime system

Fig. 7. Components overhead for different message sizes

JMS vs. DSM The last experiment in this set of tests measures the overhead introduced
by the run-time system. The communication channel is provided by three Joram nodes,
configured in persistent mode. The results shown in Fig. 6(d) include the following
scenarios: (i) a JMS client using a single thread to receive and publish messages, (ii) a
multi-threaded client using one thread as publisher and another thread as subscriber, and
(iii) a client using the facilities provided by the run-time system. Messages are sent by
the write() primitive while incoming messages are handled by the event dispatcher.
In this experiment, once the message has been published, the client waits for its receipt
and thus the single-thread version performs better; unfortunately in a real scenario the
two operations are handled individually. The dual-threaded application can be modelled
in the form of a “producer-consumer” with a bounded buffer of one-item capacity;
the overhead needed to synchronize the two threads is very high (111% for 100 KB
messages). Finally the DSM guarantees the coherence of replicated data as well as a
synchronization mechanism. Results show that the run-time system performs well only
when messages are sufficiently small (1 KB).

Engineering Distributed Shared Memory Middleware for Java 543

4.2 Agreement Protocol

The second test evaluates the cost of shared memory synchronization. Assuming a sys-
tem composed of n nodes in which k form part of the sub-set (k <= n), all nodes receive
k + 2 messages and publish only one message (except for the coordinator, which sends
two messages). These experiments were repeated five times. Average results, as de-
picted in Figure 8, show that external factors are much more important than the number
of nodes involved in the election. As already mentioned, both network and computation
resources were shared during tests, explaining why 1371 ms are needed to allow the
admission of the node number 28 while the protocol requires only 350 ms when nodes
are 31.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Number of nodes

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Number of nodes

Fig. 8. Cost of memory synchronizations for different network sizes

4.3 Updates

This section shows the update test results related to the sequential consistency model
for objects of 194 bytes. The performance of the PRAM is not shown because local
memory is updated with no communication overhead.

The JMS provider is composed of three persistent nodes while DSM processes in-
teract through a clustered topic. The clustered topic abstraction supplies a fault tolerant
mechanism but does not provide any form of load balancing. This set of experiments
aims to answer to the following questions:

1. What is the effect of varying the number of nodes (1, 4, 8, 16 and 32)?
2. How does the system react to increasing the amount of requests per node from 125

to 500, using increments of 125?
3. How does the system behave with respect to the system configuration (25%, 50%,

75% and 100% of nodes falling into the same sub-unit)?

Average cost depending on the number of nodes. The results of this test were not
particularly significant given the rapidness of nodes’ attempts to update shared mem-
ory. Executing this test presents problems as it interferes with the provider’s ability to

544 M. Mazzucco et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

0.25
0.50
0.75

1.0

(a) 125 requests per node

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Nodes

0.25
0.50
0.75

1.0

(b) 250 requests per node

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Nodes

0.25
0.50
0.75

1.0

(c) 375 requests per node

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Nodes

0.25
0.50
0.75

1.0

(d) 500 requests per node

Fig. 9. Updates

handle requests; the significant difference between the values shown in Figure 9 is due
to the way the topic abstraction is implemented, and thus adding more machines to the
provider only partially mitigates the issue.

Average cost depending on the number of requests. The results demonstrated that when
the number of clients is four, there is no substantial difference. If the number of nodes
continues growing however, then the provider becomes inundated with requests and
consequentially is no longer able to satisfy those requests expeditiously. With regard to
observed spurious values: when the number of nodes is high they can be attributed to
external factors, but if the number is low (and thus the throughput is high) it becomes
fundamental where the connection is created.

Average cost depending on the system configuration. As expected, the configuration
which features all nodes belonging to the same subunit, consistently performs the worst
due to its semantic being equivalent to broadcast communications. The configuration
which features 50% of all nodes belonging to the same subsystem performs relatively
well. The other two tests were carried out concurrently and thus, since the JMS provider

Engineering Distributed Shared Memory Middleware for Java 545

knows the number of both publishers and subscribers it can allocate more resources
where they are needed.

