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Monte-Carlo based Reduction of Motion in Contrast Agent
enhanced MR-Mammographies

F. Hess1, D. Krechel1, L. Nakashima2, A. v.Wangenheim2

Introduction

We present an algorithm for fast reduction of motion artifacts in MR images (MRI). The ap-
plication field in the center of interest is the automatic detection of malignant tissue in con-
trast agent enhanced MR-Mammographies. Here, a series of up to ten MRI-volumes re-
corded at discrete time points is taken, describing the signal increase in tissue voxels (vol-
ume elements) by contrast agent enhancement (Gd-DTPA). Due to the patient’s breathing,
motion is induced and by this a dislocation of tissue areas over time. However, critical for a
proper tissue classification is that the investigated tissue areas lie as accurately as possible at
the same voxel positions of every akquired MRI-volume. Only by this, the signal behaviour
of the tissue can be traced properly. Although signal averaging by windowing filters like 2D-
Gaussian filters can reduce classification errors induced by tissue dislocation, the applied
window size is limited by the given minimum size of tissue to be classified. In other words,
applying a 17 square voxel window for the classification of 2 square voxel sized tissue struc-
tures is inadequate. A motion reduction technique between voxels of different MRI-volumes
is necessary.

Our first approach towards motion reduction implemented in the MAMMA-LYZER-sys-
tem [4] makes use of modified Kohonen maps as described in [7]. However, this method
does not meet the time constraints set by our medical partners (Dr. Buddenbrock, Dr.
Blasinger, Dr. Benz, Clinic  for Radiology, Mainz, Germany) i.e. real-time applicability).
This leads to the current approach as described in the following section.

Materials and Methods

MRI-volumes concerned here consist of 16 axial slices of the female mamma with slice di-
mensions of 256 x 256 voxels. The voxels themselves represent physical areas the size of
1x1x6 mm. As motion is mainly induced by the patient’s breathing, the applied axial regis-
tration has the advantage that breathing takes places almost inside volume slices and not be-
tween them. This motivates a faster two dimensional motion reduction algorithm. Breathing
results in coarse-scale and mainly linear motion, so it is feasible to determine voxel disloca-
tions (disparities) at only a few tissue voxel positions serving as supporting points for a fol-
lowing interpolation of the remaining tissue voxels.

The actual calculation of voxel dislocations between two MRI-volumes (volume match-
ing) makes use of a least square error based steepest gradient search followed by a Voronoi
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based disparity interpolation. The motion reduction process described here compares two
MRI-slices P1 and P2  of two meassured MRI-volumes V1 and V2.  For every voxel pxy := (x,
y) of slices P1  :={(x, y)| x ∈ N, y ∈ N}, it is necessary to determine the corresponding voxel
px‘y‘ in slice P2. As consequence, the set M := {Dxy  := (dx (x, y), dy (x, y)) | (x, y) ∈ P1}, de-
noted as motion map, delivers for every voxel pxy ∈ P1 the disparity Dxy towards slices P2, if
dx(x, y) = (x - x’) and dy(x, y) = (y - y )́ holds for every corresponding voxel pair pxy ∈ P1  and
px´y  ́∈ P2.

Speaking of voxel intensities Ip(x, y) of voxel pxy ∈ P, one can derive a matched slice R
:=P1 out of P2 for every voxel pxy ∈ P1 by means of

IR(x, y) := IP2
 (x + dx(x, y), y + dy (x, y)),   (dx(x, y), dy (x, y) ∈ M (1)

By this, IR(x, y)  denotes the proper voxel intensity of voxel pxy ∈ R. Now, the correspond-
ence problem reduces to finding the motion map M and therefore determining the disparity
Dxy of every voxel in P1. Our approach makes use of the last square error calculation of
voxel windows in P1 and P2. Given a voxel pxy ∈ P1 to be further investigated, the native
window in P1 having a certain size is centered at pxy while the test window in P2 of the same
size is moved around pxy. Looking at the square error calculation of both windows (see equa-
tion 2), a least square error occurs where both windows fit best with respect to their voxel
intensities.

Given a native window NW := {(x´, y )́ | x  ́∈ [x - cx; x + cx], y´ ∈ [y- cy; y + cy]} and an
error window EW := {(x´, y )́ | x  ́∈ [- ex; ex], y´ ∈ [-ey; ey]} with width and heights cx, cy, ex,
and ey, one can derive the least square error disparity Dxy = (dx (x, y), dy (x, y)) of voxel pxy
by
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It is in terms of computational efforts suitable to apply a Monte-Carlo based method for de-
termining M. This means, only a fraction of voxels pxy  ∈ P1 containing tissue information is
processed in the above described way, and those remaining gain their disparity Dxy by an in-
terpolation process.

Fig. 2: Trade-off between cal-
culation accuracy and calcula-
tion time. Although the calcu-
lation time develops linearly
with the amount of supporting
points, the calculation accu-
racy (i.e. the percentage of
correctly matched voxels) de-
creases dramatically when us-
ing less than 10 percent of
possible supporting points.
Note that the fixed calculation
time of about 8 secs. is due to
image reading and storing pro-
cesses.
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Fig. 1: Motion artifact reduction process. Using a least square error approach, two slices of different
MRI-volumes (upper and lower left) are matched by creating a motion map (upper middle) and by it
relocating voxel intensities (upper right). The matching results are shown as difference pictures be-
tween both source images (lower middle) and between the source native slice (upper left) and the re-
sulting matched slice (upper right). As can be seen, motion artifacts are reduced, although a contrast
agent enhancement has taken place.

Results and Discussion

Fig. 1 shows the whole motion reduction process as described before. Due to the Monte-
Carlo-based approach interpolation errors can occur when determining the slice’s motion
map. This results in an erroneous voxel matching process. Fig. 1 shows the impact of sup-
porting points used for the interpolation on the amount of wrongly matched voxels. Here, an
averaging window (Gaussian, std. dev. = 2 voxels) is already applied. As can be seen, there
is a trade-off between the accuracy of matching and its calculation time.

Currently, our efforts focus on a validation of the developped algorithms with data sup-
plied by our medical partners, a hardware implementation using FPGAs (field programmable
gate arrays), and an application to MR head images.
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