5 Related Work

In this section we compare our DSM middleware system with other DSM systems fea-
turing a design and approach comparative to ours.

Previous systems typically do not address problems related to the communication
channel. In particular, several implementations assume that packets are delivered in the
correct order while messages cannot be lost; TreadMarks [2] and IVY [15], for instance,
use a combination of UDP and timeouts to maintain coherence among replicas. While
this shortcoming is not a significant hindrance in LAN environments (where message
latency is much lower compared to the Internet), as a design choice this is particularly
critical since we don’t make any assumption about the communication channel.

The most popular DSM systems have been built with a predefined operating sys-
tem/hardware architecture combination (e.g., TreadMarks, IVY, Brazos [26]) or relying
on modified compilers (e.g., Munin [7], Shasta [22], Jackal [29]), including
approaches based on the Java language with modifications required within the JVM
(e.g., Java/DSM [31]).

Maintaining memory coherence in our DSM middleware bears similarities to the
solution adopted by TreadMarks, there are several differences however. For example, at
the implementation level, our DSM system is object-based while TreadMarks is page-
based. Consequentially, TreadMarks may be affected by false sharing and fragmentation
problems which require additional protocols [3] in order to be minimized. In addition,
at the communication level, TreadMarks is based on the exchange of UDP messages
while our solution relies on JMS.

Scalability is rarely confronted in existing systems similar to ours. For example,
TreadMarks propagates updates to all nodes while our solution “hits” interested nodes
only. JDSM [25] uses a centralized node (the Cluster Manager) to intercept requests,
creating a bottleneck as the number of nodes increases.

The use of group communication has precedents. Orca [4] uses group communi-
cations to implement a sequentially consistent object-based DSM. Orca, like the sys-
tem described in this paper, relies on features of the communication channel (reliable,
total ordered broadcast) to implement transparent replication as well as to maintain
data-object consistency. Brazos uses two main system threads to reduce communica-
tion overhead and uses a selective multicast to reduce communication traffic. Finally,
the work described in [24] presents an object-based DSM, designed as an extension to
the .NET Framework. It provides a causally consistent memory model where causal
relationship is achieved through vector logical clocks sent with every message.

Java has been used previously to implement a DSM system. Java/DSM [31] ad-
dresses problems that arise when a heterogeneous set of nodes are used, however it
modifies the memory management of the JVM and thus it is not portable. As in our
system, JDSM does not modify the JVM, however it is quite different from the solu-
tion we propose. First, it requires shared objects to be declared during the initialization
step. Second, its architecture (composed of a Cluster Manager, Server and Client) re-
quires that requests be sent from the Client to the Cluster Manager and then forwarded

546 M. Mazzucco et al.

to one of the available Servers. However, over-involvement of the Cluster Manager in
this scenario produces a potential bottleneck, hindering scalability. Finally, node inter-
activity can use three different communication protocols, TCP/IP socket, PM and VIA.
Again, the lack of MOM in a middleware environment leaves DSM middleware without
services that can be incorporate at little cost (e.g., transactions).

Java Past Set (JPS) [19] differs from our system primarily because shared objects are
not replicated, hence for reasons explained in section 2.3, scalability problems arise
when the number of accessing clients increase. Data location is achieved with element
object descriptors and can be distributed according to several policies (i.e. place the
object with the first node that requested it or try to distribute the same number of ob-
jects to every node). Thus in JPS, data distribution can happen in several ways, while
we replicate data on demand and remove replicas when they are no longer needed. A
commonality between JPS and our DSM is the data update phase, defined as user re-
definable memory semantics, allowing the application programmer to define the mem-
ory operation semantic.

Finally, the only known system designed to host multi-player games is Plurix [23],
providing the illusion of a shared memory by utilising a custom operating system and
Java compiler; the resulting architecture works exclusively on Intel platforms while the
memory coherence unit is a page of virtual memory.

6 Conclusions and Future Work

In this paper we have presented distributed shared memory middleware. In comparison
to existing approaches, this platform provides greater transparency to the application
programmer. Firstly, it has been identified that the proposed protocol does not prerequi-
site any hardware or software architectural assumptions (the features of Java handle the
differences). Secondly, the run-time system transparently handles the message passing
details. Thirdly, this system is able to use non-reliable channels, where packets can be
lost and delays are of an arbitrary length.

To summarize, we have shown the applicability of group communications, replica-
tion, caching and interest management techniques to support the construction of event-
oriented distributed systems. The next step is to conduct a more extensive plan of tests.
In particular, we plan to deploy our middleware solution in a WAN environment such
as PlanetLab or the Grid, where packets can be lost or delayed.

There remain problems to address: client connection to the JMS provider for exam-
ple, which is responsible for the poor performance observed in certain circumstances,
or issues of fault tolerance during memory synchronization. Differing approaches to the
latter problem have been proposed, however some techniques (e.g, [6]) are not scalable
while others (e.g, [27]) allow only one crash occurrence. A possible solution requires
more realistic assumptions about the communication channel to solve the consensus
problem (or alternatively to use a randomized algorithm). If it is possible to solve con-
sensus, it becomes feasible to adopt an approach similar to that presented in [18] to
periodically save the memory content in stable storage, while the use of failure detec-
tors would inform the run-time when the memory has to be restored (our system uses a
write-update algorithm).

Engineering Distributed Shared Memory Middleware for Java 547

References

[1] Abdelaziz, M., et al.: Project Shoal, a dynamic Java clustering framework,
https://shoal.dev.java.net

[2] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared Memory Computing on Networks of Workstations.
IEEE Computer 29(2), 18–28 (1996)

[3] Amza, C., Cox, A.L., Dwarkadas, S., Jin, L.-J., Rajamani, K., Zwaenepoel, W.: Adaptive
Protocols for Software Distributed Shared Memory. Proceedings of the IEEE, Special Issue
on Distributed Shared Memory Systems 87(3), 467–475 (1999)

[4] Bal, H.E.: Orca: A Language for Distributed Programming. ACM SIGPLAN Notices 25(5),
17–24 (1990)

[5] Ban, B., et al.: JGroups, a toolkit for reliable multicast communication,
http://www.jgroups.org

[6] Cabillic, G., Muller, G., Puaut, I.: The Performance of Consistent Checkpointing in Dis-
tributed Shared Memory Systems. In: Proceedings of the 14th IEEE International Sympo-
sium on Reliable Distributed Systems (SRDS 1995), September 1995, pp. 96–105 (1995)

[7] Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Implementation and Performance of Munin. In:
Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP 1991),
pp. 152–164. ACM Press, New York (1991)

[8] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys (CSUR) 35(2), 114–131 (2003)

[9] Fekete, A., Kaashoek, M.F., Lynch, N.: Implementing Sequentially Consistent Shared
Objects using Broadcast and Point-To-Point Communication. Journal of the ACM
(JACM) 45(1), 35–69 (1998)

[10] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

[11] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (1995)

[12] Gharachorloo, K., Lenosk, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.: Memory
Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. In: Proceed-
ings 17th Annual International Symposium on Computer Architecture, pp. 15–26. IEEE
Computer Society, Los Alamitos (1990)

[13] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi-
cations of the ACM 21(7), 558–565 (1978)

[14] Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes Multipro-
cess Programs. IEEE Transactions on Computers C-28(9), 690–691 (1979)

[15] Li, K., Hudak, P.: Memory Coherence in Shared Virtual Memory Systems. ACM Transac-
tions on Computer Systems 7(4), 321–359 (1989)

[16] Lipton, R.J., Sandberg, J.S.: PRAM: A Scalable Shared Memory. Technical Report CS-TR-
180-88, Dept. of Computer Science, Princeton University (September 1988)

[17] Menasce, D.A.: MOM vs. RPC: Communication Models for Distributed Applications.
IEEE Internet Computing 9(2), 90–93 (2005)

[18] Morin, C., Kermarrec, A.-M., Banatre, M., Gefflaut, A.: An Efficient and Scalable Ap-
proach for Implementing Fault-Tolerant DSM Architectures. IEEE Transactions on Com-
puters 49(5), 414–430 (2000), citeseer.ist.psu.edu/morin97efficient.html

[19] Pedersen, K.S., Vinter, B.: Java PastSet: A Structured Distributed Shared Memory System.
IEEE Proceedings – Software 150(2), 147–153 (2003)

[20] Pu, C., Leff, A.: Replica Control in Distributed Systems: An Asynchronous Approach. In:
Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1991), pp. 377–386. ACM Press, New York (1991)

https://shoal.dev.java.net
http://www.jgroups.org
citeseer.ist.psu.edu/morin97efficient.html

548 M. Mazzucco et al.

[21] ScalAgent Distributed Technologies. JORAM: Java Open Reliable Asynchronous Messag-
ing (2005), http://joram.objectweb.org

[22] Scales, D.J., Gharachorloo, K., Thekkath, C.A.: Shasta: a Low Overhead, Software-Only
Approach for Supporting Fine-Grain Shared Memory. In: Proceedings of the 7th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pp. 174–185. ACM Press, New York (1996)

[23] Schöttner, M., Wende, M., Göckelmann, R., Bindhammer, T., Schmid, U., Schulthess,
P.: A Gaming Framework for a Transactional DSM System. In: Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003),
Tokyo, Japan, May 2003, pp. 502–509. IEEE Computer Society, Los Alamitos (2003),
http://www.plurix.de/

[24] Seidmann, T.: Distributed Shared Memory Using The NET Framework. In: Proceedings of
the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
2003), Tokyo, Japan, pp. 457–462. IEEE Computer Society, Los Alamitos (2003)

[25] Sohda, Y., Nakada, H., Matsuoka, S.: Implementation of a Portable Software DSM in Java.
In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande (JGI 2001),
pp. 163–172. ACM Press, New York (2001)

[26] Speight, E., Bennett, J.K.: Brazos: A Third Generation DSM System. In: Proceedings of the
First Usenix Windows NT Symposium, August 1997, pp. 95–106 (1997),
http://www-brazos.rice.edu/brazos

[27] Sultan, F., Iftode, L., Nguyen, T.: Scalable Fault-Tolerant Distributed Shared Memory.
In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (Supercomputing
2000), pp. 20–32. IEEE Computer Society, Los Alamitos (2000)

[28] Sun. Java Message Service. Sun Microystems, Version 1.1 (April 2002)
[29] Veldema, R., Hofman, R.F.H., Bhoedjang, R.A.F., Bal, H.E.: Runtime Optimizations for

a Java DSM Implementation. In: JGI 2001: Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, pp. 153–162. ACM Press, New York (2001)

[30] Wuu, G.T., Bernstein, A.J.: Efficient Solutions to the Replicated Log and Dictionary Prob-
lems. In: Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed
Computing (PODC 1984), pp. 233–242. ACM Press, New York (1984)

[31] Yu, W., Cox, A.L.: Java/DSM: A Platform for Heterogeneous Computing. Concurrency -
Practice and Experience 9(11), 1213–1224 (1997)

http://joram.objectweb.org
http://www.plurix.de/
http://www-brazos.rice.edu/brazos

	Engineering Distributed Shared MemoryMiddleware for Java
	Introduction
	Design Issues
	Implementation Level
	Memory Consistency Model
	Communication Channel
	Memory Design

	Implementation
	Local Memory
	Remote Data
	Agreement Protocol
	Memory Updates

	Experimental Results
	Components Overhead
	Agreement Protocol
	Updates

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

